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Abstract

We compute the matching conditions for a general thick codimension 2 brane,

a necessary previous step towards the investigation of gravitational phenomena

in codimension 2 braneworlds. We show that, provided the brane is weakly

curved, they are specified by the integral in the extra dimensions of the brane

energy-momentum, independently of its detailed internal structure. These gen-

eral matching conditions can then be used as boundary conditions for the bulk

solution. By evaluating Einstein equations at the brane boundary we are able

to write an evolution equation for the induced metric on the brane depending

only on physical brane parameters and the bulk energy-momentum tensor. We

particularise to a cosmological metric and show that a realistic cosmology can

be obtained in the simplest case of having just a non-zero cosmological con-

stant in the bulk. We point out several parallelisms between this case and the

codimension 1 brane worlds in an AdS space.
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1 Introduction

New cosmological observations seem to imply that the expansion of our universe is

currently accelerating [1], driven by a dominant component of the energy-momentum

tensor (EMT) with an equation-of-state parameter w close to -1 (the so called dark

energy). The observations have made the cosmological constant problem a very pressing

one: to the traditional puzzle of an (almost) vanishing vacuum energy now cosmologists

(and particle physicists) wonder why is its magnitude comparable to the matter energy

density today. Recent analysis of the data [2] point to an even more bizarre situation:

the best fit to observations agrees with a dark energy equation of state with ω < −1. So

the family of problems associated with the vacuum energy (the cosmological constant

problem and its smaller cousin, the coincidence problem) could grow in the near future

with a new member: why is the vacuum energy growing in time? The problem with

this possibility is that it is not easily accommodated in generally covariant theories as

long as the matter EMT satisfies the usual energy conditions [3]. In the same fashion,

other existing observations also suggest modified gravitational dynamics1.

Weinberg’s theorem [6] shows that standard approaches (by which we mean 4D field

theories based on General Relativity) to the cosmological constant problem are very

likely to fail and therefore more exotic ones should be tried. In particular having more

than four dimensions in a Kaluza-Klein fashion does not seem to improve the situation,

since the extra dimensions are small and gravity is effectively four dimensional below

some scale. In this effective theory one will face the same problems as in any 4D theory.

Thus, within this class of theories, anthropic considerations seem at the moment the

only framework capable of explaining some of the large scale properties of our universe

[7]. Brane-world gravity, on the other hand, does not belong to this class of theories,

since it is not guaranteed that the low energy description of gravity can be obtained

from a generally covariant four-dimensional Lagrangian, i.e., there is not necessarily a

four dimensional description of the gravitational sector. In these models one assumes

that the Standard Model fields are confined to some submanifold of the whole space-

time. One can think on the Standard Model fields as the zero modes of topological

defects of higher dimensional field theories [8] or the gauge theories living on the world-

1One can mention the flatness of galaxy rotation curves, that can be explained using the dark
matter hypothesis but that can also be regarded as pointing towards modified gravitational dynamics
[4], or the more nearby measured Pioneer 10/11 anomalies [5].
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volume of the string theory D-branes [9]. Fermionic fields and gauge interactions can be

in this way clearly lower dimensional but to elucidate if the gravitational interactions

can be well approximated by 4D Einstein gravity is not so obvious. The hope is to

find in this context a theory that shares the good conceptual advantages of 4D General

Relativity (gravity as geometry, background independence...) but can yield a realistic

but non-standard cosmology (or gravitational dynamics).

The cosmology of codimension one braneworlds is quite well understood. It is pos-

sible to recover something close to standard cosmology with corrections that take the

form of “dark radiation” plus terms involving the matter energy-momentum tensor

squared [10,11]. Although the situation is not as good in the understanding of codi-

mension two brane worlds, great progress has been made recently in their investigation.

The fact that one can find solutions for a flat brane in a given setup for any value of

its tension has encouraged many authors to try and attack the cosmological constant

problem in such scenario [12–17]. The effect of the brane tension in these models is

simply to produce a deficit angle in the transverse space, without further implications

for its induced metric. The two dimensional space transverse to the brane acquires lo-

cally the geometry of a cone, with the brane situated on its tip. However one problem

of codimension two brane-worlds is that with a deficit angle one can only generate a

two dimensional delta function in the Einstein tensor that is proportional to the brane

induced metric. This means that one can only find nonsingular solutions if the brane

EMT is proportional to its induced metric, i.e. it is pure tension [14,15]. Thus the

solutions found in [12] cannot be extended to a general brane EMT in the thin brane

limit. This limit is indeed singular for a general brane and, as such, makes all the ar-

guments about the nature of gravity (and self-tuning) in codimension two braneworlds

in Einstein gravity dodgy when working with δ-like branes. To make things worse, the

very Einstein equations imply that in the case of an infinitesimally thin pure tension

brane, the deficit angle is space and time independent. This situation is very similar

to the cosmic string models studied in 4D (see [18] for a rigorous treatment of codi-

mension one and two sources in 4D General Relativity). It is therefore not sensible to

ask questions like what happens if there is a sudden phase transition that changes the

tension of the brane as such thing is not allowed by the equations of motion in the thin

brane limit. In other words, self-tuning has to be formulated as a dynamical process

and delta-like codimension two branes do not allow to do that. In [15] a possible way
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out of this situation was proposed by adding the Gauss-Bonnet term to the Einstein-

Hilbert Lagrangian. In this case, the thin brane limit is well defined and one finds the

remarkable result that four dimensional Einstein gravity is recovered as the dynamics

for the induced metric on the infinitesimally thin brane. (Similar conclusions have

been obtained in [19] at the linearised level.) See also [20,21] for a different approach

to codimension 2 braneworlds in Gauss-Bonnet gravity.

