
 

PART IV

 

APPLICATIONS

 

We have grouped in this last part of the book exercises and examples for applica-
tions. These have various objectives and different degrees of difficulties. Leaving
aside (except for special cases) the cases that are too academic, we will concern
ourselves with applications of concrete nature, with an emphasis on the numerical
aspect of the results. A few of these applications should be used as validation
tests for numerical models.
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18

 

APPLICATIONS

 

18.1 LEVEL 1

 

18.1.1 Simply Supported Sandwich Beam

 

Problem Statement:

 

1. The following figure represents a beam made of duralumin that is supported
at two points. It is subjected to a transverse load of 

 

F

 

 

 

=

 

 50 daN. Calculate
the deflection—denoted as 

 

D

 

—of the beam under the action of the force 

 

F

 

.

2. We separate the beam of duralumin into two parts with equal thickness

 

e

 

p

 

 

 

=

 

 2.5 mm, by imaginarily cutting the beam at its midplane. Each half is
bonded to a parallel pipe made of polyurethane foam, making the skins
of a sandwich beam having essentially the same mass as the initial beam
(in neglecting the mass of the foam and the glue). The beam is resting
on the same supports and is subjected to the same load 

 

F

 

. Calculate the
deflection caused by 

 

F

 

, denoted by 

 

D¢

 

. Compare with the value of 

 

D

 

 found
in Part 1. (Take the shear modulus of the foam to be: 

 

G

 

c

 

 

 

=

 

 20 MPa.)

 

Solution:

 

1. We will use the classical formula that gives the deflection at the center of
the beam on two supports:

D F
48EI
----------- with I

bh3

12
--------= =
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For duralumin (see Section 1.6): 

 

E

 

 

 

=

 

 75,000 MPa. One finds

2. Denoting by

 

 W

 

 the elastic energy due to flexure, one has

 

1

 

with

 

2

 

:

Using Castigliano theorem, one has 
then:

Approximate calculation:

then:

 

1

 

To establish this relation, see Chapter 15, Equation 15.17.

 

2

 

See calculation of this coefficient in 18.2.1, and more precise calculation in 18.3.5.
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one obtains for D¢:

Comparing with the deflection D found in Part 1 above:

Remarks:

� The sandwich configuration has allowed us to divide the deflection by 14
without significant augmentation of the mass: with adhesive film thickness
0.2 mm and a specific mass of 40 kg/m3 for the foam, one obtains a total
mass of the sandwich:

m = 700 g (duralumin) + 50 g (foam) + 48 g (adhesive)

This corresponds to an increase of 14% with respect to the case of the full beam
in Question 1.

� The deflection due to the shear energy term is close to 6 times more
important than that due to the bending moment only. In the case of the
full beam in question 1, this term is negligible. In effect one has:

k = 1.2 for a homogeneous beam of rectangular section, then:

(with G = 29,000 MPa, Section 1.6). The contribution to the deflection D of the
shear force is then:

18.1.2 Poisson Coefficient of a Unidirectional Layer

Problem Statement:

Consider a unidirectional layer with thickness e as shown schematically in the
figure below. The moduli of elasticity are denoted as E� (longitudinal direction)
and Et (transverse direction).

D¢ 0.18 mm 1.04 mm+=
bending shear
moment

D¢ 1.22 mm=

D
D¢
----- 14

1
------=

k
GS
------- 8.27 10 8–¥=

k
GS
------- T

Td
Fd

------ xdÚ 0.02 mm  << D=
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Show that two distinct Poisson coefficients n�t and nt� are necessary to charac-
terize the elastic behavior of this unidirectional layer. Numerical application: a
layer of glass/epoxy. Vf = 60% fiber volume fraction.

Solution: 

Let the plate be subjected to two steps of loading as follows:

1. A uniform stress s� along the � direction: the changes in lengths of the
sides can be written as:

2. A uniform stress st along the t direction: for a relatively important elongation
of the resin, one can only observe a weak shortening of the fibers along
�. Using then another notation for the Poisson coefficient, the change in
length can be written as:

Now calculating the accumulated elastic energy under the two loadings above:

� When s� is applied first, and then st is applied,

� When st is applied first, and then s� is applied,

The final energy is the same:

Db1

b
---------

s�

E�

----- ;
Da1

a
---------

n�t

E�

------–= = s�

Db2

b
---------

nt�

Et

------– st ;
Da2

a
---------

st

Et

----= =

W
1
2
---s� a e Db1

1
2
---st b e Da2 s� a e Db2¥¥¥+¥¥¥+¥¥¥=

W ¢ 1
2
---st b e Da2

1
2
---s� a e Db1 st b e Da1¥¥¥+¥¥¥+¥¥¥=

W W ¢=
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then:

with the values obtained above for Db2 and Da1:

Numerical application: n�t = 0.3, E� = 45,000 MPa, Et = 12,000 MPa (see Section 3.3.3):

Remark: The same reasoning can be applied to all balanced laminates having
midplane symmetry, by placing them in the symmetrical axes.3 However, depending
on the composition of the laminate, the Poisson coefficients in the two perpendicular
directions vary in more important ranges:

� in absolute value and
� one with respect to the other.

One can find in Section 5.4.2 in Table 5.14 the domain of evolution of the global
Poisson coefficient nxy of the glass/epoxy laminate, from which one can deduce the
Poisson coefficient nyx using a formula analogous to the one above, as:

18.1.3 Helicopter Blade

This study has the objective of bringing out some important particularities related
to the operating mode of the helicopter blade, notably the behavior due to normal
load.

Problem Statement:

Consider a helicopter blade mounted on the rotor mast as shown schematically
in the following figure.

3 Or the orthotropic axes: see Chapter 12, Equation 12.9.

s� a e Db2¥¥¥ st b e Da1¥¥¥=

s� a e
nt�

Et

------ st b¥–¥¥¥ st b e
n�t

E�

------ s� a¥–¥¥¥=

nt�

Et

------
n�t

E�

------=

nt� 0.3
12,000
45,000 
-------------------¥=

nt� 0.08=

nyx/Ey nxy/Ex=
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The characteristics of the rotor are as follows:

� Rotor with three blades; rotational speed: 500 revolutions per minute.
� The mass per unit length of a blade at first approximation is assumed to

have a constant value of 3.5 kg/m.
� � = 5 m; c = 0.3 m.
� The elementary lift of a segment dx of the blade (see figure above) is

written as:

in which V is the relative velocity of air with respect to the profile of the blade.
In addition, Cz (7∞) = 0.35 (lift coefficient).

r = 1.3 kg/m3 (specific mass of air in normal conditions).

We will not concern ourselves with the drag and its consequences. One
examines the helicopter as immobile with respect to the ground (stationary flight
in immobile air). In neglecting the weight of the blade compared with the load
application and in assuming infinite rigidity, the relative equilibrium configuration
in uniform rotation is as follows:

dFz
1
2
---r cdx( )CzV

2=
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1. Justify the presence of the angle called “flapping angle” q and calculate it.
2. Calculate the weight of the helicopter.
3. Calculate the normal force in the cross section of the blade and at the

foot of the blade (attachment area).

The spar of the blade4 is made of unidirectional glass/epoxy with 60% fiber volume
fraction “R” glass (s� rupture # 1700 MPa). The safety factor is 6. Calculate:

4. The longitudinal modulus of elasticity E� of the unidirectional.
5. The cross section area for any x value of the spar, and its area at the foot

of the blade.
6. The total mass of the spar of the blade.
7. The elongation of the blade assuming that only the spar of the blade is

subject to loads.
8. The dimensions of the two axes to clamp the blade onto the rotor mast.

Represent the attachment of the blade in a sketch.

Solution:

1. The blade is subjected to two loads, in relative equilibrium:
� Distributed loads due to inertia, or centrifugal action, radial (that means

in the horizontal plane in the figure, with supports that cut the rotor axis.
� Distributed loads due to lift, perpendicular to the direction of the blade

(Ax in the figure).

From this there is an intermediate equilibrium position characterized by the angle q.
Joint A does not transmit any couple. The moment of forces acting on the

blade about the y axis is nil, then:

with:

then after the calculation:

4 See Section 7.2.3.

Fz x¥d
�/10

�

Ú Fc x q # q Fc x¥d
�/10

�

Ú¥sin¥d
�/10

�

Ú=

dFz
1
2
---rc dx CzV

2 1
2
---rc dx Cz x q w¥cos( )2 # 

1
2
---rc dx Cz x2w2= =

dFc dm w2x q # m dx w2x centrifugal load( )cos=

1
2
---rcCzw2 �4 �4/104–( )

4
------------------------------- q mw2 �3 �3/103–( )

3
-------------------------------=

q # 
3
8
---

rcCz

m
------------ �¥
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or numerically:

Remarks:

� One verifies that sinq = 0.073 # q and cosq = 0.997 # 1.
� When the helicopter is not immobile, but has a horizontal velocity, for

example v0, the relative velocity of air with respect to the blade varies
between v0 + w x for the blade that is forward, and –v0 + w x for a blade
that is backward. If the incidence i does not vary, the lift varies in a cyclical
manner, and there is vertical “flapping motion” of the blade. This is why
a mechanism for cyclic variation of the incidence is necessary.

� We have not taken into account the drag to simplify the calculations. This
can be considered similarly to the case of the lift. It then gives rise to an
equilibrium position with a second small angle, called j, with respect to
the radial direction from top view, as in the following figure. This is why
a supplementary joint, or a drag joint, is necessary.

2. Weight of the helicopter: The lift and the weight balance themselves out.
The lift of the blade is then:

then for the 3 rotor blades:

numerically:

q 0.073 rad 4∞11¢= =

Fz Fz q # Fzd
�/10

�

Úcosd
�/10

�

Ú 1
2
---rcCzw2 �3 �3/103–( )

3
-------------------------------= =

Mg 3Fz=

Mg # 
1
2
---rcCzw2�3

Mg 2340 daN =
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3. Normal load: It is denoted as N(x):

at the foot of the blade (x = l/10):

4. Longitudinal modulus of elasticity:
Using the relation of Section 3.3.1:

with (Section 1.6): Ef = 86,000 MPa; Em = 4,000 MPa.

5. Section of the spar of the blade made of glass/epoxy:
The longitudinal rupture tensile stress of the unidirectional is

With a factor of safety of 6, the admissible stress at a section S(x) becomes

then:

at the foot of the blade:

N x( ) Fc q # Fcd
x

�

Úcosd
x

�

Ú mw2x xd
x

�

Ú= =

N x( ) mw2

2
----------- �2 x2–( )=

 N �/10( ) # 12,000 daN

E� EfVf EmVm+=

 E� 53,200 MPa=

s� rupture # 1700 MPa

s N x( )
S x( )
------------ 1700

6
------------ 283 MPa= = =

S x( ) N x( )
s

------------=

S x( ) mw2

2s
----------- �2 x2–( )=

S �/10( ) 4.24 cm2=
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6. Mass of the spar (longeron) of the blade:

Specific mass of the unidirectional layer (see Section 3.2.3):

Then:

7. Elongation of the spar of the blade: The longitudinal constitutive relation
is written as (see Section 3.1):

Elongation of a segment dx : e x (x) dx.
For the whole spar of blade:

then:

One has to reinforce the spar of the blade to diminish the elongation to resist
the centrifugal force.

8. Clamped axes: For 2 axes in 30 NCD16 steel (rupture shear strength t rupt =
500 MPa; bearing strength s bearing = 1600 MPa); 4 sheared sections; factor of
safety = 6:
� diameter: N(�/10)/pf2 £ trupt/6 Æ f ≥ 21.4 mm
� length: N(�/10)/2hf £ sbearing/6 Æ h ≥ 10.5 mm

mspar runidirect.S x( ) xd
�/10

�

Ú=

m
spar

r
unidirect.

mw2

s
----------- 1.7

6
-------�3¥¥=

runidirect. Vf rf Vmrm+ 1980 kg/m3= =

mspar 2.38 kg=

ex

sx

Ex

----- N x( )
E� S x( )¥
---------------------- s

E�

-----= = =

D� ex xd
�/10

�

Ú=

D� 0.9
�s
E�

------=

D� 2.4 cm=
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18.1.4 Transmission Shaft for Trucks

Problem Statement:

One proposes to replace the classical transmission shaft made of universal cardan
joint and intermediary thrust bearing as shown below:

with a solution consisting of a long shaft made of carbon/epoxy, with the following
dimensions:

The characteristics of the transmission shaft are as follows:

� Maximum torsional couple: Mt = 300 m daN
� Maximum rotation speed: N = 4000 revolutions/minute
� The first resonant flexural frequency of a beam on two supports is given by:

where m is the mass of the beam, and I is its flexure moment of inertia. It
corresponds to a “critical speed” for a beam in rotation, which should not be
reached during the operation.

� The carbon/epoxy unidirectional has Vf = 60% fiber volume fraction. The
thickness of a cured ply is 0.125 mm.
1. Give the characteristics of a suitable shaft of carbon/epoxy composite.

One will make use of the tables in Section 5.4.2 and will use a factor
of safety of 6.

2. Study the adhesive fitting of the coupling plates to the shaft.
3. Carry out an assessment on the saving in weight with respect to the

“shaft in steel” solution (not including the coupling plates).

Solution:

1. Characteristics of the shaft: The shaft is assumed to be thin and hollow
(thickness e is small compared with the average radius r as in the following
figure).

f1
p
2
--- EI

mL3
----------=
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The shear stress t is as follows:

Taking into account the nature of the loading on the laminate making up the
tube (pure shear), the composition of the tube requires

� Important percentages of unidirectionals in the direction of ±45∞ (see
Section 5.2.2).

� Minimum percentages in the order of 10% in other directions (see Section
5.2.3.6).

This leads, for example, to the following distribution:

In Section 5.4, one finds Table 5.3, which gives the maximum shear stress that
can be applied to a laminate subject to pure shear, as a function of the proportions
of the plies at 0∞, 90∞, +45∞, -45∞. One reads for the proportions above:

from which the admissible stress taking into account a safety factor of 6:

One then has

or numerically:

t
Mt

2pr2e
--------------=

tmax 327 MPa=

tadmis. 327/6 MPa=

Mt

2pr2e
-------------- tadmis.£

r2e 8 760 mm3≥
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For a minimum specified radius r = 60 mm, one obtains

The corresponding number of plies of carbon/epoxy is

giving a thickness of:

One can verify that a number of 20 plies allows one to satisfy the following:
(a) The required proportions

(b) The midplane symmetry, with the sequence:

Critical speed of such a shaft:

� The longitudinal modulus E of the laminate (in the direction of the shaft)
is (see Table 5.4 [longitudinal modulus] in Section 5.4.2)

E = 31,979 MPa

� The specific density of the laminate is (see Section 3.2.3)

with (Section 1.6): rf = 1750 kg/m3; rm = 1,200 kg/m3. Then: rlam = 1,530 kg/m3

(see also Table 3.4 in Section 3.3.3).

e 2.43 mm≥

2.43
0.125
------------- # 20 plies

e 2.5 mm=

90∞/0∞/ 454
∞± s

f1
p
2
--- EI

mL2
----------=

rlam Vf rf Vmrm+=
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� The second moment of inertia in flexure is I = p r3 e from which the first
frequency is: f1 = 76 Hz

It corresponds to a critical speed of 4,562 rev/minute, superior to the maximum
speed of rotation of the shaft.5

2. Bonded fittings:
We will use the relation of Paragraph 6.2.3 (Figure 6.26) for simplification. This
implies identical thicknesses for the tube making up the shaft and the coupling
plate made of steel.6 The maximum shear stress has an order of magnitude of:

where � is the bond length, and

with Gc as the shear modulus of araldite, then Gc = 1,700 MPa (Section 1.6).

Glaminate = 28430 MPa (Section 5.4.2; Table 5.5)

ec = bond thickness (Section 6.2.3): ec = # 0.2 mm.

� Thickness at bond location:

If one conserves the thickness found for the tube, as e = 2.5 mm, one obtains

a = l ¥ 244.5

The resistance condition can then be written as:

t max £ t rupture (15 MPa for araldite; see Section 6.2.3).

Then:

numerically: th a ≥ 2.16 Æ impossible (th x Œ] – 1, + 1 [).

5 One also has to verify the absence of buckling due to torsion of the shaft, see annex 2 for
this subject.

6 For different thicknesses for the tube made of carbon/epoxy and for the coupling plate part,
one can use the more general relation established in application 18.3.1. This also allows
different shear moduli for each material.

tmax
a

th a
---------- taverage¥ a

th a
----------

Mt

2pr2�
--------------¥= =

a �
Gc

2Geec

---------------=

a
th a
----------

Mt

2pr2�
-------------- trupture£¥

244.5
th a
-------------

Mt

2pr2
----------- trupture£¥
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It is then necessary to augment the thickness of the tube at the bond location.
One starts from the relation:

placed in the form:

then:

One finds numerically:

e > 11.7 mm;

we retain

e = 12 mm (one then has th a = 1 - e = 0.987)

� Bond length
In accordance with Section 6.2.3, the resistance condition is written as:

then:

a
th a
----------

Mt

2pr2�
-------------- trupture£¥

GC
2GeeC

----------------

1 e–( )
----------------

Mt

2pr2
----------- trupture with e << 1£¥

GC

2GeeC

---------------- trupture
2pr2

Mt

----------- 1 e–( )¥¥£

taverage

Mt

2pr2�
-------------- 0.2 trupture¥£=

� 44 mm≥

TX846_Frame_C18a  Page 357  Monday, November 18, 2002  12:40 PM

© 2003 by CRC Press LLC 



3. Mass assessment:
� Mass of the shaft in carbon/epoxy

mlaminate = r ¥ 2pre ¥ L

with numerical values already cited:

m laminate = 2.8 kg.

� If one takes a tubular shaft made of steel (t rupture = 300 MPa) with a
factor of safety that is 2 times less, say 3, and a minimum thickness of
2.5 mm, the resistance condition:

leads to a radius of the tube of

r ≥ 43 mm.

From this we find a mass of: (rsteel = 7,800 kg/m3):

msteel = 10.5 kg

The saving in mass of the composite solution over the steel solution is 73%. The
real saving is higher because it takes into account the disappearance of the
intermediate bearing and of one part of the universal joint.

18.1.5 Flywheel in Carbon/Epoxy

Problem Statement:

We show schematically in the figure below an inertia wheel made of carbon/
epoxy with 60% fiber volume fraction, with the indicated proportions for the
orientation of the fibers.

Mt

2pr2e
-------------- 300

3
--------- MPa£
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1. Calculate the maximum kinetic energy that one can obtain with such a
flywheel with a mass of 1 kg.

2. Compare the maximum kinetic energy that one can obtain with a steel
flywheel with a mass of 1 kg. One will take: srupture steel = 1,000 MPa.

Solution:

1. The equilibrium of an element of the wheel (shown below) reveals inertia
forces and cohesive forces.

One deduces from there the equilibrium equation along the radial direction:

Denoted by r the specific mass:

Denoted by V = rw the circumferential speed, one obtains the maximum for the
rupture strength of carbon/epoxy, as:

Numerical application: For the composition of the carbon/epoxy laminate indicated
above, one reads in Section 5.4.2, Table 5.1:

srupture = 1,059 MPa

and with r = 1,530 kg/m3 (Table 3.4 of Section 3.3.3, or the calculation in Section
3.2.3):

Vmax = 832 m/s

dm w2r¥ 2seb
dq
2

------=

rr dq ebw2r sebdq=

r rw( )2 s=

Vmax

srupture

r
---------------=
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from this the maximum kinetic energy obtained with 1kg of composite7:

then:

2. The maximum circumferential speed that one can obtain with a steel flywheel
can be written as:

Therefore, the ratio of kinetic energies of composite/steel is

with rsteel = 7800 kg/m3 and srupt. steel = 1000 MPa, one obtains

With respect to the same mass, it appears then possible to accumulate 5 times
more kinetic energy with a flywheel in carbon/epoxy composite.

18.1.6 Wing Tip Made of Carbon/Epoxy

Problem Statement:

Wing tip refers to a part of airplane wing as shown in Figure 18.1. It is made of a
sandwich structure with carbon/epoxy skins (Figure 18.2) fixed to the rest of the
wing by titanium borders as shown. Under the action of the aerodynamic forces
(Figure 18.3), the wing tip is subjected to bending moments, torsional moments,
and shear forces as shown in Figure 18.4(a).

One can assume that the core of the sandwich structure transmits only shear
forces, and the skins support the flexural moments. This is represented in
Figure 18.4(b); the skins resist in their respective planes the in-plane stress
resultants: Nx, Ny, and Txy. Figure 18.5 shows the values of these stress resultants

7 Recall the expression for the rotational kinetic energy of a mass m placed at a radius r and
rotating at a speed of w: .WKinetic

1
2
---Iw2 1

2
---mr2w2 1

2
---mV circonfer

2= = =

WKinetic
1
2
--- 1 kg Vmax

2¥¥=

WKinetic 346 kjoules=

Vmax. steel

srupture steel

rsteel

------------------------=

WKinetic carbon

WKinetic steel

----------------------------
Vmax carbon

2

Vmax steel
2

----------------------
srupt. carbon rsteel¥
srupt. steel rcarbon¥
----------------------------------------= =

WKinetic carbon

WKinetic steel

---------------------------- 5.4=
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at a few points of the upper skin (or extrados).

1. According to Figures 18.4(a) and 18.4(b), deduce the elements of the stress
resultants Nx, Ny, and Txy from the knowledge of the moment resultants
Mx, My, and Mxy.

2. Using a factor of safety of 2, define the carbon/epoxy skin that is suitable
at the surrounding of the support made of titanium alloy (proportions,
thickness, number of plies). One will use unidirectional plies with Vf =
60% fiber volume fraction.

Figure 18.1

Figure 18.2

Figure 18.3
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3. The skin is bonded on the edge of the titanium (Figure 18.2). Provide the
dimensions of the bonded surface by using an average shear stress in the
adhesive (araldite: t rupture = 30 MPa).

4. The border of the titanium is bolted to the rest of the wing (Figure 18.2).
Determine the dimensional characteristics of the joint: “pitch” of the bolts,
thickness, foot, with the following data:
� Bolts: 30 NCD 16 steel: ∆ = 6.35 mm, adjusted, negligible tensile loading,

srupture = 1,100 MPa; trupture = 660 MPa; sbearing = 1600 MPa
� TA6V titanium alloy: srupture = 900 MPa; trupture = 450 MPa; sbearing = 1100 MPa
� Duralumin: srupture = 420 MPa; sbearing = 550 MPa

Solution:

1. The moment resultants Mx , My, Mxy (and Myx, not shown in Figure 18.4a)
are taken up by the laminated skins. One then has in the upper skin
(Figure 18.4b), h being the mean distance separating the two skins:

Figure 18.4

Figure 18.5

Nx

My

h
------ ; Ny

Mx–
h

---------- ; Txy

Mxy

h
---------–= = =
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Remark: The moment resultants, that means the moments per unit width of
the skin – 1mm in practice – have units of daN ¥ mm/mm. The stress resultants
Nx, Ny, Txy have units of daN/mm.

