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Chapter 1

Two dreisatze for Maxwell

The dream is older than Democrite: describe the universe as a game of Lego: a few ‘elementary’
particles are held together by a few ‘elementary’ forces. The universe is complicated, the dream
naive. Still, it has seen impressive successes explaining e.g. our solar system, chemical elements,
light, the hydrogen atom, nuclear reactions. To avoid misunderstanding, the successes were on
purely scientific level, often followed by human failure. The aim of these notes is to review

today’s version of the game and Connes’ attempt to understand its rules as geometry.

1.1 A qualitative vocabulary

Today we believe that there are four forces: gravity, electromagnetism, weak and strong forces.

Gravity describes the falling apple, the motion of earth around the sun, the dynamics inside
a galaxy and maybe even the dynamics of galaxies. But the last item is the cosmological part
of theology. In any case all items are macroscopic phenomena and we do not know of any
microscopic manifestation of gravity. What is more, we have so far no consistent quantum

theory of gravity.
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Figure 1.1: A photon from ~ decay

Electromagnetism describes, on the macroscopic side, e.g. electric generators and motors,
light, radio transmission. On quantum level, it is responsible for v decay, bremsstrahlung, and
pair creation. The first refers to an unstable nucleus, a bound state of protons and neutrons.
The protons and neutrons rearrange by emitting a photon with enormous energy, figure L1l
This photon is a killer and you better hide behind a solid screen of lead. Bremsstrahlung says

that a high energy electron for instance from a (3 decay may slow down by emitting a high



energy photon, figure [[L2l To protect yourself against these electrons typically a layer of cheap
plexiglass is sufficient. Bremsstrahlung makes radioprotection expensive, before getting stuck in
the plexiglass, the electron emits a photon that goes through plexiglass like through butter and
you better buy lead. Pair creation is a process where a photon traveling with sufficient energy
changes into an electron and a positron, figure [L3l With it, quantum electrodynamics teaches
us two important lessons: even an ‘elementary’ particle, here the photon, may be unstable,
it may change identity or said differently it may decay. This makes quantum field theory so
complicated. Fortunately the decays are not arbitrary. They are governed by precise laws, e.g.
conservation laws for which group theory will play a fundamental role. An important task for
physicists is to compute life times and branching ratios from these laws and to confront the
numbers with experiment. What is a branching ratio in our example of a decaying photon? If
the photon has enough energy it may decay into any pair of a charged particle and antiparticle.
The branching ratios are the corresponding probabilities. The word interaction is often used
instead of force to underline that now a force not only changes the state of motion of the
concerned particles but also their identity, their state in an internal space. We owe the second
lesson to Dirac who generalized Schrodinger’s equation to high energies, that means to special
relativity or Minkowskian geometry. This generalization forces the introduction of antimatter.
To every particle there must exist an antiparticle, with same mass and spin but with opposite
charges. For instance, the antiparticle of the electron is the positron. Electromagnetism is the
show off theory of physics. It is successful both on macroscopic and quantum level, it operates
with clean mathematics and has many applications to every day life. It should be used to set

the scale of success in our Lego game.

Y

Figure 1.2: Bremsstrahlung

Weak interactions describe the 3 decay and they are popular since Chernobyl. Take an
iodine-131 isotope. It is a bound state of 53 protons and 78 neutrons. One of the neutrons
changes identity. It decays to a proton, an electron and an anti-neutrino, figure [[L4l The
proton is heavy and lazy. It stays in the nucleus which becomes a Xenon-131. The neutrino
has zero mass and zero electric charge and is therefore harmless for man. It can pass through

the entire earth without losing energy. The damage is done by the electron that deposits its
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Figure 1.3: Pair production

energy in the immediate vicinity of its point of decay. This is e.g. the thyroid of babies where
iodine likes to accumulate [I]. Let us be macabre and note an academic property of the killer
electron: its chirality. The electron goes at almost the speed of light and it has spin 1/2.
Quantum mechanics tells us, that in this situation, there are only two possibilities, the spin is
parallel to its velocity, the electron has chirality left or the spin is anti-parallel to its velocity,
the electron has chirality right. Here comes the surprising observation, the electron from [
decay is always left-handed. The spin is a vector describing the axis of rotation of the electron
around itself. Therefore the spin is an axial vector, a vector that changes sign under parity,
space reflection. Weak interactions break parity maximally, you never observe a right-handed
electron or neutrino coming out of a § decay. The (electric) charge of a particle indicates to
what extent it is subject to the electric force. Likewise there is the weak charge called (weak)
isospin. The left-handed electron and the left-handed neutrino have non-vanishing isospin. The
right-handed electron has zero isospin. A right-handed neutrino has never been observed. If

the neutrino has no right-handed part then it must be massless, in agreement with observation.
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Figure 1.4: A [ decay

We do not know of any macroscopic manifestation of weak forces. We will try to understand
this with the help of spontaneous breaking of gauge symmetry that will be in the center of
our discussion. Let us anticipate a little. Maxwell tells us that the electromagnetic force
between two charged particles results from another particle being exchanged between them.
This particle, the photon or generically the gauge boson, has spin 1 and is massless. The gauge
symmetry implies that the gauge boson is massless, which in turn implies that the force is long

range, falls off like the inverse square of the distance. Weak interactions are also mediated by



gauge bosons, the W or weak boson. In fact, the neutron in the example from Chernobyl first
decays into a W and the proton. Then the W decays into a neutrino and an electron like in
pair creation from the photon. The W has spin 1 as the photon, but must be very massive to
render the weak interactions short range in accordance with experiment.

The strong force was invented to bind protons and neutrons inside the nucleus. Protons
have electric charge and according to Coulomb’s law they repel each other with an electric force
that increases as the inverse square of their distance. The size of the nucleus being only 10!
meters, we must invoke a strong force to explain the stability of the nucleus. Once accepted,
the strong force also explains « decay, that is the emission of a helium nucleus, two protons and
two neutrons, from a heavy nucleus like plutonium-239. Moreover, the strong force explains
fusion and fission and thereby the energy production in the sun, in diverse nuclear bombs
and in nuclear ‘facilities’. Again we have to face the question, why do we see no macroscopic
manifestation. The gauge bosons of the strong force are called gluons and they are massless.
Nevertheless the strong force is short range because of confinement. Confinement has so far
resisted every attempt of proof. All we have is clue from perturbation theory indicating that
the strong force decreases with energy, asymptotic freedom. Extrapolating to low energies we
do assume an extremely strong static force law that confines all particles with nonvanishing
strong charge, called colour. The idea then is that the proton and the neutron are colourless
bound states of three coloured quarks. Quarks are supposed elementary. We have the up quark
with electric charge 2/3 (in units of the absolute value of the electron charge) and the down
quark of charge —1/3. The quarks carry also the strong charge, colour. On the other hand
the proton, a uud bound state, and the neutron, udd, are colourless and therefore they can be
isolated. The force tying protons and neutrons to a nucleus are imagined of van der Waals’
type and consequently short range. When in our Chernobyl example one of the neutrons inside
the iodine nucleus suffers (§ decay to a proton and a W, it is in fact one of the two down
quarks in this neutron that decays to an up quark and a W~ figure Just as gravity and

electromagnetism, the strong force preserves parity, it is vectorial.

W e
WY
Figure 1.5: Same (3 decay with better resolution

Let us recapitulate our elementary particles and start with the gauge bosons. They mediate
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the non-gravitational forces and have spin 1. There is the photon . Its mass, electric charge
and colour all vanish, but not its isospin. There is the weak boson W*. It is very massive, it has
unit electric charge, non-zero isospin, no colour. A second weak boson, the Z° was discovered
in the seventies. Its quantum numbers are as for the W except for zero electric charge. Finally
there are eight gluons, no mass, no charge, no isospin, but non-zero colour. Gravity is also
mediated by a boson, the graviton. It is not a gauge boson, it has spin 2. It is massless and
has no charge, no isospin, no colour. Let us anticipate that we shall need another boson, the
Brout-Englert-Higgs scalar, with spin 0, no charge, no colour, but with isospin, and massive.
We need it to give masses to bosons and fermions via spontaneous symmetry break down. We
need it, but we have not seen it and it is the last missing particle.

All other elementary particles are fermions, they have spin 1/2. They fall into two classes,
leptons and quarks. Leptons, from the greek word mild, do not participate in strong interaction,
they are colourless. There is the (electronic) neutrino v,, purely left-handed and therefore
massless, no charge but isospin. The electron e is massive, charge —1. Its left-handed part
ey, has isospin, its right-handed part eg has isospin 0. Confinement suggests that quarks (and
gluons) will never be observed alone and today we only have indirect measurements of their
quantum numbers. All quarks are thought to be massive, the u has charge 2/3, the d has —1/3.
Their left-handed parts have isospin, the right-handed parts do not.

We are now ready for another mystery of particle physics. More elementary fermions have
been observed that are boring copies of the above ones. Let us call the (u, d, v, e) first
generation. Then we have two more generations (c, s, v,, p) and (¢, b, v-, 7). The names
of the quarks, charm, strange, top, bottom, recount well how the physicists felt about their
discovery, estranged, charmed, blasé. Nature has simply copied the quantum numbers of the
first generation, except for the masses, that remain a puzzle. The top is extremely heavy and
consequently was the last to be seen, only two years ago. Experiments also indicate — of course
only indirectly — that the top is the last, there should not be a fourth generation. Here is

today’s periodic table of elementary fermions:
(), (0, G), (o), (), (%)
d)  \s), \b)p \e ), \w/), \7/,

UR, CR, th

€r, MR, TR
dR> SR, bRa

The parentheses indicate isospin doublets, i.e. particles that can be produced pairwise from a

decaying WW.