Motivated by the previous considerations, we abandon in this paper the thin brane

idealization, and compute the “matching” conditions for a general thick codimension

two brane in Einstein gravity2. By matching conditions we mean equations that relate

the values of the first derivatives of the metric (with respect to the orthogonal coordi-

nate, r) at the brane boundary with the brane EMT. In fact, since we are dealing with

a thick defect (with a singular thin limit), it is not clear that one should be able to do

this without knowing all the precise small scale structure of the brane. If we need this

information in order to find the solution, the matching condition approach would be

of no use, since one should solve the equations independently for different microscopic

brane models, and one could obtain different results for different models even if the

total energy-momentum carried by the brane is the same. Gravitational physics would

then in general depend on the ultraviolet details of our theory and therefore model

independent assertions would be difficult to make. We will see, however, that one can

obtain this set of equations depending only on the integral of the brane EMT along

the extra dimensions as long as the parallel derivatives (i.e. with respect to the brane

coordinates) of the metric, and in particular the Ricci tensor of the brane induced

metric, are small enough: in this case our matching conditions do not depend on the

inner structure of the brane. How small is “small enough” will be made clear in the

next section but one can argue that this situation is quite general in the sense that it

is natural that the presence of the brane induces much larger gradients in the radial

(transverse) direction that in the longitudinal ones. In particular this is clearly the

case if we are interested in late time cosmology. Of course that does not mean that

nothing can be said about very early cosmological times or other situations with strong

gravity effects, but one should keep in mind when dealing with such situations that

2We do not introduce the Gauss-Bonnet term now because once one considers a thick brane the
Gauss-Bonnet contributions, although crucial in the thin limit for obtaining a regular geometry, will
be subleading unless the Gauss-Bonnet coupling is very large or the brane is extremely thin.
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our matching conditions imply certain approximations that break down when the 4D

curvature is very large. Once we consider a thick brane, departure from pure tension

is allowed and the deficit angle can develop a space-time dependence, thus questions

about the self-tuning behaviour of the system are again legitimate.

In the next section we will carefully explain our assumptions and approximations

and we will obtain the equations that relate the total brane energy-momentum with

the deformation of spacetime it causes, the so called matching conditions. We will

specialize these equations to the cosmological case in the third section. Evaluating

Einstein equations just outside the brane and using the matching conditions we will be

able to obtain the equations that govern the cosmological evolution of this braneworld.

In this respect, we follow a procedure completely analogous to that of the codimension

one case [11].

2 Matching conditions for a codimension 2 brane

In this section we will try to answer the following questions: what is the effect on space-

time of an energy-momentum distribution that can be interpreted as a codimension 2

defect in six-dimensional Einstein gravity? Is there a way to characterise this effect

without knowing all the precise small-scale structure of the brane? We will see that

the answer to the second question is yes, provided certain conditions are met, and we

will also provide a (partial) answer to the first question. The needed conditions have

the interpretation of requiring a weakly curved brane.

In this section we will consider the following quite general ansatz for the metric,

ds2 = gµν(x, r)dxµdxν − dr2 − L(x, r)2dθ2, (1)

where, as usual, xµ denote four non-compact dimensions (including a time-like one),

µ = 0, . . . , 3, whereas r, θ denote the radial and angular coordinates of the (compact

or not) two extra dimensions. This means that in particular the following boundary

conditions hold (in order to avoid singularities) at r = 0

L(x, 0) = 0, L′(x, 0) = 1, ∂rgµν(x, 0) = 0, (2)

where a prime denotes derivative with respect to r. We have assumed a rotational

symmetry around the codimension 2 submanifold defined by the condition r = 0. The
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metric is determined by the Einstein equation, that can be written as

M4

∗
RM

N = TM
N − 1

4
δM
N T, (3)

where M∗ is the 6D fundamental mass, TMN is the EMT and T ≡ TM
M its trace.

The brane will be a cylindrically symmetric extended object that fills the region with

r < ǫ. Since we are trying to deal here with a general situation, and we do not have a

particular microscopic theory for the brane, we cannot provide a precise definition of

the brane width parameter, ǫ, but in a given particular model it should not be too hard

to provide a strict definition of it. In any case, the same results should be obtained

taking a different definition of the brane width (i.e a different splitting into brane-

bulk of the total 6D EMT), as long as we are considering the same energy-momentum

distribution.

The presence of the brane induces a strong r-dependence of the curvature tensor

that should be reflected on large r-derivatives of the metric. It is natural then to

assume that the brane has the effect of producing mainly non-zero r-derivatives of the

metric, and these derivatives are the relevant terms in the Einstein equations when

looking for a solution. So, given the boundary conditions at r = 0, eq.(2), we would

like to obtain the values for the first derivatives of the metric at r = ǫ in terms of

the brane EMT 3. For doing this we follow the standard procedure of integrating the

equations of motion in the region with r < ǫ. Notice that if we are to find a result that

is independent of the inner structure of the brane, the dominant terms of the integral

should be total r-derivatives. If this is the case the value of the integral depends only

on the value of some functions on the boundary, r = ǫ (and the origin, r = 0), and not

on the precise solution inside the brane.

The set of equations we will have to deal with, for the metric at question, will be

given next. We will offer this equations in a form that makes transparent which terms

can be integrated exactly and which ones should be neglected when dealing with the

matching. The µν components of the Ricci tensor can be written as,

√
gLRµ

ν =
1

2
[
√

gLKµ
ν ]′ +

√
gLRµ

ν (g) −√
g∇µ∇νL, (4)

where Kµν ≡ ∂rgµν (we will also use K ≡ Kµ
µ ), ∇µ denote four-dimensional (i.e. with

respect to the metric gµν) covariant derivatives and Rµν(g) is the Ricci tensor for the
3We call brane EMT to TMN (r < ǫ), including possible contributions from the bulk EMT inside

the extension of the brane.
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four-dimensional metric gµν . The θθ component of Ricci tensor reads

√
gLRθ

θ = [
√

gL′]′ −√
g∇ρ∇ρL. (5)

