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In this paper we study the polyhedral structure of a mixed-integer programming
formulation of a capacity expansion problem arising in telecommunications, and

present computational results related with a cutting-plane algorithm which uses
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Abstract

We study a capacity expansion problem that arises in telecommunication
network design. Given a capacitated network and a traffic demand matrix, the
objective is to add capacity to the edges, in modularityes of various modularities,
and route traffic, so that the overall cost is minimized.

We study the polyhedral structure of a mixed-integer formulation of the
problem and develop a cutting-plane algorithm using facet defining inequalities.
The algorithm produces an extended formulation providing both a very good
lower bound and a starting point for branch and bound. The overall algorithm
appears effective when applied to problem instances using real-life data.

Introduction and Formulation.

facet defining inequalities to strengthen the linear programming relaxation.

authors and is still the focus of a lot of work because of its importance. In this
problem, we are given a graph and a set of multicommodity flow demands between
pairs of nodes. The task is to add capacity to the edges of a graph so that the

demands can be (fractionally) routed. The capacity is added in discrete units of

The generic problem that we are concerned with has been studied by many
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fixed available modularities. We pay for the added capacity and possibly also for the
flows. There are many possible special cases that arise from this general model. For
example, the graph may be directed or undirected, there may be side constraints
about the routing itself (integer valued or not, required to satisfy “survivability”
constraints or not) and the number of capacity modularities may vary across models.
This generic problem is strongly NP-hard [6] as it contains the set cover problem
(and perhaps more to point, the fixed-charge network design problem, and thus the
Steiner tree problem) as a special case. The problem has been known by names
such as “network loading problem,” ([10], [12]) “minimum cost capacity installation
problem,” ([4])and others.

We will denote the particular version of the problem that we study by CEP in the
sequel, and will define it below. Our primary motivation for studying CEP is that
it naturally arises as part of a much larger and complex problem concerning ATM
(asynchronous transfer mode) network design that we are separately studying, as
part of an ongoing study of ATM at Bellcore. This larger problem is in fact so large,
complex and ill-defined that a direct polyhedral study of it would be impractical
and probably not advisable. It includes “survivability” requirements, switching and
concentration at nodes, and other complex features. However, the ATM problem
contains several subproblems either identical or closely related to CEP. These prob-
lems have fully dense traffic matrices (i.e. every node wants to talk to every other
node). The strategy we are following to solve the ATM problem is to tighten-up
mixed-integer formulations involving CEP, and that is our primary concern here.
Thus, our computational testing will focus on how effective our inequalities are
towards obtaining a strong formulation for CEP (as opposed to developing an algo-
rithm for solving the optimization problems). We will report on the ATM problems
in a future paper.

In the model the edges are undirected, but traffic demands, and thus flows, are
directed. This arises because the amount of traffic to be routed from node s to
node t may well be different from the amount to be sent from ¢ to s. Moreover, any
fixed edge {i,7} of the network, essentially consists of two parallel directed edges
(1,7) and (j,4), and the flows on (7,j) and (j,i) do not interfere with each other.
The capacity of both directed edges is the same, and thus we require that the to-



tal flow on (i,7) (and also the total flow on (j,7)) is at most the capacity of the
edge {7, j}. Briefly, this constraint arises as follows. Traditional telecommunications
traffic (other than video) has been bidirectional, and networks have been designed
accordingly (that is, each link can carry the same amount of traffic in either di-
rection). More important, even when unidirectional traffic is being handled (such
as in our data sets) the network is still designed bidirectionally in the event that
bidirectional traffic may also have to be carried under a future scenario. In our data
sets, the transmission systems are optical and, as a result, bidirectional. While it is
certainly possible to design networks with unidirectional transmission systems, that
was not the case in the data sets available to us. However, it is worth noting that
with purely bidirectional traffic, our model becomes equivalent to the undirected
graph model.

In this paper we study CEP when there are two modularity sizes, motivated by
real-life data available to us. However, the extension of our inequalities to more
than two modularity sizes is straightforward. We will assume that the larger mod-
ularity size is an integral multiple of the smaller one (a realistic assumption). By
rescaling demands, we may assume that the smaller modularity size is 1. We call
the modularity sizes unit-batches and A-batches, where A > 1 is the capacity of the
larger modularity size. A more precise definition of CEP is the following. Given a
connected undirected graph G = (V, E) with existing capacities C, > 0 for alle € E,
and point-to-point traffic demand between various pairs of nodes, let P*denote the

convex hull of feasible solutions to CEP. Then,
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where K denotes the set of commodities related with the traffic demands, d¥ is the
net demand of commodity k at ¢ and f, x and y are the variable vectors related with
flow, unit-batches and A-batches, respectively. In this formulation equation (1) is
a flow conservation equation, and equations (2) and (3) indicate that total flow on
directed edge (7, 7) or (j,7) can not exceed total capacity of the related edge {7, j} -

We note that the dimension of P? is equal to the number of variables minus the
rank of the formulation, that is, there are no additional implied equations. Although
we do not prove it explicitly, this result is implied by some of the polyhedral results
presented in the following sections.

Throughout the paper, we will use ; ; and z;; interchangeably to denote the
same variable z, when e = {7, j} and we will do the same for variables y and existing
capacities C as well.

In the literature on multicommodity network flow problems, there are two main
approaches related with the definition of the commodities. The first approach is to
define a separate commodity for every non-zero point-to-point demand, resulting in
O(|V)?) commodities in general. The second approach is to aggregate the demands
with respect to their source (or destination) nodes and define a commodity for each
node with positive supply (or demand). The aggregated formulation has O(|V|)
commodities.

For some problems similar to CEP (fixed charge network flow problem, for exam-
ple) the “fine grain” disaggregated formulation results in a stronger LP-relaxation.
The number of variables in this formulation is O(|E||V|?) as opposed to O(|E||V])
of the aggregated formulation and, as noted in [3], when developing a cutting-plane
algorithm, it can be prohibitively expensive to use the disaggregated formulation.
Although it is possible to project the disaggregated formulation on the space of the
aggregated formulation by using a family of inequalities, called “dicut collection in-
equalities” [17], the related separation problem appears to be very difficult. In this
paper, we adopt the second approach (aggregated version) and define a commodity
for each supply node. We also note that for CEP, the LP-relaxations for both of the

formulations have the same value. If 4 and j are nodes, we denote by #;; the amount



of demand that must be routed from % to j.

The polyhedral structure of CEP (or, rather, some closely related variants) has
already been previously studied. Magnanti and Mirchandani [9] have studied a
special case of CEP in which there is a single commodity to be routed between two
special nodes of the network and there is no existing capacity on the network. In
this paper, they present some facet defining inequalities and show that this special
case of CEP is closely related with the shortest path problem. We will describe the
results in [9] more completely later in this paper. Another special case, which arises
is the context of the lot-sizing problem with constant production capacities, has been
studied by Pochet and Wolsey [16]. In this case, the network related with CEP has
a special structure and there is a single modularity size. In [16], Pochet and Wolsey
fully describe the convex hull of a related polyhedron by using a polynomial number
of facets.

Some subproblems related with CEP have also attracted attention. Magnanti,
Mirchandani and Vachani [10] study the polyhedral structure of a MIP formulation
of the network loading problem (NLP) with three nodes and a single modularity
size. In [10], Magnanti et al. present a complete characterization of the projection
of the related polyhedron on the space of discrete variables.

In [11] these and other results are applied to extensive computational tests on
the two-facility (two modularities) network loading problem on undirected graphs
with bidirectional traffic and integer-valued demands. They present results with a
cutting plane algorithm as well as a Lagrangean-based approach, both using the
disaggregated multcommodity flow formulation. The inequalities used therein are
of three types: cutset inequalities, 3-partition inequalities and a third kind, “arc
residual capacity” inequalities which strengthen the capacity inequality on a single
arc. Even though our model is different from that in [11] one of our inequalities is
closely related to their cutset inequality, and another is somewhat related to their
3-partition inequalities. In this paper we present several facet-defining inequalities
that extend these two. Our computational approach is also quite different from that
in [11], in particular the separation routines.

In [15], Pochet and Wolsey study how to strengthen inequalities of the form
> Cijzj > band ) Cjz; >y, for y € Ry and z; € Z7, essentially using the MIR



(mixed-integer rounding) procedure. Inequalities of this form arise in our problem
and we use some of their techniques.

Recently, Stoer and Dahl [18] studied a problem similar to ours where the flows
are undirected, there are no flow costs but the capacities to be added to edges are
of a more general form than those studied here. (We note that our formulation can
be used to model undirected flows). One primary feature of their approach is that
(in terms of our model) they would split the integral variables into sums of 0 — 1
variables. As a result the inequalities they obtain have a rather combinatorial flavor
and when the demands are small, this approach may be effective. Another feature of
the approach in [18], again in terms of our problem, is that they study the projection
of the formulation onto the space of the z and y variables, which is possible since the
problem in [18] does not have flow costs. Feasibility is achieved by means of cutting
planes that are generated algorithmically. A second class of models considered in
[18] can in addition handle side constraints, such as survivability constraints.

Even more recently, a similar projection approach has been implemented by
Barahona (see [1]) and Bienstock, Chopra, Giinlikk and Tsai (see [4]). This approach
may well be competitive with the multicommodity flows formulation. Several facet
defining inequalities for the projection are described in [12].

Next, we briefly introduce the notation used in this paper. In what follows, the
set of all real numbers is denoted by R, and non-negative real numbers by RT. Simi-
larly Z and ZT denote the set of integers and non-negative integers respectively. We
use “\” to denote the ordinary set difference function and when it is not ambiguous,
we denote {i} by i.