1.2 The gauge dreisatz

In this section we want to be a little more quantitative about weak and strong charges. Behind
the decay laws, there are conservation laws. Behind conservation laws, there is group theory by
Emmy Noether’s theorem. This is well known from electromagnetism. Maxwell’s equations are
invariant under the group U(1). This invariance explains the experimentally well established
charge conservation. For instance, the electricly neutral photon can only decay into an electricly
neutral pair. Charge conservation also implies that the W has unit charge. Moreover, the
electromagnetic gauge group is Abelian. This implies that the photon has zero electric charge,
that it does not itself feel the force which it mediates. On the other hand, we expect the weak
and strong gauge groups to be non-Abelian. Maxwell’s equations are also Lorentz invariant,
if we suppose that the conserved electric charge is Lorentz invariant, i.e. does not depend on
velocity. Then the photon must have spin 1, and likewise for weak and strong bosons. However,
the gravitational ‘charge’ is the mass or more precisely energy, which is not a Lorentz scalar.
Energy is a component of a four-vector in Minkowskian geometry. Therefore the graviton has

spin 2. To cut a long story short here is today’s credo for playing Lego:

e Elementary particles are orthonormal basis vectors of a unitary group representa-

tion. The group G falls from heaven, most of the time.
e The charge parameterizes the choice of the representation.
e Composite particles are obtained from tensor products.

Wigner proposed the credo. His starting point, the Poincaré group or its spin cover, does not
fall from heaven. It comes from Minkowskian geometry. The Poincaré group is non-compact
and its unitary representations are infinite dimensional. They are characterized by a continuous
variable, the mass, and a discrete one, the spin. The spin parameterizes the finite dimensional
part of the representation under the compact subgroup SU(2), the cover of the rotation group

in three dimensional Euclidean space. We denote by 25 4+ 1 the 25 + 1 dimensional irreducible

1

representation of SU(2). It has spin j, j = 0, 5, 1,... A composite particle consisting of two

spin % particles,
202=1@3, (1.1)

can have spin 0, the antisymmetric part of the tensor product: the two spin % are anti-parallel,

1
2

This is the Clebsch-Gordan decomposition and you must know that physicists working at CERN

or it can have spin 1, the symmetric part of the tensor product: the two spin = are parallel.

carry a pocket size table with two hundred Clebsch-Gordon coefficients [2].

8



Motivated from charge conservation and Emmy Noether, let us have G = U(1) fall from
heaven. Its irreducible, unitary representations are all one dimensional, H = C 3> 1 with

plexpif) = expi(q/e)f . qis the electric charge, it is additive under tensor products. Indeed,

(p1 @ p2)(expit) (Y1 @ P2) = (p1(expif)ih1) @ (p2(expif)ibs)
= (expi(qi/e)0 1) ® (expi(qa/e)01a) = expi((q1 + q2)/e)0 . (1.2)

Heisenberg found that one dimensional representations are boring and tried G = SU(2) which
he called (strong) isospin in order to distinguish it from the spin SU(2). Instead of spin up
and spin down, he puts the proton and the neutron — or in today’s picture the up and down
quarks — in the 2. Gell-Mann was more successful with G = SU(3) and discovered the first
three quarks (u, d, s) sitting in the fundamental representation, H = C3, p(g) = g. Indeed, this
hypothesis allowed him to classify the baryons and mesons of his time as bound states of three
quarks or of quark-antiquark. Heisenberg’s SU(2) of strong isospin and Gell-Mann’s SU(3) of
flavour should not be confused with the gauged SU(2) of weak isospin and the gauged SU(3) of
coulour. The latter will play a fundamental role and generate the forces. At the same time they
will allow to derive the non-gauged ones. Consequently, the non-gauged ones play a secondary
role today and we mentioned them for historical reasons. They lead to the discovery of quarks
and to the establishment of the credo. A newcomer should be warned however: the confusion
is still present today and not only in the terminology isospin.

At the root of this confusion is the gauge miracle. The ungauged U(1) of electric charge
conservation can be gauged and its gauging produces electromagnetism.

Here is the story in short. The ungauged U(1) of electric charge conservation does not
fall from heaven, it is given to us free of charge by quantum mechanics, via the conservation
of probability. The representation space of quantum mechanics is £2(R?,C). Its elements,
complex valued, square integrable functions on our Euclidean space R?, are the wave functions,
(&). A natural group of unitaries acts in this Hilbert space. Its elements are translations Uy,

rotations Ugr and phase transformations Ueyp o,

(Ue)(@) = (@ =9, (1.3)
(Ury)(@) = ¢(R™'3), (1.4)
(Uexpio$h)(Z) = exp(i(q/e)0) (). (1.5)
Their generators are momentum, angular momentum and electric charge,
0 L 0 ,
%, T N %, 11, (16)



The associated conserved quantities have the same names. The free Schrodinger equation

follows via the Euler-Lagrange variational principle from the action
Y, O 2 0P .
/dt/dx WY(t, T) (Zha + = 9 V(t, 7). (1.7)

Schrodinger’s version of quantum mechanics treats space and time differently, the position Z, is
an observable, a Hermitian operator, (Z,,1)(t,¥) = @1 (t, Z), and as such it has an uncertainty,
time ¢ is just a parameter. A = 1.055 - 1073 m? kg/s is Planck’s constant, most of the time
we adopt units such that A = 1. m denotes the mass of the free ‘matter’. Schrodinger’s
action is obviously invariant under phase transformations, in agreement with the postulate
that only |¢|* has physical significance: it is the probability density of location. However,
the choice of phase must be rigid, constant over the entire universe. One might object that a
physicists somewhere in Andromeda should be able to do his quantum mechanical calculations
with a phase convention that should not be tied to a phase convention used by a colleague on
Earth. This leads us to consider spacetime dependent phase transformations exp i6(t, ). They
form the infinite dimensional gauge group or gauged U(1). Its elements are functions from
spacetime into U(1) with pointwise multiplication. How can we render Schrédinger’s action
gauge invariant? The trick goes by the name of minimal coupling. Postulate the existence of a

connection or gauge field A,, 1 = 0,1, 2,3 with the affine transformation law

n 9 g (1.8)

pv(expif) A, = A, + i expif 9 exp—if) = A, + 2 o=

oxH
where we have put 2° = ct. The subscript V stands for vector because the gauge field is a vector

_9_
Ozt

+i1 A, and you get a gauge invariant action. Physically the free matter particle, we started

field, it has spin 1. Now replace all derivatives

9
OxH

from, is now coupled to an electromagnetic field, ‘radiation’, whose vector potential is A,. In

in the free action by covariant derivatives

a second stroke, we want to make the gauge field dynamical. We look for a kinetic term, i.e. a
term involving derivatives of the gauge field, and that is gauge invariant. In lowest order, two
derivatives, the answer is unique, it is Maxwell’s action with the 1/r? fall off in its static force
field. Genesis is rewritten, Let there be light is to be replaced by Let there be gauge and we can

summarize the gauge miracle in form of a dreisatz or regra de trés:
e quantum mechanics + gauge invariance = Maxwell.

Note that this dreisatz works for non-relativistic quantum mechanics, Schrodinger, or relativistic
quantum mechanics, Klein-Gordon and Dirac.
We anticipate that the gauge miracle also works for weak and strong interactions. Let there

be non-Abelian gauge. However, the groups G = SU(2), SU(3), and their representations fall
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from heaven and we cherish the dream to derive them from first principles just as the U(1)
was derived from quantum mechanics. This is precisely what Connes proposes. Let there be
noncommutative geometry. We end this section with a warning: there is a semantical ambiguity,
should a particle be an entire representation space or only a vector therein? In Wigner’s point
of view, it is the same particle that can have different energies and spin orientations. An
applied force can change the energy or spin orientation of a particle without changing its
identity. Weak interactions force us to treat the different spin orientations or chiralities of the
electron as different particles with different charges and at the same time forces us to allow
for interactions that change the spin orientation in spacetime and the isospin orientation in an

internal space. The latter is the change of identity in pair production.

1.3 The Minkowski dreisatz

Our next dreisatz is of even more geometric nature:
e Coulomb 4+ Minkowskian geometry = Maxwell.

This dreisatz does not do justice to the historical development, Maxwell’s theory existed when
Einstein discovered special relativity and it came as surprise that Maxwell’s theory was already
Lorentz invariant.

We start with Coulomb’s static force law,

I qQ
F = Tre 12 (1.9)
describing the force between two electric charges ¢ and () at rest at a distance r. The propor-
tionality constant €y = 8.8544 - 107125 C? /(m3 kg) will be referred to as the inverse square of
the coupling constant. In the following we will measure electric charge not in Coulomb C but
in units of minus the electron charge, e = 1.6021 - 1071 C. Note that this normalization can be
changed at will, only the ratio €? /ey is physical. Often we also use units of electric charge such

that ¢ = 1. Then e is the coupling constant. Now we perform a Lorentz boost

t t
ct +vx/c . r+v G=y =z (1.10)

V1—=v2/c2’ V1—v2/c2’

with the speed of light ¢ = 2.9979-10% m/s, and the magnetic field pops up. The force involving

ct =

two time derivatives has a complicated transformation law under the Lorentz group and we take
advantage of the fact that Coulomb’s force derives from a potential,
0 1

v Q

‘v . 1
or '’ Ameg T

—

E=F/qg=— (1.11)
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In terms of the potential we can write Coulomb’s law as the following differential equation

02
@V: —p/E(], (112)

where p is the charge density. The Coulomb potential V', equation (LIT]) is the elementary
solution or Green function of the Laplacian for a pointlike source p(Z) = %5 (Z). The charge
being a conserved quantity we must suppose that it is Lorentz invariant. Then the charge
density transforms as the zero component j° = cp of a four vector j* whose spatial components
are the current density j Consequently, the lhs of the differential equation (LI2) must be a
four vector. Therefore we introduce the (four) vector potential A* with A° = V/c. The force a

‘test’ charge or matter particle ¢ feels in the electromagnetic field is obtained from the static

force law,
d*z =
by a Lorentz boost:
d*z# dz”
=qF*, , 1.14
mn dr2 1 dr ( )

We use Einstein’s summation convention, summing over repeated indices is always understood.
We denote by 7 the Lorentz invariant proper time defined only on the trajectory x*(7) of the

test particle by the implicit equation

[, aeN: az az]”
CT:/O [02<E) _EEI dr, (1.15)
or infinitesimally
cdr? = Adt* — A7 =: ), dadz” =: dx, d2”. (1.16)

The Minkowski metric

1 0 0 O
0O -1 0 0

Ny = 0 0 -1 o0 (1.17)
0o o0 0 -1

and its inverse n*” are used to lower and raise indices. We note that, without quantum me-
chanics, only derivatives of the potential A, are measurable. They are called field strength or

curvature,

r,=0,A,—0,A 0, = —. 1.18
7 fz fz

vl
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The field strength is an antisymmetric matrix made up from the electric field E and the magnetic
field B,