2. Looking at the most loaded region of the skin, we can represent the
principal directions and stresses by constructing Mohr’s circle (shown in
the following figure). Then we note that there must be a nonnegligible
proportion of the fibers at ±45∞. However, the laminate has to be able to
resist compressions along the axes x and y. The estimation of the propor-
tions can be done following the method presented in Section 5.4.3. One
then obtains the following composition8:

Let s�, st, t�t be the stresses along the principal axes l, t of one of the plies for
the state of loading above, the thickness e of the laminate (unknown a priori)
such that one finds the limit of the Hill-Tsai criterion of failure.9 One then has

8 The calculation to estimate these proportions is shown in detail in the example of Section
5.4.3, where one has used the same values of the resultants with a factor of safety of 2, as:
Nx = -800 N/mm; Ny = -900 N/mm; Txy = -340 N/mm.

9 See Section 5.3.2 and also Chapter 14.

s�
2

s� rupture
2

------------------
st

2

st rupture
2

------------------
s�st

s� rupture
2

------------------
t�t

2

t�t rupture
2

-------------------+–+ 1=
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If one multiplies the two sides by the square of the thickness e:

[1]

one will obtain the values (s� e), (st e), (t�t e), by multiplying the global stresses
sx, sy, txy with the thickness e, as (sx e), (sy e), (txy e), which are just the stress
resultants defined previously:

Units: the rupture resistances are given in MPa (or N/mm2) in Appendix 1. As a
consequence:

with a factor of safety of 2, one then has

We use the Plates in annex 1 which show the stresses s�, st, t�t in each ply
for an applied stress resultant of unit value (1 MPa, for example):

(a) Plies at 0∞:
� Loading  = -800 MPa ¥ mm only:

For the proportions defined in the previous question, one reads on Plate 1:

� Loading  = -900 MPa ¥ mm only:

One reads from Plate 5:

s�e( )2

s� rupture
2

------------------
ste( )2

st rupture
2

------------------
s�e( ) ste( )
s� rupture

2
--------------------------

t�te( )2

t�t rupture
2

-------------------+–+ e2=

Nx sxe( ); Ny sye( ); Txy txye( )= = =

Nx 400 MPa mm¥–=
Ny 450 MPa mm¥–=
Txy 170 MPa mm¥–=

Nx¢ 800 MPa mm¥–=

Ny¢ 900 MPa mm¥–=

Txy¢ 340 MPa mm¥–=

Nx¢

s�  = 2.4

st  = 0.0

t�t  = 0 ˛
Ô
˝
Ô
¸ s�e( )  = 2.4 800  = 1920 MPa mm¥––¥

ste( )  =  0
t�t e( )  =  0Ó

Ô
Ì
Ô
Ï

Æ

Ny¢

s�  = 0.54–

st  = 0.12

t�t  = 0 ˛
Ô
˝
Ô
¸ s�e( )  = 0.54– 900  = 486 MPa mm¥–¥

ste( )  = 0.12 900  = 108–  MPa mm¥–¥
t�t e( )  =  0Ó

Ô
Ì
Ô
Ï

Æ
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� Loading  l = -340 MPa ¥ mm only:

One reads from Plate 9:

The superposition of the three loadings will then give the plies at 0∞ a total state
of stress of

Then we can write the Hill-Tsai criterion in the modified form written above
(relation denoted as [1]) in which one notes the denominator with values of the
rupture strengths indicated at the beginning of annex 1:

One resumes the previous calculation as follows:

(b) Plies at 90∞: One repeats the same calculation procedure by using the
Plates 2, 6, and 10. This leads to the following analogous table, with a
thickness e calculated as previously (this is the minimum thickness of
the laminate below which there will be rupture of the 90∞ plies).

plies at 0∞ (s�e) (ste) (t�te)

e = 2.02 mm

-1920 0 0

486 -108 0

0 0 -89

total 
(MPa ¥ mm)

-1434 -108 -89

plies at 90∞ (s�e) (ste) (t�te)

e = 2.16 mm

432 -96 0

-2160 0 0

0 0 89

total 
(MPa ¥ mm)

-1728 -96 89

Txy¢

s�  = 0
st  = 0

t�t  = 0.26 ˛
Ô
˝
Ô
¸ s�e( )  = 0

ste( )  =  0
t�t e( )  =  0.26 340  = 89 MPa mm¥––¥Ó

Ô
Ì
Ô
Ï

Æ

s�e( ) 1– 920 486+ 1434 MPa mm¥–= =
ste( ) 108 MPa mm¥–=

t�te( ) 89 MPa mm¥–=

e2 14342

11302
-------------- 1082

1412
----------- 1434 108¥

11302
--------------------------- 892

632
--------+–+ 4.07= =

e
0∞( )

2.02 mm=

Nx¢
Ny¢
Txy¢

Nx¢

Ny¢

Txy¢
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(c) Plies at +45∞: Using Plates 3, 7, and 11 one obtains:

(d) Plies at -45∞: Using Plates 4, 8, 12 one obtains:

Then the theoretical thickness to keep here is the largest out of the four thicknesses
found, as:

e = 2.64 mm (rupture of the plies at +45∞).

The thickness of each ply is 0.13 mm. It takes 2.64/0.13 = 20 plies minimum from
which is obtained the following composition allowing for midplane symmetry:

Remark: Optimal composition of the laminate: For the complex loading
considered here, one can directly obtain the composition leading to the minimum
thickness by using the tables in Section 5.4.4. One then uses the reduced stress
resultants, deduced from the resultants taken into account above, to obtain

plies at 45∞ (s�e) (ste) (t�te)

e = 2.64 mm

-752 –48 72

–846 -54 -81

-1384 55 0

total 
(MPa ¥ mm)

–2982 –47 -9

plies at -45∞ (s�e) (ste) (t�te)

e = 1.13 mm

-752 –48 -72

–846 -54 81

1384 -55 0

total
(MPa ¥ mm)

–214 –157 9

Nx¢

Ny¢

Txy¢

Nx¢

Ny¢

Txy¢

Nx 800/ 800 900 340+ +( )– 39%–= =

Ny 900/ 800 900 340+ +( )– 44%–= =

Txy 17%–=
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Table 5.19 of Section 5.4.4 allows one to obtain an optimal composition close to

If one uses the previous exact stress resultants, the calculation by computer of
the optimal composition leads to the following result, which can be interpreted
as described in Section 5.4.4.

Then one has for the minimum thickness of the laminate:

thickness: e = 0.1063 ¥  = 2.17 mm

and for the two immediate neighboring laminates:

thickness: e = 0.1068 ¥  = 2.18 mm

800 900 340+ +( )
100

-----------------------------------------------------

800 900 340+ +( )
100

-----------------------------------------------------
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thickness: e = 0.1096 ¥  = 2.24 mm

One notes a sensible difference between the initial composition estimated by the
designer and the optimal composition. This difference in composition leads to a
relative difference in thickness:

which indicates a moderate sensibility concerning the effect of thickness and,
thus, the mass. One foresees there a supplementary advantage: the possibility
to reinforce the rigidity in given directions without penalizing very heavily the
thickness. We can note this if we compare the moduli of elasticity obtained
starting from the estimated design composition (Section 5.4.3) with the optimal
composition, we obtain (Section 5.4.2, Tables 5.4 and 5.5) very different values
noted below:

3. Bonding of the laminate: We represent here after the principal loadings
deduced from the values of the stress resultants in Figure 18.5, in the
immediate neighborhood of the border of titanium:

Ex = 55,333 MPa Ex = 31,979 MPa

Gxy = 16,315 MPa Gxy = 28,430 MPa

800 900 340+ +( )
100

-----------------------------------------------------

2.64 2.17–
2.17

--------------------------- 21%=

TX846_Frame_C18a  Page 368  Monday, November 18, 2002  12:40 PM

© 2003 by CRC Press LLC 



One can for example, overestimate these loadings by substituting them with
a fictitious distribution based on the most important component among them.
Taking –59.7 daN/mm, one obtains then the simplified schematic below:

One must evaluate the width of bonding noted as �. For a millimeter of the border,
this corresponds to a bonding surface of � ¥ 1 mm. For an average rupture criterion
of shear of the adhesive, one can write (see Section 6.2.3):

then with t rupture = 30 MPa:

From this one obtains the following configuration such that �1 + �2 + �3 = 100 mm.

4. Bolting on the rest of the wing:
� “Pitch of bolts”: The tensile of bolting is assumed to be weak, then

bolting strength is calculated based on shear. The bolt load transmitted
by a bolt is denoted as DF, and one has (cf. following figure):

N
� 1¥
------------ 0.2 tadhesive rupture¥£

�
597

0.2 30¥
------------------- # 100 mm≥

DF N pitch
p∆2

4
---------- tbolt rupture¥£¥=
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where ∆ is the diameter of the bolt. One finds a pitch equal to 35 mm.

This value is a bit high. In practice, one takes pitch £ 5 ∆, for example, here:

Pitch = 30 mm.

� Thickness of the border: the bearing condition is written as:

then:

� Verification of the resistance of the border in the two zones denoted a
in the previous figure: the stress resultant in this zone, noted as N ¢, is
such that:

then:

The rupture stress being:

srupture = 900 MPa

and the minimum thickness 2.55 mm, one must verify

One effectively has

N pitch¥
∆etitanium

----------------------- sbearing£

etitanium 2.55 mm≥

N pitch¥ N¢ pitch ∆–( )¥=

N ¢ N
pitch

pitch ∆–
----------------------- 75.4 daN/mm= =

N ¢ daN/mm( )
e mm( )

--------------------------------- srupture daN/mm( )£

75.4
2.55
---------- 90£
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� Verification of the edge distance (see previous figure): One has to respect
the following condition:

then:

edge distance ≥ 7.8 mm

from which the configuration (partial) of the joint can be shown as in the following
figure:

18.1.7 Carbon Fiber Coated with Nickel

Problem Statement:

With the objective of enhancing the electrical and thermal conductivity of a
laminated panel in carbon/epoxy, one uses a thin coat of nickel with a thickness
e for the external coating of the carbon fibers by electrolytic plating process (see
following figure).

1. Calculate the longitudinal modulus of elasticity of a coated fiber.
2. Calculate the linear coefficient of thermal expansion in the direction of

the coated fiber.

Solution:

1. Hooke’s law applied to a fiber with length � subject to a load F (following
figure) can be written as:

DF
2 edge distance e¥¥
----------------------------------------------------- ttitanium rupture£

F E f s
D�
�

-------=
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where Ef is the modulus of the coated fiber that one wishes to determine, and 

s = p (d/2 + e)2

The load F is divided into FC on the carbon fiber and FN on the nickel coating.
The equality of the elongations of the two components allow one to write

where, taking into account that F = FC + FN,

Numerical application:

EC = 390,000 MPa; EN = 220,000 MPa; d = 6.5 mm (Section 1.6)

Ef = 330,500 MPa.

2. Thermal expansion of an unloaded rod with length � = 1 m and corres-
ponding to a temperature variation DT can be written as:

D�1 = a DT ¥ 1

where a is the thermal expansion coefficient of the material making up the rod.
In addition, when this rod is subjected to a longitudinal stress s, Hooke’s law
indicates a second expansion:

Superposition of the two cases simultaneously applied can be written as:

D� = D�1 + D�2

Fc Ecp d2

4
----- D�

�
------- ; FN ENp d

2
--- e+Ë ¯

Ê ˆ
2 d2

4
-----–

D�
�

-------= =

Efp d
2
--- e+Ë ¯

Ê ˆ
2

Ecp d 4

4
------ ENp d

2
--- e+Ë ¯

Ê ˆ
2 d 2

4
------–+=

Ef Ec
1

1 2e
d
------+Ë ¯

Ê ˆ
2

------------------- EN 1
1

1 2e
d
------+Ë ¯

Ê ˆ
2

-------------------–+=

D�2
s
E
--- ¥ 1=
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or:

When the coated fiber is subjected to a variation in temperature DT, each of the
constituents will elongate an identical amount D�. The whole coated fiber is not
subjected to any external forces. The difference in the coefficients of thermal
expansion of carbon and of nickel, which should lead to different free thermal
expansions, then leads to the equilibrium of loads inside the coated fiber.

Let af be the thermal coefficient of expansion of the coated fiber. One has

D� = a f DT ¥ 1

Then for the carbon and for the nickel:

[2]

The forces being in equilibrium

[3]

Equations [2] and [3] lead to

and taking into account that

one obtains

D�
s
E
--- aDT+Ë ¯

Ê ˆ 1¥=

D�
sc

Ec

----- acDT+
sN

EN

------ aNDT+= =

p d
2
--- e+Ë ¯

Ê ˆ
2 d2

4
-----– sN p d2

4
-----sc+ 0=

sc aN ac–( )DT
1
Ec

----- 1
EN

----- 1

1 2e
d
------+( )

2
1–

------------------------------¥+=

afDT D�
sc

Ec

----- acDT+= =

af

aN ac
Ec

EN

----- 1

1
2e
d
------+Ë ¯

Ê ˆ
2

1–

-------------------------------------+

1
Ec

EN

----- 1

1
2e
d
------+Ë ¯

Ê ˆ
2

1–

-------------------------------------+
------------------------------------------------------=
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18.1.8 Tube Made of Glass/Epoxy under Pressure

Problem Statement:

Consider a thin tube made by filament winding of glass/epoxy with a winding
angle of ±45∞. The fiber volume fraction is Vf = 0.6. The tube is fixed at one end
to a rigid undeformable mass and mounted to a sliding joint at the other end
(see following figure).

The thickness e is considered to be small as compared with the average radius
(e/r << 1). One applies on the inside of the tube a unit pressure of po = 1 MPa
(or 10 bars). Use a safety factor of 8 to take into account the aging effect.

1. Calculate the stresses (sx, sy) along the axes x and y in the tangent plane
at 0 of the tube.

2. What is the maximum stress allowable for the winding considered? From
that deduce the minimum thickness of the tube for an average radius of
r = 100 mm.

3. What are the moduli Ex, Ey, and Gxy of the laminate, and the Poisson
coefficients nxy and nyx? Write the stress–strain behavior for the laminate
in the coordinates x – y.

4. Calculate the strains ex and ey of the composite tube. From there deduce
the strain in the direction that is perpendicular to the fiber direction at
+45∞, denoted as et, which characterizes the strain in the resin.

This strain has to be less than 0.1% to avoid microfracture that can lead to the
leakage of the fluid across the thickness of the tube (weeping phenomenon).

Solution:

1. The tube being free in the axial direction and neglecting the thickness e,
sx = 0.

The equilibrium of a half-cylinder with unit length, represented in the figure
below, allows one to write:
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2. Maximum admissible stress: One reads on Table 5.12, Section 5.4.2, for
proportions of plies as 50% in the directions + and –45∞:

sy max (tension) = 94 MPa

then with sy max = po (r/e), the theoretical minimum thickness is

Taking into account the factor of safety of 8 for aging effect

e = 8.5 mm

3. Moduli of the laminate: One reads on Table 5.14, Section 5.4.2:

Ex = 14,130 MPa = Ey

nxy = 0.57 = nyx

and from Table 5.15:

Gxy = 12,760 MPa.

Recalling the stress–strain relation for an anisotropic material described in Section
3.1, which is repeated here as:

etheoretical

po r¥
sy max

------------- 1 MPa 100 mm¥
94 MPa

-------------------------------------------- 1.064 mm= = =

ex

ey

g yxÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸ 1

Ex

-----
nyx

Ey

-------– 0

nxy

Ex

------- 1
Ey

----- 0

0 0 1
Gxy

--------

sx

sy

txyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

=
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one has

4. Strains: For po = 1 MPa and e = 8.5 mm, one has

then

from which

The Mohr’s circle of strains, shown below, allows one to obtain the strain et

in the direction perpendicular to the fibers.

One obtains

One verifies that the strain in the matrix is less than 0.1%, the maximum limit.

ex

ey

g xyÓ ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

1
14130
---------------

1 0.57– 0

0.57– 1 0

0 0 1.107

sx

sy

txyÓ ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

=

sy
1 MPa 100¥

8.5
-------------------------------- 11.8 MPa= =

ex

ey

g xyÓ ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

1
14 130
-----------------

1 0.57– 0

0.57– 1 0

0 0 1.107

0

11.8

0Ó ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

=

ex 4.76 10 4–¥–=

ey 8.35 10 4–¥=

et

ex ey+
2

--------------- 1.8 10 4–¥= =

et 0.018%=
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18.1.9 Filament Wound Vessel, Winding Angle

Problem Statement:

One considers a vessel having the form of a thin shell of revolution, wound of
“R” glass/epoxy rovings. In the cylindrical portion (see figure) the thickness is eo

which is small compared with the average radius R. This vessel is loaded by an
internal pressure of po.

1. The resin epoxy is assumed to bear no load. Denoting by e the thickness
of the reinforcement alone, calculate in the plane x,y (see figure) the
stresses sox and soy in the wall, due to pressure po.

2. In the cylindrical part of the vessel, the winding consists of layers at
alternating angles ±a with the generator line (see figure). One wishes that
the tension in each fiber along the direction � could be of a uniform value
s�. (This uniform tension in all the fibers gives the situation of isotensoid.)
(a) Evaluate the stresses sx and sy in the fibers as functions of s�.
(b) Deduce from the above the value of the helical angle a and the tension

s� in the fibers as functions of the pressure po.
(c) What will be the thickness eo for a reservoir of 80 cm in diameter that

can support a pressure of 200 bars with 80% fiber volume fraction?

Solution:

1. Preliminary remark: The elementary load due to a pressure po acting on
a surface dS has a projection on the x axis as (see figure):

po dS cos q = po dSo

where dSo is the x axis projection of dS in a plane perpendicular to this axis.

� Equilibrium along the axial direction: The equilibrium represented in the
following figure leads to
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� Equilibrium along the circumferential direction: The equilibrium repre-
sented in the following figure leads to

2. (a) Stresses sx and sy in the fibers: one can represent as follows the Mohr’s
circle of stresses starting from the pure normal stress s� on a face normal
to axis � (see following figure). From there, the construction leading to the
stress sx (see figure below) is geometrically as10:

Value of the helical angle a: Identification of these stresses with the
values sox and soy found above leads to

10 One obtains this result immediately by using the Equation 11.4.

s� cos2a
p0R
2e
-------- ; s� sin2a

p0R
e

--------= =

TX846_Frame_C18a  Page 378  Monday, November 18, 2002  12:40 PM

© 2003 by CRC Press LLC 



from which:

then:

Tension in the fibers is then:

(c) Thickness e0: One has for “R” glass11: s� rupture = 3200 MPa.
The thickness e of the reinforcement is such as:

and the thickness of the glass/epoxy composite, Vf being the fiber volume fraction, is

18.1.10 Filament Wound Reservoir, Taking the Heads into Account

Problem Statement:

A reservoir having the form of a thin shell of revolution is wound with fibers and resin.
It is subjected to an internal pressure po. The circular heads at the two ends of the
reservoir have radius of ro. We study the cylindrical part of the reservoir, with average
radius R.

One part of the winding consists of filaments in helical windings making angles
of ±a1 with the generator (see figure). The other part consists of similar filaments
in circumferential windings (a2 = p/2).

The resin is assumed to carry no load. The tension in the filaments of the
helical layers is denoted by s�1 and the tension in the filaments of the circumfer-
ential layers by s�2.

11 See Section 1.6.

tg2a 2=

asin
2
3
--- ; a 54.7∞= =

s�
3
2
--- p0

R
e
---=

e
3
2
---

p0R
s�

--------

rupture

3.75 mm= =

e0 e/Vf 4.7 mm= =
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1. What has to be the value of a1 so that the filaments can elongate on the
heads along the lines of shortest distance?

2. Calculate the thickness e1 of fibers of the helical layers and thickness e2

of fibers of the circumferential layer as a function of po, R, a1, s�1, s�2.
3. What is the minimum total thickness of fibers em that the envelope can

have? What then are the ratios e1/em and e2/em? What is the real corre-
sponding thickness of the envelope if the percentage of fiber volume,
denoted as Vf, is identical for the two types of layers?

Note: It can be shown—and one admits—that on a surface of revolution the lines
of shortest distance, called the geodesic lines, follow the relation (see following
figure for the notations):

r sin a = constant

Solution:

1. The filaments wound helically (angle ±a1) in the cylindrical part follow over
the heads along the geodesic lines such that r sin a = constant. The circle
making up the head is a geodesic for which r = ro. Then a = constant. Thus:

One then has for the filaments joining the cylindrical part to the head:

ao
p
2
---=

ro
p
2
---sin R a1sin=

a1sin
ro

R
----=

TX846_Frame_C18a  Page 380  Monday, November 18, 2002  12:40 PM

© 2003 by CRC Press LLC 



2. Thicknesses of the layers: For an internal pressure po, the state of stresses
in the cylindrical part of the thin envelope is defined in the tangent plane
x, y (following figure) by12

The resin being assumed to bear no load, e represents the thickness of the
reinforcement alone. One can follow by direct calculation.13 The state of stress in
the helical layers reduce to

s� (st1 = t�t1 = 0).

One obtains for the state of stresses in plane x, y starting from the Mohr’s circle 

(see following figure).14

and for the circumferential layers (a2 = p /2)

sx2 = 0; sy2 = s�2; txy2 = 0

12 See Section 18.1.9.
13 One can also consider a balanced laminate with the ply angles of +a1, -a1, and p/2. The role

of the matrix is neglected. The elastic coefficients of a ply (see Equation 11.11) reduce to
only one nonzero E�. The calculation is done as shown in detail in Section 12.1.3. It is more
laborious than the direct method shown above here.