We see that these two equations can be written as a total r derivative plus terms

involving only derivatives with respect to the longitudinal coordinates (xµ). As we

will see in a moment, they will determine the matching conditions. As for the other

two non-vanishing components of Einstein equations for our metric, the rr and µr

components of the Ricci tensor read, respectively,

Rr
r =

L′′

L
+

1

2
K ′ +

1

4
Kρ

σK
σ
ρ , (6)

and

Rµr = −∂µL′

L
+

1

2

∂νL

L
Kν

µ +
1

2
∇ν(Kµν − gµνK). (7)

We can now integrate the µν and θθ components of the Ricci tensor in the region

0 ≤ r ≤ ǫ (the integration in θ is trivial) to find the desired matching conditions. We

start with the µν components, eq.(4). Integrating this equation and neglecting the

terms that do not have r-derivatives4 one gets

2π√
g|ǫ

∫ ǫ

0

dr
√

gLRµ
ν ≃ π

Kµ
ν |ǫ

Mb
≃ 1

M4
∗

√
g|ǫ

∫

2π

0

dθ

∫ ǫ

0

dr
√

gL

[

T µ
ν − 1

4
δµ
ν T

]

≡ T̂ µ
ν − 1

4
δµ
ν T̂

M4
∗

,

(8)

where we have defined L(x, ǫ) ≡ 1/Mb (notice that 1/Mb ∼ ǫ) and it is understood in

here and in the following that the subscript |p means that the corresponding function

is evaluated at r = p. We have also defined the 4D brane EMT, T̂N
M , as the integration

of the full 6D EMT in the region with r < ǫ:

T̂N
M ≡ 1√

g|ǫ

∫

2π

0

dθ

∫ ǫ

0

dr
√

gLTN
M , (9)

and T̂ ≡ T̂M
M as its trace.

Now we can repeat the procedure with the θθ equation. Performing the correspond-

ing integration and neglecting again the terms with only longitudinal derivatives we

4For the cosmological case we will estimate Rµ
ν (g) and the other neglected terms of eqs.(4,5) that

involve µ-derivatives, but to obtain the cosmological evolution we need first the matching conditions.
We will see at the end that these terms are indeed negligible (with respect to the terms we have kept)
in the cosmological solutions we consider. This is not surprising since once one imposes the constraints
of having a realistic late-time cosmology the 4D curvature or µ-dependence of the solution have to be
extremely small.
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get

2π√
g|ǫ

∫ ǫ

0

dr
√

gLRθ
θ ≃ 2π

(

β −
√

g|0√
g|ǫ

)

≃ 1

M4
∗

√
g|ǫ

∫

2π

0

dθ

∫ ǫ

0

dr
√

gL[T θ
θ −

1

4
T ] ≡ T̂ θ

θ − 1

4
T̂

M4
∗

,

(10)

where we have defined β(x) ≡ L′(x, ǫ). This equation, together with eq.(8), determine

the exterior space-time geometry associated with a particular energy-momentum stored

in our codimension two defect. It is apparent that the θθ equation fixes the deficit angle

in the transverse space, while the µν equations have the clear interpretation of requiring

a non-zero extrinsic curvature at r = ǫ unless T̂ µ
ν − 1

4
δµ
ν T̂ = 0. The trace of this quantity

is referred to as the Tolman mass in 4D cosmic string literature (see e.g. [22]), and it

is zero for a pure tension brane. For obtaining these equations we have only neglected

the terms that do not involve r-derivatives in the integrals.

Notice that the µν matching conditions are very similar to those of a codimension

one brane, but because L(x, 0) = 0 we cannot satisfy this equation with a finite Kν
µ

in the thin brane limit (Mb → ∞) in general, in contrast with the codimension one

case that has a well defined thin limit [18,23]. In fact it is instructive to compare the

codimension two case with the more familiar codimension one case in more detail, and

point out their similarities and differences. For a 5D metric like

ds2 = gµν(x, r)dxµdxν − dr2, (11)

we can write the µν components of the Ricci tensor as

√
gRµ

ν =
1

2
[
√

gKµ
ν ]′ +

√
gRµ

ν (g), (12)

where, as before, Kµν ≡ ∂rgµν and Rµ
ν (g) is the Ricci tensor for the 4D metric gµν . We

can integrate now this equation from r = −ǫ to r = ǫ, a region where we assume that

some energy-momentum density is localized. We get then

1√
g|0

∫ ǫ

−ǫ

√
gRµ

ν =
1

2
√

g|0
[
√

gKµ
ν ]ǫ

−ǫ +
1√
g|0

∫ ǫ

−ǫ

√
gRµ

ν (g) =
T̂ µ

ν − 1

3
δµ
ν T̂

M3
∗

. (13)

M∗ is now the 5D fundamental mass, T̂N
M is again the integration of the full 5D EMT

in the (−ǫ, ǫ) region,

T̂N
M ≡ 1√

g|0

∫ ǫ

−ǫ

dr
√

gTN
M , (14)

and T̂ its trace. It is clear in this case that we can take the limit ǫ → 0 keeping T̂µν ,

Kµ
ν and Rµ

ν (g) finite if we accept a discontinuity in the extrinsic curvature (notice that
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we still have
√

g|±ǫ →
√

g|0 in this limit). We obtain in this way the so called Israel

matching conditions [23]

1

2
M3

∗
[Kµ

ν ]0
+

0−
= T̂ µ

ν − 1

3
δµ
ν T̂ , (15)

since only the extrinsic curvature contribution survives in the thin limit. One could

think that the analogy between the thick codimension two brane and the codimension

one case is not surprising since, once the brane has been given a certain width, the wall

defining the brane is indeed a codimension one object. But there is some information

in our codimension two matching conditions showing that our system is different from

a codimension one brane5. First, we have an extra dimensional matching condition, the

deficit angle contribution eq.(10). As we have mentioned, in the case of a codimension

two pure tension brane with T̂ r
r = T̂ θ

θ = 0, this contribution absorbs completely the

effect of the brane on the background, allowing us to keep zero extrinsic curvature.

This is not the case for the codimension one brane, since the right hand side of eq.(13)

does not vanish for a pure tension brane. This difference is what makes codimension

two braneworlds attractive as a possible solution to the cosmological constant problem.