0 —E,/Jc —E,/Jc —E.,/c

_ E.Je 0 B, -B,
Fw==1pg -B. 0 B, (1.19)
E./¢c B, —B, 0
The important property of the field strength is that it is invariant under the gauge or phase
transformations,
pv(expif)A, = A, + i2expif 0, exp —if = A, + 29,0. (1.20)

The force law for test charges (I.I4]) is nothing but the Lorentz force describing ‘the coupling
between matter and the electromagnetic field’. In a second stroke we want to generalize the
static differential equation (ILI2]) that tells us that charge is the source of the electric field.
We simply replace the potential V' by the four potential A, the charge density p by the four
current j and the Laplace operator A = §?/9%? by its Lorentz invariant extension, the wave or

d’Alembert operator
. P
O0=3 oz D= n* 0,0, =: 0"0,. (1.21)

Then we obtain Maxwell’s equations

1
OA, = — 7, 1.22
vy (1.22)
in the Lorentz gauge 9, A" = 0. The gauge invariant Maxwell equations read:
1
MEy,, =0"0,A, — 0,0,A" = — jy. (1.23)
€oC

They make the electromagnetic field dynamical, it propagates with the speed of light and
therefore it is often called radiation. In particular, Maxwell’s equation contains Ampere’s

static law,
rotB = uoj, (1.24)

and we can identify the static magnetic coupling constant o = 1/(eoc?).
Maxwell’s equations derive from an action,
€oC

S[A] = —/ <T E, F" + %j,,A”) dz. (1.25)
R4

13



If we measure electric charge in units of the electron charge then we must replace ¢y by €y/e>.
The first term is manifestly gauge invariant, the second, the minimal coupling to matter, is

gauge invariant thanks to charge conservation,
a,5" = 0. (1.26)

Let us summarize our first geometric dreisatz: the extension of Coulomb’s static force law
with its coupling ¢y to Minkowskian geometry characterized by the speed of light ¢ produces
an additional force, the magnetic force with feeble coupling 1. Maxwell’s theory is celebrated
today as Abelian or should we say, commutative Yang-Mills theory. Historically, the chrono-
logical order was different. Both the static electric and magnetic forces where known, Maxwell
unified them by rendering them dynamical. Plane waves came out as particular dynamical
solutions to his equations and he found that the velocity of the waves, the speed of light, was
c = (eopo)~"/%. At his time physicists still believed that the speed of light, like any velocity,
depended on the reference system. But nobody really dared to object to Maxwell’s relating
the speed of light to static constants, experimentally Maxwell was right. Lorentz timidly intro-
duced his transformations to understand the puzzle. Only Einstein dared to take the Lorentz
transformations serious. He operated a revolution on spacetime, e.g. abolishing absolute time.

His revolution is accessible to experimental verification, without talking about forces.
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Chapter 2

A technical interlude on differential
forms

The two dreisdtze discussed so far call for differential forms, which will also make the gener-
alization of Maxwell’s theory to curved spacetimes easy. Here is a crash course on the local

theory [3].

2.1 Vector fields

y? y?
(% — yl ( A A A yl
\ | \ /‘\ /‘\ /‘\ N\ /’\
=

Figure 2.1: The Cartesian vector fields 9/9y' and 9/dy?

Let U be an open subset of R™. A vector field v on U is a differentiable family v(x) of
vectors in R" indexed by the points in U. (For us, differentiable always means infinitely many
times differentiable.) For example, U is a lake and v the wind. Note that the ‘velocity’ vectors
v(z) are not confined to lie in a subset of R™ as is the case for the points z. In Cartesian
coordinates y*, = 1,2, ---,n, any vector field may be decomposed:

oy’

v = Zvﬂ(x)i (2.1)

where 0/0y* are the vector fields with Cartesian components (0,---,0,1,0,---,0). The one
is the pth entry. Figure 2] shows an example. Note that here 9/0y* is not a differential

15



operator, but just a symbol. Its mnemo-technical utility comes from the definition in arbitrary
coordinates z*:

0 ay” 0

%(1’) ': Oxh (z) oy”

v

(2.2)

where Jy”/0xMis the Jacobian matrix of the (general) coordinate transformation. We shall

consider explicitly the example of polar coordinates later

2.2 Differential forms

By definition a (differential) p-form ¢ is a differentiable family of maps ¢,

Y, R"x---xR" — R
(01 (@), 0p(@)) = wu(0a(), -+, 0p()). (2.3)

Each map ¢, is required to be multilinear (with respect to the real numbers) and alternating,

1.e.
90("'7712‘7"'77)3'7"') — —gp(-..’/uj7...’/ui...>_ (24)

For convenience, we often suppress the point . We denote by QPU the set of all p-forms on U.
Note that if p > n this set only contains the zero element. For p = 0 we define Q°U to be the

set of all (differentiable) functions from U into the real numbers.

2.3 Wedge product

The wedge product of a p-form with a g-form is the (p + ¢)-form defined by:

A QU x QMU — QPTIy
X (., ¥) — @AY
(P AY)(v, s Uprg) =l D sign P(Va(a), o Unp)) U Wnipiny - Vaorg))s (25)

TeSptq

where the sum is over all permutations of p + ¢ objects and sigr is the sign of the permutation
.

The wedge product is bilinear, associative and graded commutative, i.e.

e A= (=1)"P A . (2.6)
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In any coordinate system x* a p-form may now be decomposed
© = Z O ooy ()T A - A dat?, (2.7)
M1,y 4p
where for each p=1,2,--- n,dx* is the 1-form defined by

0
oz

Azt (=) = . (2.8)

In tensor language a vector field v constitutes a contravariant tensor v* of degree (rank) one
while a p-form constitutes a completely antisymmetric covariant tensor ¢,,..,,, of degree p.
The real number obtained by evaluating a p-form on p vector fields corresponds to the com-
plete contraction and the wedge product corresponds to the antisymmetrized tensor product of
antisymmetric covariant tensors.

A collection of vector spaces QPU,p = 0,1,---,n, together with a bilinear, associative,
graded commutative product A is also called exterior algebra or Grassmann algebra. Later, in

order to alleviate notations, we shall suppress the wedge symbol.

2.4 Exterior derivative
We define the exterior derivative of a form using a coordinate system x*:

d: QU — QP
Y — d(p

0
dp = Z (wapm...up)dz” Adxtt A LA datr. (2.9)

M1, p,V

This definition does not depend on the choice of the coordinate system z*.

The exterior derivative is a linear first order differential operator. It obeys the Leibniz rule
d( A ) = (dp) At + (=1 A dp (2.10)

and the so-called co-boundary condition
d*>=0. (2.11)

In tensor language the exterior derivative amounts to taking the gradient of an antisymmetric
covariant tensor and then antisymmetrizing the covariant index of the gradient with the others.

The co-boundary condition is just the statement that partial derivatives commute.
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2.5 Integration

Let ¢ be a p—form and K a p-dimensional sufficiently regular piece of U parameterized by

xl, 2%, ..., 2P, for example a cube. Then we define the integral of ¢ over K:

/Kso:/Ksolz...pdarl---dxp, (2.12)

where the rhs is just the multiple Riemannian integral of the coefficient function of ¢. The
increasing order of the indices in the coefficient function ¢12_, means that we suppose a fixed
numbering of the coordinates of K, i.e. an orientation. The definition of the integral of a
form does not depend on the choice of the coordinate system. This is assured by the theorem
that under a change of coordinates the integrand in the Riemannian integral changes with the
absolute value of the determinant of the Jacobian matrix.

Let us mention Stokes’ theorem: Let ¢ be a (p — 1)-form, K a p—dimensional piece of U,

0K its properly oriented boundary. Then

/Kdap:/aKap. (2.13)

This theorem is useful to derive field equations from an action. Together with the Leibniz rule
it allows to carry out partial integrations. Finally, we remark that the boundary of a boundary

is empty,
00K = (), (2.14)

which explains the term co-boundary condition for d* = 0.

2.6 Vector valued differential forms

Let W be a finite dimensional real vector space. Since all operations introduced so far are

linear, we can generalize the values of differential forms from the real numbers to vectors in W:
O, R"x..xR"—W. (2.15)

We denote by QP (U, W) the set of p—forms on U with values in W. In later applications W will
be a Lie algebra or a vector space carrying a linear representation of some symmetry group.

With respect to a basis T,,a = 1,2, ...,dim W, any element w € W can be written

dim W

w= Y w'T, (2.16)
a=1
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where the w® are real numbers. Likewise any p—form ® with values in W can be written as
=) T, (2.17)

where now the ¢ are real valued differential forms on U. Of course, in order to define a wedge
product in this more general setting, W must have a multiplication law, i.e. W must be an
algebra. For example, if W is a Lie algebra, we define the the commutator of a p— form and a

g—form, both with values in the Lie algebra, by
1 .
(@, U](vy, ..., Upsq) = i > S @(Vn(1), oo Un))s U(Vr(pit)s o1 Vnpa) (2.18)
" meSpiq

or with respect to a basis Tj:

O =) " V=3 I,

b
[@,9] = > . AT T, (2.19)
a,b

The commutator of forms is graded commutative:
(@, U] = —(=1)M[V, 9], (2.20)

where one minus sign comes from the anticommutativity of the commutator of two Lie algebra

elements and the others from equation (2.6]).

2.7 Frames

A frame on an open subset U of R" is a set of n vector fields by, by, ..., b, such that in each
point x € U the n vectors by (), ..., b,(z) are linearly independent. Other words used for frames
are tetrads (for n = 4), vielbein or n—bein, repeére (mobile). If z# is a coordinate system, then
0/0x* ;= 1,2,...,n, is a frame. However, not every frame b; can be derived from a coordinate
system and we call a frame of the particular kind 9/9dz* holonomic. Later we shall learn a
recipe how to decide whether a frame is holonomic.