14 See also the Equation 11.4 inverted.

sx1 cos2a1 s�1¥= ; sy1 sin2a1 s�1;¥=
txy1 a1 a1s�1sincos=
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One then has the following equivalents, in calculating the resultant forces on
sections of unit width and normal x and y respectively:

� Along x:

then:

from which:

� Along y:

3. Minimum thickness of the envelope: With the previous results, the thickness
of the reinforcement is written as:

The reinforcements for the helical layers and for the circumferential layers are of
the same type. They can be subjected to identical maximum tension. Therefore,
at fracture, one has

Then:

sx1 e1 1 sx2 e2 1¥¥+¥¥ sox e 1¥¥=

e1 cos2a1 s�1¥¥ esox e po
R
2e
-----¥= =

e1

po

s�1

------- R

2 cos2a1

----------------------¥=

sy1 e1 1 sy2 e2 1¥¥+¥¥ soy e 1¥¥=

e1 sin2a1 s�1 e2 s�2¥+¥¥ e soy¥ e
poR
e

--------¥= =

e2

p0

s�2

------- R 1
tg2a1

2
-------------–Ë ¯

Ê ˆ=

e e 1 e2+ poR
1

2s�1 cos2a1

----------------------------
2 tg2a1–

2s�2

----------------------+
Ó ˛
Ì ˝
Ï ¸

= =

s�1 s�2 s� rupture= =

emin

poR
2s� rupture

---------------------- 1

cos2a1

---------------- 2 tg2a1–+Ë ¯
Ê ˆ=

emin
3
2
---

poR
s�

--------

rupture

¥=
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Then for the ratios of thicknesses:

Real thickness of the envelope taking into account the percentage of fiber volume
Vf:

18.1.11 Determination of the Volume Fraction of Fibers by Pyrolysis

Problem Statement:

One removes a sample from a carbon/epoxy laminate made up of identical layers
of balanced fabric. The measured specific mass of the laminate is denoted as r.
The specific mass of carbon is denoted as rf, that of the matrix is denoted as rm.

One burns completely the epoxy matrix in an oven. The mass of the residual
fibers is compared with the initial mass of the sample. One then obtains the fiber
mass denoted as Mf (see Section 3.2.1.).

1. Express as a function of r, rf, rm, Mf:
(a) The fiber volume fraction Vf

(b) The matrix volume fraction, Vm

(c) The volume fraction of porosities or voids, Vp

2. Numerical application:

r = 1,500 kg/m3; rf = 1,750 kg/m3; rm = 1,200 kg/m3; Mf = 0.7

Solution:

1. (a) By definition (Section 3.2.2) one has

(b) In an analogous manner:
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and with Mf + Mm = 1:

(c) Noting (Section 3.2.2) that:

one deduces

2. Numerical application:

Vf = 60%; Vm = 37.5%; Vp = 2.5%

Remark: In practice, a small amount of carbon fibers is also pyrolyzed. About
0.125% of its mass is pyrolyzed per hour.

18.1.12 Lever Arm Made of Carbon/PEEK Unidirectional and Short Fibers

Problem Statement:

The following sketch shows a lever arm pinned at A, B, C. It is subjected to the
loads indicated. The external skin is obtained from a plate of thermoformed
unidirectional carbon/PEEK,15 2.8 mm in thickness, and placed in a mold into
which one injects short fibers of carbon/PEEK at high temperature.

15 Thermoformed polyether–ether–ketone resin, see Section 1.6.

DENSITY 
(kg/m3) srupture

MODULUS OF 
ELASTICITY 

(mPa)
carbon/PEEK 
unidirectional

Vf = 65 % 1600 2100
E� = 125,000

G�t = 4000
short fibers 
carbon/PEEK

Vf = 18 % 1400 127
E = 21,000

G = 8000

Vm 1 Mf–( ) r
rm

------¥=

Vf Vm Vp+ + 1=

Vp 1 r
Mf

rf

------
1 Mf–( )

rm

--------------------+Ë ¯
Ê ˆ¥–=
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1. Verify the resistance of this piece by a simplified calculation.
2. Estimate the order of magnitude of the displacements due to loads at A

and B.
3. Make an assessment of the mass of the piece.

Solution:

1. Verification of the resistance of the piece:

� Unidirectional: Assume (simplified calculation) that the applied moment
is resisted essentially by the unidirectional skins.16 Then, in the section
where the moment is maximum, one has (see following figure):

with

Sunidirectional = 2.8 ¥ 40 mm2; h = 60 - 2 - 2.8 # 55 mm; 

Mf = 650 ¥ 103 N ¥ mm.

Factor of safety: srupture/s - 1 = 1880%.
Remark: In the injected layer, under the unidirectional skin, the order of

magnitude of the normal stress is six times smaller.16

� Injected core: We assume that the shear stress due to the shear force is
taken up essentially by the web, with an order of magnitude (see following
figure):

with 

Sweb = (33 - 5.6 - 8) ¥ 8 mm;2 T = 3500 N

t # 23 MPa

16 This is because the longitudinal modulus of elasticity E� of the unidirectional is six times higher
than that of the injected resin. For more “exact” calculation of the stresses, see Equation 15.16.

s 106 MPa=
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Remark: In fact, the distribution of the shear stresses is expanded in the
flanges (injected part and unidirectional part in the figure below). The bonding
being assumed to be perfect, the distortion is the same in the injected part and
in the unidirectional part, as:

2. Displacements under load: Keeping the central part C fixed in translation
and in rotation, the deformation energy of each arm (right or left) is written as:

then (with the previous approximations):

with Mf = F(l - x); T = F; h = haverage; Sweb = Saverage web at midlength of the arm in
view of an estimation:

g
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One obtains for the displacement at the point of application of the load F
(Castigliano theorem):

� Right arm: � = 280 mm; F = 2,500 N; haverage = 45 mm – 2.8 mm

� Left arm: � = 200 mm; F = 3,500 N; haverage = 45 mm –2.8 mm; Sweb average =
31.4 ¥ 8 (mm2)

3. Mass assessment: Unidirectional: 189 g; short fibers: 525 g; total mass before
drilling

Remarks:

� Taking into account the low levels of stress in the unidirectional, the piece
may be lightened in decreasing—uniformly and progressively—its thick-
ness (here 40 mm). A reduction from 40 to 30 mm leads to a reduction
of mass of 18% and an increase in displacements from 22 to 26% at A and B.

� To obtain a comparable mass in light alloys, one has to use folded and
welded sheet. The price of the piece is higher. The composite piece is
obtained by one single operation of injection after preforming of the
unidirectional reinforcements.

18.1.13 Telegraphic Mast in Glass/Resin

Problem Statement:

A telegraphic mast 8 m long (of which 80 cm is buried in the ground) of glass/
epoxy with 60% fiber volume fraction has the characteristics shown below.

D ∂W
∂F
-------- �3/3

E
unidirect.

S
unidirect.

haverage
2

2
------------¥¥

--------------------------------------------------------------- �
G S
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¥
----------------------------+

Ó ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

F¥= =
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m 714 g=
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One has in the lower part of the mast:

� 27 layers at 0∞—or along x direction
� three layers oriented in helix with an angle that will be taken practically

equal to 90∞

1. Give the elastic constants of the laminate in this zone.
2. What maximum horizontal load at the top is admissible for this lower zone?
3. Estimate the displacement of the top subject to this load.
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Solution:

1. The composition of the laminate in the lower part is as:

Tables 5.14 and 5.15 of Section 5.4.2 give for this composition:

2. For maximum load at the top, three risks need to be taken into account:

� Risk of rupture due to classical flexure in this zone where the bending
moment is maximum

� Risk of rupture due to shear load
� Risk of buckling by ovalization and then flattening of the tube

(a) Flexure moment: One has (see figure below)17:

17 See at the end of Section 5.4.5, Figure 5.31 the distribution of stresses in a composite beam.
See also Equations 15.16 in Chapter 15.

Ex 41,860 MPa Ey 15,360 MPa=;=
nxy 0.23 nyx; 0.09= =
Gxy 4500 MPa=

s
Mf

I
------ Y  with I¥– pr3e= =
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The maximum is obtained when Y = –r:

Note that for the laminate considered (Table 5.11, Section 5.4.2), the first ply
fractures at a stress of

stensile rupture = 128 MPa

Then

Mf £ 26 ¥ 106 N ¥ mm

corresponding to a horizontal load at the top of the mast:

(b) Shear load: On an average diameter of the tubular section (neutral plane),
one can write

t = a T/S

where T is the shear load, S is the area of the cross section, and a is the
amplification factor (a > 1).18 Note that for the laminate considered (Table 5.13,
Section 5.4.2), the first ply rupture occurs at trupture = 63 MPa, from which by
taking T = = 3,600 N,

This condition is well certified (recall that for a thin tube of isotropic material,
one has a = 2).

(c) Ovalization of the mast: One has (Appendix 2, b)

Here we have

Mcritical = 6 ¥ 107 N mm

18 The exact value of a should be obtained from the complete study of the shear stresses in
a composite beam (Equation 15.16).
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which corresponds to a horizontal load at the top:

Fcritical ovalisation = 8360 N

One can then retain the maximum load as:

Fmax = 3600 N

4. Deflection at the top: If the characteristics of the mast (dimension of the
section, composition) were constant along the midline, in taking the average
diameter of 180 mm, one would obtain for the previous maximum load
the following deflection at the top:

To obtain a more precise value, it is necessary to discretize the mast into finite
elements of shorter beams (four or five) with corresponding sections and moduli
(helical angle increasing due to the decreasing diameter, the moduli Ex and Ey

vary a little).

18.1.14 Unidirectional Ply of HR Carbon

Problem Statement:

Consider a unidirectional ply made of HR (high strength) carbon/epoxy. What is
the fiber volume fraction one can predict to obtain a modulus of elasticity in the
longitudinal direction that is comparable to duralumin (AU4G – 2024)?

Solution:

In the fiber direction, the modulus of elasticity E� is given by the relation (see
Section 3.3.1):

E� = Ef Vf + Em (1 - Vf)

One reads in the tables in Section 1.6:

HR carbon: Ef = 230,000 MPa.

Epoxy resin: Em = 4500 MPa

Duralumin: E2024 = 75,000 MPa.

The fiber volume fraction Vf has to be such that:

D
Fmax L3¥

3ExIz

---------------------# 1 m=

E2024 EfVf Em 1 Vf–( )+=
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where:

18.1.15 Manipulator Arm of Space Shuttle

Problem Statement:

A manipulator arm is made of two identical tubular columns in carbon/epoxy
(Vf = 60%; thin cylindrical tubes of revolution) with pins as shown in Figure 18.6.

Among the different geometric configurations found when the arm is deployed,
one can consider the geometries noted as (a), (b), and (c) in Figure 18.7.
F represents the concentrated inertial force.

Note the following:

Ex = Longitudinal modulus of elasticity of the tube in x direction
(Figure 18.6)
Gxy = Shear modulus in the tangent plane x, y (Figure 18.6)
I = Quadratic moment of flexure of a cross section (annular) of the tube
with respect to its diameter

Figure 18.6

Vf

E2024 Em–
Ef  Em–

-----------------------=

Vf 31%=
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1. Calculate the deflection components along the directions X, Y, Z (Figure 18.7)
at the point of application of the force F for each of the configurations
(a), (b), (c) as function of F, �, I, Ex, and Gxy (neglect the strains due to
shear force and normal force). Comment on the relative values of these
displacements.

2. What should be the ratio between Ex and Gxy to obtain identical deflections
in the configurations (a) and (c)?

3. The tube is laminated starting from unidirectional layers. By means of the
tables giving the moduli Ex and Gxy (Section 5.4.2), indicate by simple reading
and without interpolation the composition of the laminate that verifies the
ratio found in the previous question within a few percentages (choose Gxy

as large as possible), as well as the values of the elastic characteristics.
4. Verify that this composition is preferable, for the mass assessment, to that

of another tube of the same diameter but with different thickness, which
has a modulus of elasticity Ex¢ as large as possible and with the same
deflection as previously for configuration (c).

5. Keep the properties determined for the laminate in question 3. The arm
has an average diameter of 0.3 m. Each of the two columns has a length
of 7.5 m. One imposes a minimum stiffness for the arm (F/D)minimum =
104 N/m, where D is the deflection under the load F. Calculate the thickness
of the tube, indicate the number of total unidirectional layers and the
number of layers in each of the four orientations.

6. With the data given in Figure 18.8, verify that the distributed mass of the
arm does not significantly influence the previous results during the adjust-
ment in position of the apparatus.

Figure 18.7

Figure 18.8
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Solution:

1. Starting from the relations of flexure and torsion of composite tubes (see
Section 5.4.5, Figure 5.31):

one obtains for the components of displacement at the end:

� Configuration (a):

� Configuration (b):

� Configuration (c):

Remark: For configurations (a) and (b), one obtains a displacement that is
as small as the modulus Ex is large. Then (see Section 5.4.2, Tables 5.4 and 5.5),
Gxy is relatively small, which means that Ex /Gxy >> 1. The displacement of config-
uration (c) is much larger than the others. This will create problems when operating
the arm.

2. The deflections are identical for configurations (a) and (c) if

then:
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3. In looking for the modulus Gxy to be as high as possible, one reads on
Tables 5.4 and 5.5 (Section 5.4.2.) a ratio Ex /Gxy = 3.9 (�4) for the composition:

4. The maximum value of the longitudinal modulus of elasticity observed on
Table 5.4 is

This corresponds to a shear modulus (Table 5.5):

The same deflection as the previous one for the configuration (c) can be obtained
by

then:

The tube with thickness e¢ and modulus Ex¢ will be more stiff for configuration
(a) but will have a mass multiplied by 3.5 to keep the stiffness of configuration (c).

5. Configurations (a) and (c) are the more deformable. One then has to write

with � = 15 m; I = pr3e; r = 0.15 m; (F /D)min = 104 N/m; Ex = 75,407 MPa

e ≥ 14 mm

E¢x 134,000 MPa=

G¢xy 4,200 MPa=

F�3
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The ply thickness being 0.13 mm, one obtains 108 layers oriented as follows:

6. The specific mass of the laminate is indicated in Section 3.3.3, as r = 1530
kg/m.3 The distributed mass of the arm is then:

with the angular acceleration indicated in Figure 18.8, one obtains the following
inertial load:

We then deduce from there:

� The deflection at the end due to the concentrated mass:

� The deflection at the end due to distributed load19:

from which we can obtain a total deflection:

The rigidity (F/Dtotal) appears to be well related essentially to the concentrated
inertial load at the extremity of the arm.

19 Result obtained from the differential equation: 
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18.2 LEVEL 2

18.2.1 Sandwich Beam: Simplified Calculation 
of the Shear Coefficient

Problem Statement:

Represented below is the cross section of a sandwich beam. The thickness of the
skins is small compared with that of the core. Under the action of a shear load T,
the shear stresses in the section are assumed to vary in a piecewise-linear fashion20

along the y direction. The constitutive materials, denoted as 1 and 2, are assumed
to be isotropic, or transversely isotropic. The shear moduli are denoted as G1 for
material 1 (skin) and G2 for material 2 (core). The beam has a width of unity.

1. Calculate the shear coefficient k for flexure in the plane x,y.

2. Give a simplified expression for the case—current in the applications—
where G1 >> G2 with the notations for the thicknesses:

Solution:

1. Let W be the strain energy due to shear stresses. One has (Equation 15.17):

In the upper skin, one has

20 This representation of the shear stresses is only approximate. One will find in Application
18.3.5 the results concerning a more precise distribution of these stresses. In fact, the
approximate representation of the shear proposed here is better approximated than the skins
of the sandwich structure will have a small thickness as compared to that of the core.
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On the other hand in the core: txy = t0

Then with:

One deduces from there the maximum shear stress to:

Strain energy:

After calculation:

one then has

Then:

with (Equation 15.16): �GS� = G1 (H1 – H2) + G2 H2:

2. Case where G2 << G1: One can rewrite

then:
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One obtains the following simplified form, valid if ep << ec and Gc << Gp:

18.2.2 Procedure for Calculation of a Laminate

Problem Statement:

Consider a balanced carbon/epoxy laminate with respect to the 0∞ direction (or x),
having midplane symmetry. The plies have the orientations 0∞, 90∞, +45∞, –45∞
with a certain proportions (recall that there are as many plies of +45∞ as there
are –45∞). This laminate is subjected to a unit uniaxial stress sox = 1 MPa (see
following figure).

Propose a procedure to establish a simple program allowing one to obtain the
following:

1. The modulus of elasticity Ex of the laminate and the Poisson coefficient nxy
21

2. The stresses in each ply and in the orthotropic axes of this ply22

3. The Hill–Tsai23 expression for each ply
4. The largest stress sox max admissible without failure of any ply

One gives in the following the characteristics of the unidirectional plies (identical)
making up the laminate:

Carbon/epoxy ply with Vf = 60% fiber volume fraction

E� = 134,000 MPa24; Et = 7000 MPa; Glt = 4200 MPa; nlt = 0.25

Fracture strengths:
s� tension = 1,270 MPa; s� compression = 1130 MPa
st tension = 42 MPa; st compression = 141 MPa
t�t = 63 MPa

21 See Equation 12.8.
22 These are the stresses s�, st, t�t (see, for example, Equation 11.1).
23 See Chapter 14.
24 See Section 3.3.3, Table 3.4.
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Solution:

Recall first the procedure for calculation (see also Section 12.1.3.):

1. Modulus Ex and Poisson coefficient nxy: The behavior of a laminate having
midplane symmetry and working in its plane can be written as (Equation
12.7):

[a]

with:

where ek is thickness of ply k, and h is the total thickness of the laminate. 
is the stiffness matrix for the ply k in the x,y axes (see Equation 11.8), as:

[b]

Note that (%), (%), (%), (%) are the respective proportions of the
plies in the directions 0∞, 90∞, +45∞, –45∞. The previous terms  can be
written as:

[c]

Here the terms , , and their symmetrical counterparts are zero because
the laminate is balanced (see Equation 11.8).

The relation denoted as [a] above is then inverted and can be written as:
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where , , , ,  are the global moduli and Poisson coefficients of
the laminate.

Here this laminate is subjected to a uniaxial stress sox = 1 MPa, then:

One obtains as well the modulus and the Poisson coefficient required:

2. Stresses in the ply: The previous result gives us the global strains of the
laminate, strains that each ply should follow as:

For a ply k, the relation mentioned above in [b] is then written as:

[e]

This gives the stresses in ply k, expressed in the coordinates x, y. One can express
them in the orthotropic axes of the ply (axes �, t of the following figure, and
Equation 11.4 recalled below):

[f]

Ex Ey Gxy nxy nyx

eox

sox

Ex

------- 1 MPa

Ex MPa( )
----------------------- ; eoy

nxy

Ex

-------sox–
nxy

Ex MPa( )
---------------------- 1 MPa¥–= = = =

Ex MPa( ) 1
eox

------=

nxy e– oy
Ex

1
----- MPa( )

MPa
¥=

eox
1

Ex

-----sox; eoy

nxy

Ex

-------sox; g oxy 0= = =

sx

sy

txyÓ ˛
Ô Ô
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Ô Ô
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Ì ˝
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3. Hill-Tsai expression: It is written as (Equation 14.7):

One can then calculate the values (a2)k required for each ply k.

4. The largest stress sox max without fracture:
The stresses s�, st, and t�t are calculated for a uniaxial stress: sox = 1 MPa. Now
apply the maximum stress found sox max (MPa). The stresses s�, st, and t�t in the
ply k are multiplied by the ratio:

and the critical value of the Hill-Tsai expression is obtained as:

With the values (a2)k found in the previous question for the Hill-Tsai expression
between brackets, one obtains

Then:

Examination of each ply will lead to a different value for sox max. One has to keep
the minimum value as the critical stress that should initialize damage (failure of
a ply) as:

18.2.3 Kevlar/Epoxy Laminates: Evolution of Stiffness 
Depending on the Direction of the Load

Problem Statement:

Consider the balanced laminates of Kevlar/epoxy with Vf = 60% fiber volume
fraction, working in their planes, with the following compositions:

a2 s�
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st

2

st
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2

----------
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2
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2

------+–+=
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1. Give the expression of the longitudinal modulus of elasticity for these
laminates denoted as E(q) for a direction i in the plane xy making an
angle q with the direction x.

2. Give for each of the laminates the expression for the “specific modulus”
E(q)/r, r being the mass density. Use the tables in Section 5.4.2.

3. Represent in polar coordinates the variations of the specific modulus with
q for each of the laminates.

4. Compare with the specific moduli of conventional materials, steel, alumi-
num alloys Duralumin-2024, and titanium alloy TA6V.

Solution:

Each of the balanced laminates constitutes a thin plate of orthotropic material,
with orthotropic axes x, y, z (see figures above and below). The constitutive relation
corresponds with Equation 12.9.

For a balanced laminate, this law is reduced to the following expression:

1. Ex, Ey, Gxy are the moduli in the orthotropic axes x, y, which means the
moduli of the laminate. In the axes i, j (see following figure) making an
angle q with the axes x, y, these coefficients are transformed according to
the Equation 13.8. The modulus in the direction i is25

25 Recalling (Section 9.3 and Application 18.1.2), the relation: nxy/Ex = nyx/Ey.
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g oxyÓ ˛
Ô Ô
Ô Ô
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Ô Ô
Ô Ô
Ï ¸ 1
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-------–   0

nxy

Ex

-------–   1
Ey

-----   0

0   0   1
Gxy

--------

sox
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2. Specific modulus: One finds in the tables of Section 5.4.2 the coefficients
Ex, nxy, Gxy of the Kevlar/epoxy laminates (Tables 5.9 and 5.10). Table 5.9
also allows one to obtain the value Ey. For this it is sufficient to permute
the 0∞ percentage and 90∞ percentage.

The specific mass r is shown in Table 3.4 in Section 3.3.3. It can also be
calculated using the relation in Section 3.2.3.

One has r = 1350 kg/m3. One then has for the expressions of the specific
modulus:

� Laminate (a):
Ex = 85,000 MPa
Ey = 5600 MPa
Gxy = 2100 MPa
nxy = 0.34

� Laminate (b):
Ex = 56,600 MPa
Ey = 18,680 MPa
Gxy = 8030 MPa
nxy = 0.4

� Laminate (c): The proportions of 25% along the directions 0∞ and 90∞ can be
obtained from Table 5.9. In this view one has to evaluate by extrapolation,
starting from the values corresponding to the percentages of 20% and 30%, as26:

Ex = (1/2) (28,260 + 35,400) = 31,830 MPa

26 See also Application 18.2.14.

E q( ) 1
cos4q
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---------- sin4q
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--------- cos2q sin2q 1
Gxy

--------
2nxy

Ex

----------–Ë ¯
Ê ˆ+ +

--------------------------------------------------------------------------------------=

E q( )
r

----------- m/s( )2 106/1350
cos4q
85,000
------------- sin4q

5600
--------- cos2q sin2q 1

2100
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----------------¥–Ë ¯
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----------------------------------------------------------------------------------------------------------=
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Ey = Ex

Gxy = 11,980 MPa
nxy = 0.335

3. One obtains the evolutions in the following figure for the specific modulus.
One verifies well that it is possible to “control” the anisotropy of the
laminate by modifying the percentages of the plies at 0∞, 90∞, +45∞, –45∞.