Also, in the codimension two case we cannot take the thin limit because
√

G = L
√

g

vanishes at r = 0, and then the left hand side of eq.(8) goes to zero as ǫ → 0 (even

allowing for discontinuities in the first derivatives of the metric) if we insist on keeping

Kν
µ finite. It is then natural to expect that, keeping ǫ finite but small, in a codimension

two brane-world situation the extrinsic curvature contribution is still the main contri-

bution to the integral (8). Thus, we can safely neglect the integration of the terms

involving only µ-derivatives in most situations, most notably if we are interested in

late cosmological times for which 4D curvatures are extremely small.

Another interesting feature of our matching conditions is that we can now use them

in the µr equation evaluated at r = ǫ to obtain an energy-momentum conservation

equation for the brane EMT

M4

∗
LGµr =

1

2π

(

∇νT̂µν + ∇µT̂ r
r

)

+
T̂ r

r + T̂ θ
θ

2π

∂µMb

Mb

− M4

∗
∂µ

(√
g|0√
g|ǫ

)

=
T bulk

µr |ǫ
Mb

. (16)

The µr component of the bulk EMT determines the flow of energy-momentum from

the brane into the bulk. However, even when that term is zero, there can be an
5This difference comes ultimately from the boundary conditions we are imposing at r = 0, eqs.(2).

If we were imposing instead the boundary conditions L′(x, 0) = 0 and L(x, 0) different from zero, we
would be describing a 4-brane with a compact dimension (θ) and a Z2 symmetry at r = 0.
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exchange of energy-momentum between the longitudinal and the transverse directions

(on the brane) correlated with a possible space-time dependence of the brane width

that could be interpreted by 4D observers as apparent violations of the conservation

of energy-momentum.

Up to now we have performed an integration of the 6D Einstein equations in the

space-time region filled by the brane in order to obtain the matching conditions. We

have identified a set of terms in the equations that can be integrated in a model

independent way, and we have seen that these terms are indeed the dominant ones

provided the µ-dependence of the solution is small. In this way we have obtained

eqs.(8,10) that relate the first (transverse) derivatives of the metric just outside the

brane with the integrated brane EMT. We are taking gµν |ǫ as our “induced metric”

for the defect, since we are evaluating most functions in r = ǫ when dealing with

the matching. In fact we see that all the functions appearing in the matching are

evaluated at the brane boundary except for the ratio
√

g|0/
√

g|ǫ appearing in the θθ

matching condition, eq.(10) and in the EMT conservation equation, eq.(16). In order to

avoid making reference to functions evaluated inside the brane when dealing with the

matching we will consider that this ratio can be approximated by one in this equation.

For this we just need that
∣

∣

∣
T̂ r

r + T̂ θ
θ

∣

∣

∣
<<

∣

∣

∣
T̂ µ

µ

∣

∣

∣
. (17)

This is because we can put a bound on the difference
√

g|ǫ −
√

g|0 as

√
g|ǫ −

√
g|0 ≤

√
g|0

K|maxǫ

2
∼ √

g|0
K|ǫ
2Mb

, (18)

where K|max is the maximum value of the function for r ≤ ǫ and we have used ∂r
√

g =
√

gK/2. Using now the matching conditions, eqs.(8,10), we arrive at the mentioned

requirement, eq.(17). When this condition holds, we could speak of a quasi-pure-

tension-brane, and the extrinsic curvature (times the brane width) is negligible with

respect to the deficit angle. This allows us to approximate the ratio of the metric

determinants in eq.(10) by one. We quote here the actual matching conditions again,

assuming such condition holds

2π(1 − β) ≃ 1

M4
∗

(

1

4
T̂ − T̂ θ

θ

)

≃ 1

4M4
∗

T̂ µ
µ , (19)

Kν
µ |ǫ ≃ Mb

πM4
∗

[

T̂ ν
µ − 1

4
T̂ δν

µ

]

. (20)
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We would like to emphasize the generality of these matching conditions. They apply

to any codimension two brane, provided we can neglect the longitudinal µ-derivatives

when compared with the transverse r-derivatives in the solution inside the brane,

and our condition eq.(17) holds. For instance, it is now straightforward to interpret

several known solutions with naked codimension two singularities as being sourced by

a codimension two object with certain energy-momentum. Consider as an example

metrics that near r = 0 can be approximated as

gµν ≃ κ1r
α1ηµν + . . . , (21)

L ≃ κ2r
α2 + . . . . (22)

Our matching conditions then imply

1 − κ2α2

Mα2−1

b

≃ T0

2πM4
∗

, (23)

α1 = − 1

4πM4
∗

(

T̂ θ
θ + T̂ r

r

)

. (24)

where we have taken T̂ ν
µ = T0 δν

µ and we are assuming that eq.(17) holds. We see how

the required energy-momentum for the defect sourcing these solutions depends on the

brane width. The brane width acts as a cut-off for the curvature, and gets rid of the

singularity once one considers a thick defect: remember that these relations have been

obtained matching a regular geometry at r = 0 (that implies eqs.(2)) with the exterior

geometry given by eqs.(21,22). It is interesting to point out that in the thin brane

limit (Mb → ∞), the brane tension diverges if α2 < 1 while it goes to zero if α2 > 1

(in this latter case we can not satisfy our assumption in the thin limit, eq.(17), and

the first matching condition above would have some corrections). We can recognize

the only parameters with a well defined thin brane limit yielding a finite brane energy-

momentum (α1 = 0, α2 = 1) as a purely conical geometry. In particular the singular

solutions of 6D supergravity found in [13], can be cast in the form given by ecs.(21,22)

and interpreted as being sourced by a codimension 2 defect with an energy momentum

tensor given by the formulae above.

