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On the origin of the particles in black hole evaporation
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We present an analytic derivation of Hawking radiation for an arbitrary (spatial) dispersion re-
lation ω(k) as a model for ultra-high energy deviations from general covariance. It turns out that
the Hawking temperature is proportional to the product of the group dω/dk and phase ω/k veloci-
ties evaluated at the frequency ω of the outgoing radiation far away, which suggests that Hawking
radiation is basically a low-energy phenomenon. Nevertheless, a group velocity growing too fast at
ultra-short distances would generate Hawking radiation at ultra-high energies (“ultra-violet catas-
trophe”) and hence should not be a realistic model for the microscopic structure of quantum gravity.
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Introduction In the history of physics, unexplained
coincidences were often the precursor of striking discov-
eries. For example, the limiting propagation velocity de-
rived from the properties of coils and capacitors in table-
top experiments turned out to be strikingly close to the
speed of light measured via planetary motion – which
guided the unification of these phenomena by the laws
of electrodynamics and ultimately lead to the theory of
relativity. Today, a similar riddle is the question of why

black holes seem to behave like thermal objects [1] and
evaporate by emitting Hawking radiation [2, 3, 4].

One way of achieving a better understanding of these
links is to study the origin of the particles in black hole
evaporation, i.e., the question of where they are created.
For example, it has been suggested to resolve the black
hole “information paradox” (i.e., the apparent contradic-
tion between unitarity and the second law of thermody-
namics in this system) by encoding information into the
outgoing Hawking particles. Clearly, this (hidden) en-
coding mechanism should then occur at the origin of the
particles (or on their way to infinity).

Since the event horizon marks the “point of no re-
turn”, the modes containing the Hawking particles orig-
inate from the region very close to the horizon, i.e., from
very short wavelengths (gravitational red-shift). How-
ever, the origin of the modes is not necessarily the place
where the particles are created.

In order to address this problem, we derive Hawking
radiation in the presence of a very general dispersion re-
lation ω = ck → ω = ω(k) associated to the propa-
gating degrees of freedom. Such a modified dispersion
relation is inspired by the analogy to condensed mat-
ter, i.e., the sonic black hole analogues (silent or “dumb”
holes), which rely on the quantitative analogy between
quantum fields in curved space-times and phonons (or
other quasi-particles) propagating in fluids with a gen-
eral flow velocity v(t, r), cf. [5, 6]. In this case, the phase
ω/k and group dω/dk velocities vary with wavelength
and thus the dependence of Hawking radiation on the

dispersion relation should show us which wavenumbers
k are most important for particle creation: The emit-
ted radiation at various frequencies ω will “see” different
horizons. The question this paper will try to answer is
what determines the temperature of the radiation emit-
ted at any particular frequency ω. If the temperature
is determined when the wavelengths are very small, and
frequencies large – i.e., when the horizon first splits the
incoming wave packet (in its vacuum state) into posi-
tive pseudo-norm modes outside the horizon (which will
turn into the Hawking particles) and negative pseudo-
norm modes (their infalling partner particles) inside –
then one would expect a universal temperature for all
of the low-frequency modes. On the other hand, if it is
the low frequency aspects of the modes which determine
the temperature, one might expect the properties of the
horizon defined via one of the velocities (phase, group, or
other) associated with the wave at low frequencies to dic-
tate the temperature (via dv/dr at that horizon location)
of that mode.

Previous analytic calculations were restricted to low
energies ω and a small vicinity of horizon, see, e.g.,
[7], while numerical studies necessarily involved a given
(mostly sub-luminal) dispersion relation within a re-
stricted parameter range. In the following, we present
an analytic derivation of Hawking radiation valid for any
frequency ω and almost arbitrary (spatial) dispersion re-
lations ω(k); the only assumption we make is that the
black or “dumb” hole should be large, i.e., macroscopic,
and that the velocity profile of the background flow have
a specific form.