4. For the other materials, one obtains immediately (Section 1.6):
E/r (steel) = 26.3 ¥ 106 (m/s)2

E/r (Duralumin-2024) = 26.8 ¥ 106 (m/s)2

E/r (Titanium-TA6V) = 23.9 ¥ 106 (m/s)2

Remark: The notion of specific modulus is particularly important for aero-
nautical construction. When one compares on the above diagram the performances
of Kevlar/epoxy with those of steel, Duralumin, and titanium, one sees clearly the
advantage for the laminate inside angular borders for the directions of application
of the loads.

18.2.4 Residual Thermal Stresses due to Curing of the Laminate

Problem Statement:

Consider a laminated panel in carbon/epoxy with Vf = 60% fiber volume fraction,
with midplane symmetry, and a composition shown in the following figure:

E q( )
r

----------- m/s( )2 106/1350
cos4q sin4q+

31,830
----------------------------------- cos2q sin2q 1

11,980
----------------- 2 0.335

31,830
-----------------¥–Ë ¯

Ê ˆ+
------------------------------------------------------------------------------------------------------------=
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It is cured in an autoclave at 180∞C and demolded at 20∞C.

1. Calculate the thermal deformations due to demolding.
2. Calculate the thermal residual stresses in the 90∞ plies.

Solution:

1. Thermal deformations:
The thermomechanical behavior of the laminate can be written as (see Equation
12.19):

The panel is not subjected to any external mechanical loading. This law can then
be written as:

The laminate being balanced, Equations 12.18, 12.17, and 11.10 lead to

aoxy = 0

Then Table 5.4 of Section 5.4.2 indicates for the laminate with the correspond-
ing percentages of the composition above:

aox = –0.072 ¥ 10-5

One also deduces from Table 5.4, by permutation between 0∞ and 90∞:

aoy = 0.44 ¥ 10-5

eox

eoy
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Ô Ô
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Ô Ô
Ï ¸ 1
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-------
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--------

- nxy
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------- 1
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--------
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sox

soy

toxyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
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DT
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Therefore, the thermal strains corresponding to DT = –160 ∞C are

eox = –160 ¥ (–0.0072 ¥ 10-5); eoy = –160 ¥ (0.44 ¥ 10-5)

or:

eox = 115 ¥ 10-6

eoy = –704 ¥ 10-6

goxy = 0

2. Thermal residual stresses in the 90∞ plies:
The Equation 11.10 allows one to write

where:

with (Equation 11.8):

and

The moduli of elasticity and coefficients of expansion are given in Section
3.3.3, Table 3.4.27 Then:

With the known values eox and eoy, one has

sx = 7021 ¥ 115 ¥ 10-6 + 1717 ¥ (–704 ¥ 10-6) – (–160)(0.237) = 37.5 MPa

In an analogous manner:

27 Recall also the property  (see Sections 3.1 and 3.2 and Application 18.1.2).

sx E11
90∞eox E12

90∞eoy DTaE1
90∞

–+=

aE1
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Et n�ta � a t+( )=
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Et= E12
90∞ nt� E�=

nt� /Et n��/E�=

aE1
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0.237=

sy E21
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90∞eoy DTaE2
90∞

–+=
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with (Equation 11.8):

and

One obtains

sy = –110.2 MPa

and

txy = 0

One then has in the axes �, t of the 90∞ plies (see Equation 11.4):

s� = –110.2 MPa

st = 37.5 MPa

t�t = 0

Remark: If one writes the Hill-Tsai expression (Section 5.3.2) for the 90∞ plies,
one obtains with the rupture strengths of Section 3.3.3, Table 3.4:

The factor of safety28 is only:

This is due to high value of st close to the rupture strength and explains the
phenomenon of microfracture of the resin that happen during cooling. Subse-
quently, the microcracks favor the absorption of moisture by the resin and the
fibers, which provoke expansions analogous to those induced by heating, with
coefficients of expansion of hygrometric nature. Then, the residual stresses in the
plies will be generally weaker.

18.2.5 Thermoelastic Behavior of a Tube Made 
of Filament-Wound Glass/Polyester

Problem Statement:

Obtain the thermoelastic behavior of a cylindrical tube made by filament winding
E glass/polyester, with ±45∞ balanced composition, with a fiber volume fraction
of Vf = 25%.

28 See Section 14.2.3.

E22
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Solution:

In the x,y axes (following figure), the stress–strain law takes the form (see Equation
12.19):

� Calculation of moduli:
First we have to evaluate the terms of the matrix h-1[Aij] (see Equation 12.7).

This calculation requires the knowledge of the stiffness coefficients for each ply
 (see Equation 11.18).

In this view, first calculate the elastic moduli of a ply in its principal axes (�,t);
one has (Equation 10.2 and those that follow and numerical values in Tables 1.3
and 1.4 in Section 1.6.)

E� = 74,000 ¥ 0.25 + 4,000 ¥ 0.75 = 21,500 MPa

n�t = 0.25 ¥ 0.25 + 0.4 ¥ 0.75 = 0.36

then (Equation 11.8):
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from which one can write (Equation 12.8)

The inversion of this matrix leads to (see Equation 12.9)

from which by identification:

� Calculation of coefficient of thermal expansion:
One has to calculate first h-1(aEh)x, h

-1(aEh)y, and h-1(aEh)xy from the Equation
12.18. This calculation requires knowledge of the terms , , and  of
each ply (Equations 12.17 and 11.10 and numerical values in Tables 1.3 and 1.4 of
Section 1.6). For that, one has to know the coefficients of expansion a� and at

of a ply in its principal axes (�,t). It can be written (Equations 10.7 and 10.8 and
numerical values in Tables 1.3 and 1.4 of Section 1.6):

From which (Equation 12.17):
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then (Equation 12.18):

In summary, the thermoelastic behavior of the filament-wound tube in glass/polyester
can be written as:

18.2.6 Polymeric Tube Under Thermal Load and Creep

Consider a cylindrical tube of revolution made of polyvinylidene fluoride (PVDF)
reinforced externally by filament winding of glass/polyester at ±45∞ (see figure
below).

The characteristics of the constituents are as follows:

� Polymer tube: thickness e1 = 10 mm; isotropic material; modulus of elasticity
E1 = 260 MPa; Poisson coefficient n1; thermal expansion coefficient a1 =
15 ¥ 10-5 (∞C-1).

� Glass/polyester reinforcement: thickness e2 = 3 mm; modulus of elasticity
E2; Poisson coefficient n2; coefficient of thermal expansion a2 = 0.7 ¥ 10-5

(∞C-1). These coefficients are valid for the behavior in the coordinate axes
x, y (see figure). Fiber volume fraction Vf = 60%.
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Problem Statement:

The thicknesses e1 and e2 are small relative to the average radius of the tube,
denoted as r.

1. Give the numerical values of E2 and n2 (noting that the moduli of elasticity
of epoxy resins and polyester resins are equivalent).

2. When taking into account the temperature variation, denoted as DT, the
mechanical behavior of the polymer and of the reinforcement, respectively,
can be written in the x,y axes as:

where one can recognize the strains and stresses in each of the materials. Starting
with an assembly (polymer + reinforcement) not stressed nor strained at ambient
temperature (20∞C), which is heated up to 140∞C.

(a) Write the equations for the external equilibrium of the assemblage.
(b) Write the equality of the strains. Deduce a system of equations that

allows the calculation of stresses s1x, s1y, s2x, s2y.
(c) Numerical application: Calculate the stresses in each of the two com-

ponents (polymer and glass/polyester reinforcement) as well as their
strains.

3. Being subjected to high temperature, the internal tube in polymer obeys
creep law. The stresses calculated previously do not remain constant in
time. They evolve and stabilize at a certain final state. When this state is
achieved, if one separates the internal polymer envelope (by imagination)
from its reinforcement and cools it quickly from 140∞C to 20∞C, one will
observe residual strains denoted as De1x = De1y = De. Note that in the
absence of creep, there are no residual strains.
(a) Write the four relations allowing the calculation of the stresses in the

assembly at 140∞C after creep in the polymer, denoted as , ,
, .
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(b) Numerical application: From experiments one finds: De = –0.6 ¥ a1DT.
Calculate the stresses after creep.

4. Considering the assembly at 140∞C already crept, one cools the whole
reinforced tube quickly, from 140∞C to 20∞C. Calculate the final stresses in
the assembly, denoted as , , ,  at the end of the cooling.
Remark.

Solution:

1. We will use for the elastic characteristics of a unidirectional ply of glass/
polyester at Vf = 0.6 those of a glass/epoxy ply from Table 3.4. For a
laminate at ±45∞, Table 5.14 (Section 5.4.2) shows:

E2 = 14,130 MPa

n2 = 0.57

2. (a) Equilibrium of the assembly: Sections cut from the tube do not show
any external resultant force, in spite of the existence of stresses of
thermal origin (see following figure).

In addition, because the thicknesses are assumed to be small compared with
the radius, the stresses will be taken to be uniform over the thicknesses. From
there we have the relations:

then:

[1], [2]

Due to the symmetry of revolution for the stress distribution, there are no shear
stresses: t1xy = t2xy = 0.

s ¢¢1x s ¢¢1y s ¢¢2x s ¢¢2y

2pr s1x e1 s2x e2+( ) 0; 1 2 s1ye1 s2ye2+( )¥ 0= =

s1x e1 s2x e2+ 0=
s1y e1 s2y e2+ 0=
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(b) Equality of strains: This is assured by the assumed perfect bonding
between the components 1 and 2 as:

With the behavior as mentioned in the problem statement, the above equalities
become:

[3], [4]

The above relations [1], [2], [3], [4] constitute a system of four equations for four
unknowns s1x, s1y, s2x, s2y.

(c) In performing successively [3] – [4], [3] + [4], then substituting s2x, s2y

obtained from [1] and [2], one obtains

from which:

One deduces from there, with DT = 140 – 20 = 120∞C:

s1x = s1y = –6.14 MPa

s2x = s2y = 20.4 MPa

The internal envelope in polymer is in a state of biaxial compression. The
external envelope in glass/polyester is in a state of biaxial tension. The mechanical
behavior (in the Problem Statement) then indicates:

e1x = e2x = e1y = e2y = 1.47 ¥ 10-3

e1x e2x;     e1y e2y;     g 1xy= g 2xy.= =

s1x

E1

-------
n1

E1

-----s1y a1DT+–
s2x

E2

-------
n2

E2

-----s2y a2DT+–=

n1

E1

-----– s1x

s1y

E1

------- a1DT+ +
n2

E2

-----– s2x

s2y

E2

------- a2DT+ +=

s1x s1y– 0=

s1x s1y+ 2DT
a2 a1–( )

1 n1–
E1

---------------Ë ¯
Ê ˆ e1

e2

---- 1 n2–
E2

---------------Ë ¯
Ê ˆ+

-------------------------------------------=

Ó
Ô
Ô
Ì
Ô
Ô
Ï

s1x s1y DT
a2 a1–( )

1 n1–
E1

--------------Ë ¯
Ê ˆ e1

e2

----
1 n2–

E2

--------------Ë ¯
Ê ˆ+

----------------------------------------= =
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3. Creep
(a) The equilibrium relations are formally unchanged as:

 e1 +  e2 = 0 [5]

 e1 +  e2 = 0 [6]

The property of the perfect bond is now written in conformity with the following
figure:

with the constitutive relations recalled in the Problem Statement, these equalities
become

[7], [8]

(b) Numerical application: In performing successively [7] – [8], [7] + [8],
then substituting  and  obtained from [5] and [6], one obtains

then:

s ¢1x s ¢2x

s ¢1y s ¢2y

s ¢1x

E1

----------
n1

E1

-----s ¢1y a1DT De+ +–
s ¢2x

E2

----------
n2

E2

-----s ¢2y a2DT+–=

n1

E1

-----s ¢1x–
s ¢1y

E1

---------- a1DT De+ + +
n2

E2

-----– s ¢2x

s ¢2y

E2

---------- a2DT+ +=

s ¢2x s ¢2y

s ¢1x s ¢1y DT
a2 0.4a1–( )

1 n1–
E1

--------------Ë ¯
Ê ˆ e1

e2

----
1 n2–

E2

--------------Ë ¯
Ê ˆ+

----------------------------------------= =

s ¢1x s ¢1y 2.28 MPa–= =
s ¢2x s ¢2y 7.6 MPa= =
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4. Cooling: It is sufficient to suppress the increase in temperature DT in the
previous equations [7] and [8]. The system of equations becomes

In adopting a method of resolution analogous to that used in the previous
problems, one obtains

then:

It is worth noting that the polymer envelope is loaded now in biaxial tension.
Subsequently, for one cycle of operation, the polymer envelope is successively
compressed, released by creep, then extended, as shown in the following figure.

These cycles repeat themselves during the life of the tube, and this gives rise
to fatigue. Therefore, an overdimension of the tube is necessary to lead to low
admissible stresses in the polymer, to prevent the risk of buckling of the tube
subject to compression at the location of bond defects or of failure in tension
while cooling.

s1x≤ e1 s2x≤ e2+ 0=

s1y≤ e1 s2y≤ e2+ 0=

s1x≤
E1

-------
n1

E1

-----s1y≤ De+–
s2x≤
E2

-------
n2

E2

-----s2y≤–=

n1

E1

-----s1x≤–
s1y≤
E1

------- De+ +
n2

E2

-----s2x≤–
s2y≤
E2

-------+=
Ó
Ô
Ô
Ô
Ô
Ô
Ì
Ô
Ô
Ô
Ô
Ô
Ï

s1x≤ s1y≤ DT
0.6a1

1 n1–
E1

---------------Ë ¯
Ê ˆ e1

e2

----
1 n2–

E2

---------------Ë ¯
Ê ˆ+

------------------------------------------= =

s1x≤ s1y≤ 3.9 MPa= =

s2x≤ s2y≤ 12.9– MPa= =
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18.2.7 First Ply Failure of a Laminate—Ultimate Rupture

Problem Statement:

Consider a carbon/epoxy laminate with 60% fiber volume fraction and the fol-
lowing composition:

1. (a) Give the values of the moduli of elasticity and Poisson coefficients of
this laminate.

(b) What is the maximum tensile stress, denoted as sx maximum, that can be
applied without deterioration?

2. When the value sx maximum is reached, the 90∞ plies are deteriorated by
microcracks of the epoxy resin (“first ply” failure). The characteristics of
the 90∞ plies that are cracked are then decreased with respect to their
values for intact plies. One admits the following damage factors:

(a) Calculate the new terms of the matrix of the elastic behavior.29

Deduce from there the new elastic moduli of the deteriorated laminate.
Remark.

(b) Calculate the maximum stress sxM  leading to complete rupture of this
laminate (rupture of 0∞ plies, or “last ply rupture”).

3. What will be the rupture strength denoted as  that one can obtain by
eliminating all the elastic characteristics of the deteriorated 90∞ plies?

Remark: How one can obtain rapidly the value ?

4. The design of an aeronautical piece is carried out using this laminate with
the following considerations:
� When this piece is subjected to a stress along the x direction called

“limit load,” the piece stays in a reversible elastic domain and is not
altered in its structure.

29 See Equation 12.7.

E¢� # E�; E¢t # 0.1 Et¥
fractured  intact       fractured          intact

G¢�t  # 0.1 G�t¥ ; n ¢�t # 0.1 n�t
fractured                intact     fractured          intact

1
h
--- A[ ]

s ¢xM

s ¢xM
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� When this piece is subjected to a stress along the x direction called “extreme
loading,” one obtains total rupture.

Moreover, one has from common practice:

Extreme loading = 1.5 ¥ limit loading

Indicate the values of sx that should be kept here for extreme load and for limit
load, respectively.

Solution:

1. (a) According to Tables 5.4 and 5.5 in Section 5.4.2, one notes for the
indicated composition:

Ex = 108,860 MPa; Ey = 32,477 MPa

nxy = 0.054; nyx = 0.016

Gxy = 4200 MPa

(b)Table 5.1, Section 5.4.2, indicates for the rupture limit of the first ply:

sx = 659 MPa

2. (a) Terms of matrix are written as (Equations 12.7 and 12.8):

Coefficients  are given by Equation 11.8 which lead to30

The 90∞ plies are deteriorated. One then has31

30
See Section 3.3.3 for the characteristics of a unidirectional ply of carbon/epoxy.

31  (See Application 18.1.2.).

1
h
--- A[ ]

1
h
---Aij Eij

0∞
p0∞ Eij

90∞
p90∞¥+¥=

Eij

E11
0∞

134 440 MPa;  E22
0∞

7 023 MPa;  E12
0∞

 1748 MPa;===

E33
0∞

 4200 MPa=

nt�¢ n�t¢ Et¢¥ /E�¢=

E11
90∞

E¢t 700 MPa; E22
90∞

E¢� 134,000 MPa= = = =

E12
90∞ n¢t� E¢� 17.5 MPa; E33

90∞
420 MPa= = =
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or after calculation:

The new moduli of the deteriorated laminate are obtained by inversion of the
above matrix. One has (Equation 12.9)

which leads to

Note that only the shear moduli Gxy has its value modified with respect to the
value of the intact laminate.

(b) The 90∞ plies being deteriorated, total rupture of the laminate corres-
ponds to rupture of the 0∞ plies. Let sxM be the corresponding ultimate
rupture strength. The mechanical behavior of the deteriorated laminate
is written, following what happens previously:

from which the state of stress in the 0∞ plies (Equation 11.8):

Writing that for sxM the Hill–Tsai criterion is saturated (Section 5.3.2) and using
the rupture strength values of Section 3.3.3:

1
h
--- A[ ]

107,692 1402 0

1402 32,418 0

0 0 3444

MPa( )=

h A[ ] 1–
1/E¢x n¢yx/E¢y– 0

n¢xy/E¢x– 1/E¢y 0

0 0 1/G¢xy

=

E¢x 107,630 MPa=
E¢y  32,400 MPa=

n¢xy 0.043;  n¢yx 0.013= =
G¢xy 3444 MPa=

eox

eoy

g oxyÓ ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

=
9.29 10-6¥   4.02 10-7¥–       0

4.02 10-7¥–     3.086 10-5¥       0

0     0   2.9 10-4¥

sxM

0

0Ó ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

=
9.29 10-6 sxM¥¥

4.02 10-7 sxM¥¥–

0

sx E11
0∞ eox E12

0∞ eoy+ 1.248 sxM¥ s�= = =

sy E12
0∞ eox E22

0∞ eoy+ 0.0134 sxM¥ st= = =
txy 0 t�t= =

1.248sxM

1270
----------------------Ë ¯

Ê ˆ
2 0.0134sxM

42
-------------------------Ë ¯

Ê ˆ
2 1.248 0.0134sxM

2¥
12702

---------------------------------------------–+ 1=
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one obtains:

3. If one cancels all elastic characteristics of the deteriorated plies at 90∞, the
matrix  becomes

under the loading of an ultimate stress denoted as , one will have for the
strains:

then in the 0∞ plies:

The saturated Hill–Tsai criterion then takes the form:

then:

One immediately obtains this value when noting a stress resultant Nx written as:

then

 = ¥ 0.8 = 1270 ¥ 0.8 = 1016 MPa

sxM 973 MPa=

1
h
--- A[ ]

1
h
--- A[ ] 0.8

E� nt� E� 0

n�t Et Et 0

0 0 G�t

then h A[ ] 1– 1
0.8
-------

1
E�

-----
nt�

Et

------– 0

n�t

E�

------– 1
Et

---- 0

0 0 1
G�t

-------

= =

s ¢xM

eox
1

0.8
-------

s ¢xM

E�

----------- ; eoy
1

0.8
-------

n�t

E�

------– s ¢xM ;¥ g oxy= 0= =

sx s� E11
0∞ eox E12

0∞ eoy+
s xM¢
0.8
---------= = =

sy st E12
0∞ eox E22

0∞ eoy+ 0= = =

s ¢xM

0.8 1270¥
--------------------------Ë ¯

Ê ˆ
2

1=

s ¢xM 1016 MPa=

Nx sx h¥ sx
0∞ 0.8h s x

90∞ 0.2h¥+¥= =

s ¢xM sxM
0∞
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Note that the rupture stress of the last ply calculated in the previous problem
(sxM) is less than . It then appears to be dangerous to reason as if the 0∞
plies were the only ones to resist by occupying 80% of the thickness of the
laminate.

(c) If one considers that the limit load corresponds to the rupture of the first
ply, denoted as sx limit = 659 MPa, then the extreme load will be

sx extreme = 1.5 ¥ 659 = 988 MPa

This is an excessive value because it is higher than the rupture strength of the
last ply sxM = 973 MPa. One then is led to keep

� For the extreme load: sx extreme = sxM = 973 MPa
� For the limit load: sx limit = sxM /1.5 = 649 MPa (value less than the fracture

strength of the first ply)

18.2.8 Optimum Laminate for Isotropic Stress State

Problem Statement:

Consider a laminate subjected to a state of plane uniform stresses:

sx = sy = so; txy = 0 (state of isotropic stress)

This laminate presents the following composition:

1. By means of a literal calculation show that the strain of the laminate is the
same for any value of p < 0.5. Verify this property by means of Table 5.4 in
Section 5.4.2 for p = 0%, 30%, 50%.

