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Abstract. We report numerical evidence of Hawking emission of Bogoliubov phonons
from a sonic horizon in a flowing one-dimensional atomic Bose-Einstein condensate.
The presence of Hawking radiation is revealed from peculiar long-range patterns in the
density-density correlation function of the gas. Quantitative agreement between our
fully microscopic calculations and the prediction of analog models is obtained in the
hydrodynamic limit. New features are predicted and the robustness of the Hawking
signal against a finite temperature discussed.

PACS numbers: 03.75.Kk, 04.62.4v, 04.70.Dy

1. Introduction

Back in 1974 S. W. Hawking [1I, 2] showed that black holes are not completely “black”
objects, but rather emit thermal radiation at a temperature inversely proportional to
their mass. This amazing prediction, crucial to establish the connection between black
holes and thermodynamics [3], represents a genuine quantum effect in a gravitational
context and is widely considered as a milestone of modern theoretical physics. Despite
its conceptual importance, the weak intensity of Hawking radiation has so far prevented
any direct experimental observation.

On the basis of a formal analogy between the propagation of waves in
inhomogeneous and moving media and the propagation of fields on a curved space-time
background, W.G. Unruh predicted in 1981 the occurrence of Hawking radiation in
any system developing a horizon for some wavy perturbation [4]. In the following years,
many systems have been proposed as candidates for actual experimental detection of this
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class of effects [5], e.g. superfluid liquid Helium [6], atomic Bose-Einstein condensates
(BECs) [7,18, 9], degenerate Fermi gases [10], slow light in moving media [11], travelling
refractive index interfaces in nonlinear optical media [12], surface waves in water
tanks [13].

In the present paper we shall focus our attention on the specific case of Bogoliubov
phonons propagating on top of a moving atomic Bose-Einstein condensate. Atomic
BECs are among the cleanest system where quantum physics can be investigated [14] [15,
16]: the temperature can in fact be made so low that the behavior of matter is dominated
by the dual particle-wave nature of its constituents and the quantum dynamics is not
masked by spurious thermal effects. Furthermore, in contrast to other quantum coherent
condensed-matter systems such as superfluid liquid Helium, quantitative theories able
to describe the collective dynamics from a microscopic standpoint are available.

The possibility of creating in these systems black hole-like configurations that allow
the study of the analog of Hawking radiation has been discussed in the last years
by several authors [7]. In a recent work [I7] based on the gravitational analogy, we
predicted that in this case a very characteristic pattern appears in the correlation
function for the density fluctuations of a condensate as a consequence of the Hawking
effect. As demonstrated by a number of recent experiments [18, [19] 20] 2T], 22, 23], the
measurement of density correlations appears as a powerful tool to extract information
on the microscopic physics of atomic gases. Since the Hawking effect consists of pairs of
correlated phonons being emitted in opposite directions from the horizon, the quantum
correlations within a pair propagate across the condensate and result into long-range
density correlations between distant points on opposite sides of the horizon.

The present paper reports numerical simulations that nicely confirm our predictions
of Ref.[I7] and further support the promise of experimental detection of the Hawking
radiation from the density correlations rather than from the phonon flux. We also point
out qualitative features that can be used to univocally distinguish the Hawking signal
from fluctuations of different nature. Differently from most previous works on analog
models, the present calculations are based on the application of microscopic many-body
techniques to an experimentally realistic system. Since our numerical calculation never
relies on the gravitational analogy, it represents an independent evidence of the existence
of the Hawking effect in a realistic condensed-matter system. The quantitative intensity
of the Hawking signal is in agreement with the gravitational analogy.

The structure of the paper is the following. In Secl2] we introduce the physical
system under investigation and in Sec[3] we summarize the theoretical method used for
the calculations. The numerical evidence of Hawking radiation is presented in Sec{4] and
quantitatively analyzed in Sec[5| where an extensive comparison with analytical results
based on the gravitational analogy is made. The effect of a finite initial temperature on
the Hawking effect is discussed in the following Sec[6] A brief discussion of the actual
observability of the predicted effect with state-of-the-art systems and detection schemes
is given in Sec[7] Conclusions are finally drawn in Sec[§|
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2. An acoustic black hole in a flowing condensate