For any vector v and a subset S of its indices, we define v(S) = Y ,c5vi-
Similarly, for a set A of directed edges and a set () of commodities, we define
FR(A) = Yheq Xaea fa-

We define (a)' to be max{0,a} and r(-,-) to be

— -1 if
rie.f) = { 0 Aelei = othiigi:e "
so that a = B([a/B] —1) + r(e, B) and B > r(e, 8) > 0 if @, 3 > 0. Notice that this
differs from amod() when a/f is integral. We will abbreviate r(a) for r(«, 1).



Let 6(W) = {e={i,j} € E:i € W,j ¢ W}for W C V. Given W C V, we
denote the net traffic of W by T'(W) where

_|_

T(W) == (max{z Z tij, Z Z tij} - O(é(W))) .
iEW JEV\W  ieV\W jEW

For a feasible solution p = (z,7, f) € P¥, edge {i,j} € E is said to be “saturated

7 if total flow on the directed edge (7,j) or (j,4) is equal to the total capacity of

{1,7}, in other words if max{fg, fff} =z;; + A\yij + Ci .

2 Cut-set Facets.

There are several inequalities that make use of the fact that the capacity across a
cut is at least as large as the demand across the cut. We start with a generalization
of the “cut-set” inequalities studied in [9] for the single commodity problem. See [4],
[1] for a similar inequality in the directed model. The inequalities are superficially
similar, but from a combinatorial viewpoint behave fairly differently to reflect the
different nuances of the models. From a purely technical perspective the different
models lead to very different analyses and proofs.

Given a set S C V, we note that T(S) gives a lower bound on the capacity to
be added across the cut separating nodes in S from the rest of the network. When
the value of this lower bound (implied by flow-conservation equations and capacity
constraints) is fractional, the LP-relaxation can be strengthened by forcing the added
capacity across the cut to be at least [T'(S)]. These valid inequalities do not define
facets of the the CEP polytope unless the set S satisfies certain properties. We next
state these properties. Given a graph G = (V, E) and a vertex subset S, we denote
by E(S) the set of edges with both ends in S.

Definition 2.1 Given a connected graph G = (V, E), a set S is called a “strong
subset ” of V' with respect to G if it is a proper subset of V and both Gg = (S, E(S))
and Gg= (V\S,E(V\S)) are connected.

We note that given S C V, the related cut-set inequality is dominated by other

cut-set inequalities whenever G's or G35 is disconnected.
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Theorem 2.2 Given a strong subset S of V
z(8(S5)) + Ay(6(5)) = [T(9)] (4)
defines a facet of P* provided [T(S)] > T(S) and [T(S)] > .

Proof. Validity of (4) is obvious. To simplify notation, let E' = §(S) and T =
[T(S)]. By construction we will show that the related face F = {(z,y, f) € P* :
z(E') + My(E') = T} is not empty and then by contradiction, we will show that it

is a facet.

For a fixed ey € E' consider p = (Z, 7, f) where

Te=<4 T e=¢ Ye =

- th .
0 otherwise 0 otherwise

M e¢E { M e¢E

(M is a large enough number) and f is such that all traffic between nodes in S
(V'\ S) is sent using E(S) (E(V '\ S)) edges and traffic crossing the cut is sent using
edges with positive existing capacity and the remaining through ey. Since both Gg
and Gy are connected and z(E') > T(S), f is feasible and thus p € F.

Notice that the edges in E'\ E' are not saturated. Therefore, without saturating
them, it is possible to increase flow by a small amount for all commodities. We
can do the same for eg as well, so without loss of generality we will assume that
i
of the form

f]k, > 0 for all k¥ € K for edges with positive z; ;. Suppose there is an equation

ax + Py +yf=m (5)

satisfied by all points p = (z,y, f) € F, where a,  and -y are vectors of appropriate
dimension and 7 is a real number. We will show that (5) is a linear combination of
(4) and flow conservation equations.

For alle ¢ E', it is possible to modify p by keeping f same and increasing Z. or e
to obtain another point in F', which implies that o, = 8. = 0. We can also decrease
Ze, by A and increase e, by 1 to get a new point in F. Therefore ae, = (1/X)0e,
and since eg € E' is arbitrary, a, = (1/A)f, for all e € E'.

For any k € K, it is possible to obtain new points in F' by modifying p by

simultaneously increasing ﬂfj and f]’fz by a small amount for edges {i, j} with positive
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z; ;. Since eg is arbitrary, we can conclude that vfj = —fy;-“i for all {3,j} € E and
ke K.

To show that v = 0, we will first choose a spanning tree T = (V, E") of G
using edges in E \ E' and edge ep and then arbitrarily direct its edges to obtain
the directed tree T" = (V, A). If necessary by subtracting a linear combination of
the flow-balance equalities (1) of P¥ from (5) we can assume that y* = 0 for all
k € K and a € A. Since 'yfj = —7;-2- for any {i,j} € E, this implies that 75“]- = 0 for
{i,j} € E" and k € K.

For {i,5} € (E\ E') \ E" we can find the unique cycle formed by {i,;} and the
edges in E". Notice that eg will not appear on this cycle since it is the only edge
crossing the cut. Since flows on the tree edges are positive in both directions for all
commodities, we can send small circulation flows of each commodity on this cycle
and conclude that 'yfj =0 for {i,j} € (E\E')Ue and k € K.

If |[E'| =1, then the proof is complete. On the other hand if |E’| > 2, then we
choose an edge {u,v} = e; € E' different from ey. Next, we modify p by increasing
Ze, by 1 and decreasing Z., by 1 and rerouting flow so that neither ey or e; is
saturated and flows on both ey and e; are positive for all commodities. Obviously
this new point is on the face. Now we find the unique cycle formed by e; and the
edges in E” and send circulation flows to argue that v¥, = 0 for all k € K. Since e;
is arbitrary, we can conclude that v = 0.

Lastly, modifying p as above also implies that if |E’| > 1, then there is a number
@ € R such that o = a = (1/)A)fe for all e € E'. Therefore, (5) is a multiple of (4)

(plus a linear combination of flow-balance equations). .

Usually, inequalities of the form (4) are accompanied by other valid inequalities,
obtained by means of the mixed-integer rounding, or MIR, procedure, see [13], that
exploit the following fact: If no capacity is added across a cut using unit-batches,

then enough capacity should be added using an integer number of A-batches.

Example 2.3 Consider the instance of CEP with V = {1,2} and E = {1,2}. Let
A =4, t10 =72, t91 = 5.7 and C1 2 = 0.8. The cut-set inequality for this case is:

T12+4y12>7 (6)



since [max{7.2,5.7} —0.8] = 7. Now assume that the flow costs are zero, the cost
of a unit-batch is C1 = 1 and the cost of a A-batch is Cy = 3 (so that C1 > Cy/\).
After including (6) to the LP-relazation of the problem, the optimal solution has
z12 = 0 and y12 = 7/4, not an integral solution. Notice that if y12 < 2 then
y12 < 1, implying x12 > 3, and thus,

z12 > 3(2—y1,2)

is a valid inequality which cuts off the above fractional solution from the set of feasible

solutions.

We next generalize this idea and introduce a new family of cut-set facets. A
similar inequality, for the undirected graph model with bidirectional integer valued

demands, is used in [11].
Theorem 2.4 Given a strong subset S of Vsuch that A > r([T(S)],A) >0, then

2(6(5)) +r([T ()1, M)y(6(S)) = r([T ()T, 1) [T(S)/A] (7)

is a facet of P* provided [T(S)] > 1 or C(6(S)) > 0 or |§(S)| = 1.

Proof. To simplify notation, let E' = §(S), TT = [T(S)/A] and r* = r(TT, ). We
will first rewrite (7) as
z(E) > v (TT — y(E")).

For any p = (z,y, f) € P¥, if y(E') > T* then it is easy to see that (7) is valid. On
the other hand if y(E') <T* —1 then (2) and (3) imply that

o(B) = [T(8)] - My(E)

= A {@J +rt— /\y(E')

= rt A (UT(ASHJ - y(®))

> (T —y(B)).

For the rest of the proof, refer to [14]. .
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We note that given a strong subset S of V, if [T'(S)] = 1, C(6(S)) = 0 and
|6(S)| > 1, then all of the points on the face defined by (7) satisfy the family of
equations,

fE= =@ +vig) Y the
veEV\S

for i,k € S, {i,j} € 6(5), and thus (7) is not facet defining. In the next section we
introduce some facets of the CEP polytope that include the flow variables as well
as the capacity variables, and these facets can be considered as generalizations of
cut-set facets.

The model studied in [9] differs from ours primarily in that there is a single
commodity (i.e. a single origin-destination node pair for which there is positive
demand) and there are three types of capacity modularities that one can add to
any edge. In [9] it is stated that the above cut-set inequalities are facet-defining,
as well as a third type of cut-set inequality, which arises by applying the MIR
procedure one additional time (to handle the third type of capacity variable). It
is shown therein that if there are no flow costs, then under reasonable assumptions
on the cost coefficients the linear program containing all cut-set inequalities has
some optimal solution that is integral; and they present an efficient algorithm for
computing that solution which uses the optimal dual variables.

We note that for the multicommodity case, the cut-set inequalities typically
reduce the integrality gap to 30% from a much larger initial value and they are also
helpful in terms of pinpointing “interesting” subset of vertices. Below we consider

a large class of inequalities which include the cut-set facets as a special case.