2. Show that the Hill–Tsai criterion has the same value in each ply, no matter
what the proportion p. Comment.

3. Verify the previous property for a carbon/epoxy laminate by means of the
tables in annex 1 for p = 0%, 30%, 50%.

Solution:

1. Determination of the apparent moduli of the carbon/epoxy laminate: We
begin by calculating the terms of the matrix (Equations 12.7 and 12.8):

s ¢xM

1
h
--- A[ ]

1
h
---A11 E11

0∞
p E11

90∞
p E11

45∞+¥+¥ 1
2
--- p–Ë ¯

Ê ˆ¥ E11
45– ∞ 1

2
--- p–Ë ¯

Ê ˆ¥+=
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then with the Equation 11.8:

The constitutive law in Equation 12.7 here takes the form:

Its inverse is written as:

with:

and here:

E11
0∞

E�; E11
90∞

Et; E11
45∞

E11
45– ∞ E� Et+

4
---------------- 1

2
--- nt�E� 2G�t+( )+= = = =

1
h
---A11 p E� Et+( ) 2

1
2
--- p–Ë ¯

Ê ˆ E� Et+
4

---------------- 1
2
--- nt�E� 2G�t+( )++=

1
h
---A11 p

E� Et+
2

---------------- nt�E�– 2G�t–
1
2
--- E� Et+

2
---------------- nt�E� 2G�t+ ++=

1
h
---A22

1
h
---A11=

1
h
---A12 2pnt�E� 2

1
2
--- p–Ë ¯

Ê ˆ 1
4
--- E� Et 4G�t–+( ) 1

2
---nt�E�++=

1
h
---A12 p

E� Et+
2

---------------- nt�– E� 2G�t––
1
2
--- E� Et+

2
---------------- nt�E� 2G�t–++=

1
h
---A13

1
h
---A23 0= =

so

so

0Ó ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

1
h
---

A11 A12 0

A21 A22 0

0 0 A33

eox

eoy

g oxyÓ ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

=

eox

eoy

g oxyÓ ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸ 1/Ex nyx/Ey– 0

nxy/Ex– 1/Ey 0

0 0 1/Gxy

s0

s0

0Ó ˛
Ô Ô
Ì ˝
Ô Ô
Ï ¸

=

1

Ex

-----

1
h
---A22

1

h2
----- A11A22 A12

2–( )
--------------------------------------- 1

Ey

----- ;
nyx

Ey

-------

1
h
---A12

1

h2
----- A11A22 A12

2–( )
---------------------------------------= = =

1

h2
----- A11A22 A12

2–( ) 2 p
E� Et+

2
---------------- nt�E� 2G�t––Ë ¯

Ê ˆ G�t+ E� Et+
2

---------------- nt�E�+=
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then we can obtain the strains:

In summary32:

The strain eo is independent of the proportion p and of the shear modulus G�t.
Each elastic characteristic that appears has the same weight: , , nt�  = n�t 

� Verification: Table 5.4, Section 5.4.2:

2. Hill–Tsai criterion:
� 0∞ plies: Following the Equation 11.8:

and following the Equation 11.4:

32 Recall (see Equation 11.8) that:  = (1 - n�t nt�); t = (1 - n�t nt�).

eox so
1

Ex

-----
nyx

Ey

-------–Ë ¯
Ê ˆ so

E� Et+
2

---------------- nt�E�,+Ë ¯
Ê ˆ
----------------------------------- = eoy; g oxy 0= = =

E� E� E Et

eox eoy eo

so

E� Et+
2

---------------- nt�E�+
----------------------------------- ; g oxy 0= = = =

E� Et E� Et

p 0% : Ex Ey 15 055 Mpa ; nxy 0.79 nyx= = = = =
eox eoy eo 1.39 E-5 so MPa( )¥= = =

p 30% : Ex Ey 55 333 Mpa ; nxy 0.23 nyx= = = = =
eox eoy eo 1.39 E-5 so MPa( )¥= = =

p 50% : Ex Ey 70 687 Mpa ; nxy 0.025 nyx= = = = =
eox eoy eo 1.38 E-5 so MPa( )¥= = =

sx
0∞ E�eox nt�E�eoy+ eoE� 1 nt�+( )= =

sy
0∞ nt�E�eox Et eoy+ eoEt 1 n�t+( )= =

txy
0∞ 0=

s�
0∞ sx

o eo E� 1 nt�+( )= =

st
0∞ sy

o eo Et 1 n�t+( )= =

t �t
0∞ 0=

TX846_Frame_C18b  Page 423  Monday, November 18, 2002  12:43 PM

© 2003 by CRC Press LLC 



� 90∞ plies: Following Equations 11.8 and 11.4:

� 45∞ plies: Following Equations 11.8 and 11.433:

� –45∞ plies: In an analogous manner:

� The Hill–Tsai criterion (see Section 5.3.2 or Equation 14.7) then has the
same value in each of the plies, no matter what the proportion p and
the value of the shear modulus G�t. Rupture occurs simultaneously in all
plies.

� One can also note that the minimum thickness h of the laminate that is
capable of supporting the isotropic membrane load:

Nx = Ny; Txy = 0

will be independent of the proportion p (see Equation 12.10). One then can, for
this particular case of loading, vary the modulus of elasticity 34 without
varying the thickness.

33 Or still from Equation 11.7:

then following [11.6]:

34 See Equation 12.9, or Tables 5.4, 5.9, 5.14 in Section 5.4.2.

s�
90∞ sy

90∞ eo E� 1 nt�+( )= =

st
90∞ sx

90∞ eo Et 1 n�t+( )= =

t�t
90∞ 0=

e�
45 1

2
--- eox eoy+( ) eo; et

45 1
2
--- eox eoy+( )= eo; g �t

45 0;= = = =

s�
45 eoE� 1 nt�+( ); st

45 eoEt 1 n�t+( ); t�t
45= 0= =

s�
45∞ 1

2
--- sx

45∞ sy
45∞+( ) txy

45∞+ eo E� 1 nt�+( )= =

st
45∞ 1

2
--- sx

45∞ sy
45∞+( ) txy

45∞– eo Et 1 n�t+( )= =

t�t
45∞ 0=

s�
45– ∞ eo E� 1 nt�+( )=

st
45– ∞ eo Et 1 n�t+( )=

t�t
45– ∞ 0=

Ex Ey=
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� One automatically obtains such a laminate by using layers of balanced fabric
at 0∞ and 45∞. It is then convenient to calculate the thickness in considering
the proper rupture resistances of the layer of fabric.35

3. Verification:

18.2.9 Laminate Made of Identical Layers of Balanced Fabric

Problem Statement:

A carbon/epoxy laminate consists of a stacking of identical layers of balanced
fabric with the composition illustrated below. The fiber volume fraction is Vf = 60%.

35 See Applications 18.2.9 and 18.2.10.

(cf. plates 
annex 1)

p = 0 %
plate 3 and 7 plate 4 and 8

plies at +45∞ s� st t�t plies at -45∞ s� st t�t

sx = 1 MPa .94 .06 -.5 sx = 1 MPa .94 .06 .5
sy = 1 MPa .94 .06 .5 sy = 1 MPa .94 .06 -.5
total (MPa) 1.88 .12 .0 total (MPa) 1.88 .12 0
Hill-Tsai criterion: 1.02 ¥ 10-5 Hill-Tsai criterion: 1.02 ¥ 10-5

p = 30 %
plate 1 and 5 plate 2 and 6

plies at 0∞ s� st t�t plies at 90∞ s� st t�t

sx = 1 MPa 2.4 .0 .0 sx = 1 MPa -.54 .12 .0
sy = 1 MPa -.54 .12 .0 sy = 1 MPa 2.4 .0 .0
total (MPa) 1.86 .12 .0 total (MPa) 1.86 .12 .0
Hill-Tsai criterion: 1.017 ¥ 10-5 Hill-Tsai criterion: 1.017 ¥ 10-5

plate 3 and 7 plate 4 and 8
plies at +45∞ s� st t�t plies at -45∞ s� st t�t

sx = 1 MPa .94 .06 -.09 sx = 1 MPa .94 .06 .09
sy = 1 MPa .94 .06 .09 sy = 1 MPa .94 .06 -.09
total (MPa) 1.88 .12 .0 total (MPa) 1.88 .12 0
Hill-Tsai criterion: 1.02 ¥ 10-5 Hill-Tsai criterion: 1.02 ¥ 10-5

p = 50 %
plate 1 and 5 plate 2 and 6

plies at 0∞ s� st t�t plies at 90∞ s� st t�t

sx = 1 MPa 1.9 .02 .0 sx = 1 MPa -.02 .1 .0
sy = 1 MPa -.02 .1 .0 sy = 1 MPa 1.9 .02 .0
total (MPa) 1.88 .12 .0 total (MPa) 1.88 .12 .0
Hill-Tsai criterion: 1.02 ¥ 10-5 Hill-Tsai criterion: 1.02 ¥ 10-5
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Give the elastic behavior law in the axes (x, y) and then in the axes (X,Y).

Solution:

� Axes x, y: The fabric being balanced, each layer can be replaced by two
identical unidirectional plies crossed at 90∞, with the resulting thicknesses
(see Section 3.4.2):

ewarp = efill = e/2

The laminate is balanced and its composition is as follows (see figure):

One then notes (Table 5.4, Section 5.4.2):

One can evaluate DEx starting from the expression:

as:

Ex 55,333 DEx MPa( )+=

dEx
∂E

∂p0∞---------- dp0∞¥ ∂E

∂p90∞------------ dp90∞¥+=

ExD 65,888 55,333–( ) 3
10
------ 53,545 55,333–( ) 3

10
------¥+¥ 2630 MPa = =
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then:

Poisson coefficient: nxy = 0.23 + Dnxy.
From an analogous calculation:

nxy = 0.20 = nyx

Shear modulus: One notes (Table 5.5, Section 5.4.2)

Gxy = 16,315 + DGxy (MPa)

Then from an analogous calculation:

Gxy = 14,500 MPa.

From which the elastic behavior relation in axes (x, y) can be written as (Equation
12.9):

� Axes X,Y: The laminate is balanced and then has the composition:

In using the same tables as before, one obtains

Ex 57,= 960 MPa Ey=

eox

eoy

g oxyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸ 1

57,960
----------------- 0.2

57,960
-----------------– 0

0.2
57,960
-----------------– 1

57,960
----------------- 0

0 0 1
14,500
-----------------

sox

soy

toxyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

MPa( )=

 EX EY 31,979= = DEX+ 41,400=  MPa

nXY nYX 0.56 nXYD+ 0.43= = =
GXY 28,430= GXYD+ 24,190=  MPa
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from which the law for the behavior in the axes X, Y can be written as (Equation
12.9):

Remarks:

� One can note that a laminate constituted of layers of balanced fabric with
four orientations 0∞, 90∞, +45∞, –45∞ admits two systems of orthotropic axes
x, y and X,Y.

� The elastic properties are suitably estimated when one uses Tables 5.4 and
5.5 in Section 5.4.2. This is not the same for the maximum admissible
stresses indicated in Tables 5.1, 5.2, and 5.3 that are valid only for laminates
made of unidirectional layers. In effect, the resistance to rupture for a layer
of balanced fabric is clearly higher in tension than the first ply failure limit
for an equivalent fabric, made up of layers at 0∞ (50%) and 90∞ (50%). For
a calculation of first-ply failure or for the failure criterion of the laminate
proposed in this application, it is convenient to consider a layer of fabric
as an anisotropic ply with thickness e (see Section 3.4.2) with the values
of rupture stresses s� rupture, st rupture, and t�t rupture of the balanced fabric
itself (see examples in Section 3.4.3).36 One will then have the following
equivalence37:

18.2.10 Wing Spar in Carbon/Epoxy

Problem Statement:

Consider an airplane flap with the internal structure (excluding facings) shown
schematically in the following figure. It consists of a spar and several ribs. The spar
is a laminate of carbon/epoxy fabric with Vf = 45% fiber volume fraction, the
composition of which varies with the longitudinal coordinate axis x, in the flange
and in the web. A preliminary calculation of the flap in isostatic equilibrium

36 See also Application 18.2.10.
37 See Section 5.2.3.

eoX

eoY

g oXYÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸ 1

41,400
----------------- 0.43

41,400
-----------------– 0

0.43
41,400
-----------------– 1

41,400
----------------- 0

0 0 1
24,190
-----------------

soX

soY

toXYÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

MPa( )=
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reveals the maximum stress resultants in the two zones of the spar indicated in
the figure.

One proposes for each of these zones the compositions indicated in the figure.

1. Evaluate the elastic properties of the laminate in these two zones.
2. Verify the two corresponding laminates:

a. At rupture.
b. At buckling.

� Thickness of a layer of fabric: 0.24 mm.
� Properties of carbon/epoxy fabric: See Section 3.4.3.

Solution:

1. Elastic properties:
(a) Zone 1: Composition of the laminate38: See sketch below.

38 See Section 5.2.3 and remark at the end of previous Exercise 18.2.9.
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Calculation of elastic moduli (Equations 12.7, 12.8, 12.9, and 11.8):

with (Section 3.4.3):

Then:

One deduces from there:

After the calculation of h [A]-1, one obtains the law for the behavior in zone 1:

[1]

(b) Zone 2: Composition of the laminate:

E11
0∞

E�; E12
0∞ nt�E�; E33

0∞
G�t= = =

E11
45∞ E� Et+

4
---------------- 1

2
--- nt�E� 2G�t+( ); E12

45∞+ E� Et+
4

---------------- G�t–
1
2
---nt�E�+= =

E33
45∞ E� Et+

4
----------------

1
2
---nt�E�–=

E� Et Ex 1 nxy nyx¥–( ); Ex 54 000 MPa= = = ; nxy nyx 0.045= =
G�t Gxy 4000= =

E11
0∞

54,100=  MPa; E12
0∞

2435 MPa= ; E33
0∞

4000=  MPa

E11
45∞

32,270=  MPa; E12
45∞

24,270 MPa= ; E33
45∞

25,840=  MPa

1
h
---A11 E11

0∞
0.67 E11

45∞+¥ 0.33¥ 46,900 MPa
1
h
---A22= = =

1
h
---A12 E12

0∞
0.67 E12

45∞+¥ 0.33¥ 9640 MPa= =

1
h
---A33 E33

0∞
0.67 E33

45∞+¥ 0.33¥ 11,210 MPa= =

eox

eoy

g oxyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸ 1

44,920
----------------- 0.2

44,920
-----------------– 0

0.2
44,920
-----------------– 1

44,920
----------------- 0

0 0 1
11,210
-----------------

sox

soy

toxyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
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Ï ¸

=
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Following the same method as above:

then, after inversion of the behavior law in zone 2:

[2]

2. (a) Verification of non rupture:

� Zone 1: Compression in the lower skin: Nx = –435 N/mm, then with 9
layers of fabric of thickness 0.24 mm:

sox = –202 MPa

from which the strains are (Equation [1] above):

eox = –4.497 ¥ 10–3; eoy = 9 ¥ 10–4; goxy = 0

• Layers at 0∞/90∞: (Equation 11.8):

1
h
---A11

1
h
---A22 E11

0∞
0.4 E11

45∞+¥ 0.6¥ 41,010 MPa= = =

1
h
---A12 15,540=  MPa

1
h
---A33 17,100=  MPa

eox

eoy

g oxyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸ 1

35,120
----------------- 0.38

35,120
-----------------– 0

0.38
35,120
-----------------– 1

35,120
----------------- 0

0 0 1
17,100
-----------------

sox

soy

toxyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

=

sx
0∞ E11

0∞ eox¥ E12
0∞ eoy¥+ 241 MPa– s�

0∞= = =

sy
0∞ E21

0∞ eox¥ E22
0∞ eoy¥+ 38 MPa st

0∞= = =

txy
0∞ 0 t�t

0∞= =
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The Hill–Tsai expression: (Section 5.3.2 and Chapter 14)39:

Factor of safety (Section 14.2.3.): - 1 = 38%.

• Layers at 45∞/–45∞: One finds by an analogous calculation a much weaker
value for the Hill–Tsai expression: (0.49)2. The layers 0∞/90∞ fail first.

� Zone 2: With a shear stress resultant Txy = –30 N/mm and 5 layers of
fabric with 0.24 mm thickness, one has:

toxy = –25 MPa.

From which the strains are (Equation [2] above):

eox = 0; eoy = 0; goxy = –1.46 ¥ 10-3

• Layers at 45∞/–45∞ (Equation 11.8):

Equation 11.4:

Hill–Tsai expression:

corresponding to a factor of safety of 

• Layers at 0∞/90∞: One finds a smaller value for the Hill–Tsai expression:
(0.1)2. It is the 45∞/–45∞ layers that fail first.

2. (b) Verification for buckling: This is done starting from the graphs of
Appendix 2. In this view, one has to evaluate the constants C11, C22, C12,
C33 that appear in the law of the bending behavior (Equation 12.16):

39 As recalled from Section 14.2.2 (note 4 at bottom of the page), a balanced fabric is not
transversely isotropic. The Hill-Tsai (Equation 14.6) can be rewritten in this case as:

Without knowing sz rupture and taking into account the weak influence of the modified term,
one uses the Equation 14.6.

s�
2

s� rupt
2

------------- +
st

2

st rupt
2

------------ s�– st

2

s� rupt
2

------------- 1

sz rupt
2

-------------–
Ë ¯
Á ˜
Ê ˆ t�t

2

t�t rupt
2

-------------+ 1<

241– 2

3602
-------------- 382

4202
----------- 241 38¥–

3602
------------------------–+ 0.72( )2 1<=

1
0.72
----------

sx
45∞ sy

45∞ 0; txy
45∞ 38 MPa–= = =

s�
45∞ t– xy

45∞ 38 MPa st
45∞; t�t

45∞– 0= = = =

382

4202
----------- 38– 2

3602
----------- 38 38¥–

4202
---------------------–+ 0.17( )2=

1
0.17
---------- 1– 500%=
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� Zone 1: 

from which:

C11 = C22 = 39,930 N mm

C12 = C21 = 7555 N mm

C33 = 8870 N mm

Then:

Consider the unfavorable case of a plate simply supported at two of its sides,
clamped along the third side, and free on the fourth side (see figure in the Problem
Statement). Using the Plate 16 in Appendix 2 with the values:

ply n∞k 1 2 3 4 5 6 7 8 9

0.2223 0.1256 0.0564 0.0150 1.152 E-3 0.0150 0.0564 0.1256 0.223zk
3 zk 1–

3–
3----------------------Ë ¯

Ê ˆ

C[ ]
39,930 7555 0

7555 39,930 0

0 0 8870

N mm¥( )=

C
C21 2C33+

C11 C22¥
------------------------- 25,295

39,930
----------------- 0.63;

a
b
---

C22

C11

-------Ë ¯
Ê ˆ

1/4

>> 1= = =
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one obtains

k # 1.15

from which the critical compressive stress resultant is

Nx critical = 1.15 p2 (39930/402)

Nx critical = 283 N/mm < 435 N/mm applied

There is a risk of buckling, and one must reinforce the wing in the central part
of the spar where the compressive stress resultant is maximum by means of
exterior layers at 0∞/90∞ in such a way to augment C11 and C22. For example, with
a supplementary external layer on either side:

C ¢22 = 77,475 N/mm; C ¢21 = 9245 N/mm; C ¢33 = 11,646 N/mm.

from which C = 0.42, k # 1, and:

N ¢x critical = 477 N/mm > 435 N/mm applied.

� Zone 2:

One obtains after calculation:

In the unfavorable case of a plate simply supported on four sides (see figure in
the Problem Statement), one uses Plate 18 of Appendix 2 with the values:

One obtains

k # 7

C[ ]
5300 2840 0

2840 5300 0

0 0 3065

N mm¥( )=

C 1.7= ;
a
b
---

C22

C11

-------Ë ¯
Ê ˆ

1/4

>> 1

TX846_Frame_C18b  Page 434  Monday, November 18, 2002  12:43 PM

© 2003 by CRC Press LLC 



from which the critical shear stress resultant is

Txy critical = 7 p2 (5300/1302)

Txy critical = 21 N/mm < 30 N/mm applied

There is then a risk of buckling and one must reinforce the web in this part of
the spar where the shear force is maximum. A supplementary external layer at
0∞/90∞ on either side of this web gives

C ¢22 = 18,890 N/mm; C ¢21 = 3450 N/mm; C ¢33 = 4070 N/mm.

From which: C = 0.6, k # 4.3, and:

Txy critical = 47 N/mm > 30 N/mm applied.

18.2.11 Determination of the Elastic Characteristics of a Carbon/Epoxy 
Unidirectional Layer from Tensile Test

Problem Statement:

Consider a unidirectional plate of carbon/epoxy, from which one cuts the two
samples shown below. They are tested in a testing machine. One measures the
strains using strain gages arranged as shown. The strains obtained under different
loads are linearized. One shows their values corresponding to a uniform tensile
stress sx equal to 20 MPa.

Calculate the elastic constants of the unidirectional layer subject to in-plane
loading.

Solution:

One can use the Equation 11.5: 

� Sample No. 1: The axes x and y are ,coincident with the axes � and t (q =
0). From which:

e1x

sx

Ex

-----
sx

E�

----- E�Æ 20
143 E-6
------------------- 139,860 MPa= = = =

e1y

nxy

Ex

-------– sx¥
n�t

E�

------ sx¥ n�tÆ– 0.25= = =
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� Sample No. 2: The axes x and y make an angle of q = 20∞ with the axes
l and t, from which40:

leading to

from which: Et = 7320 MPa; G�t = 3980 MPa
In summary:

18.2.12 Sailboat Shell in Glass/Polyester

Consider a siding of a laminated shell for a sailboat made of glass/polyester. It
is made up of a stack of layers of balanced fabric and glass mat. The reinforce-
ments, in “E” glass, are in the following form:

Balanced fabric: Vf = 20%, mass of the glass per square meter: mof = 500 g.
Mat: Vf = 15%, mass of glass per square meter: mof = 300 g.

Problem Statement:

1. Calculate:
(a) The thickness of one layer of fabric of glass/polyester.
(b) The thickness of a layer of mat of glass/polyester.

2. Given the composition of the laminated siding as follows:

[M/F/M/F]s (M ´ Mat; F ´ Fabric)

40 One has  See Exercise 18.1.2
nt�

Et

------
n�t

E�

------=

e2x
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----- c4

E�

----- s4

Et

---- c2s2 1
G�t

------- 2
n�t

E�

------–Ë ¯
Ê ˆ+ +

Ó ˛
Ì ˝
Ï ¸

sx¥= =

e2y

nxy

Ex

-------– sx¥
n�t

E�

------ c4 s4+( ) c2s2 1
E�

----- 1
Et

---- 1
G�t

-------–+Ë ¯
Ê ˆ–

Ó ˛
Ì ˝
Ï ¸

sx¥–= =

1
G�t

------- 0.1325
Et

----------------+ 2.69 E-4=

1
G�t

------- 1
Et

----– 1.144 E-4=Ó
Ô
Ì
Ô
Ï

E� 139= ,860 MPa

Et 7= 320 MPa

n�t 0.25; nt� 0.013= =
G�t 3980 MPa=
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what is the total thickness, denoted as h, of the laminated siding?

3. Elastic characteristics of a fabric layer: One considers a layer of balanced
fabric to be equivalent to two series of unidirectional plies crossed at 90∞,
each series possessing half of the total thickness of the fabric layer (see
Figure 18.9). 

The elastic characteristics of these unidirectional plies are as follows:

E� = 18,000 MPa; Et = 4900 MPa; G�t = 1850 MPa; n�t = 0.3.

Calculate the elastic characteristics (moduli, Poisson coefficients) of a layer of
fabric in axes C,T.

4. The layers of mat are considered as isotropic in their planes, with the
elastic characteristics:

EMat = 8350 MPa; n Mat = 0.3.

Figure 18.10 represents one planar portion of the laminated siding. All the fabric
plies are oriented at 0∞ – 90∞. Calculate the global elastic characteristics (moduli,
Poisson coefficients) of the siding working in its plane.