Given two frames b; and b, on U, we can always at a given point x expand one in terms of
the other:

Vi) =Y (v (2)) b (), (2.21)

J
where y~!(x) is an invertible n X n matrix:

v H(x) € GL,. (2.22)
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Both frames depend differentiably on z and so does y~*(z), i.e. 7! is a differentiable function
from U into GL,,. The set of all such functions forms a group where the multiplication is defined

pointwise by the matrix product. We call this group the GL,, gauge group
YGL, ={v:U — GL,}. (2.23)

A dual frame (or simply frame, when there is no risk of confusion) is a set of n 1-forms
BY, 3%, ..., 8" such that for every z € U p'(x),3*(x),..., 3"(x) are linearly independent. A
frame is called holonomic if it is of the form dz* where z* is a coordinate system.

Theorem: Let U be simply connected. Then the frame 3¢ is holonomic if and only if
dgi =0 (2.24)

fort=1,2,...,n.

A dual frame ¢ is called dual to a frame b; if
3'(b;) = 6 (2.25)

for 2,5 = 1,2,...,n and a frame is holonomic if and only if its dual frame is holonomic. If two
frames b; and b} are related by the gauge transformation y~!, equation (2.21]), their correspond-

ing dual frames are related by the inverse transposed gauge transformation:
BT =>4, (2.26)
J

transposed because of the ‘wrong’ order of the indices in equation (Z21I]). Our convention is
that the first index of a matrix counts the rows, the second index the columns, irrespective of
whether the indices are upper or lower.

As an example let us consider three-dimensional polar coordinates, U is R? without the

x — z half plane:
U=R>—{(z,y,2),z >0,y =0}. (2.27)
Let b; be the holonomic frame of Cartesian coordinates,

by = —, (2.28)

and b the holonomic frame of polar coordinates,

0 0 0
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with

x = rcospsind (2.30)
y = rsinpsind (2.31)
z = rcosé. (2.32)

In order to calculate the gauge transformation ~ relating the two frames we use the definition
@2):
g 0x0d Oyod 0z0

o~ orde oroy " oros (2:83)
and two similar identities; y~! is just the Jacobian matrix of equations (Z.30H2.32):
cosp sinfl  —r sing sinf r cose cosé
v '= | sinp sinf 1 cosg sinf 7 sinp cosf |. (2.34)
cosf 0 —7r sinf
The corresponding holonomic dual frames are given by
pl=de, pB*=dy, B3 =dz, (2.35)
and
gt =dr, B*=dyp, B°=dob. (2.36)
Using equation (2.26]) we then find
dz = %dr + %dgo + @dé’ (2.37)

o 9 o0

and similar equations for dy and dz.

2.8 Metrics on a vector space

Let V be an n—dimensional real vector space. A (pseudo—)metric (or scalar product) on V' is a

bilinear form

g:VxV — R
(v,w) — g(v,w) (2.38)

which is symmetric:
g(v,w) =g(w,v) forall v,weV (2.39)
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and nondegenerate. The last requirement means that only the zero vector has vanishing scalar
product with all vectors in V. If by, bs, ..., b, is a basis of V', then due to the bilinearity the

metric g is uniquely specified by the n x n matrix of scalar products of the basis vectors:

The symmetry and nondegeneracy of g imply that the matrix of g with respect to the basis is

symmetric and nondegenerate:

Ji; = Yji,

The matrix ¢';; of the metric g with respect to a different basis by,
o= (v b (2.42)

is given by
g = 9B, b)) = (v g . (2.43)

Note here that we use n x n matrices to describe a change of coordinates as well as a metric,
two quite different mathematical objects.

The following two theorems of linear algebra are of fundamental importance for us.
Theorem (Gram & Schmidt): Any metric has an orthonormal basis e;, i.e. a basis such
that

1

g(e,-, 6]') =T = 1 . (244)

-1

Theorem (Sylvester): The number r of plus signs and the number s of minus signs, r+s = n,
does not depend on the choice of the orthonormal basis e;.
From now on we shall reserve the letter e for an orthonormal basis. Of course, an orthonor-

mal basis is not unique, for instance

e — ((1)) e — ((1)) (2.45)
¢y =+ G) ¢y = 25 (I) (2.46)

and



are both orthonormal for the Euclidean metric of R?. In general, given an orthonormal basis

e;, any other basis ¢/; with

¢i=Y (A"Ye;, AeGLy,, (2.47)
J
is also orthonormal if and only if

n=A"TnA"t (2.48)

The set of all A’s satisfying this condition forms a subgroup of GL,,, the Lorentz group denoted
by O(r,s). It is of dimension n(n — 1).
There are two ways to parameterize all possible metrics with given signature (r,s) on V.

(i) Choose a fixed basis b; of V. Then any metric is parameterized by the symmetric n x n
matrix g;; of scalar products, that is %n(n + 1) real numbers.

(ii) Given any metric, choose an orthonormal basis e;. This basis characterizes the metric as
well. With respect to the fixed basis b;, the e; are parameterized by the n x n matrix !
consisting of n? numbers. However, any other basis obtained from e; by a Lorentz rotation
describes the same metric. Therefore we have to subtract from n? the number of dimensions of

the Lorentz group sn(n — 1) yielding again

n® —1in(n—1)=1in(n+1). (2.49)

Being nondegenerate a metric g on a vector space V' induces a canonical metric ¢g* on the dual
vector space V*: Let 3¢ be the basis of V* dual to the basis b;:

3(by) = 5. (2.50)

J

Define a metric on V* by
g (B, 87) = (gi5) " (2.51)

This metric is canonical, i.e. it does not depend on the choice of the basis b;.
It follows that the dual basis of an orthonormal basis e; of V' is itself orthonormal with respect
to g*, because 7 is its own inverse. Attention, in the following we denote an orthonormal basis

of V* by €, only the position of the index distinguishes basis from dual basis.

2.9 Metrics on an open subset of R"

We defined a vector field on an open subset U of R" as a differentiable family of vectors indexed

by the points x of U. Likewise we now define a metric g on U to be a differentiable family g, of
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vector space metrics. With respect to a frame b;(x) this family is described by the symmetric

n X n matrix

9ij(x) := gu(bi(), bj(x)) (2.52)

whose elements are real valued functions on U. For convenience we shall often suppress the x’s
in the following.

Since the orthonormalization procedure by Gram and Schmidt only involves addition, mul-
tiplication and division, that is differentiable operations, it also immediately guarantees the

existence of orthonormal frames e;(x),

9(€i(2), ¢;(2)) = nyj, (2.53)

with z-independent rhs.

A frame may now have two nice properties: being holonomic or being orthonormal. As
often in life we can have both only in trivial situations.
Theorem: An open subset U of R™ admits a holonomic and orthonormal frame if and only if
it is flat.

We do not yet have a definition of flatness, but it is sufficient to take the naive sense of the
word, for instance meaning that the angles of a triangle add up to 180°.

Let us return to our example of R3 minus a half plane and endow it with the Euclidean

metric

(2.54)

o = O
_— o O

1
gi; =10
0

with respect to the Cartesian holonomic frame, which is therefore also orthonormal. On the

other hand, the polar holonomic frame is not orthonormal:

1 0 0
gy =0""1y =10 r2sin*d 0 |, (2.55)
0 0 r?
or in the dual frame
1 00
g7=10 1 0 (2.56)
0 0 1
and
- 1 0 0
Jg?"=10 r2sin7%20 0 |. (2.57)
0 0 r—2



To have a non-flat example consider a piece of the unit sphere, » = 1. It is an open subset of

R? parameterized by ¢ and 6. Its metric is given by
i sin™24 0
gv = < 0 1 (2.58)

with respect to the holonomic frame dy, df. An orthonormal frame is for instance
e! =sinfdy , €? = db. (2.59)
It is not holonomic:
de' = d(sin fddy) = cos df A dp # 0. (2.60)

We will show in section that the sphere is not flat and the above theorem then implies that

there is no holonomic and orhonormal frame on the sphere.

2.10 Hodge star

The Hodge star is a map turning a p—form into an (n — p)—form. We define it in terms of a

holonomic frame:

(WU — Q"7PU

1
i Z €y V | det g |

P H--p

1
T G, 2

' Hp+1Hn

XY Qo g gt | At A A et (2.61)

V1-Up

where €, . is the completely antisymmetric tensor with

- ln

€1m=1. (2.62)

Note that this definition requires the choice of an orientation in R", but does not depend on
the particular coordinate system used. Just as the wedge product the Hodge star is a purely

algebraic operation. It is linear and its square is plus or minus the identity:
* Kk = (—1)p(”_1)+s(p, (263)

Recall that s is the number of minus signs in the metric. Note that the Hodge star has a

particularly simple expression in an orthonormal frame.

25



2.11 Coderivative and Laplace operator

Just as the exterior derivative, the coderivative is a linear first order differential operator which

however lowers the degree of a differential form by one unit:

§: QU — U
© s O i= (=1)"PTHIS y d . (2.64)

It inherits nilpotency from the exterior derivative: §2 = 0.
If U is ‘compact’ and if the metric has Euclidean signature, then QU is a pre-Hilbert space

with scalar product

(K, ) := /UHA *(, (2.65)

for two differential forms x, ¢ of equal degree. The scalar product vanishes if the degrees are
not equal. In this situation, the coderivative is the formal adjoint of the exterior derivative.