3 Flow-cut-set Facets.

In this section we generalize the cut-set facets to include the flow variables as well.
Consider a subset S of V' and the cut-set facets (4) and (7) related with it. After
including these facets in the LP-relaxation of CEP, there exists feasible points to
the extended formulation which assign an integer amount of total capacity across
the cut 6(S) but allocate this capacity fractionally among the edges in the cut. The

flow-cut-set facets exclude some of these points from the feasible region.
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Given a subset S of V' and a non-empty partition {E;, Es} of §(S). By consid-
ering the orientation of these edges away from S, from E; we obtain a set of arcs 4;
(ie. 4; = {(u,v) :u € S,v ¢ S,{u,v} € E;}), and similarly orienting these edges
towards S we obtain a set A;.

Consider a simple instance of CEP where there is a single commodity to be
routed from S to S. Furthermore, assume that the cost of routing flow through A;
is much larger than that of As but cost of adding capacity on F; is smaller. In
this case, solutions to the LP-relaxation will send all the flow using Ao, assign just
enough (fractional) capacity to the E2 edges to handle the routing, and possibly a
small amount of capacity to E; to satisfy any cut-set facets we may have added.
When combined with cut-set facets, the flow-cut-set facets force the capacity added

to Eo to be integral. These facets have the following common structure,
bo(E2) + cy(B2) + f9A1) > d (8)

where @ is a subset of S and b, ¢,d € R. (See [11] for an inequality with this general
structure that strengthens the capacity inequality on one given edge).
All of the facet defining inequalities presented in this section exploit the following

basic idea (see [13]). Consider the polyhedron
P=conv{z € Z*,f € R : f +az > b}

when a > r(b,a) > 0 (i.e. a,b> 0 and b is not an integer multiple of a), and let CP
denote its continuous relaxation. As described in [13], it is easy to observe that all of
the points in CP \ P violate the inequality f > r(b,a)([b/a]| — =) and consequently

P can also be expressed as,
P={z,feR":f+ax>b, f>r(ba)[b/a] —x)}.

Also notice that, for an arbitrary polyhedron, if f + axz > b is a valid inequality for
z € Z" and f € R then

f = r(b,a)([b/a] — ) (9)
is a valid (MIR) inequality.
Before proceeding any further, we first state the following technical lemma, which

will help us keep the facet proofs less lengthy. For a proof of this lemma, see [14].
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In Lemma 3.2 we consider a facet of the form (8) and investigate some properties of

the equations which are satisfied by all points of this facet.

Definition 3.1 Given two sets S and Q such that @ C S CV we define t(W,V '\
S) = Yiew Xj¢s tij, and we call Q a “commodity subset ” of S if t(g,V'\S) > 0
forall g€ Q.

Lemma 3.2 Given a strong subset S of V, a commodity subset Q) of S, a nonempty
partition {E1, Eo} of 6(S) and a face

F:{(x,y,f)EPX:wae—FcZye—l— Z fo:d}

ecEy ecEy a€A1 keQ

of PXwhere b,c,d € R, assume that the equation ax + By + vf = 7 is satisfied by

all points in F. Then, without loss of generality,

(i) If F is proper (i.e. F #0), then a, = 3. =0 for all e € E\ Es.

(i3) If there exists p = (7,7, f) € F such that T(E2) + M\j(Eq) + C(Eq) > fK(A,),
then ¥ =0 for allk € K,a ¢ A and k ¢ Q,a € A;.

(i1i) Ifv¥ =0 for k € K,a ¢ A1 and there is a point p = (2,9, f) € F satisfying
Z(Eq) > 0, then there ezxists & € R such that ae = & for all e € Ey, and

similarly if §(E2) > 0, then there exists 3 € R such that B, = B for all
e € Es.

(iv) Ify¥ =0 for k€ K,a ¢ Ay and there is a point p = (Z,7, f) € F such that
fQ(A1) > 0, then for all k € Q there exists ¥ € R such that v* = 5% for all
a € Ay. Furthermore, if f9(As) > 0 as well, then, there exists ¥ € R such that
Ak =7 for allk € K,a € A

Given two sets S and @ such that @ C § C V., it is easy to see that the total
flow of commodities in @) leaving S should be sufficient to satisfy the total demand
in V'\ S. Let {E1, Es} be a partition of §(S), and remember that A; denotes the

edges in E; oriented from S to V' \ S. Then, we can write
FR(A1) + f9(A2) > 4(Q, V\S)

13



implying
FO(AY) + z(B2) + My(Ba) + C(Ba) > t(Q,V\S)
and
FO(AL) + z(Ba) + My(Ea) > (Q,V\S) — C(Ey). (10)

We now write an inequality of the form (9) using the fact that f¥(A;) € RT and
z(Es) + M\y(F2) € Z*. For a given subset @ of S, the following theorem develops
a lower bound on f@(A;) when z(Es) + Ay(F) is less than the minimum integral
capacity that can carry the total demand of @ in V' \ S. We also note that (11) of
Theorem 3.3 becomes the cut-set inequality (4) when E; = ().

Theorem 3.3 Given a strong subset S of V, a commodity subset QQ of S and a
nonempty partition {E1, Eo} of §(S), let T' = t(Q,V\S) — C(E2), ' = r(T") and

T =[1.
(i) If 1 > r' > 0 then

f(A1) > ' (T — z(E3) — min{ A, T}y (E)) (11)

is a facet of P¥ provided T' > 1 or C(FEs) > 0.
(ii) If 1 > T" > 0 and C(E2) =0 then

FR(A) > T' (1 — 2(Bp) — y(E2)) (12)
is a facet of P provided |Q| = 1.
Proof. See [14]. .

Example 3.4 Consider the instance of CEP with |S| = |S| =1 E1 = e1, Fy = ey
and assume that T' = 6.8 and A = 4. A possible solution to this instance (that is,
with appropriate cost coefficients) has y(E9) = 1.7, x(E9) = 0 and f(A1) = 0 and

this fractional solution is cut-off by the flow-cut-set inequality

since the right hand side is 0.16. After including (18) in the formulation the new
solution has y(Ey) = 1.75, z(E2) =0 and f(A;) =0.
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As this example demonstrates, (11) and (12) are not sufficient to force y(Es) to
be integral when both z(E3) and f(A;) are zero. Next we write another inequality
of the form (9) which implies that if fQ(A;) = z(F;) = 0 then y(FE3) can not be
less than the minimum integral capacity that can carry ¢(Q,V\S) — C(E»).

Theorem 3.5 Given a strong subset S of V, a commodity subset QQ of S and a
nonempty partition {Ey, Ey} of §(S), let T' = t(Q,V\S)—C(E), T = [T'/\] and
F=r(T",\). Then,

FO(A1) + min{1, 7}z (Bs) > 7 (T" — y(Bn)) (14)
is a facet of P* provided T' > 1 and \ > 7.

Proof. To show that (14) is a valid for P¥ we first note that it is implied by non-
negativity constraints whenever y(FEy) > TT or min{l,7}z(Ey) > 7 (Tt — y(E2)).
So we will concentrate on the case when y(Ey) < TF — 1 and min{l,7}z(Ey) <
7(TT — y(Es)), and rewrite the lower bound on the total flow of Q-commodities on
Aq edges,
FR(A) > T —z(Bp) — My(EBz)
= AMTT=1) +7 = 2(Ep) — My(B)
= MNTT -1-y(E)) +7 — z(Ea). (15)
Next we consider two cases. When 7 > 1 then using y(Es) <TT —1and A > T,

(15) can be modified as

A1) > FTH—1-—y(BEy))+7— z(Esy)
= (T —y(By)) — x(Ey).

On the other hand, if 7 < 1, then using A > 1 and z(Es) < (T" — y(FE3)), we can

write

A1) > MNTT —1—y(By) —x(En)) +7
> (T —y(E2) — z(Er)).

and conclude that (14) is a valid inequality.
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To show that (14) is a facet we will construct several points on the related face.

Let ey € E and consider p! = (z!,y', f!) € F, where

, [ M ccE\E, e sz\E"’
€ ] 0 otherwise Ye = _ 0
0 otherwise

and f! is a feasible flow vector such that it does not saturate eq and (f)? (A1) = 0.
Next we construct p? = (z',y?, f?) € F where y? is same as y' except ygo =
Tt —1 and f? is a feasible flow vector saturating all the edges in E5 and satisfying
(f?)?(A;) = 7. Lastly we construct p3 = (23,92, f3) € F where 13 is same as
z! except 22, = 1, and f3 saturates all the edges in E, and satisfies (f%)9(4;) =
7 — min{1,7}.

Assume that (14) is not a facet and let ax+ By ++f = 7 be an equation different
from (11) satisfied by all points (z,y, f) € F. Notice that if ¢(Q, V'\S) > 7 (i.e. when
C(E2) > 0or t(Q,V\S) > \), then (f2)?(A42) > 0 and if t(Q,V\S) = 7, then 7 > 1
and (f3)?(As) > 0. Therefore, applying Lemma 3.2 with p', p?, and p? we can show
that there exist @, 3,7 € R satisfying;

ae:{& e € FEy ﬁe:{ﬁ e € ko k_{’7 a€ALkeq@

0 otherwise 0 otherwise ¢ ] 0 otherwise.

Furthermore, p',p?,p® € F also imply that, ¥ = §/7, @ = min{1,7}¥, and
™= BT+. L]

Example 3.4 (continued) Recall that, after including (13) in the formulation,
the solution had y(E2) = 1.75, z(E2) =0 and f(A1) = 0. As T' = 6.8 and \ = 4,
this solution does not satisfy (14) since the right hind side of

f(Ar) +z(E2) > 2.8(2 — y(E2)) (16)

is positive. After including (16) in the formulation, the new solution is y(Es) = 1.16,
z(Ey) = 2.3 and f(A1) =0, still not an integral solution.

