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A model of inflation is proposed in which compact extra dimensions allow a graceful exit without

recourse to flat potentials or super-Planckian field values. Though bubbles of true vacuum are too sparse to

uniformly reheat the Universe by colliding with each other, a compact dimension enables a single bubble

to uniformly reheat by colliding with itself. This mechanism, which generates an approximately scale

invariant perturbation spectrum, requires that inflation be driven by a bulk field, that vacuum decay be

slow, and that the extra dimension be at least a hundred times larger than the false vacuum Hubble length.
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Introduction.—Many theories posit compact extra di-
mensions for reasons unrelated to cosmology [1–3]. This
Letter will show that in doing so you may get a free bonus:
a graceful exit from inflation without recourse to flat
potentials or super-Planckian field values, and with a
mechanism for generating approximately scale invariant
perturbations.

The Universe is very flat. The spatial curvature radius,
lcurvðtodayÞ, is observed to be no less than 10 times the
current Hubble length, H�1

0 [4]. Using the entropy density,

S, we can construct the dimensionless (and, for adiabatic
evolution, conserved) quantity

lcurvS
1=3 > e70: (1)

This number is huge. Inflation explains why.
In old inflation [5], the Universe gets temporally stuck in

a false vacuum during an early first order phase transition.
While in this false vacuum the Universe (adiabatically)
inflates, safely diluting primordial entropy and monopole
density, and solving the horizon problem. Inflation ends,
locally, when the false vacuum decays by nucleating bub-
bles of true vacuum [6] and the Universe (nonadiabatically)
reheats, locally, when many such bubbles collide with one
another. But old inflation does not work: if inflation is to
last sufficiently long to do its job then decay must be slow,
so bubbles are sparse, collisions are rare, and percolation
fails [5,7].

New inflation [8] does work. It instead recovers the
observable Universe from a single bubble—the interior
of a bubble has the geometry of an open Friedmann-
Robertson-Walker (FRW) universe. New inflation adds
an exceptionally flat segment on the true vacuum side of
the potential barrier so that inflation continues after nu-
cleation while the field rolls slowly down. This post-
nucleation period of inflation continues until the field
reheats at the bottom of the potential, by which time the
curvature radius has grown sufficiently to satisfy Eq. (1).

In this Letter we introduce a new model of inflation,
which we call boom and bust inflation. Like old inflation it
makes dowith an unexceptional inflaton potential. Like old

inflation it reheats via bubble collision. But like new
inflation it recovers the visible Universe from a single
bubble. To do so it borrows structure that has been inde-
pendently invoked: compact extra dimensions. (For other
inflationary scenarios involving bubbles in extra dimen-
sions, see [9].)
Self-intersecting bubbles.—In this section, as a proof of

principle, we study the growth of a bubble in a particularly
simple inflating space—four-dimensional de Sitter space-
time plus a single flat noninflating compact extra dimen-
sion, with the inflation driven by the false vacuum energy
of a five-dimensional scalar field. Before the bubble nucle-
ates, and outside of the bubble after it nucleates, the metric
is

ds2 ¼ �d~t2 þ e2H~td ~x2 þ dy2; (2)

where y is periodically identified with period d, H�1 is the
false vacuum Hubble length, and d~x2 ¼ d~r2 þ ~r2d�2 þ
~r2sin2�d�2, as depicted in Fig. 1. This space has the ten
SO(4,1) de Sitter symmetries, as well as a single
y-translation symmetry. The bubble breaks all five ‘‘trans-
lation’’ symmetries, leaving the six SO(3,1) rotation and
‘‘boost’’ symmetries that keep the nucleation point
invariant.
We will, in this section, make three further assumptions:

that decay is very rare, so that collisions with other bubbles
can be safely neglected; that �R, the size of the bubble in the
compact direction at nucleation, is much less than d and
H�1, so that the bubble wall traces the light cone of its
nucleation point; and that the radion mass is very large, so
that d is essentially fixed. With these assumptions we will

FIG. 1. A snapshot of the spacetime of Eq. (2). Three of the
spatial dimensions, ~x, are inflating. The fourth spatial dimension,
y, is fixed and has period d—the top and bottom lines (repre-
senting three surfaces) are identified.
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study the growth of a bubble that nucleates at ~r ¼ ~t ¼ y ¼
0, first for the case d � H�1, which does not give a
graceful exit, and then for the case d � H�1, which does.