In general, the Laplace operator is the linear second order differential operator defined by:
A= —(dd +0d) : QPU — QPU. (2.66)
If the metric is Euclidean, the Laplace operator is Hermitean. If the metric is indefinite, the
Laplace operator is usually called wave or d’Alembert operator and written as O.
2.12 Summary

Before returning to physics, let us summarize: We have recast a part of tensor analysis in a

coordinate free language using differential forms. This serves two purposes:
e They carry less indices, making some calculations more transparent.

e Being coordinate independent they can easily be generalized to more general spaces

like manifolds.
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May be, the following dictionary can be useful:

v vk

p € WU Plur-pup)

p(v1, vz, -+, vp) Dy Pl il V1T Up”

NP Clurpy Vuprr-pal

dy Opr Priz--ppy1]

fK ) fK 1. dxl - daP

g 9(ij)

g 97 = (97"

Y Ziiﬁﬁﬁ‘jg VI et g @y g7 - G €y 1
—dxdx —xdxd A

2.13 Maxwell’s equations

Consider Minkowski space U = R* equipped with the Minkowski metric of signature 4+ — ——.
We subscribe again to Einstein’s summation convention, (summing over indices that appear
twice). The sources, electric charge and current densities, are combined into a real valued
3-form:

Jj= %euy,\pj“dx” Ada* Ada? € Q3(RY). (2.67)
Integrating j over a 3-dimensional space-like volume yields the total charge inside that volume

as a function of time. Charge conservation reads

dj = 0. (2.68)
The field strength is a real valued 2-form
F =1F,dz" Adax”. (2.69)
Then Maxwell’s equations read:
dFF = 0, (2.70)
0F = EO% * J. (2.71)
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equation (2.7T]) implies charge conservation. Therefore only conserved currents, dj = 0, may be
coupled to the electromagnetic field. Our spacetime being simply connected, equation (2.70])

implies the existence of a potential, a real valued 1-form A such that
F =dA. (2.72)
Expressed in terms of the potential, equation (2.71]) can be obtained from the action
S[A]:_/R4(%CF/\*F+%‘7AA) (2.73)

upon variation of the potential. This means we replace A by A+ a in the action, expand it and
put the term linear in a equal to zero. Note that if spacetime was Euclidean, Maxwell’s action
in the vacuum would be simply S = 9 (F, F'). This will be Connes’ starting point.

Writing Maxwell’s theory with differential forms has four advantages:

e Lorentz invariance is immediate; SO(1, 3), the group of linear transformations pre-
serving the metric and the orientation of R*, also leaves the Hodge star and conse-

quently the Maxwell action (2.73) invariant.

e In Maxwell’s equations or in the action the flat Minkowski metric may be replaced

by any curved metric. This tells us how electromagnetism couples to gravity.
e Gauge invariance now reads
pv(9)A=A+ilgdg™ = A+2d9, g=expif € ®U(). (2.74)

Its abelian group U(1) may easily be generalized to a non-Abelian, compact Lie

group. One then gets the celebrated Yang-Mills theories.

e The invariance of the action under diffeomorphisms is manifest. They form a semidi-

rect product with the gauge group, here:

Diff(M)®®'U(1). (2.75)
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Chapter 3

Yang-Mills-Higgs theories

To get started we describe Yang-Mills-Higgs theories as a black box or better as a slot machine.
There are four slots for four bills. Once you have decided which bills you choose and entered
them, a certain number of small slots will open for coins. Their number depends on the
choice of bills. You make your choice of coins, feed them in, and the machine starts working.
It produces as output a complete particle phenomenology: the particle spectrum with their
quantum numbers, cross sections, life times, branching ratios. You compare the phenomenology

to experiment to find out whether your input wins or loses.

3.1 The bills

The first bill is a finite dimensional, real, compact Lie group GG. The gauge bosons, spin 1, will
live in its adjoint representation whose Hilbert space is the complexified of the Lie algebra g.
The remaining bills are three unitary representations of G, pr, pgr, ps defined on the complex
Hilbert spaces, Hy, Hgr, Hs. They classify the left- and right-handed fermions, spin %, and
the scalars, spin 0. The group G is chosen compact to ensure that the unitary representations

are finite dimensional, we want a finite number of different Lego bricks.

3.2 The coins

The coins are numbers, coupling constants, more precisely coefficients of invariant polynomials.
We need an invariant scalar product on g. The set of all these scalar products is a cone and the
gauge couplings are particular coordinates of this cone. If the group is simple, say G = SU(n),

then the most general, invariant scalar product is

(X, X" = g%tr[X*X'], X, X" € su(n). (3.1)
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If G =U(1) we have
(YY) = %Y/Y’, Y, Y € u(l). (3.2)

Mind the different normalizations, they are conventional. The g, are positive numbers, the
gauge couplings. For every simple factor of G there is one gauge coupling.

Then we need the Higgs potential V(). It is an invariant, fourth order, stable polynomial
on Hg 3 ¢. Stable means bounded from below. For G = SU(2) and the Higgs scalar in the

fundamental or defining representation, ¢ € Hg = C?, ps(g) = g, we have

Vip) =A(e"p)* — 317 . (3.3)

The coefficients of the Higgs potential are the Higgs couplings, A must be positive for stability.
We say that the potential breaks G spontaneously if its minimum is not a trivial orbit under
G. In our example, if p is positive the minimum of V() is the 3-sphere |p| = v = L /V/A. v
is called vacuum expectation value and SU(2) is said to break down spontaneously to its little
group U(1). The little group leaves invariant any given point of the minimum, e.g. ¢ = (v, 0).
On the other hand if y is purely imaginary, then the minimum of the potential is the origin,
no spontaneous symmetry breaking.

Finally, we need the Yukawa couplings gy. They are the coefficients of the most general
trilinear invariant on H; ® Hr ® (Hs @ HY%). For every 1-dimensional invariant subspace in
the reduction of this tensor representation, we have one complex Yukawa coupling.

We will see that, if the symmetry is broken spontaneously, gauge and Higgs bosons acquire

masses related to the Higgs couplings, fermions acquire masses related to the Yukawa couplings.

3.3 The winner

Physicists have spent some thirty years and billions of Swiss Francs playing on the slot machine
by Yang-Mills & Higgs. There is a winner, the standard model of electro-weak and strong

interactions. Its bills are

G = SU(3)xSU(2) xU(1)
H, =

(3, 1,2)® (3,1,-3) & (1,1,-1)], (3.5)
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Hs = (1’2>_%)> (3'6)

where (n3,ns,y) denotes the tensor product of an nz dimensional representation of SU(3), an
ny dimensional representation of SU(2) and the one dimensional representation of U(1) with
hypercharge y: p(exp(if)) = exp(iyf). For historical reasons the hypercharge is an integer
multiple of %. This is irrelevant: only the product of the hypercharge by its gauge coupling is
measurable. In the direct sum, we recognize the three generations of fermions, the quarks are
SU(3) colour triplets, the leptons colour singlets. The basis of the fermion representation is

UR, CR, th

€R, KR, TR
de SR, bR7

The parentheses indicate isospin doublets.

We recognize the eight gluons in su(3). Attention, the U(1) is not the one of electric charge,
it is called hypercharge, the electric charge is a linear combination of hypercharge and weak
isospin, parameterized by the weak mixing angle 6, to be introduced below. This mixing is
necessary to give electric charges to the W bosons. The W and W™ are pure isospin states,
while the Z° and the photon are (orthogonal) mixtures of the third isospin generator and
hypercharge.

Because of the high degree of reducibility in the bills, there are many coins, among them 27
complex Yukawa couplings. Not all of them have a physical meaning. They can be converted

into 18 physically significant, positive numbers [4], three gauge couplings,
g3 = 1.218 £ 0.026, go = 0.6567 £ 0.0007, ¢, = 0.3575 £ 0.0001, (3.7)

two Higgs couplings, A and pu, and 13 positive parameters from the Yukawa couplings. The

Higgs couplings are related to the boson masses:

mw = 3g2v = 80.33 £ .15 GeV, (3.8)
mz = /gt + g3 v=my/cosb, = 91.187 £ .007 GeV, (3.9)
mg = 2V2V v > 65 GeV, (3.10)

with the vacuum expectation value v := % w/ VA and the weak mixing angle 6,, defined by
sin? 0, := g5°/(g95> + g;%) = 0.2315 & 0.0005. (3.11)
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For the standard model, there is a one-to—one correspondence between the physically relevant

part of the Yukawa couplings and the fermion masses and mixings,

me = 0.51099906 & 0.00000015 MeV, m, =5=+3 MeV, my = 1045 MeV,
m,, = 0.105658389 = 0.000000034 GeV, m, =1.34+0.3 GeV, m, =0.240.1 GeV,
m, = 1.7771 £ 0.0005 GeV, m; = 17546 GeV, my = 4.3+ 0.2 GeV,

Since the neutrinos are massless, the mixing only occurs for quarks and is given by a unitary

matrix, the Cabibbo-Kobayashi-Maskawa matrix

Vud vus Vub
Cxkm=Vea Ves Va |- (3.12)
Via Vis Vi
For physical purposes it can be parameterized by three angles 65, 03, 813 and one C'P violating
phase ¢:
—i§
C12C13 S12€13 513€
_ i i
Crm = | —Si2c23 — €12523513€"°  C12C23 — 512523513€" S23¢13 |
i i
512823 — C12C23513€"0  —C12823 — S12C23513€"  Ca3C13

with ¢y := cos 0y, Sk = sinfy;. The absolute values of the matrix elements are:

0.9753 £ 0.0006  0.221 4+ 0.003 0.004 £ 0.002

0.221 +0.003  0.9745 £ 0.0007  0.040 =+ 0.008

0.010 % 0.006 0.039 +0.009  0.9991 £ 0.0004
The physical meaning of the quark mixings is the following: when a sufficiently energetic W+
decays into a u quark, this u quark is produced together with a d quark with probability |V,q|?,
together with a 5 quark with probability |V,|?, together with a b quark with probability |Vi|?.
The fermion masses and mixings together are an entity, the fermionic mass matrix or the matrix
of Yukawa couplings multiplied by the vacuum expectation value.

Let us note four important properties of the standard model.

e The gluons couple in the same way to left- and right-handed fermions, the gluon

coupling is vectorial, strong interaction do not break parity.

e The scalar is a colour singlet, the SU(3) part of G does not suffer spontaneous break

down, the gluons remain massless.

e The SU(2) couples only to left-handed fermions, its coupling is chiral, weak inter-

action break parity maximally.

e The scalar is an isospin doublet, the SU(2) part suffers spontaneous break down,

the W= and the Z° are massive.
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3.4 The rules
It is time to open the slot machine and to see how it works. Its mechanism falls into five pieces:
The Yang-Mills action:

e Maxwell + non-Abelian gauge = Yang-Mills.

The actor in this piece is A called a connection, gauge potential, gauge bosons or Yang-Mills

field. It is a 1-form on spacetime M with values in the Lie algebra g,
Ae QY (M,g). (3.13)
We define its curvature or field strength,
Fi=dA+1[A A € Q*(M,g), (3.14)

and the Yang-Mills action,

SymlA] = —%/ (F,+F). (3.15)

M

The space of all connections carries an affine representation py of the gauge group ¥G > g¢:

pv(9)A =gAg~t + gdg™. (3.16)

Restricted to z-independent gauge transformation, the representation is linear, the adjoint one.