The last flow-cut-set facet (17) can be considered as an extension of (9) to three
variables, and it states that when y(FE») is not sufficient to carry all the flow, and
z(Es) is not big enough to carry the remainder, then f(A;) can not be zero. We

also note that (17) of Theorem 3.6 becomes the cut-set inequality (7) when E; = ().
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Theorem 3.6 Given a strong subset S of V, a commodity subset Q of S and a
nonempty partition {E1, Es} of §(S), let T' = t(Q,V\S) — C(Es), r' = r(T),
TT =[T'/X] and v+ =r([T"],X). Then,

FR(A) 27" (rH (T — y(Bn)) — z(E)) (17)
is a facet of P¥ provided T' > 1 and 1 > r'.

Proof. We first show (17) is valid. This can be shown by applying the MIR procedure
twice, but we will present a direct proof. For any p = (z,y, f) € P¥, (17) is valid
whenever y(Es) > T" or z(Es) > rt (Tt — y(FE2)). Now consider the case when
y(Es) <TT —1and z(Ey) <7t (T —y(F>)) — 1. We know that

A1) > T —z(BEy) — My(E»)
= ATT=1)+ (" - 1) + 7' — z(Ey) — My(E2)
= ATt =1-y(B)) +r" —1—z(BEy) + 7.

Using A > T and 1 > 7’ we can write

Y
-
+

T —1—y(B)) +r" —1—z(E) + 7'
—y(Br)) — 1 —x(Bp) +1'

> 7' (" (T —y(B2)) — 1 — x(Br)) +1

= ' (1T (T —y(Bs)) — z(B)).

f9 (A1)

+
S
+

Therefore, (17) is a valid inequality for P*. To see that it is a facet, we will construct

several points on the related face. Let ey € E; and consider p' = (2!, ¢!, f!) € F

where
M ec€E\E, M e€ E\ Ey
rl= 1t e=¢ yl={ TT -1 e=¢
0  otherwise 0 otherwise

and f! is a feasible flow vector such that it does not saturate ey and satisfies
(f1)9(A1) = 0. Next we construct p? = (22,42, f!) € F where z? and y? are same as
z! and y' except #2 = 0 and y2, = T . Lastly we construct p* = (23,9, f%) € F

1

where z3 is same as z! except 22, = rt — 1, and f? saturates all the edges in E,

and satisfies (f3)?(4;) =’
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Using similar arguments as in the proof of Theorem 3.5, we can use points p', p?
and p3 to show that (17) is a facet of P*. .

Example 3.4 (continued) When applied to the given instance, (17) becomes
f(A1) =2 0.8(3(2 —y(E2)) — z(E2)) (18)

and including (18) in the formulation finally results in the integral solution with
y(E2) =1, z(E2) =2 and f(A;) =0.8.

4 Three-partition Facets.

When deriving the cut-set or the flow-cut-set facets, the main idea is to find an
edge-cut dividing the network into two connected components, and develop lower
bounds on the variables related with the edges appearing on this cut. A natural
extension of this approach is to consider a multi-cut, partitioning the network into
three components, and study the facets related with this multicut. This can be seen
as a special case of the “metric” inequalities. Once again, in each model for capacity
expansion in networks a “different” three-partition inequality arises (actually, more
than one inequality may arise). See [10], [11], [4]. The inequalities are similar
in flavor but differ in their right-hand side and tend to work in different ways.
In general, the inequalities may be seen as a direct descendant of the so-called
“partition” inequalities for the Steiner tree problem. From a technical point of view,
the analysis ends up being quite different.

Let A C E be such a multicut and {Si, S2,S3} be the related partition of the
node set. If each S; is strong, then it is possible to develop a lower bound on
the capacity to be added across this multicut as follows. First we add up the
cut-set inequalities (4) related with each S; and then divide both sides of the re-
sulting inequality by two to get the valid (implied) inequality z(A) + Ay(A) >
([T(S1)]+ [T(S2)] + [T(S3)])/2. Notice that if the right hand side is fractional
(i.e. >, [T(S;)] is odd), then it is possible to strengthen the inequality by replacing
the right hand side by its ceiling to obtain,

[T(S1)] + [T(S2)] + fT(S3)w .
2

ISESVINEY| (19)
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Although one would expect the strengthened inequality to be a facet of the CEP
polytope (similar inequalities are facet defining for NLP, see [10]), in some cases it
does not even define a supporting hyperplane. The following example demonstrates

one such case.

Example 4.1 Consider the single modularity-size version of CEP when |V| =3, G
1§ the complete graph K3 and there is no existing capacity. Let t19 = t13 = to3 =5
and ty1 = t31 = tze = 0. For this case (19) becomes, r12 + x13 + T23 > 13 as
T(1) = T(3) = 10 and T(2) = 5.

Notice that before reaching its destination, each unit of tia,t13 or tog has to
go through the directed edges (1,2),(1,3) or (2,3) at least once. This observation
implies that

T12 + T13 + x23 2> t12 +t13 + 123 = 15

is a valid inequality, dominating (19).

Next, we study the polyhedral structure of this simplified version of CEP (i.e.
when there is a single modularity-size and G = K3 = (V3,FE3)). We denote the
integral polyhedron related with this problem by P*3and its continuous relaxation

by CP¥3. For CP*3, Lemma 4.2 establishes the necessary conditions on the capacity

variables z, under which one can find a feasible flow vector.

Lemma 4.2 Given T € R3, there exists a flow vector f such that (Z, f) € CP*3 if
and only if

(1) z(i) > T(i) for alli € Vs,
(i) Z(E3)+ C(E3) > tij+ti+ 1tk for all permutations © = (4, 4,k) of V3, and
(143) zi; =2 0 for all {i,5} € Es.

Proof. The necessity of (i) - (iii) is obvious. To show that they are sufficient, we
construct a feasible flow vector f which satisfies the following two conditions for

every ordered pair of nodes (i, j):

o If z; ; + C; ; > t;; then t;; is sent directly from node ¢ to node j.
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o If z; ; + C; ; < t;j then z; ; + C; ; flow is routed on (7,7) and t;; — z;; — C 5

via k.
It is easy to check that f satisfies the flow-balance equalities, and for all i # j
> fiy = min{tyj Bij + i} + (tik — Tie — Ci) ™ + (trj — Thg — Ciy) ™
v

To show that f also satisfies the capacity constraints, we consider the following two
cases.

For any ordered pair (i, j), if t;; > Z; ; + Ci; then both (¢, — Z; y — Ci )" and
(tkj — Trj — Ck ;)" are zero due to (i) applied to node ¢ and node j, respectively,
and thus ), i = Tij + Cij-

On the other hand, when t;; < Z; ; + C; j, then the total flow on (4, ) equals
tij + (tik — Zig — Cik)" + (tkj — Tk ; — Ck,j)T. When either the second or the third
term is zero, this is at most Z; j + C; ; by (i) applied to i or j, respectively. When

they are both positive, this is also at most Z; ; + C; ; by (ii). .

In other words, Lemma 4.2 states that CP¥3can be projected on the space of
x variables by using (i) - (iii). We note that (i) - (ii) of Lemma 4.2 belong to
a family of inequalities called “metric inequalities” (see [7], for example). It is
known that these inequalities are sufficient to project the continuous relaxation of a
capacitated multicommodity flow polyhedron on the space of the discrete variables.
Metric inequalities play a fundamental role in the theory of multicommodity flows,
we refer the reader to [8] for more extensive treatment. In Lemma 4.2 we identify
the important metric inequalities for CP?*3. Also notice that if we define

0= max {tij +tik + s}
W:(Zaﬁk)

then (ii) can be replaced by a single inequality Z(E3) + C(E3) > 6.

Corollary 4.3 Given ¥ € Proj,(CP*3), if T satisfies (i) with strict inequality for
all nodes, and if (E3) + C(E3) > 0, then it is possible to find a feasible flow vector
f such that (z, f) € CP*3 and f does not saturate edge e € E3 if .+ C, > 0.
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Corollary 4.4 Given an integral vector € Proj,(CP*3), z + C > 0, if x satisfies
(i) with strict inequality for all nodes, and if x(Es) + C(E3) > 0, then it is possible
to find a feasible flow vector f such that (Z, f) € P*3 and f does not saturate any
edge e € E3.

Using Lemma 4.2, we next show that the projection of P*3on the space of the
discrete variables can be obtained by strengthening (i) and (ii). Lemma 4.5 can be
considered as a generalization of the result by Magnanti, Mirchandani and Vachani.
In [10] Magnanti et al. study a similar three-node network design problem (called
NLP) where it is assumed that there is a single modularity size and there is no
existing capacity on the edges. Furthermore, the capacity constraints are different
from the ones we study here, and consequently they can assume that there are only

two source nodes with positive supply nodes.

Lemma 4.5

proj,(P*3) = { zeR?:

z(i) > [T(i)] forallie Vs (20)
ST .,

S > max{[Z5 o) e

Tg,5 Z 0 (22)

)

Proof. Let @ be the polyhedron defined by (20) - (22) and notice that proj,(P*3) C
Q C proj.(CPY3).

Consider any extreme point Z of Q). If the inequalities defining Z include (21) or
one of (22), it is easy to see that Z is integral. The remaining case occurs when Z is
defined by inequalities (20) alone. In this case z;; = ([T'(:)] + [T'(4)] — [T'(k)])/2
implying Z12 +Z1,3+T23 = ([T (2)] + [T ()] + [T (k)])/2. Since z must also satisfy
(21), it follows that

2i[TOT ’VZi fT(i)w
2 2
implying >, [T'()]/2 (and thus Z) is integral. .
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We also note that (20) - (22) provide a non-redundant description of proj,(P*?)

ma { 2L 19— (g} 5 ZL0)] o3)

when

and (21) is redundant when (23) holds as an equality.