Remark: Tests done on samples made of this material indicate a modulus of
elasticity along the x direction to be equal to 9200 MPa. What can be said about
this?

5. Rupture: The rupture strengths, considered to be equal in tension and in
compression, are as follows:

Figure 18.9

Figure 18.10
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� Fabric layer: along C or T: srupture fabric = 139 MPa.
� Mat layer: srupture Mat = 113 MPa.
(a) Calculate the maximum stress sox leading to first ply failure of the

siding. What are the layers that fracture?
(b) Apply the maximum stress sox. In the previous layers that fractured,

the glass fibers are supposed all broken. What happens to the laminate?

Solution:

1. The thickness of a layer denoted as h is such that (see Section 3.2.4):

The specific mass of “E” glass is (see Section 1.6): r = 2600 kg/m3, from which:

hfabric = 0.96 mm; hMat = 0.77 mm.

2. The siding is constituted of the following stacking sequence:

The total thickness is

h = 0.77 ¥ 4 + 0.96 ¥ 3 = 5.96 mm.

3. Elastic characteristics of a fabric layer: The moduli and Poisson coefficients
can be evaluated starting from the simplified relations of Section 3.4.2.
One obtains, with k = 0.5 (balanced fabric):

EC = ET = 11,450 MPa

GCT = 1850 MPa; nCT = nTC = 0.128

A more precise calculation of these characteristics requires to establish the matrix
h[A]–1 of Section 12.1.2. (Equation (12.9)). We calculate at first  (Equation 12.8):

The terms  are given by the Equation 11.8. One will have, for example:

h
mof

Vf rf

----------=

1
h
--- A[ ]

1
h
---Aij Eij

0∞( ) 0.5( ) Eij
90∞( ) 0.5( )+=

Eij

1
h
---A11 E�( ) 0.5( ) Et( ) 0.5( )+ 1

2
--- 

E� Et+
1 n�tnt�–
----------------------= =
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with

; 

One obtains

from which:

(The difference between the values obtained above is small).

4. Elastic characteristics of the siding: These are deduced from the matrix
h[A]-1 (Equation 12.9) calculated for all the laminate.

We calculate at first (Equation 12.8):

with

(see Equation 11.8)

nt� n�t

Et

E�

-----=

1
h
--- A[ ]

11,737 1507 0

1507 11,737 0
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MPa( )=

h A[ ]-1

1
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---------------- 0.128
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----------------– 0

0.128
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---------------- 0
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1 850
------------

=
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1
h
---Aij Eij
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p fabric 3 ¥ 0.96
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---------------------- 0.483; pMat 0.517.= = =
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-----------------= = =
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We obtain

then:

Remark: The real modulus (measured) 9200 MPa is a bit smaller than the one
calculated. In effect, due to the curvature of fibers from weaving, a fabric layer
is softer than the stacking of unidirectionals that are crossed at 90∞. However, the
approximation obtained by calculation is suitable (difference < 10%).

5. Fracture of the siding:
(a) One subjects the siding to a stress sox. The strains of this siding are

given by the Equation 12.9 as:

These strains give rise to the following stresses:

� In the layers of fabric (see results from Question 3):

1
h
--- A[ ]

10,410 2149 0

2149 10,410 0

0 0 2554

MPa[ ]=

h A[ ] 1–

1
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------------ 0.206
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-------------– 0

0.206
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-------------– 1

9966
------------ 0

0 0 1
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------------

=

Ex Ey 9966 MPa= =
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Ô Ô
Ï ¸
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sox

0

0Ó ˛
Ô Ô
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Ô Ô
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Ô Ô
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Ô Ô
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The Hill–Tsai criterion in these layers is satisfied for a stress sox such that:

as:

sox = 116 MPa

� In the layers of Mat, with the values of the coefficients  of Question 4,
we have

The Hill–Tsai criterion in the mat layers is satisfied for a stress sox such that41:

then:

The fabric layers are the first to fail, for a stress of

sox max = 116 MPa

(b) This stress being applied, the rupture of the fabric layers translates
into the rupture of the glass fibers. The stress resultant corresponding
to this constraint as:

Nx = sox max ¥ h = 116 ¥ 5.96 = 691 N/mm

is then completely taken up by the layers of Mat. The stress in these layers is then:

41 A mat layer does not have transverse isotropy in the axes y, z (or x,z). The Hill-Tsai expression
is then modified. We use however the Equation 14.6 here (see remark 39 at the bottom of
page in Application 18.2.10).
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It exceeds the rupture strength of the Mat (113 MPa). Then this latter layer fractures.
The siding is then completely broken under the stress:

sox max = 116 MPa

18.2.13 Determination of the In-Plane Shear Modulus 
of a Balanced Fabric Ply

Problem Statement:

Consider a sample cut from a laminated panel made of identical layers of balanced
fabric, all oriented along the axes C (warp direction) and T (fill direction) in the
following figure.

The sample is in a state of simple tension in its plane along the x axis as
shown in the figure.

sox π 0; soy = toxy = 0

Two strain gages are bonded (see figure). These are denoted as 1 and 2:

� From gage 1, one reads a strain eox.
� From gage 2, one reads a strain eoy.

1. Noting that goxy = 0, give the expression for the distortion gCT in the axes
C and T as a function of eox and eoy.

2. Give the expression for the stress tCT in the axes C and T as a function of sox.
3. Deduce from the previous answer the shear modulus GCT as a function of

eox, eoy, and sox.

Solution:

1. Equation 11.7 allows one to write

eC

e T

g CTÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

c2   s2   cs–

s2   c2   cs
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Ô Ô
Ï ¸
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g oxyÓ ˛
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Ô Ô
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Ô Ô
Ô Ô
Ï ¸

=
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Here, we have a balanced laminate with midplane symmetry, loaded in its axes
x,y. Then (Equation 12.9): goxy = 0, from which:

2. According to Equation 11.4:

then:

3. The constitutive behavior of the fabric in its axes can be written, starting
from the Equation 11.5, as:

From which:

18.2.14 Quasi-Isotropic Laminate

Problem Statement:

Consider a laminate made up of a number of identical unidirectional plies, with
midplane symmetry and the following composition:
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The elastic characteristics of a ply in its axes � and t are denoted as:

E�, Et, G�t, n�t, nt�

One examines the behavior of this laminate under in-plane loading, following the
law (Equation 12.9):

1. Calculate the coefficients of the matrix .
2. By inversion, deduce from there the elastic moduli of the laminate.
3. What comment can one make? Deduce from there the law for the behavior

of the laminate under in-plane loading in the axes (X,Y) derived from the
(x, y) axes by a rotation angle q.

Solution:

1. Coefficients  are given by the Equation 12.8 as:

The stiffness coefficients  are obtained from the behavior of a ply
(Equation 11.8). In using this relation for q = 0∞, 90∞, +45∞, –45∞, one obtains

where one recalls that: 
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The matrix reduces to

2. From the above, the modulus of elasticity of the laminate in directions x
and y, and the associated Poisson coefficient are

One obtains after calculation:

The shear modulus is written as:

3. One can remark that:

This leads to an isotropic elastic behavior of the laminate in its plane. As a result,
in all coordinate systems (X,Y) derived from (x,y) by any rotation angle, the
constitutive behavior of the laminate is unchanged and is written as:
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--------------------------------------------------------------------------------------------------------------------=

n
1
2
--- E� Et+( ) 3nt� E� 2G�t–+
3
2
--- E� Et+( ) nt� E� 2G�t+ +

-----------------------------------------------------------------=

G
1
4
--- 1

2
--- E� Et+( ) nt� E� 2G�t+–=

G
E

2 1 n+( )
--------------------=

eX

eY

g XYÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

  
1
E
---    

n
E
---–    0

 
n
E
---–     

1
E
---    0

  0     0    
1
G
----

sX

sY

tXYÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

= =

TX846_Frame_C18b  Page 445  Monday, November 18, 2002  12:43 PM

© 2003 by CRC Press LLC 



Remark: This result generalizes to other groups of orientations for plies such as:

and so on.
More generally, a laminate made up of n orientations (a whole number n > 2),

having the values of , with p = 1,…, n and with the same proportion of
plies along each orientation as (1/n) is elastically isotropic. One shows also that
for all these laminates, E and n are invariable.42

18.2.15 Orthotropic Plate in Pure Torsion

Problem Statement:

Consider a square plate (a ¥ a) of unidirectional glass/epoxy (Vf = 60%), thickness
h, welded at the center of its lower face on a support. It is subjected to a uniform
and constant torsional moment density mo (N mm/mm) along its perimeter.43

The directions �, t of the unidirectional form an angle q with the axes x,y of
the plate (see figure).

1. Assuming that all stress resultants in the plate are zero (except the torsional
moment), determine the bending displacement at all points of the mid-
plane.

2. Determine the state of stresses in the axes (x, y) then in the axes (�,t) of
the unidirectional layer.

3. Numerical application: q = 45∞; a = 1 m; h = 5 mm; mo = –10 N mm/mm.

42 For more details, see Bibliography at the end of the book: “Stiffness isotropy and resistance
quasi-isotropy of laminates with periodic orientations.”

43 The practical importance of such a load is very limited. It is better to consider this example
as a means to validate a computer program using finite elements. It is one of the “patches”
issued from the work “Computer programs for composite structures: Examples of reference
for validation” (see Bibliography at the end of the book).

0,
p
3
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3
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5

------ ,
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5
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n
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Solution:

1. In the constitutive Equation 12.16, one has

then:

where is the matrix shown in details in Equation 11.8.

By inverting the Equation 12.16 and noting that:

where  is the matrix shown in details in Equation 11.5, one has

[1]

Assuming the unit stress resultants all to be zero except Mxy,
44 one has

Nx = Ny = Txy = Mx = My = 0; Mxy = mo

There remains (see Equation 11.5):

Therefore one can write wo(x, y) in the form:

44 With this hypothesis, equations of equilibrium, constitutive equation, and boundary conditions
are verified.
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At the center of the plate: wo = 0; 

from which: D = E = F = 0. And by identification with the second derivatives:

2A = hxy; 2B = mxy; 2C = 1

The out-of-plane displacement takes the form:

[2]

2. State of stresses: The strain field in the axes of the plate is written as
(Equation 12.12, taking into account [1]):

from which one can write the stresses in the axes (x, y) using Equation 11.8:

then:

� Stresses in the axes of the unidirectional: These are obtained by using
the Equation 11.4, which is45

45  Note that here the angle since the Equation 11.4 is written with .
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3. Numerical application:

One has (Section 3.3.3) for the glass/epoxy:

E� = 45,000 MPa;  Et = 12,000 MPa;

G�t = 4500 MPa;  n�t = 0.3 (nt� = 0.08)

from which (Equation 11.5 with q = –45∞):

and wo takes the form:

The deformed configuration is shown in the figure below:

The stresses (in MPa) are written as:

sx = sy = 0; txy = 0.96 ¥ z (mm).

s� = –st = 0.96 ¥ z (mm); t�t = 0

18.2.16 Plate Made by Resin Transfer Molding (R.T.M.)

Problem Statement:

First part:
A roll of mat of carbon fibers has the following characteristics:

Areal mass density: mof = 30 g/m2

Specific mass: rf = 1,750 kg/m3

hxy

Gxy

--------
mxy

Gxy

-------- 0.1375
4500

----------------–= =

wo
1

9 375
--------------– xy 0.1375 x2 y2+( )–[ ]=
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One deposits 21 layers of this mat over a plate in a rectangular mold. The mold
is then closed and sealed, as shown in the figure below:

R1 and R2 represent two valves.

� R2 is closed, R1 is open. The mold is vacuumed.
� R2 is open, R1 is open. Polyester resin is filled into the cavity of the mold.

Then resin begins to flow out through valve R1.
� R1 and R2 are closed.

The mold is then heated, and the resin polymerizes. After demolding, one obtains
a plate of mat/polyester.

1. Calculate the fiber volume fraction Vf (%).
2. Calculate the modulus of elasticity along the longitudinal and transverse

directions, denoted respectively as E� and Et, of a unidirectional of carbon/
polyester, that would have the same amount of fiber volume fraction. The
following is given

Ef � = 230,000 MPa; Eft = 15,000 MPa (Section 3.3.1, Table 3.3)

Eresin = 4000 MPa (Section 1.6)

3. Starting from the relation in Section 3.5.1 giving the modulus of elasticity
of mat (which is assumed to be isotropic in the plane of the plate), deduce
from there the value of Emat. Assume that nmat = 0.3.

Second part:
One polymerizes on each face of the previous plate two plies of preimpregnated
carbon/epoxy unidirectionals with Vf = 60%. (see characteristics given in
Section 3.3.3). Each ply has a thickness of 0.13 mm. The four plies (two above,
two below) are oriented in the same direction denoted as x (or 0∞). The midplane
of the laminated plate coincides with axes x and y.
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1. Write numerically for the unidirectional and for the mat the constitutive
relation in the x, y axes in the form:

2. Calculate in the axes x, y the coefficients of the in-plane constitutive relation
of the laminated plate (matrix [A], Section 12.1.1). Deduce from there the
moduli of elasticity and the Poisson coefficients of the plate.

3. Calculate in the axes x, y the coefficients for the bending behavior of the
laminated plate (matrix [C], Section 12.1.4). Deduce from there the apparent
bending moduli along the directions x and y.

4. This laminated plate is submitted to a tensile stress resultant along the x
direction denoted as Nx (N/mm). The tensile rupture strength of mat is
100 MPa. Calculate the value of the stress resultant Nx that leads to first-
ply failure of the laminate. In which component (unidirectional or mat)
will this failure occur? This component is supposed to be completely
broken (i.e., its mechanical characteristics are reduced to zero). What then
is the state of stress in the other component? Make a conclusion.

Solution:

First part:

1. Fiber volume fraction of carbon:

 

If s is the rectangular surface at the base of the mold, the volume of a layer of mat is

from which, for 21 layers:

2. Moduli of elasticity (see Section 3.3.1): One has
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3. One has (see Section 3.5.1)

Second part:

1. Constitutive behavior:

� Unidirectional:

After inversion:

� Mat:

After inversion:

2. Membrane behavior of the laminated plate:
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A11 = 134,440 ¥ 4 ¥ 0.13 + 15,835 ¥ 3 = 117,408 (MPa mm)

A22 = 7023 ¥ 4 ¥ 0.13 + 15,835 ¥ 3 = 51,151 (MPa mm)

A12 = 1756 ¥ 4 ¥ 0.13 + 4,750 ¥ 3 = 15,163 (MPa mm)

A13 = A23 = 0

A33 = 4200 ¥ 4 ¥ 0.13 + 5542 ¥ 3 = 18,810 (MPa mm).

From this, and with a total thickness of the plate of

h = 3 + 4 ¥ 0.13 = 3.52 mm

we have

then for the moduli of elasticity of the plate:

3. Bending behavior of the laminated plate:

A[ ]
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0   0   18,810
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h A[ ] 1–
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from which (see Section 12.1.6):

Apparent bending modulus in the x direction:

The apparent bending modulus in the y direction:

4. Rupture: For a stress resultant Nx, the plate is deformed in its plane
according to the relation:

then with the values found for [A]-1:

ex = 8.856 ¥ 10-6 ¥ Nx; ey = –2.66 ¥ 10-6 ¥ Nx; gxy = 0
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One then has for the stresses:

� In the unidirectional layer:

s� = sx = 134,440 ex + 1756 ey = 1.183 Nx

st = sy = 1756 ex + 7023 ey = –0.003 Nx

t�t = txy = 0.

� In the mat layer:

sx = 15,835 ex + 4750 ey = 0.128 Nx

sy = 4750 ex + 15,835 ey = 5.5 ¥ 10-5 ¥ Nx

txy = 0

From which the failure criteria are (see Section 14.2.3)

� In the unidirectional layer:

Failure will not occur when: Nx < 1072 N/mm.

� In the mat layer:

Failure will not occur when Nx < 781 N/mm.
Failure will first occur in the mat layer (first-ply rupture). The mat is supposed

to be completely broken. The stress resultant Nx = 781 N/mm leads to a state of
uniaxial stress in the laminate such that:

The fibers in the unidirectional layer are broken.
Conclusion: The first-ply failure leads to ultimate rupture of the laminate.

18.2.17 Thermoelastic Behavior of a Balanced Fabric Ply

Problem Statement: 

Consider a layer of balanced fabric made of carbon/epoxy (Vf = 60%). The
configuration of a unit cell (a ¥ a) is shown in Figure 18.11. One considers the
layer of fabric as equivalent to two layers, each with a thickness e.
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First part: Upper layer
We study the upper layer as shown schematically in Figure 18.12.

Assume that this upper layer behaves as if it consists of two equivalent unidirec-
tional layers (a ¥ a) crossed at 0∞ and 90∞. These layers have equivalent thicknesses
denoted respectively as:

1. Show that 
2. Deduce from the above the stiffness matrix  of this upper layer made

up of the two previous unidirectionals, with the values of the moduli and
Poisson coefficients for the unidirectional indicated in Section 3.3.3.

3. Deduce from the above the moduli of elasticity and Poisson coefficients
of this upper layer, denoted as Ex, Ey, Gxy, nxy.

46

4. The coefficients of thermal expansion of the unidirectional are denoted as
a� and at (see values in Section 3.3.3). What are the values of the
coefficients of thermal expansion aox, aoy, aoxy of this layer? (One will at
first calculate the terms denoted as <aEh>i of Section 12.1.7).

Figure 18.11

Figure 18.12

46 Note here that:  

eequi
0∞ and eequi

90∞
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Second part: Complete fabric layer
Now we consider the complete fabric ply (thickness 2e, see Figure 18.11) as the
result of a simple superposition of two layers like the one that was studied in
the previous part, these two layers being crossed at 0∞ (upper layer no. 2) and
at 90∞ (lower layer no. 1).

One retains in the following e = 0.14 mm.

1. Write numerically with the previous results the in-plane constitutive behav-
ior for layer no. 2, then for layer no. 1 in Figure 18.13 in the form {s } =

{e}.
2. Calculate the coefficients  (see Section 11.3.2) of layer no. 2, then of

layer no. 1.
3. Calculate the matrix [A] characterizing the in-plane behavior of the double

layer in Figure 18.13 (layer no. 1 + layer no. 2).

Third part: (Independent of the two previous parts until Question 9)
We consider a laminate which consists of two orthotropic plies noted as 2 and
1, each with a thickness e, crossed at 0∞ (or x) and at 90∞, respectively. We give
below the respective thermomechanical behavior of these layers in axes x and y,
which are written as:
Ply no. 1 (lower ply):

Ply no. 2 (upper ply):

Figure 18.13
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Recalling that the thermomechanical behavior of a laminate is written as:

1. Write the literal expression of matrix [A].
2. Write the literal expression of matrix [C].
3. Write the literal expression of matrix [B].
4. Calculate the terms <aEh>x, <aEh>y, <aEh>xy, <aEh2>x, <aEh2>y, <aEh2>xy.
5. Write the thermomechanical behavior equation.
6. This plate is not externally loaded. It is subjected to a variation in

temperature DT. Deduce from item 5 the corresponding system of equa-
tions.

7. Give the values of goxy and .
8. Write the equations that allow the calculation of other strains.
9. Taking into account the results obtained in the second part, write numeri-

cally this system of equations with DT = –160∞C. Give the corresponding
values of strains. Comment.

Solution:

1.1. Volume of fibers at 0∞:

Volume of fibers at 90∞:

from which:

Nx

Ny

Txy

My

M– x

M– xyÓ ˛
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

A B

B C

eox

eoy

g oxy

∂2wo

∂x2
------------–

∂2wo

∂y2
------------–

2
∂2wo

∂x∂y
-------------–

Ó ˛
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

DT

aEh· Ò x

aEh· Ò y

aEh· Ò xy

aEh2· Ò x

aEh2· Ò y

aEh2· Ò xy

–=

∂ 2
wo

∂x∂y
-------------

n0∞ 3a2

4
-------- e¥ a2 eéquiv.

0∞¥= =

n 90∞ a2

4
----- e¥ a2 eéquiv.

90∞¥= =

eéquiv.
0∞ 3e

4
----- ; eéquiv.

90∞ e
4
---==
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1.2. Stiffness matrix  According to the Equation 11.8 and the values in
Section 3.3.3:

1.3. One has, according to Equation 12.9:

from which:

Ex = 102,506 MPa

Ey = 38,847 MPa

nyx = 0.017; nxy = 0.045

Gxy = 4200 MPa

One then can verify that:

1
h
--- A[ ]:

E11
0∞

E� 134,439 MPa;  E12
0∞ nt� E� 1756 MPa= == =

E22
0∞

Et 7023 MPa;  E33
0∞

G�t 4200 MPa= == =

E11
90∞

7023 MPa;  E12
90∞

1756 MPa;  E22
90∞

134,439 MPa;  E33
90∞

4200MPa= = = =

A11 E11
0∞ 3e

4
----- E11

90∞ e
4
---¥+¥ 102,585 e MPa.mm( )¥= =

A22 E22
0∞ 3e

4
----- E22

90∞ e
4
---¥+¥ 38,877 e MPa.mm( )¥= =

A12 1756 MPa;  A33 4200 e MPa.mm( )¥= =

      
1
h
--- A[ ]

102,585   1756   0

1756   38,877   0

0     4200

MPa( )=

h A[ ] 1–

1
Ex

-----   
nyx

Ey

-------–   0

nxy

Ex

-------–   1
Ey

-----   0

0   0   1
Gxy

--------

=

1
h
--- A[ ]#

Ex nyx Ex 0

nxy Ey Ey 0

0 0 Gxy
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1.4. One has (Equation 12.18):

With (Equations 12.17 and 11.10):

with (Section 3.3.3): a� = –0.12 ¥ 10-5; a t = 3.4 ¥ 10-5.