The physical system that we consider is sketched in Fig(a): an elongated atomic Bose-
Einstein condensate which is steadily flowing at a speed vy along an atomic waveguide.
The transverse confinement is assumed to be tight enough for the transverse degrees
of freedom to be frozen [16] and the system dynamics to be accurately described by a
one-dimensional model based on the following second-quantized Hamiltonian,

H = /dx — VU (2) VI(2) + V() OF(2) U(z) +

Here, WU(z) and Wi(z) are atomic field operators satisfying Bose commutation rules
[W(z), Ui(2')] = 6(z — '), m is the atomic mass, V (x) the external potential, and g(z)
is the atom-atom interaction constant [16].

If the characteristic size ¢, of the transverse wavefunction ¢(r,) is much longer
than the atom-atom scattering length ao, the interaction constant has the form [24] 25]:

2
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which simplifies to g = 2 hw, a¢ in the most relevant case of a cylindrically symmetric

g:

and harmonic transverse trapping potential of frequency w, if interactions are weak
enough not to distort its Gaussian ground state wavefunction. In this limit, also the
contribution to the external potential V' (z) due to the zero-point energy of the transverse
ground state has a simple form 2 x hw, /2.

Initially, the condensate has a spatially uniform density n. The external potential
and the (repulsive) atom-atom interaction constant are also uniform and equal to
respectively V(z) = V; and g(x) = g1 > 0. Around t = ty, a steplike spatial
modulation of characteristic thickness o, is applied to both the potential and the
interaction constant by suitably modifying the transverse confinement potential and/or
the atom-atom scattering length via an external magnetic field tuned in the vicinity of
a so-called Feshbach resonance [16]: within a short time o, V and ¢ in the downstream
x > 0 region are brought to V5 and g, while their values in the x < 0 region are kept
equal to the initial ones V; and g;.

In order to suppress competing processes such as back-scattering of condensate
atoms and soliton shedding from the potential step [25], the external potential V'
is chosen to exactly compensate the spatial jump in the Hartree interaction energy
pa2 = gign, ie. Vo+ py = Vi + py [} In this way, the plane wave

Pz, t) = v/n expli(kor — wot)] (3)
with Aiky/m = vg and wy = hk2/2m is for all times a solution of the Gross-Pitaevskii
equation (GPE)

81/1 h? Ozw
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I We have checked that all our conclusions are not sensitive to slight misalignments of V' and g.

+V(,t) b+ gz, t) [0 . (4)
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that describes the condensate evolution at the mean-field level [16].
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Figure 1. Panel (a): scheme of the physical system under investigation. Panels (b,c):
dispersion of Bogoliubov excitations on top of the flowing condensate in the regions
of respectively sub- (b) and super-sonic (c) flow. System parameters: vy/c; = 0.75,
’UQ/CQ =1.5.

In what follows we will focus our attention on the black hole (or dumb hole)
configuration where the speed of sound ¢ 5 = \/m in the different regions satisfies
the chain inequality ¢; > vy > cy: a black hole-type sonic horizon separates a region of
subsonic ¢; > vy flow outside the black hole from a supersonic vy > ¢y one inside the
black hole. As one can see from the Bogoliubov dispersion plotted in Fig.(c), long-
wavelength phonon excitations propagating in the supersonic region are dragged away
by the moving condensate and are then unable to propagate back to the horizon. Only
higher-k, single-particle excitations outside the hydrodynamical window can emerge.

In agreement with previous work [26], dynamical stability of this black hole
configuration has been numerically verified. A more detailed discussion on stability
issues is postponed to a forthcoming publication [27].
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3. The Wigner method

The dynamics of fluctuations around the plane-wave mean field solution during
and after the formation of the horizon can be numerically studied by means of the so-
called truncated Wigner method for the interacting Bose field [28, 29]. Application of
this technique to calculate the time-evolution of generic observables of an interacting
Bose gas has been extensively developed and validated in [30]. For dilute gases such
that né? > 1 (the healing length is defined as usual as ¢ = /h?/mu and d is the
dimensionality of the system, d = 1 in our case), this technique is equivalent to the
time-dependent Bogoliubov approach and has the advantage of being able to follow the
system for longer times when the backaction of quantum fluctuations on the condensate
starts to be important. A first application of this method to atomic BEC-based analog
models is reported in [9].