In the remainder of this section, we will work with three-partitions of V and using
the obvious relationship between three-partitions and K3, we describe some facets of
P*using (21) of Lemma 4.5 and its extensions. Given a partition IT = {S;, Sa, S3} of
V, we use (7, j) to denote 6(.5;)Nd(S;) and A to denote §(1,2)Ud(1,3)Ud(2,3). For
typographical ease, we use x(i,7),y(i,7) and C(%, ) in place of z(d(7,7)),y(0(7,7))
and C(4(z, 7)) respectively.

Given a three-partition of V, for the generalization of (21) of Lemma 4.5 to define
a facet of P¥, the partition has to satisfy certain properties. We next state these

properties.

Definition 4.6 Given a capacitated network G = (V,E) and related traffic de-
mands, a three-partition {S1,S2,S3} of V is called a “critical partition ” of
V if every S; is a strong subset of V, [T(S;)] > T(S;) fori=1,2,3 and

[T(Si)] < [T(85)1 + [T (Sk)]
for any permutation (i, j, k) of {1,2,3}.

As in Section 3, we first consider a generic three-partition facet and investigate

some properties of the equations which are satisfied by all points of this facet.

Lemma 4.7 Given a critical partition II = {S1, S2, S3} of Vand a proper face

F={(z,y,f) e P¥: Zaiﬂ' Z xe+2bz~,j Z Ye = C
3> eed (i) 7>t eed(iyg)
of P¥, where a;j,bij € R, j > 1, and c € R, assume that equation ax+PBy+~f =7
is satisfied by all points in F.

If there ezxists p = (Z,9, f) € F such that Z(A) + Ag(A) > max{};T(:)/2,0 —
C(A)} and z(i,j) + y(i,7) + C(3,7) > 0 for all j > i then without loss of generality
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(1) ae=PLe=0forallec E\A,
(1) v=0,

(it3)  for any j >, if T(i,j) > O then there exists &; ; € R such that a. = &, 5,
for all e € 6(i,7), and

(iv) if y(i,§) > 0, then there ezists B;j € R such that B, = B ; for all
e € d(i,j).

Proof.
See [14]. .

Given a three-partition IT = {S},Ss, S5} of V, we denote [T'(S;)] by T(i) and

zuESi ZUES]' tl] by T(’L,_])
We use 0 for max,{T(i,j) + T(i,k) +T(k,j)} and @ for [0 — C(A)]. Lastly we

define © to be _
S :max{ ’VEZTT(Z)-‘ ,0_}.

The following is a straight forward extension of Lemma 4.5 to three-partitions
of V.

Theorem 4.8 Given a critical partition I1 = {S1,S2,S3} of V, if © —T(i) > X for
1=1,2,3, then,
z(A) + Ay(A) > 06 (24)

is a facet of P* provided © > max{}";T;/2,0 — C(E)}.

Proof. The validity of (24) is due to Lemma 4.5. For the rest of the proof, refer to
[14]. .

Next we consider the case when given a critical partition {S, S2,S3} of V, © —
T(i) > X does not hold for all S;. Let T(3) > T(2) > T(1). If A > © — T(3), then

_ <2iT(z‘) 1) _ T(1) +T(2) —T(3) +1

0-T() > (=2 4 0] -7(3) > )
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implies that 2\ + 7(3) > T(1) + T(2) + 1 > T(3). Therefore, this case arises when
2\ —1 > T(1) + T(2) — T(3), or, in other words, when the sum T(1) + T'(2) is not
very big when compared to T'(3).

Theorem 4.9 Given a critical partition T = {S1, S, S3} of V, let T(3) > T(2) >
T(1). If © —=T(3) < X and T(3) > A, then

z(A) + (0 = T(3))y(1,2) + My(1,3) + My(2,3) > © (25)
is a facet of P* provided © > 3, T;/2.
Proof. For any point p = (z,y,f) € P¥ inequality (25) is clearly valid when
y(1,2) = 0. On the other hand, if y(1,2) > 1, then notice that
> 2(1,3) + 2(2,3) + (0 —T(3)) + Ay(1,3) + Ay(2,3)
= 2(83) + Ay(S3) + (0 —T(3))
> T(3)+(©-T(3)) =6.

For the rest of the proof, see [14]. 0

Next we study facets of the CEP polytope which primarily exclude points with
y(A) = ©/X from the feasible region when ©/ is fractional. We basically consider
two cases depending on which one of the two terms dominates in determining ©.
But, before proceeding any further, we need some more notation. Given a partition
I = {S1,5,53} of V, we define (i) to denote r(T(i),\) and T (i) to denote
[T(i)/X]. Notice that T'(i) = A (T" (i) — 1) +r*(4) for all S; € II. We further define
Tmax = max{rt (i)}, rmin = min{r* ()} and rmeq = ;71 (¢) — Tmin — Tmax-

Notice that if T(3) > T(2) > T(1), then T (3) > T+(2) > T*(1). Furthermore,
when T(3) < T(1) + T(2), T*(3) is no more than T7(2) + T+ (1), and

PM‘)J i s PTW)J ) - {Tm) HTHR-THE)|

2 2 2

The following theorem has the same spirit as Theorem 2.4 and (26) is a MIR
inequality. Remember that

S :max{[ziTT(i)-‘ ,9}
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and we note that the required conditions can hold only if the second term strictly
dominates the first. In other words, (26) is a facet only if © > [3, T(3)/2].

Theorem 4.10 Given a critical partition I = {S1, S2, S3} of V, let T'(3) = max{T (i)}
and r™(1) > r+(2). If A > r(©,)), then

z(A) +7(0,N)y(A) = 7(0,A) [6/A] (26)
is a facet of PY provided one of the following conditions is true.
(i) [©/A1-12>[%;T*(#)/2].
(i) [O/X] =T, TT(E) /2] > 3, TH(E) /2, r(0,)) > rt(2) and T(2) > 1.
(#61) [O/X] =TT (1)/2] = 5, TT(6)/2 , 7(©,A) 2 Tmax ; 7(0,A) > rmin and
TT(1) +T7(2) > TT(3).

Proof. Validity of (26) should be clear. To show that F = {(z,y,f) € P¥ :
z(A) + (0, \)y(A) =r(0,)) [©/A]} is a facet, we first analyze cases (i) and (i7).
(), (#5) Choose a fixed edge e; j € 6(i,4) for all j > i, and consider p* = (z!,y!, f1)

where
(M e¢ A (M e¢ A
Tt ()/2] =TH(3) e=eip 1 e=eio
Ye =18 [Z;TH(60)/21 =TT (2) e=-e 2z, =4 0 e=e13
[O/X]-T+(1) -1 e=ez3 r(©,A) —1 e=eo3
. 0 otherwise [ O otherwise

and f! is a feasible flow vector. Notice that [©/\]-T*(1)—1> [T+(2)/2] -1 >0,
and therefore z!,y* > 0. To see that it is possible to find a feasible flow vector f!,
first note that z'(A) + A\y'(A) = © and p! satisfies cut-set inequalities for S; and
S3. Next, observe that the capacity across the cut §(S2) is

A QZZTTW)J + [% —1-T7%(1) —T+(3)) +7(0,)

\ ({Zz 7;-(7,)J n ’VZZJ;L(’L)-‘ —T+(1) —T+(3) _ 1> _|_7-(@’)\)

21 (6(S2)) + Myt (6(S2))

Y

Y

25



> A(TT(2)—1) +7(6,N)

> T(2)

(where the last inequality follows from r(©,)) > r1(2)) so that p' satisfies the
cut-set inequality for So as well. Therefore, using Lemma 4.2, p' € P* and thus
pl € F.

Assuming F is not a facet, let az + By + vf = 7 be an equation different
from (26) satisfied by all points p = (z,y, f) € F. Observe that z(1,2) > 0 and
y'(1,3) = [, TH(0)/2] = T*(2) > (T*(3) + T+(1) — T*(2))/2 > T*(1)/2 > 0.
Lastly, if y*(2,3) = 0 then,

G

y'(2,3)=0= hw —~TT(1)—1>

T+(2) — 1

—Tr1)—-1>
(1) -12—3

SEACED o

implies that [©/A] = [Y, T7(i)/2] and T+ (2) = 1. In this case z!(2,3) = r(0, \) —
1>7rT(2)—1=T(2)—1 > 0. Therefore, we can conclude that z'(2,3) + \y'(2,3) >
0.

Using Lemma 4.7, we can now argue that v = 0 and @, = 3. = 0 for alle € E\ A.
Moreover, it is possible to perturb p! by decreasing Te, 3 and increasing Ze, , OT Te, 5,
implying that for some & € R, ae = & whenever e € A.

We next construct a point p? = (22,92, f?) € F where 22 = 0, y? is identical
to y! with the exception that yfm = [0/X] = T7(1), and f? is some feasible flow
vector which exists by Lemma 4.2. Perturbing p? by increasing ygl’z and decreasing
yzm or yé,s, we conclude that there exists 8 € R, such that 8, = 3, for all e € A.
Furthermore, p', p? € F implies that 8 = (0, \)a@ and thus F is indeed a facet.

(444) Choose a fixed edge e; j € 6(i, j) for all j > 4, and consider p* = (23,43, f3) € F

where
(M e¢ A
@ —rE) 2 eme, M oeda
=4 (T +THE) ~T(2) /2 e=ei wifz{ oo
(T*(2) + TH(3) ~T*(1)) /2 e = ez
[ 0 otherwise
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and f3 is a feasible flow vector. Since y3(i,7) > 0 for all j > 4, we can apply Lemma
4.7 with p® and show that v = 0, ae = B, = 0 for all e € E \ A, and for all j > 1,
there exists 3; ; € R such that 3, = 3 ; for all e € §(4, j).