One then deduces:

aox = –2.3 ¥ 10-7; aoy = 39 ¥ 10-7; aoxy = 0

2.1. Constitutive behavior: {s } = {e }: According to Equation 11.8
Layer no. 2:

Layer no. 1:

aox

aoy

aoxyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

h A[ ] 1–

1
h
--- aEh· Ò x

1
h
--- aEh· Ò y

1
h
--- aEh· Ò xyÓ ˛

Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

=

aEh· Ò x aE1
0∞ 3

4
---¥ e aE1

90∞ e
4
---¥+ º= =

º E� a� nt�at+( ) 3
4
---e Et n�ta� at+( ) e

4
---¥+¥

1
h
--- aEh· Ò x 1726 ¥ 10 5– .  Then:–=

1
h
--- aEh· Ò y 15,203 ¥ 10 5– ;

1
h
--- aEh· Ò xy 0= =

E[ ]

E11
2( )

Ex
Ex

1 nyx nxy–
-------------------------- 102,584 MPa etc.= = =

E[ ] 2( )
102,584   1744   0

1744   38,877   0

0   0   4200

=

E[ ] 1( )
38,877   1744   0

1744   102,584   0

0   0   4200

=
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2.2. Coefficients :
Layer no. 2:

Layer no. 1 (rotation of 90∞):

2.3. In-plane behavior of the double layer:

3.1. Matrix [A]:

3.2. Matrix [C]:

aEi

aE1
2( )

Ex aox nyxaoy+( ) 0.0168–= =

aE2
2( )

0.1512;  aE3
2( )

0= =

aE1
1( )

0.1512;  aE2
1( )

0.0168;  aE3
1( )

– 0= = =

A11 E11
1( )

e E11
2( )

e¥+¥ 102,584 38,877+( ) 0.14, etc.¥= =

A[ ]
19,804   488   0

488   19,804   0

0   0   1176

MPa. mm( )=

A[ ]
a b+( )e   2ce   0

2ce   a b+( )e   0

0   0   2de

=

C11 a
0 e–( )3–

3
---------------------Ë ¯

Ê ˆ b
e3 0–

3
-------------Ë ¯

Ê ˆ+ a b+( )e3

3
---- , etc.= =

C[ ]

a b+( )e3

3
----   2ce3

3
----   0

2ce3

3
----   a b+( )e3

3
----   0

0   0   2de3

3
----

=
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3.3. Matrix [B]:

3.4. Terms <aEh>i and <aEh2>i:

3.5. Thermomechanical behavior:

B11 a
0 e–( )2–

2
---------------------Ë ¯

Ê ˆ b
e2 0–

2
-------------Ë ¯

Ê ˆ+ b a–( )e2

2
---- etc.,= =

B[ ]
b a–( )e2

2
----   0   0

0   a b–( )e2

2
----   0

0   0   0

=

aEh· Ò x fe ge+ f g+( )e= =
aEh· Ò y f g+( )e;  aEh( )xy 0= =

aEh2· Ò x g f–( )e2

2
----=

aEh2· Ò y f g–( )e2

2
----;  aEh2( )xy 0==

Nx

Ny

Txy

My

Mx–

Mxy–
Ó ˛
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

a b+( )e   2ce   0   b a–( )e2

2
----   0   0

2ce   a b+( )e   0   0   a b–( )e2

2
----   0

0   0   2de   0   0   0

b a–( )e2

2
----   0   0   a b+( )e3

3
----   2ce3

3
----   0

0   a b–( )e2

2
----   0   2ce3

3
----   a b+( )e3

3
----   0

0   0   0   0   0 2 de3

3
----

eox

eoy

g oxy

∂ 2
wo

∂x2
------------–

∂ 2
wo

∂y2
------------–

2
∂ 2

wo

∂x∂ y
--------------–Ó ˛

Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

º=

º T

f g+( )e

f g+( )e

0

g f–( )e2

2
----

f g–( )e2

2
----

0
Ó ˛
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

D–
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3.6. Variation of temperature DT:
One has here:

Nx = Ny = Txy = Mx = My = Mxy = 0

from which we have

3.7. One can note that:

3.8. There remains

Remark: According to the model studied, one truly must have

a + b( )e   2ce   0   b - a( )e2

2
----   0   0

2ce   a + b( )e   0   0   a - b( )e2

2
----   0

0   0   2de   0   0   0

b - a( )e2

2
----   0   0   a b+( )e3

3
----   2ce3

3
----   0

0   a - b( )e2

2
----   0   2ce3

3
----   a + b( )e3

3
----   0

0   0   0   0   0 2 de3

3
----

eox

eoy

g oxy

∂2wo

∂x2
------------–

∂2wo

∂y2
------------–

2
∂2wo

∂x∂y
-------------–Ó ˛

Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

= T

f g+( )e

f g+( )e

0

g f–( )e2

2
----

f g–( )e2

2
----

0Ó ˛
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

D

g oxy 0;
∂ 2wo

∂xdy
------------- 0= =

a b+( )e 2ce b a–( )e2

2
---- 0

2ce   a b+( )e 0 a b–( )e2

2
----

b a–( )e2

2
---- 0 a b+( )e3

3
---- 2ce3

3
----

0 a b–( )e2

2
---- 2ce3

3
---- a b+( )e3

3
----

eox

eoy

∂ 2wo

∂x2
------------–

∂ 2
wo

∂ 2
y2

------------–
Ó ˛
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

DT

f g+( )e

f g+( )e

g f–( )e2

2
----

f g–( )e2

2
----

Ó ˛
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ï ¸

=

eox eoy;
∂ 2wo

∂x2
------------

∂ 2wo

∂y2
------------–= =
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It is worthy to note that with this hypothesis one obtains two identical systems
of equations which are written as:

3.9. With the results of the second part, and DT = –160∞C (corresponding to
the cooling in the autoclave after the polymerization of the resin), one has
(units: N and mm):

from which we obtain the strains and curvatures:

We can conclude that during the cooling the layer of balanced fabric not only
contracts but also, due to its weave, takes the form of a double curvature surface
along the warp and fill directions; that is, the form of a horse saddle.

18.3 LEVEL 3

18.3.1 Cylindrical Bonding

Problem Statement:

We propose to study, in a simplified approach, a bonded assembly of two
cylindrical tubes (figure below). The shear moduli of the materials are denoted
along with the figure:

a b 2c+ +( )e b a–( )e2

2
----

b a–( )e2

2
---- a b 2c–+( )e3

3
----

eox

∂ 2
wo

∂x2
------------–

DT
f g+( )e

g f–( )e2

2
----

=

a b+( )e 19,804; 2ce 488; a b+( )e3

3
---- 129; 2c

e3

3
---- 3.2= = = =

b a–( )e2

2
---- 624; f g+( )e 0.0188; g f–( )e2

2
---- 0.00164–= = =

eox eoy 1.7 10 4–¥–= =

∂ 2wo

∂x2
------------

∂ 2wo

∂y2
------------– 8.6 10 4–¥–= =
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The deformed configuration of the generator of each of the tubes viewed from
above is shown in the following figure, with the shear stresses 

 

t

 

10

 

 and 

 

t

 

20

 

 that
are assumed to be uniform across the thickness of each tube. Also shown is the
bonding element.

1. Find the distribution of the shear stresses in the adhesive layer, denoted
as 

 

t

 

C

 

 in the previous figure.
2. Numerical application:

 

G

 

1

 

=

 

 28,430 MPa;

 

G

 

2

 

=

 

 79,000 MPa;

 

G

 

C

 

=

 

 1700 MPa;

 

e

 

1

 

=

 

 

 

e

 

2

 

 

 

=

 

 12 mm;

 

e

 

C

 

=

 

 0.2 mm;

 

M

 

t

 

=

 

 300 m.daN;

 

r

 

1

 

=

 

 63.5 mm;

 

r

 

2

 

=

 

 51.5 mm;

 

�

 

=

 

 44 mm.

3. Calculate the maximum shear stress in the particular case where the
materials 1 and 2 are identical and have the same thickness, denoted as

 

e

 

, which is small compared with the radii.

 

Solution:

 

1. Shear stresses in the adhesive layer: In the previous figure that represents
the bonding element, one reads the following equilibrium:

 

�

 

Equilibrium of material element 1:

[a]dt1e1 dz tc dx dz+ 0
dt1

dx
--------e1 tc+Æ 0= =
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�

 

Equilibrium of material element 2:

[b]

The shear stresses are proportional to the angular distortions, denoted here as 

 

g

 

1

 

for material 1, 

 

g

 

2

 

 for material 2, and 

 

g

 

C

 

 for the adhesive, from which:

In addition one has the following geometric relation, by approximating the tangents
and angles (tg 

 

q

 

 

 

@

 

 

 

q

 

; see

 

 

 

figure):

as:

In substituting the stresses:

[c]

One then obtains the 3 relations [a], [b], [c], from the unknowns 

 

t

 

1

 

, 

 

t

 

2

 

, 

 

t

 

C

 

.
Eliminating 

 

t

 

1

 

 and 

 

t

 

2

 

 yields

then:

The general solution for the above differential equation is:

 

t

 

C

 

 

 

=

 

 A ch 

 

l

 

x 

 

+

 

 B sh 

 

l

 

x.

 

�

 

Boundary conditions:
For 

 

x

 

 

 

=

 

 0: It is the free edge of material 2, where 

 

g

 

2

 

 

 

=

 

 0 and 

 

g

 

1

 

 

 

=

 

 

 

t

 

10

 

/

 

G

 

1

 

.

[d]

dt2e2 dz tc dx dz– 0
dt2

dx
--------e2 tc–Æ 0= =

g 1

t1

G1

------ ; g 2

t2

G2

------ ;= g c

tc

Gc

------==

g c dg c+( ) g c # 
g– 1 dx g 2 dx+

ec

-----------------------------------–

dg c

dx
--------

g 2 g 1–
ec

----------------=

dtc

dx
--------

ec

Gc

------
t2

G2

------
t1

G1

------–=

d2tc

dx2
----------

ec

Gc

------
tc

e2G2

-----------
tc

e1G1

-----------+=

d2tc

dx2
---------- l2tc– 0 with l2 Gc

ec

------ 1
e2G2

----------- 1
e1G1

-----------+Ë ¯
Ê ˆ= =

from which:
dg c

dx
--------

x=0

g 2 g 1–
ec

----------------
t10

ecG1

-----------–= =

then:
dtc

dx
--------

x=0

t10Gc

ecG1

-------------–=
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For x = �: It is the free edge of material 1, where g1 = 0 and g2 = t20 /G2

[e]

The boundary conditions [d] and [e] allow the calculation of the constants A and
B of the general solution. We obtain

2. Numerical application:

One obtains for the shear stress tC the following distribution, where the stress
concentrations at the extremities of the assembly can be noted.

This explains that one should not design such a bonding assembly by basing on
the average shear stress, which does not exist in reality.

from which:
dg c

dx
--------

x=�

g 2 g 1–
ec

----------------
t20

ecG2

-----------= =

then:
dtc

dx
--------

x=�

t20Gc

ecG2

-------------=

tc

Gc

ecl
--------

t10

G1

------ 1
th l�
---------------

t20

G2

------ 1
sh l�
---------------+Ë ¯

Ê ˆ ch lx
t10

G1

------ sh lx–
Ó ˛
Ì ˝
Ï ¸

=

t10

Mt

2pr1
2e1

---------------- 9.86 MPa;= =

t20

Mt

2pr2
2e2

---------------- 15 MPa= =
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Note: The proposed numerical values correspond here to those of Application
18.1.4 relative to the design of a transmission shaft in carbon/epoxy. One can
note that the rupture strength of araldite, taken to be 15 MPa, is not effectively
reached at the location of stress concentrations.

3. Particular case:

G1 = G2 = G; e1 = e2 = e; e/r1 # e/r2.

The comparison:

allows one to write approximately:

t10 # t20

from which:

One notes the presence of peaks of identical stress at x = 0 and x = � as:

Taking into account that:

reveals the average stress in the adhesive (fictitious notion as mentioned above):

from which:

t10

Mt

2pr1
2e

-------------- and t20

Mt

2pr2
2e

--------------= =

tc

Gc

lecG
------------to

1
th l�
--------------- 1

sh l�
---------------+Ë ¯

Ê ˆ ch lx sh lx–
Ó ˛
Ì ˝
Ï ¸

=

tc max

Gc

lecG
------------to

ch l� 1+
sh l�

-------------------------
Gc

lecG
------------to

1

th l�
2

------
--------------= =

l2 2Gc

ecGe
------------ :=

tc max to
l2e
2l
-------- 1

th l�
2

------
-------------- toe

l/2
th l�/2
---------------------= =

taverage

Mt

2pr2�
--------------

Mt

2pr2e
--------------e

�
--- to

e
�
---= = =

tc max taverage
l�/2

th l�/2
---------------------=
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In setting l�/2 = a, one finds again the relation of Section 6.2.3:

18.3.2 Double Bonded Joint

Problem Statement:

Shown below is an assembly consisting of two identical plates of material 1
bonded to a central plate of material 2. This joint provides a plane of symmetry
(x - y). We will study approximately the shear stress in the adhesive. For that,
assume that the stresses are just functions of x.

The configuration of a bonding element of length dx is shown below. The
moduli of the materials are denoted as: E1 for material 1, E2 for material 2, GC for
the adhesive.

1. Determine the distribution of shear stresses in the adhesive, denoted as tC (x).
2. Numerical application: The two external plates are made of titanium alloy

(TA 6V), with thickness 1.5 mm. The intermediate plate is a laminate of
carbon/epoxy, with Vf = 60% fiber volume fraction and the following
composition:

t
max

a
th a
------------ t

average
¥ ; with a = 

Gc�
2

2Geec

---------------=
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The thickness of one ply is 0.125 mm. The rupture strength of the adhesive
(araldite) is taken to be 15 MPa. Its thickness is 0.2 mm. What length of
bond � will allow the bonding assembly to transmit a stress resultant of
20 daN/mm of width?

3. Calculate the maximum shear stress in the particular case where the mate-
rials 1 and 2 are identical and where e1 = e2 = e.

Solution:

1. Shear stress in the adhesive: In the previous figure showing an element
of the bond, one reads the following equilibrium:
� Equilibrium of element of material 1:

[a]

� Equilibrium of element of material 2:

[b]

In addition, one also has the following geometric relation in approximating the
tangents and angles:

then with the constitutive relations:

[c]

One obtains three relations [a], [b], [c] for the three unknowns s1, s2, tC.
One can write:

ds1e1 dy tc dx dy+ 0
ds1

dx
---------e1 tc+Æ 0= =

ds2e2 dy tc dx dy– 0
ds2

dx
---------e2 tc–Æ 0= =

g c # 
u2 u1–

ec

-----------------

g c

tc

Gc

------ ;
du1

dx
--------- 1

E1

-----s1;
du2

dx
--------- 1

E2

-----s2= = =

tc

Gc

------ # 
u2 u1–

ec

-----------------

ec

Gc

------
dtc

dx
--------

s2

E2

-----
s1

E1

-----–=

1
E1

-----
ds1

dx
---------

tc

e1E1

---------- ;
1
E2

-----
ds2

dx
---------

tc

e2E2

----------=–=

1
E1

-----
ds1

dx
---------

1
E2

-----
ds2

dx
---------– tc

1
e1E1

---------- 1
e2E2

----------+Ë ¯
Ê ˆ–=
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Taking into account the relation [c]:

The solution of the differential equation can be written as:

� Boundary conditions:

from which we can write the constant values:

In addition (relation [a] + [b]):

That is, according to [a]

[d]

d2

dx2
---------

s1

E1

-----
s2

E2

-----–Ë ¯
Ê ˆ Gc

ec

------ 1
e1E1

---------- 1
e2E2

----------+Ë ¯
Ê ˆ s1

E1

-----
s2

E2

-----–Ë ¯
Ê ˆ=

d2

dx2
---------

s1

E1

-----
s2

E2

-----–Ë ¯
Ê ˆ l2 s1

E1

-----
s2

E2

-----–Ë ¯
Ê ˆ– 0; with l2 Gc

ec

------ 1
e1E1

---------- 1
e2E2

----------+Ë ¯
Ê ˆ= =

s1

E1

-----
s2

E2

-----– A ch lx B sh lx+=

 for x 0; s1 s10 and s2 0 then:
s1

E1

-----
s2

E2

-----–Ë ¯
Ê ˆ

x=0

s10

E1

-------= = = =

 for x �; s1 0 and s2 s20 then:
s1

E1

-----
s2

E2

-----–Ë ¯
Ê ˆ

x=�

s20

E2

-------–= = = =

A
s10

E1

------- ; B
s20

E2 sh l�
----------------------

s10

E1 th l�
---------------------+Ë ¯

Ê ˆ–= =

ds1

dx
---------e1

ds2

dx
---------e2+ 0=

where:
ds1

dx
--------- 1

E1

-----
e1

e2E2

----------+ Al sh lx B l ch lx+=

tc
1

e1E1

---------- 1
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Remarks:

� One obtains in this manner only an approximation for the shear stress
tC. It should be possible to deduce directly from relations [a], [b], [c] a
differential equation in tC. However, its integration will reveal at the
limits x = 0 and x = � the zero values of tC (free surface of the adhesive)
making it impossible to obtain a nonzero solution. At the inverse, the
expression found here for tC does not become zero for x = 0 and x = �.
This contradicts with reality.

One can conclude from the above that the unidimensional approximation for
the stresses s1, s2, tC is unwarranted. However, the form found here for tC gives
an acceptable order of magnitude for this stress, except at the immediate vicinity
of the free edge. Numerical modeling of the phenomenon (finite element method)
shows in effect that the shear stress tC increases very rapidly from the free edge, up
to a peak value very close to the value here. Apart from this particularity, there is
a good correlation with the values given in relation [d].

� It also appears in the adhesive normal peel stresses that are confined
to a peak zone close to the free edge. They constitute another factor
that is not taken into account in this study.

2. Numerical application:
Longitudinal modulus of titanium (see Section 1.6): E1 = 105,000 MPa.
Shear modulus of the adhesive (araldite): GC = 1,700 MPa.
Longitudinal modulus of the laminate: With the proportions of the previous
plies along the directions 0∞, 90∞, ±45∞, one finds (Table 5.4 in Section 5.4.2):
E2 = 100,590 MPa.
Thickness of the laminate: 2e2 = 20 plies ¥ 0.125 mm = 2.5 mm from which
e2 = 1.25 mm.

A stress resultant of 20 daN/mm corresponds to the stresses:

� In the titanium:

� In the laminate:

A numerical calculation of expression [d], for example, with a programmable
calculator, allows one to verify easily the rupture criterion of the adhesive for a
length of � = 40 mm, as shown in the following:

s10
200

2 ¥ 1.5
------------------- 66.66 MPa= =

s20
200
2.5
--------- 80 MPa= =
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3. Particular case: The materials are identical: e1 = e2 = e. Then s10 = s20 =
s0 and:

One notes identical peak values of stress for x = 0 or x = � as:

Taking into account that:

Introducing an average shear stress in the adhesive, which is a fictitious stress
as one can consider in the previous figure:

then:

tc

Gc

lec E
------------s0

1
th l�
------------- 1

sh l�
---------------+Ë ¯

Ê ˆ ch lx sh lx–
Ó ˛
Ì ˝
Ï ¸

=

tc max 

Gc

lec E
------------s0

ch l� 1+
sh l�

------------------------
Gc

lec E
------------s0

1

th l�
2

------
------------= =

l2 2Gc

eceE
-----------=

tc max s0
el2

2l
-------- 1

th l�/2
--------------------=

taverage s0
e
�
---=

tc max
l�/2

th l�/2
--------------------taverage=
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in posing:

18.3.3 Composite Beam with Two Layers

Problem Statement:

A composite beam is made up of two different materials, denoted as 1 and 2,
that are bonded together. The cross section of the beam is shown in the figure
below. The thickness of the adhesive is neglected. The materials are isotropic
and elastic. The longitudinal and shear moduli of the two materials are denoted
as E1, G1 and E2, G2.

The elements that allow the study of the bending behavior of this beam in its
plane of symmetry are summarized in Table 15.16.

1. Determine the location of the elastic center denoted as O.

2. Write the expression for the equivalent stiffnesses (do not provide details
for the shear coefficient k).

3. The shear force along the y direction for the considered section is denoted
as T. Calculate the shear stress distribution txy. Deduce from that the shear
stress in the adhesive at the interface between the two materials.

Solution:

1. Elastic Center: This is determined such that:

(see Equation 15.16). Let A be an arbitrary origin defining ordinate denoted as Y.
The point O to be found is such that:

l�/2 a=

tc
max

a
th a
---------- t

average
; with a¥

Gc�
2

2Eeec

--------------= =

Ei y Sd
section

 

Ú 0=

TX846_Frame_C18c  Page 474  Monday, November 18, 2002  12:45 PM

© 2003 by CRC Press LLC 



then:

One finds after calculation:

2. Equivalent stiffnesses:
� Extensional stiffness:

� Shear stiffness:

� Bending stiffness:

Ei Y a–( ) Sd
section

 

Ú 0=

a
EiY Sd

section

 

Ú
Ei Sd

section

 

Ú
------------------------------=

EiY Sd
section

 

Ú E1Yb Yd
0

H1

Ú E2Yb Yd
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H1+ H2

Ú+=

a
1
2
---

E1 E2–( )H1
2 E2 H1 H2+( )2+

E1H1 E2H2+
------------------------------------------------------------------

Ó ˛
Ì ˝
Ï ¸

=

ES· Ò EiSi

i

 

Â b E1H1 E2H2+( )= =

GS· Ò
k

------------
GiSi

k
----------

i

 

Â b
k
--- G1H1 G2H2+( )= =

EI· Ò EiIi

i
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3. Subject to a shear force T along the y direction, the shear stresses are
assumed to be limited to the component txy, given in the material “i” by
the relation (see Equation 15.16):

in which go(y) is the warping function due to shear and solution of the problem:

The uniqueness of the function go(y) is assured by the condition:

One finds in material 1:

and in material 2:

from which one finds for shear the following parabolic distribution along the
height of the beam

The corresponding variations are shown below. At the junction between the two
materials (y = H1 – a), one finds the shear in the adhesive:

EI· Ò bE1 y2 Sd
-a

H1-a

Ú bE2 y2 Sd
H1 a–

H1+H2-a

Ú+=

EI· Ò b
3
--- E1 H1 a–( )3 a3+[ ] E2 H1 H2 a–+( )3 H1 a–( )3–[ ]+{ }=

txy Gi
T
GS· Ò

------------
dgoi

dy
----------=

d2go

dy2
----------

Ei

Gi

-----–
GS· Ò
EI· Ò

------------y throughout the cross section=

dgo

dy
-------- 0 for y a–= =  and y H 1 H2 a (free boundaries)–+=

Ó
Ô
Ô
Ì
Ô
Ô
Ï

Ei go Sd
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Remark: The integration of the function go(y) allows the calculation of the
shear coefficient k by Equation 15.16:

The calculation is long but does not present any particular difficulty. The numerical
values of k are shown in the following figure for different ratios of E1/E2 and H2/H1,
for the particular case of identical Poisson coefficients.

18.3.4 Buckling of a Sandwich Beam

Problem Statement:

A sandwich beam is compressed at its two ends by two opposite forces F. The
two ends are constrained so that there is no rotation.

txy
T
2
---

E1

EI· Ò
-----------H1 2a H1–( )=

adhesive

k
1
EI· Ò

----------- Ei go y Sd
section

 

Ú=

TX846_Frame_C18c  Page 477  Monday, November 18, 2002  12:45 PM

© 2003 by CRC Press LLC 



1. For what value of F, denoted as Fcritical, can we obtain a deformed config-
uration for the beam other than the straight configuration, for example,
the configuration shown in the figure below (adjacent-equilibrium)?