The field strength transforms homogeneously under any gauge transformation,
pv(9)F =gFg™", (3.17)
and, as the scalar product (-, -) is invariant, the Yang-Mills action is gauge invariant,
Syalpv(g)A] = Sy [A] for all g €M G. (3.18)

Note that a mass term for the gauge bosons,

: /M m? (A, xA), (3.19)

is not gauge invariant because of the inhomogeneous term in the transformation law of a
connection (3.16). Gauge invariance forces the gauge bosons to be massless.

In the Abelian case G = U(1), the Yang-Mills action is nothing but Maxwell’s action,
quantum electro-dynamics (QFED). Note however, that now the vector potential is purely

imaginary, while conventionally, in Maxwell’s theory it is chosen real. For G = SU(3) and
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H;, = Hr = C3 we have today’s theory of strong interaction, quantum chromo-dynamics
(QCD,).

The Dirac action: Schrodinger’s action is non-relativistic. Dirac generalized it to be Lorentz
invariant, e.g. [5]. The price to be paid is twofold. His generalization only works for spin
% particles and requires that for every such particle there must be an antiparticle with same
mass and opposite charges. Therefore Dirac’s wave function 1 (z) takes values in C*, spin up,
spin down, particle, antiparticle. Antiparticles have been discovered and Dirac’s theory was
celebrated. Here it is in short for (flat) Minkowski space of signature + — ——. Define the four

Dirac matrices,

10 0 O 0 0 01
o. 0O 1 0 0 100 1 0
T =loo -1 0] TTlo 10 0] (3:20)
00 0 -1 -1 0 0 0
0 0 0 — 0 0 1 0
> | 0 0 ¢ O 3 | 0 0 0 -1
1o io0o o] TTl-100 0 (3:21)
— 0 0 O 0 1.0 0
They satisfy the anticommutation relations,
YA 4 At = 2t 1. (3.22)
In even spacetime dimensions, the chirality,
0 0 1 0
; v o 0 0 0 1
Vs = eV =1 = ] 0 (3.23)
01 0 O

is a natural operator and it paves the way to an understanding of the chirality in weak inter-
actions. The chirality is a unitary matrix of unit square that anticommutes with all four Dirac
matrices. (1 — ~5)/2 projects on the left-handed part, (1 + 75)/2 projects on the right-handed
part. The chirality applied to a left-handed spinor produces its right-handed part. Similarly,
there is the charge conjugation, an anti-unitary operator of unit square, that applied on a

particle 1 produces its antiparticle
Y© = iyt (3.24)

Here -* denotes complex conjugation. The charge conjugation commutes with all four Dirac

matrices. In flat spacetime, the free Dirac operator is simply defined by,
@ = 1hy"0,,. (3.25)
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It is sometimes referred to as square root of the wave operator because (32 = — 0. The coupling
of the Dirac spinor to the gauge potential A = A,dz* is done via the covariant derivative,
and called minimal coupling. In order to break parity we write left- and right-handed part

independently:

SplA v, vr] = /M Do [0+ it op(A,)]) 2200 gy dta

The new actors in this piece are 17, and ¥ g, two multiplets of Dirac spinors or fermions, that is
vectors in the Hilbert spaces C!* ® H;, and C* ® Hz. We use the notations, 1 := 1*7°, where -*
denotes the dual with respect to the scalar product in the (internal) Hilbert space H or Hg.
The +° is needed for energy reasons and for invariance of the pseudo-scalar product of spinors
under (covered) Lorentz transformations. The +° is absent if spacetime is Euclidean. Then we
have a genuine scalar product and the square integrable spinors form a Hilbert space £2(S),
the infinite dimensional brother of the internal one. The Dirac operator is then self-adjoint
in this Hilbert space. We denote by p; the Lie algebra representation in Hjy. The covariant

derivative, D, := 0, + pr(A,), deserves its name,

10, + pr(pv(9)Aw)] (pr(9)¥r) = pr(g) [0, + pr(AL)] Ui, (3.27)

for all gauge transformations g €M G. This ensures that the Dirac action is gauge invariant.

If Hy, = Hg we may add a mass term

_ 1— - 1 -
—c/ Ty — Ly dis - c/ B my z% bpdie — —c/ dmypds  (3.28)
M M M

to the Dirac action. It gives identical masses to all members of the multiplet. The fermion
masses are gauge invariant if all fermions in H; = Hpr have the same mass. Remember that
gauge invariance forces gauge bosons to be massless. Here it is parity non-invariance that forces
fermions to be massless.

Let us conclude by reviewing briefly why the Dirac equation is the Lorentz invariant gen-
eralization of the Schrodinger equation. Take the free Schrodinger equation on (flat) R* it is a

linear differential equation with constant coefficients,

2m 0
— = —-A =0. 3.29
< th Ot )w (3:29)
We compute its polynomial following Fourier and de Broglie,
2m N 2m P
- — =—— |E— —|. )
v +k 2 { T ] (3.30)



Energy conservation in Newtonian mechanics is equivalent to the vanishing of the polynomial.

Likewise, the polynomial of the free, massive Dirac equation (@ — cmy)yp = 0 is
B+ hkjy? —eml. (3.31)
Putting it to zero implies energy conservation in special relativity,
(£)?w?® — B? B —Zm?=0. (3.32)
In short

e Schrodinger + Minkowskian geometry = Dirac.

So far we have seen the two noble pieces, Yang-Mills and Dirac. Their noblesse has even
convinced mathematicians, Donaldson has used a non-Abelian Yang-Mills theory to discover
exotic differential structures on R* and the Dirac operator has been elected differential operator
of the decade by Atiyah & Singer. I feel that these two actions deserve the comparison with the
circles of planetary motion and we are ready for the epicycles, the other three pieces are indeed
cheap copies of the circles with the gauge boson A replaced by a scalar . We need these three
epicycles to cure only one problem, give masses to some gauge bosons and to some fermions.
These masses are forbidden by gauge invariance and parity violation. To simplify the notation

we will work from now on in units with ¢ = i = 1.

The Klein-Gordon action: The Yang-Mills action contains the kinetic term for the gauge
boson. This is simply the quadratic term, (dA,dA) that by Euler-Lagrange produces linear

field equations. We copy this for our new actor, a multiplet of scalar fields or Higgs bosons,
p € Q(M, Hs), (3.33)
by writing the Klein-Gordon action,
Secld. el =} [ (De) D, (3.34)
with the covariant derivative here defined with respect to the scalar representation,
Dy :=dp + ps(A)ep. (3.35)

Again we need this minimal coupling ¢* Ay for gauge invariance.

The Higgs potential: The non-Abelian Yang-Mills action contains interaction terms for the
gauge bosons, a bounded, invariant, fourth order polynomial, 2(dA, [A, A])+([A, A], [A, A]). We
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mimic these interactions for scalar bosons by adding the integrated Higgs potential [ v ¥V (9)

to the action.

The Yukawa terms: We also mimic the (minimal) coupling of the gauge boson to the fermions

¥* Ay by writing all possible trilinear invariants,

Sy[¥r, ¥R, @] = Re/M* (Zgw (1 bm @)+ D 9vi (1/1271?3790*)]-) : (3.36)
j=1

Jj=n+1

In the standard model, there are 27 complex Yukawa couplings, m = 27.

A A A A P /w
g j}}» \%
A A A A

Figure 3.1: The tri- and quadrilinear gauge couplings and the minimal gauge coupling to
fermions

The two circles, Yang-Mills and Dirac, contain three types of couplings, a trilinear self
coupling AAA, a quadrilinear self coupling AAAA and a the trilinear minimal coupling 1* Av.
The gauge self couplings are absent if the group G is Abelian, the photon has no electric charge,
Maxwell’s equations are linear.

The beauty of gauge invariance is that if G is simple, all these couplings are fixed in terms
of one positive number, the gauge coupling g. To see this, take an orthonormal basis T}, b =
1,2,...dim G of the complexified g€ of the Lie algebra with respect to the invariant scalar
product and an orthonormal basis Fy, k = 1,2,...dimH}, of the fermionic Hilbert space, say

‘H, and develop the actors,
A= ATda", o = ¢"F. (3.37)

Insert these expressions into the Yang-Mills and Dirac actions, then you get the following

interaction terms, figure 3.1]

9OpALAVAG fare €7, g% ALAVASAG fur® feca €7, g™ ALy ety (3.38)

utivtto i tvtiptto

with the structure constants f,;°,
[Ta, Tb] = fabeTe. (339)

37



The indices of the structure constants are raised and lowered with the matrix of the invariant
scalar product in the basis T}, that is the identity matrix. The t;,* is the matrix of the operator
pr(Ty) with respect to the basis Fy. The difference between the circles and the epicycles is
that the Higgs couplings, A and p in the standard model, and the Yukawa couplings gy; are
arbitrary, are neither connected among themselves nor connected to the gauge couplings g;.
The standard model is the most painful humiliation of physics today. The humiliation has

four levels:
e The rules of the Yang-Mills-Higgs model building kit contain three epicycles.

e The winning bills are unmotivated except for the U(1) coming from quantum me-

chanics.
e The winning coins are numerous, 18, and beg for an understanding.

e The theory of gravity is completely different from the Yang-Mills description of the
electro-weak and strong forces. The underlying group of gravity is the group of
diffeomorphisms of spacetime, Diff(M), that formalizes the coordinate transforma-
tions. This group is not a Lie group. Any attempt to unify all four forces has failed

so far.

Nevertheless, and this makes the humiliation painful, the standard model reproduces correctly
millions of experimental numbers that cost billions of Swiss Francs. Every anomaly free Yang-
Mills-Higgs model, in particular the standard model, is renormalizable. Renormalizable theories
are rare and therefore precious. Connes has shown that noncommutative geometry eases the

humiliation on all four levels.

3.5 An example

We illustrate this chapter with the current model of electro-weak interactions for one generation
of leptons. This is the Glashow-Salam-Weinberg model, a submodel of the standard model.
There are simpler examples on the market, in particular models not containing a U(1) factor.