At t = 0 well before the formation of the black-hole horizon, the condensate is
assumed to be uniform and at thermal equilibrium in the moving frame at vy at a
temperature Ty,. Within the Wigner framework, this corresponds to taking a random
initial wavefunction ¢y(x) of the form:

Yo(x) = ellkor=wol) £ /s + Z[ak uy, € + o vy e 7)Y, (5)
k40

As both the external potential and the interaction constant are spatially uniform
V(z) = Vi and g(z) = g1, the Bogoliubov modes have the standard plane-wave form.
The Bogoliubov coefficients wuy, vi, are defined in terms of the kinetic and Bogoliubov

energies Ej = h2k?/2m and e, = \/Ey(Ey, + 2gin) by uy, + v, = (Ey/e,) 4.
The mode amplitudes « are independent, zero-mean Gaussian random variables
such that (o) = (a2) = 0. The variance {|ag|*) = [2tanh(ez/2kpTy)]™" tends to a
finite value 1/2 in the Ty — 0 limit, so to include zero-point fluctuations. For each

realization of the random amplitudes «;’s, the condensate density ng has to be suitably
renormalized so to account for the condensate depletion [30].

The random classical wavefunction v (z,t) is then propagated in time according to
the standard GPE (4) starting from its initial value ¢ (x,t = 0) = ¢o(x) and including
the full time- and space-dependence of V' (z,t) and g(x,t). Periodic boundary conditions
are assumed for the spatial variable x, but an absorbing region far from the horizon
is required to prevent the onset of spurious dynamical instabilities due to excitations
circulating around the integration box [26] [31]. Expectation values of symmetrically-
ordered field observables at any later time ¢ are finally obtained as the corresponding
averages of the classical field ¢(z,t) over the random initial condition y(x). As usual,
trivial one-time commutators have to be subtracted out if normally-ordered quantities
are required.
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Figure 2. Density plot of the rescaled density correlation (n&;) x [G?)(z,2) — 1]

at the initial time p1t = 0 (a) and at two successive times pit = 70,120 well after
the switch-on of the horizon (b,c). The dashed lines and the (7), (i), (4i¢), (iv) labels
identify the main features discussed in the text. The solid black and magenta lines in
panels (b,c) indicate the directions along which the cuts shown in Fig[3|are taken. The
horizon is formed within a time p; oy = 0.5 around p; tp = 2 and has a spatial width
0./& = 0.5. System parameters as in Fig The initial temperature is Ty = 0.
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Figure 3. Cuts of the reduced density correlation at times p;¢t = 70 (dashed lines) and
120 (solid lines) taken along the magenta (x+1z’ = —5.5¢1) and black (x = 2’ +23.5&;)
lines of Figb,c).

4. Numerical evidence of Hawking radiation

Our numerical study of the Hawking radiation from the acoustic black hole is based on a
vast campaign of Wigner simulations of the condensate evolution after the formation of
the black-hole horizon. Inspired by our recent work [17], specific attention has been paid
to the correlation function of density fluctuations, i.e. the normalized, normal-ordered
density-density correlation function:

@, o &n@)n):)
D= ) ) o
Three successive snapshots of G (x, 2) before (a) and after (b,c) the horizon formation
are shown in Figl2l A complete movie of the time-evolution is available online as
Supplementary Information
The main features that are observed in the figure can be classified as follows:

(1) A strong, negative correlation strip is always present along the main diagonal z = ’
and is almost unaffected by the horizon formation process.

(77) A system of fringes parallel to the main diagonal appears inside the black hole as
soon as the horizon is formed. As time goes on, these fringes move away from the
main diagonal at an approximately constant speed and eventually disapper from
the region of sight.

(741) Symmetric pairs of negative correlation tongues extend from the horizon point
almost orthogonally to the main diagonal. While their maximum height remains

§ To improve the quality of the figures and suppress numerical artefacts, a Gaussian spatial averaging
has been performed on the numerical data with an averaging length ¢,, = 2. We have checked that
this does not introduce any further artefact except a small quantitative reduction of the peak signal
intensity.
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almost constant in time, their length linearly grows with time [see also Fig3|(a,b)].
These tongues involve pairs of points located on opposite sides of the horizon.