Self-intersecting bubbles with d � H�1.—For d �
H�1 we may ignore the inflation of the external space until
the bubble is much larger than d. Just as in five-
dimensional Minkowski space, the bubble grows spheri-
cally as a four-ball of true vacuum [its surface given by
�~t2 þ ~r2 þ y2 ¼ 0, up to corrections of orderH~t (and �R)].
When the diameter of this four-ball reaches d, one part of
the bubble wall (~r ¼ 0, y ¼ d

2 ) collides with another (~r ¼
0, y ¼ � d

2 ) after winding around the compact dimension

(see Fig. 2). This collision, and recollisions of the emitted
radiation on subsequent laps, releases the bubble wall
energy, reheating first the inflaton and then the standard
model fields; very soon homogeneity in y is recovered.

The constant-~t snapshots of Fig. 3 pick out ~r ¼ 0 as
privileged—the collision happens there first. But a boost
along the ~x directions will result in a different time-slicing
and a different point of ‘‘first’’ contact. Indeed, the SO(3,1)
symmetry ensures that all points on the three-dimensional
surface of bubble self-intersection are physically equiva-
lent, and that this surface is a hyperboloid of constant
(negative) curvature. Up to corrections of order H~t, the
surface is given by

y ¼ d

2
; ~r2 � ~t2 ¼ �

�
d

2

�
2
; ~t > 0: (3)

We can choose coordinates that respect the SO(3,1)
symmetries of the nucleated bubble, so that the Universe
is spatially homogeneous and the collision happens every-
where simultaneously. These are Milne coordinates, de-

fined by t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~t2 � ~r2

p
, r ¼ ~r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~t2 � ~r2

p
, which foliate four-

dimensional Minkowski spacetime with hyperboloids to

give a metric

ds2 ¼ �dt2 þ t2
�

dr2

1þ r2
þ r2ðd�2 þ sin2�d�2Þ

�
þ dy2:

(4)

These coordinates cover the causal future of t ¼ 0. Light
rays emanating from the nucleation point at y ¼ t ¼ 0
follow y ¼ t, with constant r, �, and �, so the three-
hyperboloid of bubble self-intersection is

y ¼ t ¼ d

2
; (5)

which implies

lcurvðcollisionÞ � d

2
: (6)

The collision surface becomes the reheating surface (ap-
proximately — some of the energy makes multiple laps
before reheating), so this curvature radius is (approxi-
mately) inherited by the resultant open FRW universe.
The subsequent expansion stretches this to

lcurvðtodayÞ � SðreheatingÞ1=3
SðtodayÞ1=3

d

2
: (7)

Even if SðreheatingÞ1=3 is as great as the five-dimensional

Planck mass M5Pl ¼ M2=3
4Pl d

�1=3, and even if the extra

dimension is so large as to saturate the Eötvös upper bound
of d ¼ 50 �m [10], then today’s spatial curvature radius
would still be only ten light years: far too small.
The nucleation and self-destruction of the bubble rein-

troduces a flatness problem, one of the very problems
inflation was invented to resolve. What we need is a new
period of inflation to solve this problem. This is provided if
d � H�1.
Self-intersecting bubbles with d � H�1.—In this sub-

section we will exclusively discuss the bubble wall as
viewed from the region outside the bubble, which in-
flates per Eq. (2). We will discuss the region inside the
bubble, which does not inflate, in the Outlook section. For

(a)

(b)

(c)

FIG. 2. Three snapshots at increasing values of ~t, for d �
H�1. (a) The bubble of true vacuum forms within the false
vacuum. (b) The bubble grows; all the latent energy is in the
bubble wall. (c) The bubble collides with itself, locally reheating
the Universe.