Also, we can now match an exterior AdS geometry with a regular geometry on r = 0

and check what kind of energy-momentum distribution supports such spacetimes. This

kind of exterior geometry has been obtained as the spacetime produced by the Nielsen-
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Olesen vortex of the Abelian Higgs model in 6D6 [25] which, interestingly enough,

localizes not only gravity but also gauge interactions at the vortex core [26] (see also [27]

for the non-abelian case). Applying our matching conditions to an exterior geometry

like (AdS6 space with a compact dimension)

ds2 = e±krηµνdxµdxν − L2

0e
±krdθ2 − dr2, (25)

where k =
√

− 5Λ

2M4
∗

, and Λ is the bulk cosmological constant, we obtain the required

brane EMT as

1 ∓ L0k

2
e
±

k

2Mb ≃ T0

2πM4
∗

, (26)

± k

Mb
= − 1

4πM4
∗

(

T̂ θ
θ + T̂ r

r

)

, (27)

where we have taken again T̂ ν
µ = T0 δν

µ and we are assuming that eq.(17) holds. Notice

that if we choose the minus sign for ±k, so the volume of the spacetime is finite,

we need T0 > 2πM4
∗
. This condition does not mean that the curvatures are in the

solution bigger than the fundamental mass, since we expect that T̂ ν
µ ∼ T ν

µ ǫ2 ∼ T ν
µ /M2

b .

For low values of Mb we can still have the 4D brane EMT (T̂ ν
µ ) of the order of M4

∗

or bigger while the 6D one (T ν
µ ) is hierarchically smaller and the curvatures in the

full 6D solution are under control, but one can not keep curvatures under control in

the thin brane limit (see also the discussion in [25]). However, if we want to restrict

ourselves to weakly gravitating branes we should choose the plus sign, and then the

extra dimensional volume is infinite. This is because L is a growing function at the

origin with a positive r-derivative, and then it is “easier” to match the geometry with

an exterior L function that also has a positive derivative (and this chooses the plus

sign above).

Our matching conditions relate brane parameters with metric deformations in its

surroundings, but they do not tell us much about the phenomenological viability of

these braneworlds. In an ideal situation, for a given brane energy-momentum and

width, and for a given bulk EMT we would impose the matching conditions in the bulk

solution (as a perturbation, perhaps, over a known static solution) and find out the

implications for the brane induced metric, gµν(x, ǫ). The relation between the brane

6For the global vortex the exterior geometry is AdS5 × S1 [24], but this case is not a solution for
a pure cosmological constant in the bulk.
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induced metric and its EMT would determine what type of gravity brane observers

would feel. But this approach is usually very difficult to implement in practice, since

it is very hard to find analytic bulk solutions (even perturbative ones, see [16] for work

in this direction). It is however possible to obtain a good deal of information on the

curvature of the brane induced metric without actually solving the bulk equations. The

idea, that we will elaborate on in more detail in the next section for the cosmological

case, is to evaluate Einstein equations just outside the brane. In particular, the rr

component of the Einstein tensor, evaluated at r = ǫ reads,

Gr
r|ǫ = −1

2
R(g) +

M2

b

2πM4
∗

[T̂ r
r + T̂ θ

θ ]

+
1

32π2

M2

b

M8
∗

[4T̂ ρ
σ T̂ σ

ρ − (T̂ ρ
ρ )2 − 2T̂ ρ

ρ (T̂ r
r + T̂ θ

θ ) − (T̂ r
r + T̂ θ

θ )(5T̂ r
r − 3T̂ θ

θ )] =
T r

r |ǫ
M4

∗

,

(28)

where we have used the matching conditions eqs.(19,20) and have neglected the term

Mb∇ρ∇ρL|ǫ. It is not clear a priori that this term is negligible as compared with

the induced metric curvature (the integrals of both terms have been neglected in the

matching conditions). However it is in general related to µ−derivatives of β that,

through our matching conditions, can be argued to be negligible under the assumptions

we are using. Again, we will be more specific about the size of the different terms

when discussing cosmological solutions. This equation determines the curvature for the

induced metric in terms of the brane EMT and the bulk EMT evaluated at the brane

boundary. This equation will become much more illuminating when particularised to

the cosmological case as we will see in the next section.

3 Cosmology on a codimension 2 brane.

In order to study the cosmological implications of our matching conditions we partic-

ularise the metric ansatz to

ds2 = N(t, r)2dt2 − A(t, r)2d~x2 − dr2 − L(t, r)2dθ2, (29)

where we have taken flat spatial sections in the brane for simplicity and we set N(t, 0) =

1 by performing a redefinition of the t coordinate. In this section we will assume

that eq.(17) holds in our system, so we can use the simpler version of the matching

conditions, eqs.(19,20), instead of the more general one, eqs.(8,10). Remember that,

12



since we are assuming that the first derivatives are small compared with the brane width

we also have, at the level of approximation we are working, N(t, ǫ) ≃ N(t, 0) = 1, and

also A(t, 0) ≃ A(t, ǫ) ≡ a(t). So the matching conditions, eqs.(19,20), take now the

form

A′|ǫ
a

= − Mb

8πM4
∗

[ρ + p − pr − pθ], (30)

N ′|ǫ =
Mb

8πM4
∗

[3(ρ + p) + pr + pθ], (31)

(1 − β) =
1

8πM4
∗

[ρ − 3p − pr + 3pθ]. (32)

where we have taken a “cosmological” brane EMT: T̂M
N = diag(ρ,−p,−p,−p,−pr,−pθ).