(1v) A second pair of tongues appears for pairs of points located inside the black hole.
Both their height and length scale in the same way as for feature (7).
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Figure 4. Panel (a): density plot of the rescaled density correlation

(né1) x [G@(z,2') — 1] in the absence of the black hole horizon, the flow being
everywhere sub-sonic vg/c; = 0.4, vo/ca = 0.8. Panel (b): the same quantity for
a spatially homogeneous system whose interaction constant g is varied in time from gy
to g with the same functional law as in Fig[2]

Apart from feature (7) which is the usual antibunching due to the repulsive atom-
atom interactions [32], these observations illustrate a variety of effects of quantum field
theory in a spatially and temporally varying background [33].

Feature (i7) is a transient effect that originates in the bulk of the internal x > 0
region and has no relation with the presence of a horizon. An identical fringe pattern
(yet extending to the whole system, rather than to the x > 0 region only) is in fact
obtained if a spatially uniform system is considered whose interaction constant is varied
in time from g; to go with the same functional law [Fig[4|(b)]. Its physical interpretation
is the following: as a consequence of the time-modulation of the interaction constant g,
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correlated pairs of Bogoliubov phonons are generated during the short modulation time
by a phonon analog of the dynamical Casimir effect [34], 35], 36}, 37], a quantum process
which shares many analogies with the parametric emission of Faraday waves in classical
fluids [38].

As the emission process takes place in a simultaneous and coherent way at all spatial
positions, the two phonons are emitted with opposite wavevectors and then propagate in
opposite directions. Their quantum correlations reflect into a pattern that only depends
on the relative coordinate x — 2’ and consists of fringes parallel to the z = 2’ line which
move away in time at approximately twice the speed of sound. As usual, the longer the
ramp time oy, the weaker this dynamical Casimir signal which eventually disappears in
the limit of a very long oy.

On the other hand, features (iii) and (iv) do not depend on oy, but only on the
eventual presence of a horizon at long times. In particular, they completely disappear
if the flow remains everywhere sub-sonic vy < ¢ 2 [Figl|(a)] or, a fortiori, if a spatially
uniform system is considered [Fig[|(b)]. This fact, together with their shape in the (z, ')
plane and their persistance for indefinite times after the horizon formation suggests a
strict link with the Hawking effect.

As anticipated in [I7], the quantum correlations within a pair of Hawking phonons
emitted in respectively the inward and outward direction translate into a correlation
between the density fluctuations at distant points located on opposite sides from
the horizon. Once the horizon is formed, correlated pairs of Hawking phonons are
continuously emitted at all times ¢ > t5 on the a and  phonon branches of Fig(b,c).
These phonons then propagate from the horizon in respectively the outward and inward
direction at speeds vg — ¢; < 0 and vy — ¢ > 0. A generic time 7 after their emission
they are located at © = (vg—¢;) 7 < 0 and 2’ = (vg — ¢2) 7 > 0, which defines a straight
line of slope [[[| (vo — ¢1)/(vo — c2). As one can see in Figl(b), this line (indicated as
a white dashed line) almost coincides with the axis of the numerically observed tongue
(iid).

Feature (iv) originates from the (partial) elastic back-scattering of the o Hawking
partner onto branch ~: both 7y and § phonons eventually propagate in the inward
direction at speeds vg £ ¢o. Again, the analytically predicted slope (vo — ¢2)/(vo + ¢2)
(green dashed lines) well agrees with the axis of the numerically observed tongue (iv).

5. Quantitative analysis

The identification of features (iii) and (iv) as signatures of Hawking radiation is further
confirmed by a quantitative comparison of our numerical data with the predictions [17]
of the gravitational analogy. The peak value G®(peak) and the transverse full width

|| As the density correlation patterns is symmetric under the exchange z < 2/, every tongue in the
' > z half-plane above the main diagonal corresponds to a symmetric one in the half-plane z’ < z
below the main diagonal. When we speak about the slope of a tongue, we implicitly refer to the upper
one in the ' > x region.
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Figure 5. Normalized peak intensity (a) and inverse FWHM (b) of the Hawking
tongue (ii7) as a function of the surface gravity of the horizon. Circles: numerical
results. Solid lines: prediction of the gravitational analogy. Numerical uncertainty is
of the order of the symbol size. Other system parameters as in Figl2] and Fig[3]