FIG. 3 (color online). Milne coordinates foliate four-
dimensional Minkowski space with hyperboloids (solid lines
of constant r). Geodesics through the origin follow dashed lines
of constant t.
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d � H�1 the bubble wall’s growth significantly deviates
from spherical: the inflation redshifts the wall’s angle of

incidence to the y axis, so that d~r
dy ð~tÞ ¼ e�2H~t d~r

dy ð0Þ, and
stretches the bubble in the ~x directions, making the bubble
exponentially oblate.

Just as before, the SO(3,1) symmetry ensures that the
three-dimensional surface of self-intersection is a spatial
hyperboloid, only now the curvature radius is exponen-
tially large. To show this, we again change coordinates
from the planar foliation of Eq. (2), for which the collision
happens at different times in different places, to a hyper-
bolic foliation, for which the collision is everywhere si-

multaneous. If coshHt ¼ coshH~t� 1
2H

2~r2eH~t and

r ¼ H~r½14 ð1þH2~r2 � e�2H~tÞ2 � ðH~rÞ2��1=2, then

ds2 ¼ �dt2 þH�2sinh2Ht

�
dr2

1þ r2
þ r2ðd�2

þ sin2�d�2Þ
�
þ dy2: (8)

These coordinates cover the causal future of t ¼ 0, but are
not, of course, to be trusted inside the bubble, which is the
causal future of the nucleation point at y ¼ t ¼ 0. Light
rays emanating from the nucleation point again follow y ¼
t, with constant r, � and �, so the three-hyperboloid of
self-intersection is again

y ¼ t ¼ d

2
; (9)

which now implies

lcurvðcollisionÞ �H�1 sinh
Hd

2
: (10)

By considering the region outside the bubble we have
shown that while the wall slowly advances in the y direc-
tion, the inflation in the large directions so stretches the
bubble as to make the collision surface exponentially flat
(see Fig. 4). But since this flatness is an intrinsic property
of the collision hyperboloid, observers on the bubble in-
terior must agree.

For d � H�1 the period of inflation between bubble
nucleation and self-annihilation solves the flatness prob-
lem and ensures a graceful exit from inflation.

Conditions.—Hypothesized extra dimensions come in
many shapes and sizes. To realize the graceful exit of the
last section, a compact-extra-dimensional inflationary the-
ory must satisfy three conditions, over and above those
conditions (such as radion stabilization) that any viable
theory must already satisfy.

First, inflation must be driven by a bulk field. If the
inflaton is inherently four dimensional then the bubble
cannot self-annihilate and this mechanism cannot work.

Second, the five-dimensional decay rate, �5, must be
small enough that the sections of the bubble wall that
formed the visible Universe likely encountered no other
bubble:

�5 <H2H3
0

SðreheatingÞ
SðtodayÞ : (11)

Third, the extra dimension must be large enough to
reproduce the observed flatness. A finite �R shortens the
delay between nucleation and collision by reducing the y
distance the walls must travel; it lengthens the delay by
slowing the walls [see Eq. (15)]. Conservatively including
just the first effect, and combining Eqs. (1) and (10), yields

d > �Rþ 2H�1 ln
2e70H

SðreheatingÞ1=3 : (12)

If �R does not significantly exceed H�1, this amounts to a
single condition, approximately d * 100 H�1. Of our
three conditions, this one is the most restrictive. There is
no a priori reason to expect d to be greater than H�1, and
yet we require it to be over a hundred times greater; worse,
for many radion stabilization mechanisms this condition
will be technically unnatural. A natural value for d�2 is
HM4Pl, which implies that just as new inflation requires an
atypically flat potential, so boom and bust inflation requires
an atypically large extra dimension. It is notable that many
popular theories of extra dimensions already require atypi-
cally large extra dimensions: ADD with two extra dimen-
sions requires d� 1014M�1

? , where M? is the electroweak
or Planck scale [2]; RS1 requires d� 30k�1 where k�1 is
the five-dimensional warping length [3]. Because of this
condition we will need to take extra care that the Kaluza-
Klein gravitons copiously produced during inflation and
reheating decay before they can disrupt standard cosmol-
ogy [11].
Outlook.—The next step should be to realize boom and

bust inflation within an explicit ultraviolet model. This will
allow us to calculate two things.