Dispersion relation Since Hawking/“dumb”-hole ra-
diation is basically a 1+1 dimensional effect, we consider
the Painlevé-Gullstrand-Lemâıtre metric in 1+1 dimen-
sions (~ = c = GN = kB = 1)

ds2 =
[

1 − v2(x)
]

dt2 − 2v(x) dt dx − dx2 , (1)

with the local frame dragging velocity v(x), which cor-
responds to the flow velocity of the fluid analogue [5].

http://arXiv.org/abs/0804.1686v1


2

It determines the position of the horizon via v(x) = ±c
where c is the velocity of the propagating modes, which
is assumed to be constant and set to unity here. The
propagation of a massless scalar field Φ in this metric
(or, equivalently, phonons in the fluid) is governed by
the d’Alembertian

2Φ =
(

(∂t + ∂xv)(∂t + v∂x) − ∂2
x

)

Φ

= (∂t + ∂xv + ∂x)(∂t + v∂x − ∂x)Φ . (2)

Due to the conformal invariance in 1+1 dimensions, the
left-moving modes (∂t + ∂xv − ∂x)Φ = 0 propagating
against the frame-dragging velocity are decoupled from
the right-moving solutions φ = (∂t + ∂xv − ∂x)Φ. How-
ever, an arbitrary modification of the dispersion relation
would not preserve this decoupling in general. The choice

2h = (∂t + ∂xv)(∂t + v∂x) − h(∂2
x) , (3)

for example, does not factorize for a general function h.
On the other hand, if we modify the left and right-moving
branch separately with an arbitrary function f via

2f =
(

∂t + ∂x[1 + v + f(−∂2
x)]

)

×
(

∂t − [1 − v + f(−∂2
x)]∂x

)

, (4)

the left-moving modes (∂t− [1−v+f(−∂2
x)]∂x)Φ = 0 are

again decoupled from the right-moving solutions given by
φ = (∂t−[1−v+f(−∂2

x)]∂x)Φ. The difference between the
two options (3) and (4) scales with the derivative of v(x)
compared with the characteristic scale of the dispersion
relation [v(x), f(−∂2

x)], which is negligibly small in the
hydrodynamic limit (which corresponds to the black hole
being large). The coupling occurs at high frequencies
over long scales (the scale of variation of v) which means
the response will be adiabatic and left-moving waves will
not convert to right-moving. This is the reason why the
numerical simulations using the first option (3) never saw
a mixing between left and right-movers one might expect
from the coupling between the two sets of modes.

Derivation Even though the Schwarzschild metric
corresponds to v(x) = ±

√

2M/x, we consider two differ-
ent velocity profiles v(x) = −λ/x and v(x) = κx in the
following, because they admit analytic solutions. The
latter of course has no asymptotically flat region, and
calling it a black, or “dumb”, hole is metaphorical. Let
us first study the case v(x) = −λ/x. After a Fourier-
Laplace transformation with ∂x → ik and x → i∂k as
well as ∂t → −iω, the left-moving solutions satisfy the
integral equation (since ∂−1

k =
∫

dk)
(

ω − k
[

1 + iλ∂−1
k + f(k2)

])

φω(k) = 0 , (5)

which can be solved via separation of variables and dif-
ferentiation φω(k) = exp{−iλ

∫

dk′/g(k′)}/g(k) with the
spectral function g(k) = 1 + f(k2) − ω/k. The inverse
Fourier-Laplace transformation

φω(r) =

∫

dk

g(k)
exp

{

ikx − iλ

∫

dk′

g(k′)

}

, (6)

yields the spatial modes φω(x) with the integration con-
tour being determined by the boundary conditions. In
the following, we shall assume the length scale λ on which
v(x) changes to be very large compared with the typical
wavenumber of the dispersion relation f(k2) and the fre-
quency ω. In terms of the fluid analogue, this is precisely
the hydrodynamic limit – whereas, for real black holes, is
corresponds to demanding that the size of the black hole
is much larger than the Planck scale. Note, however, that
we do not restrict ω relative to the Planck scale (i.e., ω
could be Planckian). Since the exponent in the integral
above contains the large numbers x and λ, it is very use-
ful to deform the integration contour into the complex
plane (assuming that f is an analytic function), where
the leading contributions will be determined by singu-
larities and the associated branch cuts as well as saddle
points. The saddle points (stationary phase)

x =
λ

g(k)
; ω = k

[

1 − λ

x
+ f(k2)

]

, (7)

are solutions of dispersion relation ω + vk = k[1+ f(k2)].
For large wavenumbers |k| ≫ ω, we get pairs of saddle
points k± satisfying f(k2

±) = λ/x − 1. The singularities
of the integrand at g(k) = 0 correspond to solutions of
dispersion relation far away from the black hole x → ∞.
Assuming simple poles at kα only, we may employ the
residual expansion

1

g(k)
=

∑

α

cα

k − kα
↔ cα =

1

2πi

∮

Cα

dk

g(k)
=

kα

vgr(kα)
. (8)

The contours Cα denote small circles around the poles
at kα and the residual coefficients cα are related to the
group velocity at these points. Insertion of the residual
expansion (8) into Eq. (6) yields

φω(x) =

∫

dk

g(k)
eikx

∏

α

(k − kα)
−iλcα . (9)

Consequently, there are branch cuts starting from each
singularity unless 2iMcα ∈ Z, cf. Fig. 1.
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FIG. 1: [Color online] Sketch (not to scale) of integration
contours in the complex plane for the sub-luminal (left) and
the super-luminal case (right). The dots denote saddle points
k± at the real axis and the squares are the singularities kα

with the associated branch cuts (dashed lines).