These equations, however, do not yield any information about the cosmology one can

expect in these models. One constraint on it is given by the brane EMT conservation,

eq.(16), that reads for our cosmological set up,

ρ̇ + 3
ȧ

a
(ρ + p) − ∂tpr − (pr + pθ)

∂tMb

Mb
= 2π

T bulk
0r |ǫ
Mb

. (33)

However, we would like to obtain the equations that govern the evolution of the scale

factor of the brane, a(t), in terms of the brane EMT. As we said at the end of the

previous section, with our matching conditions we could, in principle, find the bulk

solution for a given model (as a perturbation, perhaps, over a known static solution)

and figure out the implications of this perturbed solution for the time dependence of

the scale factor. Instead of doing that we will show that a lot of information on the

cosmology of codimension two branes can be obtained by evaluating Einstein equations

just outside the brane, following the same approach as [11] for the codimension one

case. The matching conditions tell us what the first r−derivatives of the metric are

at the brane boundary, eqs.(30-32), whereas second r−derivatives can only be found

by solving Einstein equations. The crucial point to note is that, out of the five non-

zero (for the cosmological metric) components of the Einstein tensor, the tt, xx and θθ

involve second r-derivatives and therefore allow us to algebraically compute their values

at the brane boundary whereas the tr and the rr components do not involve second

r−derivatives but only known first r−derivatives and first and second time derivatives

of the metric. The former gives the brane EMT conservation, eq.(33) whereas the

13



latter, evaluated at r = ǫ, reads

Gr
r|ǫ = 3

(

ȧ2

a2
+

ä

a

)

− M2

b

2πM4
∗

(pr + pθ)

+
1

32π2

M2

b

M8
∗

[

3(ρ + p)2 + (pr + pθ)[2(ρ − 3p) − 5pr + 3pθ]
]

=
T r

r |ǫ
M4

∗

, (34)

where we have particularised eq.(28) to the cosmological case. Here we can be a bit

more specific about the size of the term we are neglecting, which is (we do not explicitly

write factors of order one)

Mb ∂2

t L = Mb

∫ ǫ

0

dr ∂2

t L
′ ≈ Mb ǫ ∂2

t L
′|ǫ ≈

∂2
t ρ

M4
∗

, (35)

where in the third equality we have approximated (as a conservative order of magni-

tude) ∂2
t L

′(r ≤ ǫ) ≈ ∂2
t L

′|ǫ, and in the fourth one we have used the matching conditions.

We therefore see that, at least at late cosmological times it is utterly negligible as com-

pared with the terms we are keeping. Nevertheless it should be noted that this is just

an order of magnitude estimation and one should carefully check this approximation

when dealing with particular models (for which this term could play an important role

in the cosmology of our brane). The equation we have obtained is a generalised Fried-

mann equation that incorporates the matching conditions for our general codimension

two brane. Taken together with the energy-momentum conservation equation, eq.(33),

suffices to determine the evolution of the scale factor and therefore the cosmology. As

a first check to this equation we can note that we recover the expected behaviour in

the case of a pure tension brane with no rr and θθ components of the EMT. This

case corresponds to ρ + p = pr = pθ = 0 and we get that the expansion of the brane

depends solely on the bulk EMT and not on the brane tension, agreeing with the solu-

tions presented in the literature for this case [12]. As a matter of fact, we could have

guessed the generic form of the modified Friedmann equation based on the well defined

infinitesimal limit for a pure tension brane as something like

3

(

ȧ2

a2
+

ä

a

)

= F(ρ + p) + G(pr, pθ, ρ, p) +
T r

r |ǫ
M4

∗

, (36)

where F ,G are arbitrary functions with the only restriction that G(0, 0, ρ, p) = 0 and

F(0) = 0. The bulk EMT might also have some implicit dependence on ρ, p and

pr,θ. A critical point when considering self-tuning issues is the particular form of the
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function F . If it was linear in ρ+p it could represent an important step towards a self-

tuning scenario yielding a cosmology of the type studied in [28] whereas the quadratic

dependence we have actually found would be in conflict with phenomenology. But this

negative conclusion in the self-tuning issue is of course a bit premature, and should not

be taken too seriously, in the sense that we have not included the possible dependence

of the bulk EMT on the brane parameters. A realistic model might exist that has

self-tuning features hidden in such dependence. For the time being however we will

naively assume that the bulk EMT does not have any implicit ρ, p or pr,θ dependence,

and we have just a cosmological constant in the bulk. In that case, it is possible to

obtain a realistic cosmology if one is ready to give up self-tuning considerations. In our

universe, the term in this equation proportional to (ρ + p)2 would be extremely small

(∼ ρ2
matter), while (assuming pr and pθ are constant) the terms that go like pr + pθ or

(pr + pθ)(5pr − 3pθ) would act as a cosmological constant. One expects then that the

term ∝ (pr + pθ)(ρ − 3p) would give the dominant time-dependence and therefore a

conventional cosmology

3

(

ȧ2

a2
+

ä

a

)

≈ − M2

b

16π2M8
∗

(pr + pθ)(ρ − 3p) +
M2

b

2πM4
∗

(pr + pθ) +
Λr

M4
∗

, (37)

where we have just neglected the terms proportional to (ρ + p)2 and p2

r,θ and defined

T r
r |ǫ ≡ Λr. There remains, of course, the issue of the effective cosmological constant

that would have to be tuned to zero. We have several parameters that can be chosen

at will in the equation above, so one can fine-tune the effective cosmological constant

to a small value by requiring

Λr ≃ −M2

b

pr + pθ

2π

(

1 − T0

2πM4
∗

)

, (38)

where we have considered that ρ ∼ −p ∼ T0. There is a priori no reason to expect

such a cancellation, so this scenario does not seem to yield any light on the cosmolog-

ical constant problem. But notice that the value of pθ and pr coming just from the

integration of the bulk cosmological constant inside the brane has an order of mag-

nitude that, for a weakly gravitating brane (T0/M
4
∗

<< 1), already agrees with this

requirement: in case of having no “brane” contributions to these quantities one would

expect pr, pθ ∼ −2πΛrǫ
2 ∼ −2πΛr/M

2

b .

It is very interesting that such a simple model can yield a realistic cosmology, but

one would expect that in more involved models the bulk deformation produced by the
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brane EMT would affect T r
r also. Depending on how T r

r reacts under a deformed so-

lution (satisfying our ρ- and p-dependent matching conditions), one obtains different

cosmologies. We see that considering a constant T r
r = Λr, pr and pθ can yield a con-

ventional cosmology (with the cosmological constant problem included), but it would

be very interesting to see what happens in other cases. In the case of having two com-

pact extra dimensions stabilised with a magnetic flux for instance, the deficit angle in

the transverse space affects the local energy density of the flux, and therefore T r
r |ǫ in

eq.(34), and this could be the dominant effect when determining the cosmology [16].