Next for each e; ; we perturb p> by decreasing Ye;; Dy 1 and increasing z., ; by
7(©, \) to obtain new points in F. Using these points together with p3, we conclude
that for all j > i, if e € §(3, j) then, a, = (0, )5,

Lastly, let {a,b,c} be a permutation of {1,2,3} so that r*(a) > rT(b) > rt(c).
Since (0, A) > rmin = r7(c), it is possible to permute p® by decreasing Yey. DY 1,
increasing z., . by r(©, ) — 1 and increasing e, , by 1. Similarly, it is possible to
permute p® by decreasing Yeo . Dy 1, increasing xe, , by (0, ) — 1 and increasing
Te,, by 1. These new points are in F', and thus Ba,b = Bac = Bb,ca implying that F

is a facet of P¥. "

We also note that it is possible to relax the condition 7'(2) > 1 from (i) of
Theorem 4.10, but in this case C(2,3) has to be positive whenever T'(2) = 1. To
avoid complicating the proof any further, we chose to skip this.

In the remainder of this section, we consider the case when for a critical partition
{81,82,83} of V, © is equal to [Y; T(i)/2], and we identify facets of P¥ that
exclude some of the fractional points from the feasible region when y(A) is less than
[©/X]. Before that we will make an observation concerning the identity T'(i) =
A(T*(i) — 1) + r* (i) and the cut-set inequalities. First note that

ST = A (ZT+(2') - 3) +3 ()

implying

TG0 _ (ETT() it (@)
M0_,(BI0 1), 5r

Therefore, depending on Y, T"(3), we can write

[Zﬂ_ﬂ(i)-‘ _ ([ -‘ > [ +(i)-‘ if 3,77 (3) is odd

2 ([ -‘ > PH—Z -‘ if 3, T (i) is even.

Next, note that when z(A) = 0, the cut set inequalities imply that y(A) >
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[>; TT(i)/2] and when y(A) = [>, T (:)/2] — 1, then

Tmin 1f ), T7(3) is odd
z(A) > { ©

Tmed if ;T (i) is even.

This is easy to see as y(A) = [>;77(¢)/2] — 1 implies that y(5(S;)) < T(i) — 1
holds for some i € {1,2,3} and using the cut-set inequality (7), z(6(S;)) > (7).
Furthermore if Y, 7" (i) is even, then either y(5(S;)) < T (i) — 2 for some i €
{1,2,3} and z(4(S;)) > rT (i) + A, or y(6(S;)) < T (i) — 1 and thus z(6(S;)) > r*(3)
holds for two separate subsets.

Next, we study the case when ), 7" (i) is odd more closely. For a given p =
(z,y,f) € PX, let k denote ([3; T (i)/2] — y(A))*. Using the previous observa-

tions and the three-partition inequality (24) we can write,

0 ifk=0
z(A) > Tmin ifk=1 (27)
[, rt(i)/2] + Mk —2) ifk> 2.

As seen in Figure 1, it is possible to write valid inequalities stronger than z(A)+
My(A) > [¥;T(i)/2] when z(A) < [;77(i)/2]. We note that (1/X) [¥,; T(3)/2],
the value y(A) assumes when z(A) + Ay(A) = [3,;T(i)/2] and z(A) = 0 is not
necessarily integral and it is strictly less than [Y; 77 (4)/2]. Depending on the value
of [3;77(i)/2], (1/X) [¥;T(3)/2] can be larger or smaller than [, T (i)/2] — 1,
but in either case point ps lies above the line z(A) + Ay(A) = [3; T(3)/2]. In other
words, rmin + A (15 TH()/2] — 1) 2 [5,76)/2].

We first consider the case when po lies above the line joining p; and ps.

Theorem 4.11 Given a critical partition II = {51,852, 53} of V, if © = [2’2 (Z)-‘

s
and Tmin > % [w-‘ , then,

113rH(i) i T (5)
o)z 3 [ B0 (| ERO] ) 28

is a facet of P* provided © > max{2,6 — C(A)} and both 3, T (i) and 3, r+(i)
(3

are odd.
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s, (@) /2] 1P
(1/X) [ T(5)/2]
[, TH(E)/2] =1 [~ o D2

[, TH(i)/2] =2 [ """~~~ oo

» T(A)

Tmin Y 7F(i)/2] [ T(3)/2]

Figure 1: Finding new cuts using cut-set and 3-partition inequalities ( Y, 7" (i) is
odd).

Proof. Validity of (28) is due to (27). To see that it is a facet, let T'(3) > T'(2) > T(1),
and F be the face of P implied by (28). Choose a fixed edge e; ; € (i, ) for all

§ > i, and consider p' = (z!,y!, f!) where

(M e¢ A (M e¢ A
[ TH(i)/2] —T*(3) e=ei2 [irT(@)/2] —r7(3) e=eip
ve =4 [ZiTH(@)/2) =TT (2) e=eip Te =19 [Xirt(@)/2] =r%(2) e=eis
[ TH(6)/2] —T*(1) e=ezs [Xir(@)/2] —rF(1) e=eazs
0 otherwise 0 otherwise

\ \

and f! is a feasible flow vector. Clearly y' > 0, Ay’ (A)+z'(A) = © and p' satisfies
the cut-set inequalities for all S; € II. As we show next, z' > 0 and thus p' € F.

s
To see that z! > 0, note that when 3, r*(i) is odd, rmin > % [w-‘ implies

(5 1
Tmed + Tmin = EZT() + 5
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T'max 1

2 2
Tmed + Tmin = Tmax + 1

5 ('rmed + Tmin) >

so that ! > 0 and z'(1,2),2'(1,3) > 0. To see that z'(2,3) + Ay'(2,3) > 0, notice
that if y*(2,3) = 0 then,

THE)+THR) - THH —1 _ TF(3) -1

0= 2 = 2

implies that 77 (3) = T7(2) = T*(1) = 1. If at the same time z'(2,3) = 0 then

@) +rt@) -rt1) -1 TE)+T@2)-T(1) -1 S T(3)—1

0=
2 2 -

implying [3°, T(i)/2] = 2, a contradiction.

If we let ax + By + vf = 7 be an equation satisfied by all p = (z,y, f) € F, then
by applying Lemma 4.7 with p', we can show that v = 0 and o, = B, = 0 for all
e € E\ A. Tt is possible to modify p' by decreasing Tey o OT Tey 5 Dy 1 and increasing
Tey s Dy 1 (and modifying flow) to obtain new points in F', which implies that there
is an @ € R such that a, = & for all e € A.

Lastly, we construct p? = (22,92, f?) € F where x> = 0, f? is a feasible flow
vector and y? is identical to y' with the exception that ygm = y;m + 1 and ygl,S =
yém + 1. Since it is possible to find new points by modifying p? by decreasing Yer.

Or Ye, 3 by 1 and increasing ye, ; by 1, we can argue that for some BER, B = for

_ +(i
all e € A. Finally p!,p? € F implies that 8 = % [Z’; (Z)-‘ @, which completes the

proof. "

We next consider the case when po lies below the line joining p; and p3. Notice
that when rmin < (1/2) [X,; 71 (2)/2], (28) of Theorem 4.11 is not valid, but in this
case we can write two new valid inequalities using p; and py or po and p3. These

inequalities are,

8
s
v

Tmin qz T (4) /2-‘ — y(A)> (29)

8
b
v

ot (| S 012] ) ([ 70002 - 080 - 1 )0
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Unfortunately, these inequalities do not define facets of P¥ since any point on
the faces related with (29) and (30) also satisfies y(a) = T (a) — 1 where a =
argmin {T'(i)}. We next present a facet of P* which combines (29) and (30).

Theorem 4.12 Given a critical partition Il = {S1, So, S3} of V, let r*(3) > r+(2) >
rt(1). If © = [, T(4)/2], and v (1) < 5 [X;rH(i)/2], then

z(1,2) + z(1,3) z(2,3) SiTHE) |
O mim @) T @2 — () ({ l y(A))

2
(31)
defines a facet of P provided max;{T* (i)} > 1 and 3, TT (i) is odd.

Proof. Before showing that (31) is a valid inequality, we first define (1) to denote
z(1,2) + 2(2,3), a to denote 1/r*(1) and B to denote the coefficient of z(2,3)
in (31). We further let g(z) to denote the left hand side of (31) so that g(z) =
az(l) + Bz(2,3). Notice that [>; rT(i)/2] > 2rt (1) together with r+(2) > r1(1)
implies that « > 3 and Br+(2) > 1.

First note that (31) is valid for any p = (z,y,f) € P whenever y(A) >
[>; TT(i)/2]. Next, consider the case when y(A) > [>,T(i)/2] — 1, so that,
there exists an index i € {1,2,3} with y(6(S;)) < T (%). If y(6(S1)) < T*(1) then,
the cut-set inequality for S implies z(1) > r*(1) and thus g(z) > 1. On the other
hand, if y(6(S1)) > T (1) then, using the cut-set inequalities for Sy or S3 we have
£(A) > r(2) and g(z) > Br(A) > fr(2) > 1.

The last case we consider is when y(A) is at most [y, T (3)/2] — 2. Let k(z) =
(TH(i) —y(6(S;)))" and K = [¥;T*(i)/2] — y(A) > 2 and note that 3, k(i) >
2K — 1. If k(1) > 1 then, to find a lower bound on g(z), we look at the optimal
value of the following linear program.

min z= azx(l)+ Bz(2,3)

st. z(1)

\Y

rT(1)k(1)
z(1) +2(2,3) > MK -2)+[¥X;r"(0)/2]

z(1),z(2,3) > 0

where we minimize g(z) subject to some valid inequalities. It is easy to see that
the optimal solution has z(1) = 7+ (1)k(1) and z(2,3) = MK —2) + [>,; 77 (i)/2] —
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rT(1)k(1) yielding,

rt(DEQA) | AK = 2) + 15 r7(0)/2] = rH(DkQ1)
rt(1) min {r+(2), [32;r*(2)/2] —r* (1)}

[Xirt(@)/2] —rT(1)k(1)
min {r+(2), [3;r*(1)/2] —r*(1)}

rt (@) (k(1) - 1)
min {r*(2), [32;7(9)/2] = r+(1)}

> k(1) +1+ (K—2) —k(1) +1

Y

E(1) + (K —2)+

Y

k(1) + (K —2)+1—

so that g(z) > 2z > K.