3

Sub-luminal case In order to determine the most suit-
able integration contour in the complex plane, we have to
incorporate some assumptions about the function f(k2).
First, we assume that the asymptotic (x → ∞) disper-
sion relation ω = k[1 + f(k2)] is convex, i.e., sub-luminal
f(k2) < 0, and always monotonically increasing, i.e.,
with a positive group velocity. In this case, saddle points
in Eq. (7) occur outside the horizon x > λ and yield the
following contributions to the integral in Eq. (6)

φ±

ω (x) ≈
√

2iπ

λg′(k±)
eik±x

∏

α

(k± − kα)
−iλcα . (10)

In view of their spatial behavior, these are the positive
φ+

ω and negative φ−
ω pseudo-norm in-modes with large

wavenumbers |k±| ≫ ω and therefore small group veloc-
ities, which are swept towards the horizon. After quan-
tizing the field Φ, these positive/negative pseudo-norm
solutions yield the creation/annihilation operators of the
in-modes at large k.

In order to close the integration contour, we have to
circumvent the branch cuts in the upper complex half
plane ℑ(k) > 0, cf. Fig. 1. In the limit x → ∞, the
contributions of the branch cuts starting from the singu-
larities kα away from the real axis ℑ(kα) > 0 are expo-
nentially suppressed and only the branch cut starting at
the real axis ℑ(k∗) = 0 contributes. This wavenumber
k∗ represents a real solution of the dispersion relation far
away from the horizon and just corresponds to the out-
going Hawking radiation with frequency ω > 0. Hence,
at x → ∞, the integral in Eq. (6) corresponding to the
contour C> in Fig. 1 yields a superposition of the outgo-
ing Hawking modes with k∗ and the large-k in-modes in
(10) with k±. Continuing this solution beyond the hori-
zon x < λ, the saddle points vanish and the integrand in
(10) decays exponentially in the lower complex half plane
ℑ(k) < 0. Thus, we deform the integration contour to
C<, where the main contribution stems from the branch
cut(s) starting at ℑ(kα) < 0. Again, for large λ, these
contributions are exponentially suppressed.

Therefore, the outgoing Hawking mode with k∗ origi-
nates entirely from the in-modes in (10). Assuming that
the initial quantum state is the ground state of the large-
k modes in (10) with respect to the freely falling observer,
the amount of created particles is then determined by
the mixture between these positive and negative pseudo-
norm solutions with large k contained in the outgoing
k∗-modes after the immense gravitational red-shift near
the horizon. In view of |kα| ≪ |k±|, the only differ-
ence between positive and negative pseudo-norm modes
is caused by branch cut(s)

∣

∣

∣

∣

φ+
ω (x)

φ−
ω (x)

∣

∣

∣

∣

≈ exp

{

πλ
∑

α

(−1)sαℜ(cα)

}

, (11)

where (−1)sα is the sign associated with the direction of
the branch cut. Since g(k) is a real function, the singu-

larities kα occur symmetric w.r.t. the real axis kα → k∗
α

and cα → c∗α. Choosing the branch cuts suitably (see
Fig. 1), the contributions from the symmetric pairs can-
cel each other and hence only the singularity at the real
axis k∗ = kα ∈ R contributes. Together with the uni-
tarity relation |αω|2 − |βω|2 = 1, the ratio (11) directly
determines the size of the Bogoliubov coefficients via
|αω/βω|2 = |φ+

ω /φ−
ω |2 = exp{ω/T }. Hence we may read

off the effective Hawking temperature

THawking(ω) =
vgr(k∗)vph(k∗)

2πλ
. (12)

We observe that the geometric mean of group and phase
velocity [8] evaluated at the frequency ω of the outgo-
ing radiation far away x → ∞ determines the Hawking
temperature [9]. Therefore, the behavior of the disper-
sion relation at large k is not relevant – even though the
Hawking radiation originates from large-k modes – which
indicates that the Hawking effect is basically a low-energy
phenomenon. The ω-dependence of the Hawking tem-
perature can be explained by the fact that high-energy
wave-packets have a different group velocity than those
at low energy and hence the various modes “see” differ-
ent horizons and thus other values for the surface gravity,
i.e., velocity gradient dv/dx = λ/x2 ∝ v2/λ.