at half maximum (FWHM) Az gy s of the tongue (i4i) have been extracted from the
cut of G (x,2') taken along a straight line x = 2’ + 2, well outside the antibunching
dip (i) [indicated as a black line in FigP|(b,c)]. Examples of such cuts are shown in
Fig.(b). Once the tip of the tongue has crossed the cut line, neither the peak value nor
the FWHM depend any longer on the position z., of the cut line nor on the time t of
the observation: as expected, the Hawking emission is in fact stationary in both space
and time.

In Fig[5|(a), the peak intensity of the correlation signal (i) is plotted as a function of
the inverse of the thickness o, of the horizon region, a quantity that in the gravitational
analogy is proportional to the so-called surface gravity. As expected, the agreement
with the gravitational prediction [17]:

K2 616 1 C1C2 (7)
167 C1Co (ngl)(ngé) (Cl — Uo)(’UQ - 02)
is quantitatively excellent in the hydrodynamic limit o, /& 2 > 1 where the physics of

G¥(peak) =1 —

the many-body system is dominated by the hydrodynamic modes that are included in
the gravitational analogy. As usual, the parameter x proportional to the surface gravity
of the horizon is defined as

f= e (G = )l ®

In the plots, we have shown the renormalized quantity (n&;) x [G®)(z,2") — 1] that is
universal in the dilute gas limit n&; > 1 where our Wigner approach is exact. The
actual intensity of the Hawking signal is then inversely proportional to the dilution
parameter n&;. Although a more sophisticate theoretical approach may be required to
obtain quantitative predictions in the strongly interacting n&; 2 1 case, the qualitative
features of Hawking physics are not expected to change if a relatively strongly interacting
system is used in order to maximize the intensity of the Hawking signal.
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The inverse FWHM of the tongue (éi7) in the transverse direction is plotted in
Figb) as a function of the inverse thickness of the horizon region. Again, the
agreement of the numerical result with the gravitational prediction of [17] is very good
as long as 0, /& > 1. This observation appears even more significant if one remembers
that in this framework the FWHM is a good measure of the surface gravity s, which
then fully determines the Hawking temperature Ty = hx/(2rkg) [33].

6. Effect of a finite initial temperature
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Figure 6. Panel (a): density plot of the rescaled density correlation

(né&;) x [G®(z,2') — 1] for the same parameters as in Figb) but a finite initial
temperature kpTp/p1 = 0.1. Panel (b): the same quantity in the absence of the
black hole horizon, the flow being everywhere sub-sonic vg/c; = 0.4, vg/c2 = 0.8 as in
Fig(a). Initial temperature kpTy/pu; = 0.1.

To verify the robustness of our observations with respect to thermal effects, we have
performed a series of numerical calculations starting from a finite initial temperature
To > 0. The results are summarized in Figlf

As it happens for thermal light at semi-reflecting mirrors [28], the partial reflection
of thermal phonons on the horizon provides a further mechanism for the appearance
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of non-trivial density correlation between the inner x > 0 and the outer x < 0 regions
which may mask the Hawking signal. This concern is ruled out by the numerical results
shown in Figl(a). Even for an initial temperature kgT'/p; = 0.1 higher than the
Hawking temperature kT /u1 ~ 0.05 expected from the gravitational analogy [5], the
(737) and (iv) Hawking tongues remain perfectly visible and are even a bit strengthened
by stimulation effects [39]. The new feature (v) that originates from thermal effects is
located between the tongues (7iz) and (iv) and is well distinct from them. Its attribution
to partial reflection of thermal phonons is confirmed by the value of its slope, which is
in very good agreement with the analytical prediction (vg — ¢1)/(vg + ¢2) indicated as a
dashed black line in Fig[|a,b).

As the slope of the thermal tongue is completely different from the one (vo—cy)/(vo—
cy) of the Hawking tongue, the Hawking signal can be easily isolated in a correlation
image from spurious thermal and atom loss [40] effects also at temperatures higher than
Ty. This is even more remarkable as in this regime it appears difficult to separate the
Hawking phonons from the thermal ones by looking just at the total phonon flux.