On the other hand, if k(1) = 0, then k(2) +%(3) > 2K —1 and max{k(1),k(2)}
K. Writing the cut-set inequalities for Sp and S5 we have, z(A) > max{z(1,2)
z(2,3),2(1,2) + 2(2,3)} > max{rt(2)k(2),r*(3)k(3)} > r*(2)K. Therefore g(z)
Bz(A) > prt(2)K > K and (31) is satisfied by all p = (z,y, f) € P¥.

For the rest of the proof, refer to [14].

—_

2
+
>

In Theorems 4.11 and 4.12, we considered the case when © = [, T'(i)/2] and
> TH(3) is odd. If 3", T+ (4) is even, then for any p = (z,y, f) € P* we can bound
z(A) from below by

0 ifk=0
CE(A) > T'med ifk=1 (32)
[MW FA(k—2) ifk>2

where k = ([2,T7(5)/2] —y(A))". Using (32), it is possible to develop valid
inequalities of the form (28) , (29) or (30), but these inequalities are not facet
defining.

5 Computational Results.

In this section, we present the results of our computational experience with a cutting-

plane algorithm. The approach described below has been elaborated and modified
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so as to work in the one-facility network loading problem on directed graph, with
very good results, see [4].

We developed an iterative algorithm which uses the facet defining inequalities as
cutting-planes and includes them in the formulation whenever they are valid (and
violated but not necessarily facet defining). The algorithm has three modules, one
for each class of facets we presented in Sections 2 - 4. We used these modules in a
hierarchical manner, and for a given iteration, executed a module only if no violated
cuts are found by the previous modules. For each module, there is an upper limit on
the number of cuts that can be introduced to the extended formulation in a single
iteration. During the course of our study, we observed that it is better to use these
modules in the following order: the cut-set module, the three-partition module and
the flow-cut-set module. After obtaining the last formulation, we ran branch-and-
bound. CPLEX, Version 2.1, was used throughout. The cutting plane algorithm
was run on a SPARC 10-40, and branch-and-bound on a SPARC 10-51.

We used two sets of real-life data, which arise, as described before, as part of
ATM network design problems. The traffic demand matrices are fully dense and it
is not practical to use the disaggregated formulation (i.e. defining a commodity for
every source-destination pair) for these problems. As we explain later, we also made
some modifications on the data to generate additional test problems while disturbing
the underlying structure in a minimal way. The first data set is of a network with
15 nodes and 22 edges (see Figure 2). The traffic demands are fairly large when
compared with the existing capacity on the edges and there is a cost related with
flow variables as well as the capacity variables. The second network (see Figure
3) is much denser when compared with the first one and it has 16 nodes and 49
edges. In this data set, traffic demands are quite small and there is no existing
capacity. Further, there is no cost related with the flow variables. In both of the
test problems the cost of adding capacity on an edge has a fixed component (related
with the switches on both ends of the edge) and a variable component proportional
to the actual length of the edge. The unit-batches correspond to so-called OC-3
facilities and and A-batches correspond to OC-12 facilities and thus, A is 4. The cost
related with these facilities is such that cost of an OC-12 facility is more than the
cost of one OC-3 facility but it is less than that of two OC-3 facilities and, therefore,
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in the optimal solution z variables are either 0 or 1. We included these bounds for
the x variables in the original formulation but did not modify the valid inequalities
using this information.

For each of the three modules of the algorithm, there is an exponential number
of related facets and to implement the algorithm we need to find a practical way
to choose violated inequalities, or, in other words, we need to find a way to solve
the separation problem. Little effort was spent on the separation problem and it is
likely that our cutting plane algorithm can be substantially speeded up by developing
more efficient separation modules. The networks related with the data sets are quite
different and this was reflected in the type of valid inequalities that became active.
We will postpone addressing the separation problem and look at the data sets more

closely.

5.1 Data Set 1

For every strong subset of the node set, there are two related cut-set facets and
even when the number of nodes is small (15 in this case), there are potentially 21V
subsets to be considered. The number of strong subsets of a graph is closely related
with the density of the graph and as seen in Figure 2, the network related with this

instance is fairly sparse.

Figure 2: Network 1, n = 15 and m = 22

In this example, there are only 190 strong subsets and it is feasible to check all
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of them to see if the related cut-set facets are violated or not. Recall that for a
subset to qualify as a strong subset, both the subset and its complement have to be
connected.

Similarly, the number of critical partitions of Network 1 is not very large (close
to one thousand) and it is possible to check all of them in each iteration to see if they
are violated or not. Lastly, we need to consider a number of flow-cut-set facets for
each strong subset S, each commodity subset Q of S and each nonempty partition
{E1, E3} of 6(S). In our experiments we noticed that these cuts are more effective
when (i) @ is “compact”, i.e. small and connected, (ii) |E2| is small and (iii) edges
in Ey are “close” to (), mostly when they are incident with nodes in (). Using these
observations, for each strong subset S, we generated sets @) such that Q = {v} for
all v € S and Q = {u,v} for all u,v € S and {u,v} € E. For choosing E; and Es,
we looked at the partitions that consist of no more than three edges in Fs.

We first ran the algorithm without a time limit and generated an extended
formulation by including all of the violated cuts in the original LP-relaxation. The
optimal integral solution to this problem has a cost of 2231 and the lower bound
generated by the extended LP was 2222, only 0.4% away from the optimum. This
run took approximately 30 minutes on a SPARC10 - 40 machine and the statistics
of this run are presented in Table 1. We define the “scaled gap” to be the difference
between the value of the extended formulation and the optimal (integral) solution
divided by the difference between the value of the LP-relaxation and the optimal
(integral) solution.

As seen in Table 1, the algorithm very quickly narrowed the gap: after approxi-
mately 21 seconds the scaled gap was less than 3% (i.e., the true gap was under 1%)
and after one minute of run time the scaled gap was less than 2%. After iteration 9
it takes almost half an hour to cut the scaled gap from 1.9% to 1.3%.

When we applied branch-and-bound using the resulting extended formulation,
the (integral) optimum was found in a few seconds. To balance the run-time between
the cutting-plane algorithm and branch-and-bound, we next limited the use of flow-
cut-set facets and stopped the algorithm after 70 seconds. After this modification,
total run-time (i.e., generating the extended formulation and running branch-and-

bound) was reduced to under two minutes. In contrast, running branch-and-bound
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without any cuts required more than an hour to find the integral optimal solution.

iteration | number | cut LP gap | scaled time
number | of cuts | type | value | (%) | gap(%) (sec)
0 0 - 15634 | 31.0 100 42
1 45 | c-s 1971 | 114 36.8 1.62
2 7] cs 1998 | 10.0 32.3 2.08
3 37| 3-p | 2156 3.4 11.0 2.95
4 3| cs 2156 3.4 11.0 4.17
5 7| 3p | 2203 1.2 3.9 4.67
6 2] 3p 2204 1.2 3.9 5.45
7 57 | fc 2210 0.9 2.9 21.13
8 58 | f-c 2215 0.7 2.3 51.32
9 56 | f-c 2218 0.6 1.9 93.58
10 57 | fc 2220 0.5 1.6 | 239.93
11 30 f-c 2221 0.4 1.3 | 488.80
12 1| 3p | 2221 0.4 1.3 | 490.62
13 24 | fc 2222 0.4 1.3 | 746.68
14 12 f-c 2222 0.4 1.3 | 1000.73
15 2| fc 2222 0.4 1.3 | 1251.58
16 1 f-c 2222 0.4 1.3 | 1502.82
17 0 f-c 2222 0.4 1.3 | 1755.48

Table 1: Example run of the algorithm on Data Set 1 (no time limit).

Next, we modified the original data (‘Capl’) to generate new problem instances
and to test the performance of the algorithm when applied to instances with different
nature. Keeping the underlying network the same, we generated four more instances
by changing the data as follows: The second data set is same as the first one, except
that the existing capacities are assumed to be zero; the third set is obtained by
doubling the traffic demands and the last two sets are generated by respectively
increasing and decreasing the flow costs. Tables 2 and 3 summarize the results of
these runs.

The run-times are presented in Tables 2 and 3. We note that for all of the test

problems, the total CPU-time needed to find the optimal solution was under two
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| problem | 2(LP) | z(ELP) | z(IP) | gap(%) | sc. gap(%) | time(sec) |

1: Capl 1534 2218 2231 0.58 1.87 74
2: NoXcapl | 4075 4576 4607 | 0.67 5.83 89
3: 2trafl 5608 6339 6354 0.23 2.01 74
4: NoFC1 949 1623 1631 0.49 1.17 83
5: 5FC1 2411 3105 3132 0.86 3.74 81

Table 2: Example problems generated using Data Set 1

‘ problem ‘ # of cuts ‘ B&B time ‘ Pure B&B time ‘
1: Capl 299 10sec lhour
2: NoXcapl 336 15sec 12mins
3: 2trafl 124 11sec unfinished
4: NoFC1 282 8sec unfinished
5: bFC1 307 9sec 30mins

Table 3: B&B times for Set 1

minutes and the algorithm is not effected by the changes in the input as long as the
underlying network stays the same. As seen in the Tables 2 and 3, when we apply
branch-and-bound without any cutting-planes, the run-times vary from 12 minutes
to several hours. For Problems 3 and 4 when we terminated the run after more than
3 hours of CPU-time, the branch-and-bound tree had more than 20,000 nodes and

the gap between the upper and lower bounds was still large.