(a)

(b)

(c)

FIG. 4. Three snapshots at increasing values of ~t for d � H�1.
(a) The bubble of true vacuum forms within the false vacuum.
(b) As the bubble grows, the inflation in the ~x directions makes
the bubble exponentially oblate (it ‘‘booms’’). (c) The bubble
collides with itself (it ‘‘busts’’).
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First, the inside story. The interior of the bubble cannot
be five-dimensional Minkowski spacetime. If it were, then
the interior metric would be ds2 ¼ dt̂2 þ dr̂2 þ r̂2d�2

2 þ
dŷ2 (where constant ŷ slices align with constant y slices);
the bubble wall, viewed from the inside, would grow
spherically as �t̂2 þ r̂2 þ ŷ2 ¼ 0 (up to some small
finite-nucleation-size corrections); since the curvature ra-
dius of the bubble collision surface is the same whether
measured from within the bubble [Eq. (6)] or without [Eq.
(10)], we would have

ŷcoll
2

¼ H�1 sinh
Hd

2
; (13)

and so the extra dimension would grow exponentially
large. Therefore, whatever stabilizes the radion must also
deform the interior away from five-dimensional
Minkowski. An explicit UV model will allow us to calcu-
late the interior metric as well as the effect of extra-
dimensional warping.

Second, perturbations. A modern inflationary theory is
not expected merely to flatten, gracefully exit and be
forgotten; it is also expected to generate primordial pertur-
bations. We can illustrate one promising source by high-
lighting the similarities between new inflation and boom
and bust inflation, and the analogous roles played by �ðxÞ
in the former and by yðxÞ, the location of the bubble wall, in
the latter. In both inflationary theories the entire visible
Universe is produced from a single bubble. In both the
crucial period of inflation is that which occurs after bubble
nucleation. In new inflation the delay between bubble
nucleation and reheating is given by the slow rolling of
�ðxÞ down the flat potential, in boom and bust inflation by
the steady progression of yðxÞ towards d=2. Pending a
precise classical solution for the growth of a finite �R
bubble, we conjecture, by analogy with the equation for
�ðxÞ in new inflation, that the unperturbed trajectory of the
domain wall may be approximated as

1

sinh3Ht

@

@t

�
sinh3Ht

_yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _y2

p
�
� 4

�R
: (14)

(For Ht � 1 this reduces to the known result for bubble
growth in Minkowski space.) The wall rapidly achieves its
Hubble-friction-limited subluminal terminal velocity

_y� ½1þ ð3H �R=4Þ2��1=2: (15)

In both new inflation and boom and bust inflation the six
SO(3,1) symmetries of the nucleated bubble (rotations and
‘‘boosts’’) become the six symmetries of the reheated FRW
Universe (rotations and ‘‘translations’’); in both cases all
six symmetries are to be weakly broken to produce CMB
anisotropies, large scale structure, and, eventually, us. In
both cases this breaking may be done by quantum fluctua-
tions [fluctuations in �ðxÞ for new inflation, fluctuations in
yðxÞ for boom and bust inflation] that are stretched to

classicality by the exponential expansion of the inflation-
ary phase. Pending a precise quantum treatment of the
growing bubble wall, we conjecture, by analogy with
��k �H and the results of [12,13], that

�yk � ��1��1=2H; (16)

where � is the bubble wall tension and ��1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _y2

p
accounts for the length contraction of the perturbations.
The symmetric fluctuations in the positions of the walls
distort the smooth hyperboloid of Eq. (9) by a curvature
perturbation

R k ¼ �
�
H�yk

_y

�
t¼t�

; (17)

where t� is the time at which the modewith wave number k
crossed the horizon. Since Eq. (17) is k independent, the
perturbations are scale invariant. (This differs from the
strongly-tilted spectrum found for bubbles colliding in
Minkowski spacetime [13] as here Hubble friction keeps
� fixed.) Since the (relativistic) kinetic term for y is non-
quadratic, the perturbations are not perfectly Gaussian (as
in DBI inflation [14]).
We will return to these questions in a future publication.
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