As a final check we have performed a numerical calculation for the case of a flow
which remains everywhere sub-sonic. The result is shown in Fig@(b): as expected, the
Hawking tongues disappear, while the dynamical Casimir fringes (ii) and the thermal
tongue (v) persist without being dramatically affected.

7. Discussion of some experimental issues

We conclude with a brief discussion of the main issues that may arise in an actual
experiment that aims to observe the Hawking radiation from the density correlations.

As the magnitude of the Hawking signal is quite low, of the order of (n&) x
G®(peak) ~ 5 x 1073, a critical point in an actual experiment will be the signal
to noise ratio in extracting the correlation signal due to the Hawking effect from
experimental noise. While many sources of noise can be avoided by carefully engineering
the experimental set-up, shot noise is an intrinsic consequence of the discrete (i.e.
quantum) nature of atoms and therefore can not be eliminated.

A precise measurement then requires a large statistics to be collected, either by
repeating the experiment many times or by creating a large number of (almost) identical
BEC samples on which to simultaneously perform the measurement. Most probably,
both these strategies will face the difficulty of keeping the parameters of the experimental
set-up constant in space and/or time.

Another possibility is to use a continuous-wave atom laser beam propagating along
an atomic fiber [41] and then perform a time average of the correlation signal over
long times. Several different outcoupling mechanism have been demonstrated, which
allows for a wide tuning of both the density and the flow speed of the atom laser beam.
Furthermore, active stabilization techniques [42] can be used to keep the parameters of
the output beam stable in time during the experiment.

In this perspective, the key experimental problem that remains so far unsolved is
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the one of continuously reloading the mother BEC while emitting the atom laser beam.
Existing devices [41], 43| are in fact limited by the finite number of atoms present in
the mother BEC, presently of the order of 10, but attempts to continuously reload the
condensate during the atom laser operation have been recently reported [44].

As the Hawking signal is inversely proportional to the diluteness parameter n&y,
a relatively strongly interacting system may be favourable to maximize the signal to
noise ratio. As our predictions are basically a consequence of quantum hydrodynamics,
we expect that their validity extends well beyond the case of weakly interacting BECs
that has been considered by our microscopic model. Although no complete theory is
available for a strongly interacting gas, the theory of Luttinger liquids [45] appears to
indicate that larger correlation signals can be observed in stronger interacting systems
where the diluteness parameter is smaller.

Another crucial issue is to use an atomic detection scheme able to efficiently measure
the density correlations from which to extract the Hawking signal: several techniques
have been developed during the last years to experimentally characterize local density
fluctuations in ultracold atomic gases based on noise in absorption images [I8] [19], on
microchannel plate detectors [20], or even on high-finesse optical cavities [23]. Thanks
to its non-destructive nature, this last technique to detect single atoms in an atom laser
beam appears as a very promising one for the detection of Hawking radiation from
density correlations.

8. Conclusions

In conclusion, we have provided clear numerical evidence of the presence of Hawking
radiation in a flowing atomic Bose-Einstein condensate in an acoustic black hole
configuration. The signature of this effect was identified in the density-density
correlation function for distant points located on opposite sides of the horizon. The
intensity of the observed signal is in quantitative agreement with the predictions of the
gravitational analogy in the hydrodynamic regime.

A crucial novelty of this work consists in the fact that all numerical results have been
obtained starting from a microscopic description of the system dynamics using standard
methods of many-body theory, and the gravitational analogy has provided a physical
insight to interpret the numerical observations. In this way, our numerical observations
can be considered as an independent proof of the existence of Hawking radiation and
rule out some frequent concerns [46] on the role of short wavelength, “trans-Planckian”
physics on the Hawking emission.

We have shown that the stationary emission of phonons from the acoustic horizon
persists even outside the hydrodynamical regime when the gravitational analogy can no
longer be applied, and shares many of the typical properties of the Hawking radiation.

The characteristic pattern of the Hawking signal in the density correlation function
allows an easy identification from spurious effects of, e.g., thermal origin even at
temperatures significantly higher than the Hawking temperature. This supports our
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proposal of using density correlations as a powerful experimental tool to detect Hawking
radiation from acoustic black holes in atomic Bose-Einstein condensates in the next
future.
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