Mathematically the U(1) is so degenerate that it makes some computations perfidious.
G = SU@2)xU(1) 2 (a,b), g = su2)®u(l) > (X,Y), (3.40)
(X, Y),(X,Y") = g%tr(X*X’) + Q%YY’, (3.41)
2 1
Hy = C° 3 ¢, prla,b) =ab’, y,=—3, (3.42)
HR = C > wRa PR(a> b) = byRa Yr = _17 ( )
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Hs = C? > ¢, psla,b) =ab¥s, yg= —%, (3.44)
Vip) = Xe'p)? — i’ o', (3.45)
Ly = Relge(—¥10P2 + Yar@1)Vr). (3.46)

To see the physical content of the theory, we need orthonormal bases of the Hilbert spaces
g‘c, HL, HR and Hs.

A Cartan subalgebra of g is spanned by the two orthonormal vectors, ‘third isospin’ and

Iy— i (g2 (1(/)2 _f/Q) ,0) Y =i(0,g). (3.47)

The uncommitted choice for the electric charge generator @) is:

iQ =1 (g2 sin @, <1é2 _?/2) g1 cos B ) (3.48)

where 6,, is the weak mixing angle. We complete i() to an orthonormal basis of g© of eigenvectors

‘hypercharge’,

of [, ]
7 = (926089 (0 _3/2),—glsin9w),
)
!

The eigenvalues are 0 and +g¢5 sin6,, =: +e. The multiplet of gauge bosons is now written as

Au(@) = 7u(2)iQ + Z,(2) Z + —= (Wa(a) I + Wyi(2) I7),

1
V2
where the photon 7,(z) and the Z,(z) are real fields while the W is complex. The kinetic term

in the Yang-Mills Lagrangian now has its standard form, a sum of three pieces each of the form
— S0, W O'WY + 20,W* 9, WY + %m%VW;W“. (3.49)

The mass term is absent from the Yang-Mills Lagrangian because of gauge invariance. We will
now get it from the Klein-Gordon action by spontaneous symmetry breaking.

Our group SU(2) x U(1) is broken spontaneously down to U(1). The former U(1) defines
the hypercharge. We will identify the latter U(1) with the electric charge. The minimum of

the Higgs potential is located at scalars ¢y of norm |pg| = v where v = % /v is the vacuum
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expectation value. Any such minimal ¢, is left invariant by a residual subgroup, the little
group. Without loss of generality let us choose yg = —% and ¢y = f(v,0) and let us compute

the little group. We are looking for elements (a,b) € G such that

ps(a,b)pg = ab‘1/2<p0 = ©g. (3.50)

The solution is,

([ exp(if/2) 0 B .
a= < 0 exp(—z’é’/Q)) . b=exp(ib), (3.51)

the little group is U(1) generated by i@ if and only if
g1 cosf, = gosinf, = e. (3.52)

Then
Ls(iQ) = (8 _Oe) - (3.53)

Next we compute the boson masses. We have to develop the scalar field around a minimum of

the action, ¢ = g and not around ¢ = 0 which is not a minimum. To this end we define

o(x) =1y + h(z). (3.54)

Then the mass matrix of the gauge bosons is the term quadratic in A contained in the Klein-

Gordon Lagrangian,
3 1Ps(A)pol” = 3m5 2, 2" + Sy, W W (3.55)
with

mw = 3920 and  mz = $\/g? + g3 v =my/ cosO,. (3.56)

The spontaneous symmetry breaking has given masses to the W and Z bosons. Massless
spin 1 particles have two degrees of freedom, ‘the transverse modes’, the spin is orthogonal
to the direction of motion. A massive spin 1 particle has one more degree of freedom, ‘the
longitudinal mode’; the spin is parallel to the direction of motion. To become massive the
massless gauge boson takes this additional degree of freedom from the Higgs field. In our
example, we parameterize the scalar as

p(z) = o + (H(I})L;g;zm) , (3.57)
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corresponding to an orthonormal basis of Hg. The neutral Z boson eats the neutral scalar field
hz to become massive and the charged W eats the charged scalar hy,. There remains only one
physical scalar field H which is neutral. Let us compute its mass. To this end we must develop

the Higgs potential in terms of the fields H, hy and hyy,
V(p(z)) = V(po) + 3mi H?*(x) + terms of order 3 and 4 , (3.58)
with
my = 2v2V\v. (3.59)

The constant term V' (gg) is the energy of the vacuum or cosmological constant.

One defines the p-factor by

2
pi= — W (3.60)

cos? 0, m%’
It is unit if the scalar sits in a doublet and it can take any other real value with more complicated
scalar representations. Experimentally we have today p = 1.0012 + 0.0031.

Finally let us turn to the fermionic action. The spontaneous symmetry breaking also pro-
duces the electron mass from the Yukawa term with ¢ = ¢o. With respect to orthonormal

bases of H; and Hg, we have

@DL:VL((:I))+€L((1)), szeR, (361)

and the fermionic Lagrangian reads to second order:

1 —
eEde+vQ 5 By meee, (3.62)

with
m. = Re gev. (3.63)

The remaining terms are of order three, the minimal couplings fermion-fermion-gauge boson
and the Yukawa couplings fermion-fermion-Higgs. They describe interactions, terms giving rise
to non-linear field equations via Euler-Lagrange. For instance the coupling of the photon to

the neutrino v yvy, is,

oot (y)=ea ol(s %) - (5) -0 360

The couplings of the photon to the left-handed electron and of the photon to the right-handed
electron are both —e. The photon coupling is vectorial, electromagnetism preserves parity. On
the other hand, the coupling of the W to the left-handed electron is gs, to the right-handed

electron it vanishes, the W coupling is axial.
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Chapter 4

Connes’ first dreisatz

Noncommutative geometry explains the Higgs field as a magnetic field accompanying certain

Yang-Mills fields, among them the ones of the standard model.
e Yang-Mills + noncommutative geometry = Yang-Mills-Higgs.

The geometric noblesse of the two circles allows their promotion to noncommutative ge-
ometries. The promotion of the two circles to one of these, an almost commutative geometry,
produces the three epicycles from the two promoted circles.

To construct a Yang-Mills action [(F,*F), we need four ingredients, differential forms on
spacetime M, a Lie group G, ‘the internal space’, a scalar product on the space of differential
forms QM and an invariant scalar product on the Lie algebra g of the group G. To construct
the action which is a real number, we take the scalar products of the field strength with
itself. The first scalar product involves the spacetime metric g hidden in the Hodge star x,
(ky ) = [ o BT o, K and @ differential forms of same degree. The second scalar product is on
the Lie algebra, e.g. for G = SU(n), the general invariant scalar product is (a,b) = g%tr(a*b),
a,b € su(n) and the coupling constant g, is a positive number. Noncommutative geometry in
its almost commutative version unifies spacetime and internal space and the two scalar products
are derived from one common scalar product. At the same time coordinate transformations on
spacetime are unified with gauge transformations. They are nothing but the automorphisms
of the almost commutative geometry. This last point will be the starting point of the fourth

geometric dreisatz unifying Yang-Mills with gravity.

4.1 Spectral triples

Noncommutative geometry does to spacetime M, what quantum mechanics did to phase space

P
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e Hamilton + noncommutative geometry = Schrodinger.

An uncertainty relation is introduced by allowing the commutative algebra of functions
C>(P) to become noncommutative. Let us call A4 this new algebra that we suppose defined
over the real numbers, associative and equipped with a unit and an involution. A is the algebra
of quantum observables. Now on spacetime M we have a metric. But how define a distance on
a space that has lost its points? Following Connes [6], we need a faithful representation p of A
via bounded operators on a complex Hilbert space H, the space of fermions, and a selfadjoint
‘Dirac’ operator D on H. Connes calls these three ingredients a spectral triple, (A, H, D). They
satisfy axioms. These axioms are simply taken from the properties of the commutative case,
A = C>° (M), where from now on we must suppose that spacetime M is Euclidean and compact.
The Hilbert space H is the space of ordinary, square integrable Dirac spinors. An element f of
A is a differentiable function on spacetime, f(z), and it acts on a spinor ¥ (z) by multiplication
(p(H)(z) := f(x)v(x). D = @ is the ordinary Dirac operator. Only recently Connes has
completed the list of axioms [7] as to have a one-to-one correspondence between commutative
spectral triples and Riemannian spin manifolds. To this end, he needed two other old friends
from particle physics, a chirality operator x and a real structure J. The chirality is a unitary
operator of square one that commutes with the representation. Therefore y decomposes the
representation space into a left-handed piece (1 —x)/2H and a right-handed piece (14 x)/2H.
In the commutative case, of course y = 75. The real structure is an anti-unitary operator that
in the commutative case reduces to the charge conjugation operator C. J is of square plus or
minus one, depending on spacetime dimension and signature. Also depending on spacetime
dimension and signature, J commutes or anticommutes with x. The charge conjugation as well

decomposes the representation space into two pieces, particles and anti-particles, all together
H=HrDHrD®H] D Hf. (4.1)
Here are a few more properties from the commutative case that become axioms

e p(a) commutes with Jp(a)J ™!, for all a,a € A,

Dx = —xD,

DJ = +JD,

e [D, p(a)] is bounded for all a in A,

[D, p(a)] commutes with Jp(a)J ™!, for all a,a in A.