5.2 Data Set 2

As seen in Figure 3, the network related with this data set is dense and consequently
the number of strong subsets is quite large. There are more than 25,000 strong
subsets related with this network and although it is still feasible to consider all of
the cut-set facets, it is not possible to do the same for all of the three-partition or

flow-cut-set facets. We stress, however, that it is quite practical to enumerate all
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strong subsets at the start of the algorithm: this only requires a very small amount
of computation.

For this instance, we modified the algorithm and defined flags related with each
strong subset . When executing the cut-set module, we marked a strong subset
if the related cut-set inequalities are violated or when the slacks related with the
cuts are less than 10% of the right hand side. Using these flags, we only considered
the three-partitions which are formed by these subsets. Similarly, we only used
the flow-cut-set facets related with the chosen subsets. The number of “important”
strong subsets, selected as above, was under 100 and in terms of finding a good lower
bound, they were as effective as the whole list. We also note that, in this case the
flow-cut-set facets were not very effective as traffic demands are small and the flow
costs are zero.

A word about this approach. Although seemingly inelegant and inefficient (it
reeks of enumeration), it turns out that with proper data management techniques in
fact it leads to an extremely effective and efficient (and quick) algorithm for network
loading problems; see [4]. It is worth noting that the problem of detecting whether
a cut inequality is violated is NP-complete ([2] has proved a related result).

The LP-relaxation related with this data set has a value of 1,950 and the cor-
responding optimal integral solution has a value of 10,704 (as we learned later).
The best lower bound we obtained by applying the cutting plane algorithm, with
the modifications describes above, was 8,491. In other words, this lower bound is
20% was away from the optimal value and the scaled gap is more than 25%. When
we applied branch-and-bound using the resulting extended formulation, the gap be-
tween the upper and lower bounds generated by CPLEX was more than 10% after
a few hours. After many hours of CPU time, and before the problem was solve,
CPLEX exhausted the system memory (consuming in the process approximately 48
megabytes).

We next studied the fractional optimal solution to the extended formulation and
realized that the overall capacity added to the whole network (that is, z(E) + y(E))
was quite small. The main reason for this was that the traffic demands are small.
Even though the cut-set facets and the three-partition facets force the degree (i.e.

z(6(S)) +y(6(S)) ) of a strong subset to be at least one, these cuts are myopic, and
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Figure 3: Network 2, n = 16 and m = 49

they do not force a lower bound on the overall capacity. Since there is no existing
capacity for this problem and as the resulting network has to be connected, the
optimal solution should add capacity on at least 15 (= # of nodes—1) edges so that
the optimal solution would contain enough edges to form a connected network.
Using this observation, we then added a new module to the algorithm that
checks whether or not some simple valid spanning tree cuts are satisfied by fractional
solutions. In this module we have two kinds of valid inequalities. The first one of
these can be obtained by shrinking a subset of nodes and requiring the resulting
network to have enough edges to form a tree. The second one basically states that
after deleting some edges (that is shrinking pairs of nodes) the solution to the design
problem should have enough number of edges to form a spanning tree together with

the deleted edges. We used the list of strong subsets for the first family of the
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spanning tree cuts and shrank the edges with x, + y. > 1 for the second one.

After including this module in the cutting plane algorithm, the lower bound
generated by the extended formulation went up to 10,339 or, only 3.4% off the
optimal solution. Using the resulting formulation, branch-and-bound was able to
find an optimal solution, with the entire procedure taking under half an hour. To
study the effect of this new module more closely, we ran the algorithm by disabling
all other modules and the resulting lower bound was 9,071, or less than 10% away
from the optimum. However, the resulting extended formulation was very ineffective
for branch-and-bound.

Lastly, we generated a larger extended formulation by first applying our cutting-
plane algorithm and then setting some of the design variables to zero, and repeating
this procedure iteratively until an integral solution was generated. This way we
generated many valid inequalities and using this formulation, branch-and-bound
was able to find an optimal solution in about 15 minutes, that is the run-time was
reduced by a factor of two.

We also generated two more problems related with this data set by increasing
the traffic demands and by changing the objective function coefficients of the flow
variables. In Tables 4 and 5, we summarize the statistics related with these of the

problems.

problem z(LP) | z(ELP) | z(IP) | gap(%) | sc. gap(%) | time(sec)

1: Cap2 1950 10339 | 10704 3.4 4.2 160
2: 2traf2 3901 10792 | 11789 8.5 12.7 175
3: 1FC2 (a) | 4092 12779 | 14384 10.9 15.3 177
4: 1FC2 (b) | 4092 13379 | 14384 7.0 9.8 Shrs

Table 4: Example problems generated using Data Set 2

In Table 4, problems 3 and 4 correspond to the same problem for different lengths
of run-time.

As it can be seen in Tables 4 and 5, the algorithm is not as successful for the
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problem # of cuts | B&B time | Pure B&B time

1: Cap2 247 15min unsolved
2: 2traf2 258 3hrs unsolved
3: 1FC2 (a) 508 10hrs* unsolved

Table 5: B&B times for Set 2

second and third problems (these are the ones we generated by modifying the original
data).

For the second problem, the scaled gap was more than 10% after the first phase
and branch-and-bound takes just under three hours. When applying the algorithm
to this data set, we limited the use of flow-cut-set facets (to keep the size of the
extended-LP small). Since these inequalities play a more important role when the
volume of traffic is high, this change results in a larger gap and thus a much longer
branch-and-bound time. Nonetheless, in terms of application, we want to note that
the solution time for this problem is reasonable.

For the third problem (1FC2 (a)), we should say that the extended formulation
generated by the cutting-plane algorithm was not strong enough and we could not
solve the problem to optimality using CPLEX (sequential) branch-and-bound. The
run time and the optimal value reported in Table 5 were obtained by J. Eckstein
by running his parallel branch-and-bound code CMMIP on a 64 processor CM-5
machine [5]. Starting with the extended formulation, the code took approximately
10 hours to solve this problem to optimality, generating a B-B tree with 2.4 million
nodes. This negative result shows that the facet defining inequalities that we have
presented in this paper are not sufficient to solve hard problems (i.e., resulting from
dense graphs, with dense traffic matrices with flow costs) and more work needs to
be done on the polyhedral structure of CEP.

As a further test of the strength of our inequalities, we performed the following
experiments. Suppose we have generated valid inequalities for a problem instance,

and the demand data were to change in a small way. Then the inequalities would
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generally become invalid. However, we can recompute the coefficients in the inequal-
ities so that they become valid once again, in a small fraction of the time it took
to compute the original inequalities. Note that the resulting inequalities are proba-
bly not facet-defining. Nevertheless, how strong are they? This question has great
practical significance, since we will usually solve many problems that differ slightly
from one another in the demand amounts. To test this, for selected problems we (a)
generated an extended formulation as described above, and then (b) randomly per-
turbed each demand by 10 % and 20 %. Table 6 describes the results of these tests.
Here LP is the LP-relaxation of the perturbed problem, RELP is the reconstructed

Data Set 2 Data Set 1

Perturbation 10% 20% 10% 20%

z(LP) | 1955.83 | 1967.58 | 1423.44 | 1401.54
z(RELP) | 10315.51 | 10316.61 | 2118.73 | 2112.92
z(ELP) | 10315.51 | 10321.59 | 2160.97 | 2157.63
z(IP) | 10704.00 | 10704.00 | 2182.37 | 2164.57
B&B time 430sec 382sec 9sec 9sec
Gap 3.6% 3.6% 2.9% 2.4%

Sc. Gap 4.4% 4.4% 8.3% 6.8%

Table 6: Perturb & Reconstruct

extended formulation, ELP is the extended formulation for the perturbed problem
(obtained in the normal way) and IP is the perturbed mixed-integer program. As
we can see, the strategy of recomputing cuts appears quite effective. In a certain
sense, this shows that our inequalities are “stable” and more “combinatorial” than

driven by the demand amounts.
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6 Extensions.

There are several areas that we plan to explore in the future. The cutsets we de-
scribed above involve families of subsets of nodes. Roughly speaking, our algorithms
maintained a list of “active” subsets. It is easy to decide when a subset is no longer
active, but all the approaches we can think of for generating new active sets involve
problems similar to the maximum-cut problem.

Another issue is that of generating strong inequalities involving partitions of the
node set into more than three classes. Early work on our part appears to show that
the structure of the “better” facets is quite complex (they strongly depend on the
demand amounts — one can easily generate interesting-looking combinatorial facets
that never come into play). Instead, we are developing an approach for automati-
cally computing face-defining violated inequalities. Roughly, this approach involves
recursively solving problems of type CEP that have a simpler structure.

A simple change to our formulation is that of replacing each edge by three parallel
edges, one for existing capacity, one for z-capacity and one for y-capacity, and
similarly splitting the flows in the edge into a sum of three values. This will merely
increase the number of continuous variables by a factor of three, but the benefit is
that we will have a richer family of “flow cut-set” inequalities. As a preliminary step
in this direction, we are improving our separation procedure for these inequalities.
We note that there are other ways of tightening the split formulation.

A different kind of reformulation involves using path variables instead of flow
variables. However, the integral variables remain the same, and potentially the
resulting problem is just as difficult as the original one (although there are more
ways of strengthening the path formulation). We will test all of these ideas in a

future paper.
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