A deeper study of these issues is currently under way. Nonetheless, it is interesting

to point out that in the case of having just a cosmological constant in the bulk, the

effective Planck mass is

M2

P l = −8π2
M8

∗

M2

b

(pr + pθ)
−1 ≃ 4π

M8
∗

Λr

(

1 − T0

2πM4
∗

)

, (39)

where we have used eq.(38). Any relation with the extra-dimensional volume is not

transparent in this equation but let’s imagine that we are in a situation whose exterior

metric is approximately described by the geometry given by eq.(25), simply AdS space

with a compact dimension, and the matching conditions reduce to eqs.(26,27). Taking

the minus sign in (25), so the extra dimensional volume is finite, we can write

V2 ≃ 2π

∫

∞

0

L0e
−5kr/2dr =

4πL0

5k
. (40)

We can use now the matching conditions and the relation k =
√

− 5Λr

2M4
∗

to get

M2

P l =
25

4
M4

∗
V2. (41)

We need to chose the negative sign in the metric (25) in order to get a positive Planck

mass squared. If we want to match our brane with an exterior AdS geometry as in

[25], and obtain a realistic cosmology, we need that T0 > 2πM4
∗

(that do not necessarily

imply curvatures of order ∼ M2
∗
, as we have previously commented). If on the other

hand we insist on a weakly gravitating brane, T0 << M4
∗
, then our matching conditions

show that the appropriate branch is the plus sign in (25) and so the volume of the extra

dimensions is infinite. Interestingly enough, the effective 4D Planck mass remains

finite although imaginary, a situation identical to the codimension one case with a

negative tension brane [10]. Also, as we will see below, the dependence on the different
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scales with high exponents makes it very easy to generate a hierarchically large Planck

mass without departing from our approximations. One can point out again several

similarities between this possibility and the well known codimension one braneworlds

consisting on a 3-brane moving in a 5D AdS space [10,11]. In both cases the brane

EMT enters in the definition of the effective Planck mass, and in both cases we need

a non-zero “brane vacuum energy” (the brane tension in the codimension one case,

or the pr + pθ parameter in our case) in order to find a realistic cosmology. This

is a result of the quadratic dependence of the generalized Friedman equation on the

brane EMT parameters in both cases. Also, in both cases we need to fine tune the

bulk cosmological constant against brane parameters in order to obtain a small effective

cosmological constant on the brane. It is also thanks to this fine-tuning that we recover

the relation of the effective 4D Planck mass with the higher dimensional one times the

extra-dimensional volume, as expected from KK arguments (as in the codimension one

case). It would be interesting to push this analogy further, and we might be able to

interpret our thick codimension two brane as a “curled up” codimension one brane,

since as we have commented previously, the wall defining the brane boundary is indeed

a codimension one hypersurface.

We can also check now the magnitude of the terms we are neglecting in the Einstein

equations when doing the matching for these solutions. In order to do so, we consider as

an example particular values of the different parameters, motivated by a “TeV brane”.

We consider a weakly gravitating brane situation, and in this case the exterior geometry

would not be of the type given by eq.(25), since we need a positive bulk cosmological

constant in order to obtain a realistic cosmology (see eq.(39)). Taking for instance the

brane parameters to be of the order

Mb ≈ TeV, (42)

ρ1/4 ≈ (−p)1/4 ≈ 10 TeV, (43)

(−pr)
1/4 ≈ (−pθ)

1/4 ≈ 100 GeV, (44)

and the fundamental scale

M∗ ≈ 1.7 × 103 TeV, (45)

so that the Planck mass comes in the right size

MP l ≈ 1018GeV,
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we see that the terms we neglected in the matching are of order

∫ ǫ

0

dr LR(g) ∼ 3

M2

b

(

Ȧ2

A2
+

Ä

A

)

∼ 10−90, (46)

∫ ǫ

0

dr ∂2

t L ∼ 1

M4
∗
M2

b

∂2

t (−ρ + 3p − pr + 3pθ) ∼ 10−165. (47)

We have assumed that the rr component of the bulk EMT is fine-tuned to give a small

(realistic) Hubble parameter, Λ
1/6
r ∼ 200 GeV and for the second equation we have

used arguments similar to the ones leading to eq. (35). It is therefore clear that these

terms are indeed smaller than the ones we have considered, that are of order

∫ ǫ

0

drL′′ = 1 − β ≃ 1

4M4
∗

(ρ − 3p + pr − 3pθ) ∼ 10−9, (48)

∫ ǫ

0

dr(LK)′ =
K|ǫ
Mb

∼ −2(pr + pθ)

M4
∗

∼ 10−17. (49)

Note that these terms, although much larger than the neglected ones, still have a

hierarchy between themselves, as prescribed by our requirement, eq.(17). As we said

we need the small cosmological constant fine-tuning so that the contributions given by

(46) are smaller than the ones coming from the terms like (49). One can understand the

hierarchy of the different terms noticing that the terms we neglected in the matching

are in these solutions proportional to the brane EMT squared or its time derivatives

(assuming that the term linear in pr + pθ in eq.(37) is cancelled by Λr), while the

terms we have kept are matched with the brane EMT linearly. One should, however,

check for any particular solution the level of approximation that using our matching

conditions represent, since it is not guaranteed in general that they constitute a good

approximation. In case they do not, our matching conditions have corrections that

depend on the internal structure of the brane. A numerical estimation of these terms

would be advisable when using our matching conditions, although as we have seen one

can easily find models with solutions in which they are utterly negligible, and therefore

in these models the use of our matching conditions is fully justified.

Before finishing this section we would like to stress that this particular example (and

its associated cosmological constant fine-tuning) has nothing to do with a possible self-

tuning mechanism. In these models, solutions in which the brane is curved exist on

equal footing with solutions in which the brane is flat. So the required tuning should

be provided by extra considerations, the most promising being supersymmetry (see
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[29] and references there in). The crucial point is that a thick brane, via our matching

conditions, allows for a dynamical deficit angle and therefore the possibility of self-

tuning is present in such a set-up. A more detailed study of self-tuning issues in these

models requires knowledge of the bulk solution in more involved models and is currently

under way.