2. What error will be caused by neglecting shear deformation of the beam?
(Assume that the dimensions and the material constitutive relations are
known.)

Solution:

1. With the notation convention of Chapter 15 (bending of composite beams),
recall the behavior equations for the beam Equation 15.16.

Referring to the figure below, one can write the following relations, in which
C represents the moment due to the constraint on the right-hand side.

from which, by substituting in the constitutive relations:

Elimination of qz between these two relations leads to the following equation:

[a]

from which the general solution can be written as: (with the condition that )

Ty
GS· Ò
k

------------ dn
dx
------ qz–Ë ¯

Ê ˆ ; Mz EIz· Ò
dqz

dx
--------= =

Ty # F
dn
dx
------ ; Mz C F n–=

F
dn
dx
------ GS· Ò

k
------------ dn

dx
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Ê ˆ ; C F n– EIz· Ò
dqz

dx
--------= =

d2n
dx2
--------- l2n+ l2C

F
---    with    l2 F

EIz· Ò
------------- 1

1 kF
GS· Ò

-------------–Ë ¯
Ê ˆ
------------------------= =

F
GS· Ò
k

-----------<

n x( ) A lxcos B lxsin
C
F
---+ +=
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� Boundary conditions:
For x = 0 one notes n(0) = 0 and qz(0) = 0. This last condition leads to

Due to:

One then finds that:

For x = � one notes n(�) = 0 and qz(� ) = 0.

cos l� = 1

from which:

l� = 2np

one obtains for n(x) the form:

[b]

The critical value Fcritical is given by:

where l2 has the form [a], leading to:

dn
dx
------

x=0

0=

qz 1 F
k

GS· Ò
------------–Ë ¯

Ê ˆ dn
dx
------=

B 0; A
C
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---–= =
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F
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--- 1 2 npx

�
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------------------------------------------------=
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The smallest value of F is obtained for n = 1 as:

Remarks:

� One can verify that the value of Fcritical is less than

the form of the general solution n(x) written above is therefore legitimate.
� It is convenient to note that the deformed n(x) written in [b] is only

defined by a multiplication factor, because the constraining couple C is
indeterminate. One can find this property by writing explicitly as a
function of n(x) the relation:

2. Neglecting shear effect the assumed undeformability under shear leads to
zero corresponding energy of deformation (Equation 15.16). In this case,
one has: k = 0.

The critical force then takes the value:

The error relative to its previous value is then:

For numerical value, we calculate this error for the beam in Section 4.2.2
(beam made of polyurethane foam and aluminum, 1 meter long). One has

Fcritical
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-------------------------- k
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dqz
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----------------------=

Error
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-------------- 1–=

Error
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-------------------------=

EIz· Ò 475 ¥ 102;
GS· Ò
k

------------- 650 ¥ 102= =
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The error committed is spectacular:

Error = 28.84 = 2884%!

18.3.5 Shear Due to Bending in a Sandwich Beam

Problem Statement:

One considers the cross section of a sandwich beam as shown in the following
figure. The components, assumed to be isotropic (or transversely isotropic), are
denoted as 1 and 2. They are perfectly bonded to each other with an adhesive
with negligible thickness. The beam has a unit width. The moduli of elasticity
are denoted as shown.

Using the formulation in Equation 15.16 for bending of composite beams:

1. Study the warping function go for this cross section.
2. Deduce from there the shear stress distribution.
3. Calculate the shear coefficient for bending in the plane xy, as well as the

deformed configuration of a cross section under the effect of shear. Numer-
ical application: Give the value of k for a beam made of polystyrene foam
with thickness of 80.2 mm (E2 = 21.5 MPa; G2 = 7.7 MPa) and with aluminum
skins with thickness of 2.15 mm (E1 = 65,200 MPa; G1 = 24,890 MPa).

Solution:

1. Warping due to bending:
This is the solution of the problem described in Equation 15.16. Assuming
here that go does not vary with the variable z:

d2go

dy2
----------

Ei

Gi

----- GS· Ò
EIz· Ò

------------- y in the domain of the section¥–=

dgo

dy
-------- 0 for y  ± H1/2.= =

Ó
Ô
Ô
Ì
Ô
Ô
Ï

TX846_Frame_C18c  Page 481  Monday, November 18, 2002  12:45 PM

© 2003 by CRC Press LLC 



in which both go and Gi dgo /dy are continuous as one crosses from material 1 to
material 2.

Taking into account the antisymmetry of the function go with respect to variable
y, one obtains

with:

2. Shear stresses due to bending:
These are given by the relation (see Equation 15.16):

then:

One obtains
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The corresponding distribution is illustrated below for two distinct designs of the
components 1 and 2.47

3. Shear coefficient:
The calculation of k is done without difficulty starting from Equation 15.16:

One obtains

The evolution of the shear coefficient k is represented in the following
figure for different values of the ratios E1/E2 and with the same Poisson
coefficient (0.3) when varying thickness of the skins.

47 Observation of the evolution of txy for the beam with thin skins justifies the simplification
proposed in Application 18.2.1, “Sandwich Beam: Simplified Calculation of the Shear Coefficient.”
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Remarks:

� The limiting cases E2 = E1; H2 = H1; H2 = 0 correspond to a homogeneous
beam with rectangular cross section for which one finds again the classical
value k = 6/5 (or 1.2).

� The expression for the k coefficient written above is long. One can obtain
a more simplified expression for easier manipulation if the skins are thin
relative to the total thickness of the beam. One can refer to Application 18.2.1.

� Deformed configuration of a cross section: The displacement of each point
of the cross section out of its initial plane is obtained starting from the
function go by the relation (see Equations 15.12 and 15.15):

It is described graphically for two distinct sets of properties of components 1 and
2 in the following figure:

hx

Ty
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------------ go k y¥–( )=
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� Numerical application:
One finds: k = 165.7. Note that for this type of beam, the shear coefficient
can have very high values compared with those that characterize the
homogeneous beams.

18.3.6 Column Made of Stretched Polymer

Problem Statement:

Consider a cylindrical column or revolution designed for use in the chemical
industry (temperature can be high, and it may contain corrosive fluid under
pressure) made of polyvinylidene fluoride (PVDF). It is reinforced on the outside
by a filament-wound layer of “E” glass/polyester. The characteristics of the two
layers of materials are as follows:

� Internal layer in PVDF: thickness e1, isotropic material, modulus of elasticity
E1, Poisson coefficient n1.

� External layer in glass/polyester: To simplify the calculation, one will
neglect the presence of the resin. As a consequence, Et, nt�, G�t (see Chapter
10) are neglected. The total thickness of the glass/polyester layer E2 consists
of a thickness denoted as h90 of windings along the 90∞ direction relative
to the direction of the generator of the cylinder, and a thickness denoted
as h±45 of balanced windings along the +45∞ and –45∞ direction (as many
fibers along the +45∞ as along the –45∞ direction). One then has e2 = h90 +
h±45 (see figure below).

The longitudinal modulus of elasticity of the glass/polyester layer is denoted
as E�. The thicknesses e1 (internal) and e2 (external) will be considered to be small
relative to the average radius of the column.

1. The plane that is tangent to the midplane of the glass/polyester laminate
is denoted as x,y (see figure). Calculate the equivalent moduli  and ,
the equivalent coefficients  and  of the reinforcement glass/polyester
as function of E�, h

90, and h±45.
2. One imposes a pressure of p0 inside the column at room temperature

(creep of the materials not considered). The resulting stresses are denoted

Ex Ey

nyx nxy
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in the axes x,y:

s1x and s1y in the internal layer of PVDF
s2x and s2y in the external layer of glass/polyester

(a) Write the equilibrium relation and the constitutive equation resulting
from the assembly that is assumed to be perfectly bonded. Deduce
from there the system that allows the calculation of s1x and s2x.

(b) Numerical applications: Internal pressure p0 = 3 MPa (30 bars); r = 100
mm. PVDF: E1 = 260 MPa; n1 = 0.3; e1 = 10 mm. Glass/polyester: E� =
74,000 MPa; e2 = 0.75 mm; h90 = h±45/3. Calculate s1x , s1y , s2x, s2y .

(c) Deduce from the previous results the stresses s�
90 in the glass fibers

at 90∞, and s �
±45 in the fibers at ±45∞. Comment.

3. We desire to modify the ratio h90/h±45 such that the stresses are identical
in the fibers at 90∞ and in the fibers at ±45∞ (“isotensoid” external layer).
(a) What are the relations that h90/h±45, s2x, s2y have to verify?
(b) Indicate an iterative method that allows, starting from the results of

Question 2b, the calculation of the suitable ratio h90/h±45. Give the
composition of the glass/polyester with the corresponding real thick-
nesses (use a mixture with Vf = 25% fiber volume fraction).

Solution:

1. Equivalent moduli:
The constitutive law of the laminate in the axes x,y is written as (see
Equation 12.4):

The coefficients  are given by Equation 11.8 as, neglecting Et, nt�, G�t:

� For the plies at 90∞:

� For the plies at +45∞:
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� For the plies at –45∞:

from which one can find the coefficients Aij. For example, one has

and so forth. One obtains

In inverting and in denoting for the average stresses (fictitious) in the external 
laminated layer (index 2): s2x = Nx /e2; s2y = Ny /e2; t2xy = Txy /e2

The above relation can be also interpreted as follows (see Equation 12.9):

where the equivalent moduli of the laminate appear. From this, by identification
one has
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Comment:

The obtained results are simple because:

� The polyester resin is not taken into account. The fibers work only in their
direction.

� The voluntary decoupling between the external layer (glass/resin) and the
internal layer (PVDF) is preferred to the consideration of a “global” laminate
consisting of plies of glass/resin at 90∞, +45∞, –45∞ and a ply of PVDF,
isotropic, with thickness e1.

2. (a) Equilibrium relation:
The isolation of the portions of the column shown below allows one
to write

from which one has the equilibrium relations:

� Constitutive relations:
The elastic behavior of the internal layer of PVDF is described by the
classical isotropic equation:

2pr e1s1x e2s2x+( ) pr2p0=
1 2¥ e1s1y e2s2y+( ) 1 2r p0¥¥=

e1s1x e2s2x+ p0
r
2
---  [2]=

e1s1y e2s2y+ p0r  [3]=

e1x

e1y

g 1xyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸ 1

E1
-----

n1

E1
-----– 0

n1

E1
-----– 1

E1
----- 0

0 0 1
G1
------

s1x

s1y

t1xyÓ ˛
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ï ¸

=
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The behavior of the external layer in composite is described by the relation
obtained in the previous question as:

Equality of strains under the action of stresses is written as:

and leads to the relation:

Relations [2], [3], [4], [5] constitute a system of four equations for the four
unknowns s1x, s1y, s2x, s2y. Performing the subtraction [4] – [5], one obtains

In performing the addition [4] + [5], one obtains

and with [2] and [3], by substitution, one obtains a system that allows the calculation
of s1x and s1y as:

[6]

eox

eoy

g oxyÓ ˛
Ô Ô
Ô Ô
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Ô Ô
Ï ¸ 1
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Ô Ô
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(b) Numerical application:
One has h90 = h±45/3, from which we have

e2 = h90 + h±45 = 0.75 mm; h±45 = 0.56 mm; h90 = 0.19 mm.

Following the results [1], one finds

The system [6] has for solutions:

Relations [4] and [5] allow the calculation of s2x and s2y. One finds

(c) Stresses in the fibers:
Following Equation 11.8, one has for any ply k in the external layer:

[7]

The strains eox and eoy are obtained by means of the previous results (see
Question  2a), for example:

If one inverts Equation 11.4, taking into account that the only nonzero
stress in the axes �, t of the ply is s�:

[8]

One then has

� In the fibers at 90∞:
Following [7], sx

90 = 0; sy
90 = E� eoy

Following [8], sx
90 = 0; sy

90 = s�
90

Ex 7953 MPa; Ey 18747 MPa; nxy 0.42= = =
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Ô Ô
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from which:

� In the fibers at +45∞:
Following [7]: sx

+45 = sy
+45 = (eox + eoy)

Following [8]: sx
+45 = sy

+45 = s�
+45

from which one obtains

One obtains an identical stress in the fibers at –45∞. Note the disparity of the
stresses in the fibers at 90∞ and at ±45∞. In fact, the external layer is not suitably
designed, because it is desirable to make all fibers work equally in order to obtain
a uniform extension in the glass fibers.

3. (a) One desires that s�
90 = s�

±45:
Referring to the results of the previous question, this equality is also written
as:

as:

eoy = eox

The constitutive relation of the laminate (Question 1 and relation [1])
indicates then:

Then after calculation:

[9]

(b) With the results of numerical application 2(b), relation [9] above
indicates

If one adopts this new value for the ratio h90/h±45, one obtains for new results:

s�
90 E�eoy=

s�
90 729 MPa=

E�

4
-----
1
2
---

s�
+45 E�

2
----- eox eoy+( )=

s�
+45 477 MPa=

E�eo�

E�

2
----- eox eoy+( )=

s2x

Ex

-------
nyx

Ey

-------s2y–
nxy

Ex

-------s2x–
s2y

Ey

-------+=

h90

h 45±---------
s2y s2x–

s2x

---------------------=

s2y s2x–
s2x

--------------------- 0.53=
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� h90/h±45 = 0.53;

Relation [9] then indicates

that one adopts for the new ratio h90/h±45:

� h90/h±45 = 0.587:

Relation [9] then indicates

that is, a relative variation of 2% with respect to the value of the ratio (h90/h±45)
taken to carry out the calculations. The iterative procedure then converges rapidly.
One will obtain the external isotensoid layer and an internal layer of PVDF in
biaxial tension for a ratio of

h90/h±45 # 0.6

The composition of the glass/polyester reinforcement will be as follows:

Ex 8216 MPa; Ey 25,653 MPa; n xy= 0.32; n yx 1= = =
s1x 2.42 MPa; s1y 2.72 MPa;= =
s2x 167 MPa; s2y 364 MPa;= =

s2y s2x–
s2x

--------------------- 0.587=

Ex 8166 MPa; Ey 27,627 MPa; n xy= 0.29; n yx 1= = =
s1x 2.63 MPa; s1y 2.69 MPa; = =
s2x 165 MPa; s2y 364 MPa.= =

s2y s2x–
s2x

--------------------- 0.6=
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The real thickness of the windings in glass/polyester, taking into account the
volume of the resin, will be (with Vf = 0.25):

 = e2 /0.25

 = 3 mm

18.3.7 Cylindrical Bending of a Thick Orthotropic Plate under
Uniform Loading

Problem Statement:

Consider a thick rectangular plate b ¥ a, with b >> a made of unidirectional glass/
resin (see figure). It is supported at two opposite sides and is loaded by a constant
transverse pressure of qo.

1. Calculate the deflection due to bending at the midline of the plate located
at x = a /2 (maximum deflection).

2. Indicate the numerical values of the contributions from the bending
moment and from transverse shear using the following: Ex = 40,000 MPa;
Gxz = 400 MPa; nxy = 0.3; nyx = 0.075; qo = –1 MPa; a = 150 mm; h = 15 mm.
Comment.

Solution:

1. For the cylindrical bending considered, Equation 17.32 allows one to write

Elimination of Qx, My and qy leads to

e¢2

e¢2

dQx

dx
---------- q0–= ;

dMy

dx
---------- Qx; My C11

dqy

dx
-------- ; Qx

hGxz

kx

------------
dwo

dx
---------- qy+Ë ¯

Ê ˆ= = =

d 4wo

dx4
------------

qo

C11

-------=

TX846_Frame_C18c  Page 493  Monday, November 18, 2002  12:45 PM

© 2003 by CRC Press LLC 



then:

The boundary conditions are written as:

After calculation of the constants A, B, C, D, one obtains for the deflection at x = a/2:

The calculation of kx was done in Section 17.7.1 for this type of plate. One
has (see Equation 17.34)

kx = 6/5 = 1.2

from which:

The first term in the brackets represents the contribution from the bending
moment, and the second term represents that due to transverse shear.

2. Numerical values:

wo(a /2) = –0.5727 mm – 0.5625 mm
(moment) (transverse shear)

wo(a/2) = –1.13525 mm

Note that 49.5% of this deflection is due to transverse shear. One can see from
the above expression for wo(a/2) that the influence of transverse shear on the
bending deflection increases with the value of the relative thickness h/a (here,

wo

qo
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6
----- B
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2
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¸
w0 0; My 0
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--------fi
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412 1 nxynyx–( )
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Ì ˝
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-----------------------------------+
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Ì ˝
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h/a = 1/10 corresponds to a thick plate). One also notes the influence of the ratio
Ex /Gxz.

48

18.3.8 Bending of a Sandwich Plate

Problem Statement:

A rectangular sandwich plate (a ¥ b) is fixed on side b, and loaded along the
opposite side by a constant distributed load fo (N/mm). The two other sides are
free (see figure).

The plate consists of two identical orthotropic skins of material 1, and an
orthotropic core made of material 2. The orthotropic axes are parallel to the axes
x,y,z.

1. Calculate the deflection of the midplane at the extremity x = a of the x
axis, assuming cylindrical bending about y axis for the plate.

2. Numerical application:
Given
fo = –10 N/mm
a = b = 1000 mm
H1 = 2H2 = 100 mm

Material 1:
Ex

(1) = 40,000 MPa
Gxz

(1) = 4000 MPa

Material 2:
Ex

(2) = 40 MPa
Gxz

(2) = 15 MPa

For each of the materials
nxy = 0.3
nyx = 0.075

48 This example of thick plate in bending constitutes a test case for the evaluation of computer
programs using finite elements. For complementary information on this topic, see bibliography,
“Computer programs for Composite Structures: Reference examples and Validation.”
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(a) Calculate the deflection at the extremity x = a and show the contributions
from the bending moment and from the transverse shear.

(b) Calculate the transverse shear stress txz:

� On the midplane of the plate.
� At the interface between the core and the upper skin.
� At the midthickness of the upper skin.

Solution:

1. In the case of cylindrical bending, Equation 17.32 allows one to write

Then Qx = fo, and elimination of Qx, My, and qy leads to

then:

The boundary conditions are written as:

After calculation of the constants A, B, C, one obtains the deflection at x = a:

with (see Equation 12.16):

and according to Equation 17.2:

dQx

dx
---------- 0;

dMy

dx
---------- Qx; My C11

dqy

dx
-------- ; Qx

hGxz· Ò
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-----------------
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-------=
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-------–
x3

6
----- A
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2
----- Bx C+ + +Ë ¯

Ê ˆ=

x 0 : w0 0 et qy 0 kx
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-----------------

dwo
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----------–fi 0= = ==

x a  : My 0
dqy

dx
--------fi

d2wo

dx2
------------– 0= = = =

wo a( )
foa

3
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-----------------+=

C11 E 11
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3 H2
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------------------Ë ¯
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According to Equation 17.10:

from which one obtains

The calculation of kx was carried out in Section 17.7.2 for this type of plate. It
was given by Equation 17.39.

2. Numerical application:
(a) Deflection: Equation 17.39 gives kx = 110.8

from which:

wo(a) = –1.177 mm + (–5.519 mm)
(moment) (transverse shear)

wo(a) = –6.636 mm

Note that 83% of this deflection is due to transverse shear, and this happens in
spite of very thick skins. This important influence is due to the very large value
compared with unity (110.8) of the transverse shear coefficient and due to the
fact that the plate is thick (H1/a = 1/10).

(b) Transverse shear stress txz (see Section 17.7.2):

Midplane: (z = 0): txz = 0.1286 MPa

Interface (z = H2 /2): txz = 0.12855 MPa

Midthickness of the upper layer: z = (H1 + H2)/4: txz = 0.075 MPa

18.3.9 Bending Vibration of a Sandwich Beam49

Problem Statement:

Consider a sandwich beam of length � and width d simply supported at its ends
(see figure). It consists of two identical skins of material 1 (glass/resin) and a core

49 This application constitutes a test case for the validation of computer programs using finite
elements, see in the bibiography, “Programs for the calculation of Composite Structures,
Reference examples and Validation.”
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3–( ) E x

➁ H2
3+

---------------------------------------------------
kx foa

Gxz
➀ H1 H2–( ) Gxz

➁ H2+
------------------------------------------------------+=
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of material 2 (foam). These materials are transversely isotropic in the plane y,z.

The elastic characteristics are denoted as:

Specific masses are r1 and r2.

1. Write the equation for the resonant frequencies for bending vibration in
the plane of symmetry (x, y) of this beam.

2. Numerical application:
Given:

 = 40,000 MPa;  = 4,000 MPa; r1 = 2,000 kg/m3

 = 40 MPa;  = 15 MPa; r2 = 50 kg/m3

H1 = 2H2 = 100 mm; � = 1000 mm; d = 100 mm

Calculate the first five frequencies in bending vibration.

Solution:

1. Equation for the vibration frequencies:
At first one establishes the differential equation for the dynamic displace-
ment n(x, t) starting from the Equation 15.18, noting that for the example
considered, the elastic center and the center of gravity of section are the
same (decoupling between bending vibration and longitudinal vibrations).

Elimination of Ty, Mz, qz between these four relations leads to the equation for
n(x, t):

Ex
➀ , Gxy

➀ , Ex
➁ ,Gxy
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with

In assuming that the solution takes the form n(x, t) = no(x) ¥ cos(wt + j) one
can rewrite the differential equation that defines the modal deformation vo(x) in
the following nondimensional form:

in which

After writing the characteristic equation, the reduced modal deformation takes the
form:

[1]

where:

[2]

The boundary conditions corresponding to simply supported ends are written as:

or:

These four conditions allow one to obtain with [1] a linear and homogeneous
system in A,B,C,D. By setting the determinant equal to zero, one obtains an
equation for vibrations which reduces to

sin X2 = 0

Then the solution can be written as:

X2 = np, (n = 1, 2, 3,…) [3]
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2. With the numerical values indicated in the Problem Statement, one can
calculate the shear coefficient k, the literal expression for which has been
established in Application 18.3.5. One finds k = 110.8. The frequencies
can be written starting from the circular frequencies w1, w2, w3,… extracted
from equation [3], where X2 takes the form [2].

one obtains:50

50 One keeps voluntarily the nonsignificant decimal, for the purpose of comparison with values obtained
from numerical models.

fi

wi

2p
------ Hz( )=

f1 64.476 Hz= ; f2 131.918 Hz= ; f3 198.734 Hz=
f4 265.383 Hz= ; f5 331.963 Hz.=
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