This explanation has been confirmed by numerical sim-
ulations [9] and can further be supported by considering
the second case v(x) = κx, where the velocity gradient κ
is constant. In this case, Eq. (6) should be replaced by

φω(x) =

∫

dk k−iω/κ exp

{

ikx − iκ

∫

dk′f(k′2)

}

.(13)

Hence the weight of the branch cut starting at k = 0 is
just determined by the ratio ω/κ and the Hawking tem-
perature does not depend on ω at all because all modes
“see” the same surface gravity κ

THawking =
κ

2π
= const . (14)

Super-luminal case A super-luminal dispersion rela-
tion f(k2) can be treated in a completely analogous way.
As the only difference, the large-k in-modes determined
by the saddle points k± originate from inside the horizon
x < λ and thus the contours in the complex plane (C> for
x > λ and C< for x < λ, cf. Fig. 1) are slightly different.

In view of this observation, one might wonder whether
the ansatz v(x) = −λ/x instead of v(x) = ±

√

2M/x
is justified. To address this question, let us consider
the Schwarzschild geometry in 1+1 dimensions using the
Eddington-Finkelstein coordinates (V, r)

ds2 =

(

1 − 2M

r

)

dV 2 − 2dV dr . (15)

For a massless scalar field Φ, the wave equation reads
(

2∂V ∂r + ∂r

[

1 − 2M

r
+ f(−∂2

r )

]

∂r

)

Φ = 0 , (16)
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where we have again included a modification f(k2) of
the dispersion relation. Comparison with the previous
derivation yields completely the same results for the out-
going solutions φ = ∂rΦ up to the replacement ω → 2ω
due to the Eddington-Finkelstein coordinate t → V .

However, in the super-luminal case, an additional com-
plication may arise: According to Eqs. (8) and (11),
the thermal Boltzmann factor exp{ω/(4T )} determining
the amount of created particles with frequency ω can
be recast into the alternative form exp{2πMk∗/vgr(k∗)}.
Hence, if the group velocity grows slower than linear in
k, the number of produced particles decreases with en-
ergy. However, if vgr(k) rises too fast in some k-region,
the amount of created particles drops at low k (where
vgr = 1) but later increases again! In such an extremal
case, the Hawking radiation could contain a large contri-
bution of ultra-high energy particles (“ultra-violet catas-
trophe”). Going a step further and taking the dispersion
relation seriously as a model for ultra-high energy de-
viations from general relativity [10], one would exclude
such a case in view of our observational evidence for the
existence of black holes with macroscopic life-times.

Let us discuss some examples: The dispersion rela-
tion ω2 = k2 + k4 which is realized for the sonic black-
hole analogues in Bose-Einstein condensates [11], does
not generate an “ultra-violet catastrophe” and repro-
duces Hawking’s prediction. In contrast, the expressions
ω2 = exp{k2} − 1 or ω = k/

√
1 − k2 grow too fast and

hence lead to the aforementioned problems [12].
Note that the condition vgr(k∗) ≥ O(Mk∗) for par-

ticle creation obtained from the Boltzmann factor pre-
cisely marks the break-down of the saddle-point (i.e., ge-
ometric optics) approximation. Writing the integrand in
Eq. (6) as G(k) exp{F (k)}, the first-order corrections to
the saddle-point expansion scale as G′/G × F (3)/(F ′′)2,
F (4)/(F ′′)2, and G′′/(GF ′′), evaluated at the saddle
point F ′ = 0. In our case (6), we have F ′′ = −2iMG′

and hence inserting vgr(k∗) ≥ O(Mk∗) yields “correc-
tions” of order one – i.e., the saddle-point approximation
fails. Even if the modes started out in their ground state
(at k±), they get excited (at k∗) due to the strong gravi-
tational red-shift. Based on these general adiabaticity ar-
guments, one would expect that the main result remains
valid even beyond a sole modification of the dispersion
relation: If the outgoing Hawking modes originate from
the vicinity of the singularity and the spectral proper-
ties of quantum gravity change too fast with energy, one
would expect a break-down of adiabaticity at short dis-
tances resulting in the emission of high-energy particles.
This mechanism is not necessarily restricted to a Planck-
length vicinity of the singularity since the effective sur-
face gravity “seen” by the high-energy modes scales with
2M/r2 and hence may exceed the Planck temperature
already many Planck lengths away from the singularity.
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