4 Conclusions, open issues and future prospects

The goal of this letter was to study the dynamics of the induced metric on a codimension

two braneworld, and in particular we were interested in its relation with the brane

EMT. The solution is singular in general for an infinitesimally thin brane7, except for

the case of a pure tension brane. Contrary to what might seem, this case is not relevant

for the study of the so called self-tuning properties on codimension two braneworlds

due to the staticity (for the deficit angle) of the solution as opposed to the intrinsically

dynamical nature of self-tuning. Due to these reasons we had to abandon the thin

brane idealization and consider a brane of finite thickness. Our first step was to find

the matching conditions in the second section, i.e., the set of equations that relate the

brane EMT with the deformation of the surrounding spacetime it produces. Since we

are dealing with a thick brane that has a singular thin limit, it was not clear that one

should be able to do this without knowing all the precise small-scale structure of the

brane. We have however shown that one can obtain this set of equations depending only

on the integral of the brane EMT as a good approximation provided certain conditions

are met. These conditions have the interpretation of requiring that the brane has an

energy-momentum lying mainly along the parallel directions (so it is close to a pure

tension brane), with small 4D curvature. We have also seen in this second section that

the µr component of the Einstein equations gives, when evaluated just outside the

brane using our matching conditions, the energy-momentum conservation equation for

the brane. Using our matching conditions we have been able to interpret some singular

solutions of 6D supergravity found recently in [13] as being sourced by a codimension

two defect with certain energy-momentum and we have also paid particular attention

7As we have previously mentioned, this is not the case when one considers Einstein-Gauss-Bonnet
gravity on the bulk [15], and in fact one can find non-singular solutions even for infinitesimally thin
higher codimension braneworlds when one uses the general Lanczos-Lovelock Lagrangians in higher
dimensions [21].
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to the simple case of having just a cosmological constant in the bulk. In this case

we have matched our brane with an exterior AdS geometry as in [25], obtaining the

required brane properties.

In the third section, attempting to obtain further information that allows us to

assess the phenomenological viability of these models, we have specialized our equations

to the cosmological case. The matching conditions relate however the brane EMT with

the first derivatives of the metric with respect to r, the orthogonal coordinate, and to

obtain the cosmology we would like to relate the brane EMT with the parallel (time)

derivatives of the metric. Fortunately, this can be done simply by using the matching

conditions in the rr component of the Einstein equation evaluated just outside the

brane, at r = ǫ. The reason is that this component of the full 6D Einstein equations

is the only one (apart from the µr) that does not involve second r−derivatives, so we

can get rid of the first ones using our matching conditions and we are left with only

time derivatives of the induced metric and brane parameters, obtaining the modified

Friedmann equation we were looking for. This procedure is completely analogous to

the one followed in the codimension one case by Binetruy et al. in [11], the only

difference being the added complication here of having to consider a thick brane, since

the thin limit is singular for the codimension two case. We have identified a model that

could yield a realistic cosmology, simply considering a constant value for the orthogonal

components of the brane EMT and fine-tuning the bulk cosmological constant to get

a small effective cosmological constant for the brane metric. Put like that, this model

does not seem to shed any light on the possible self-tuning behaviour of codimension

two brane worlds, one of the original motivations for considering these class of models.

It would be interesting in any case to explore this simple model with just a cosmological

constant in the bulk in more detail, in particular to study which bulk geometries are

obtained from it when we have a positive cosmological constant in the bulk, that as we

saw, makes compatible a weakly gravitating brane with a realistic cosmology. In case

of having a negative bulk cosmological constant, the exterior geometry is in some cases

just AdS space with a compact spatial dimension [25], and for a pure tension brane the

bulk is simply a wick rotation and analytical continuation of the AdS-Schwarzschild

geometry (see below), so one might expect that the solution asymptotes to AdS space

in general when we have a negative cosmological constant in the bulk.

But in fact the main uncertainty, and source of model dependence in our cosmolog-
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ical equations is the bulk EMT: our modified Friedmann equation depends on its rr

component. One can expect that in particular models the T̂MN−dependent matching

conditions for the brane imply that this bulk EMT component also gets an implicit T̂MN

dependence, i.e. T r
r |ǫ would also depend on ρ, p, pr and pθ for the cosmological case. It

is certainly conceivable that this dependence is the dominant one, and one could then

obtain different cosmologies depending on the particular model, or compactification,

one is dealing with. A more careful examination of these issues for different models

will be deferred to a future publication. It is worth pointing out that the bulk and the

brane curvatures are independent parameters that in principle have no reason to be

related, even for some given brane parameters. This can be seen by considering the 6D

black hole with cosmological constant [30], substituting in it t → iθ and analytically

continuing the constant (r, θ) hypersurfaces to a Lorentzian manifold of curvature H2.

Then one can interpret the solution as a pure tension infinitesimally thin codimension

two braneworld where H2 is the curvature of the brane induced metric [31]. One can

see then that the brane curvature, the bulk cosmological constant (that determines

curvature of the bulk) and the brane tension are independent parameters of the solu-

tion. So these models do not have any selftuning behaviour per se, if certain models

only admit flat 4D geometries [13], supersymmetry is to blame, and supergravities with

these properties are also known in 7D [32] (where there are 3 compact dimensions and

4 flat dimensions). The problem, of course, is to obtain an effective 4D theory with

supersymmetry broken at a high scale without spoiling 4D flatness, and codimension

two branes could help in this [29]. It would be very interesting to impose our matching

conditions in the solutions of the 6D supergravity that have been proposed in order

to realize the selftuning behaviour [13], and in particular to study the implications of

these matching conditions for the supersymmetry of the background, but as we said

before, a closer examination of these issues is beyond the scope of the present paper,

and will be deferred for future work.
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