43



The last axiom is called first order, because in the commutative case, it just says that the Dirac
operator is a first order differential operator. The dimensionality of M can be recovered from
the spectrum of the Dirac operator. Indeed for compact manifolds, the spectrum is discrete
and the eigenvalues )\, grow like n'/4™M — This motivates the name spectral triple. Let us
mention two more axioms. The orientability axiom relates the chirality to the volume form,
a differential form of maximal degree. The Poincaré duality on manifolds is promoted to an
axiom in quite an abstract form. We anticipate that, in the case of the standard model, this
Poincaré duality will prohibit right-handed neutrinos [8].
Warning: My presentation of noncommutative geometry is that of a modest physicist. For a
precise account the reader is referred to Joe Varilly’s beautiful lectures at this School [9].
Since we are now in Euclidean signature let us spell out again the case of a four dimensional

spacetime. A spinor has four square integrable components,

Y1()
¢2(SC) 2
= e L(S). 4.2
Yy ()
The (flat) Dirac operator is
W= iy (4.3)
Ozt
We choose the gamma matrices self adjoint,
1 0 0 0 0 0 0 14
o0 1 0 0 10 0 @ 0
T710 0 -1 0 Tl 0 =i o000 (4.4)
0O 0 0 -1 —3 0 00
0 0 0 1 0 0 ¢« O
s [0 0 -1 0 3 10 0 0 —
=l 210 o0 =L 000 0 (4.5)
1 0 0 0 0 ¢ 0 0
They satisfy the anticommutation relation
Y+ A =201 (4-6)
with the flat Euclidean metric
1 0 0 O
01 00
10 0 1 0 (4.7)
0 0 0 1
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The chirality operator is by definition

0
0

=TT = (4.8)

It is unitary and of unit square as postulated. Since it anticommutes with all other gamma

matrices
Y5 + 57" =0, (4.9)
the Dirac operator is odd
Pvs + 759 = 0. (4.10)
The charge conjugation is
Pe ="y (4.11)

Let us note that in four dimensional Euclidean spacetime, the chirality commutes with charge

conjugation,
(V)" = (%)L = ¢, (4.12)

In the following we will take advantage of this notational simplification. Attention, in Minkowskian
signature, the notation ¢ is ambiguous, because there the two operators anti-commute. Fi-

nally, we abbreviate the representation of a function f on a spinor ¢ by p(f) =: f, (f¢)(x) =
f(x)p().

4.2 Differential forms

Our next aim is to construct differential forms starting from a spectral triple. In the commu-
tative case, we want this construction to reproduce de Rham’s differential forms, QM.

We start with an auxiliary differential algebra Q.A4, the universal differential envelope of A:
Q%A = A. Q' Ais generated by symbols da, a € A with relations 61 = 0, d(ad’) = (da)a’ +add’.

O A consists of finite sums of terms of the form agda;, and likewise for higher degree p,

PA = {Zaﬁéa{...éai, al € A} . (4.13)
J
The differential 0 is defined by
5(@0(5&1...5@;,,) = 5@05@1...(507). (414)
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The involution * is extended from the algebra A to Q'.A by putting (da)* := d(a*) =: da* and to
the entire differential envelope by (kp)* = ¢*k*. The next step is to extend the representation

p from the algebra A to its envelope QLA. This extension deserves a new name:

m: QA — PEnd(H)

m(agday...0a,) = (—i)’p(ap)[D, p(ay)]...[D, p(ay)]. (4.15)

7 is a representation of QA as graded involution algebra. Note the (—i)? on the rhs which is
not uniform in the literature. We are tempted to define also a differential, again denoted by
J, on m(QLA) by dn(¢) := m(d¢p). However, this definition does not make sense because there
are forms ¢ € QA with 7(¢) = 0 and 7(6p) # 0. By dividing out these unpleasant forms, we
arrive at the desired differential algebra QpA,

7 (QLA)

QD.A = j y

with J := 7 (d ker ) @jp (4.16)

(J for junk). On the quotient, the differential is now well defined. Degree by degree we have:
Q%A = p(A) (4.17)

because J° =0 ,
OpA =n(Q'A) (4.18)

because p is faithful, and in degree p > 2

T(QPA)

poA_
fpA = (6 (ker m)P—1)

(4.19)

In the commutative case, § = d, €2 @C"O(M ) is isomorphic to de Rham’s differential algebra QM
with

flhdidfody) 2 for® (o) o (o) e (o) 420

Dividing out the junk renders the lhs graded commutative.
Let us illustrate this isomorphism for 1- and 2-forms on a four dimensional spacetime M.

We need the commutator

(9, /1Y = (fw) —ifr"y w
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= i|romt] v (121)

OxH
Therefore
[9.4) = i o f =2 in(d) (1.22)
with
df = {i ] dat. (4.23)
oxt

At this point, we see that the restriction to flat spacetime can be dropped. Let us anticipate

the Dirac operator on curved manifolds
i (x) 0 +w (4.24)
e ul )

It differs from the flat one in two respects, the gamma matrices are = dependent, no problem in
the above commutator, and an additional algebraic term, a spin connection w = w,dz* valued
in so(4) appears but drops out from the commutator. Since the Dirac operator only shows up
in commutators, Connes’ algorithm works on any Riemannian spin manifold.

The representation of functions by multiplication on spinors is faithful, of course, and
QI@A =~ 1(Q'A). (4.25)
A general element of the rhs is a finite sum of terms
m(fodf1), fo, 1 € A (4.26)
It is identified with the differential 1-form on M
fodfi €Q'M. (4.27)
For 2-forms the situation is less trivial, we must compute the junk J? = 7(d(ker 7)!). Consider
h~'dh + hdh™* (4.28)

an element in Q' A where h € A is a non-vanishing function, h='(x) = 1/h(z). As QA is not

graded commutative this element does not vanish!
h=*dh + hdh™* # h7'dh + (dh"Hh =d(h"'h) =dl = 0. (4.29)
Its image under m however does vanish
n(h~'dh +hdh™') = ~(h~'dh + hdh7!)
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= y(h~'dh + (dh")h) = 0. (4.30)

Therefore the considered element is in (ker 7)! and the corresponding element in 7(d(ker 7)!)
1s
a(dh tdh + dhdh™) = y(dh~ y(dh) + y(dh)y(dhY)

B o .\ , 0 0 o
= 7“(@" )7 g T (av")“‘w"

= [+ (aauh_l aiyh
_ <%gw (%h) aiv h) 1. (4.31)
By linear combination we get the junk,
m(dkerm)t) = {f1, fe A}. (4.32)
On the other hand
m(QPA) = { ", fur € A} (4.33)

and

m(dfidfy +dfadfr) = (QQW G ) (4.34)

After dividing out the junk, 7(df;) and 7(df5) anticommute whereas they did not anticommute

in 7(Q2A). We may now identify a general element
m(fodfidfe) € 92@-'4 (4.35)
with the differential 2-form on M
fodfidfy € Q*M. (4.36)

Note that we have treated the quotient space like a subspace which is legitimate only in presence
of an appropriate scalar product. This scalar product will be defined in terms of the involution
and a trace in the next section.

The involution that QM inherits from €2 &A via the sketched isomorphism is with our

conventions

(fod frdfo-.dfp)® = (=1)W2PP=D fd fid fo...d f,. (4.37)

The orientability axiom alluded to above is motivated from this isomorphism, dz'dz?dz3dz?* =
(det g.)"?y'y?7*y* = (det g.)"/?7s.
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4.3 The scalar products in noncommutative geometry

To play the Yang-Mills game, we need a scalar product for differential forms. In the noncommu-
tative context, the scalar product has another utility. It allows us to interpret the differential
forms in {2p.A not as classes but as concrete operators on the Hilbert space H: degree by de-
gree, we embed Q7 in 7(QPA) as orthogonal complement of J. If H was finite dimensional,
we would naturally take as scalar product of two operators k and ¢, < K, >= Retr(k*p).
For infinite dimensional Hilbert spaces H, like the space of spinors £2(S), we have to regularize
and we use the Dirac operator to do so. Thanks to the asymptotic behavior of its spectrum,
Retr[x*¢ |D|~ 4™ M] only diverges logarithmically. The Dixmier trace tr, gets rid of this di-
vergence [10]: For any bounded, positive operator () on H we define the Dizmier trace tr,
by

N

tr,, (Q|D|~4™) := lim ! > A, (4.38)

N—oo0 log N o

where the ), are the eigenvalues of Q|D|~ 4™ arranged in a decreasing sequence discarding the
zero modes of the Dirac operator. Now we proceed as in the finite dimensional case (dim M = 0)

and define a scalar product on w(Q.4) by
< K, >=Re tr, (*|D|”M™), &, pcw(QPA). (4.39)

Note that x and ¢ are bounded because [D, p(a)] are by axiom. In the commutative case, for

a four dimensional spacetime M, this scalar product can be computed to be

< Ky >= oo Re/ try [*] d*e. (4.40)
M

3272

It is independent of M. tr, denotes the trace over the gamma matrices. With this scalar
product Qp.A is a subspace of 7(£2.A4), by definition orthogonal to the junk. As subspace {2p.A

inherits a scalar product, that we denote by
(K, ) =< K, >, K, € QLA. (4.41)

In the commutative case in four dimensions, thanks to well known results for try [7“1 Vpyy oYM ,Ul/qu|
this scalar product vanishes for forms with different degree. By the isomorphism (£.20) between
Q @A and QM the corresponding scalar product on differential forms, still denoted by (-, -), is

(K, ) = g Re/ K %@, K, € QM. (4.42)
M
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Let us illustrate this by a simple example on the flat four torus with all circumferences
measuring 2. Denote by ¥p(x), B = 1,2, 3,4, the four components of the spinor. The Dirac

operator is

i0/0x° 0 —0/0x3 —0/0x' +i0/0x?
J— 0 i0/02° —0/0x' —i0/0x* d/0x? (4.43)
- d/0x3 0/0x' —i0/0x* —i0/0x" 0 T
d/0z" + 10/ 0x* —0/0x3 0 —i0/0x°
After a Fourier transform
Up(z) = Y Upjo. ... js) exp(—ijua*), B=1,2,34 (4.44)
J0,--,J3€ZL
the eigenvalue equation @i = A\ reads
Jo 0 ijs  ijiti2\ [ iy
0 Jo i1 —Ja  —UJ3 (0 (0
g g . . > = A . 4.45
—J3 —tJ1 — J2 —Jo 0 1@3 1@3 ( )
—ij1 + Ja iJ3 0 —Jo Yy (N

Tts characteristic equation is [A*> — (¢ + 52 + j2 + j2)%° = 0 and for fixed j,, each cigenvalue

A = £/j2 + j? + j3 + j2 has multiplicity two. Therefore asymptotically for large A there are
4B4A* eigenvalues (counted with their multiplicity) whose absolute values are smaller than A.
B, = 7?/2 denotes the volume of the unit ball in R*. Let us arrange the absolute values of the

eigenvalues in an increasing sequence. Taking due account of their multiplicities we have for

large n
n \ /4
A~ <_> 4.46
Ml =~ (5 (1.46)
and we can check the Dixmier trace in equation ([£40) for instance with kK = =1 € 7(Q°A)
<1,1> = tr, P
, w97 = 1ogNZ' |
. 1 2r® N 2n? 1
= 1m E— —an
N—oo log N ~n N—>oo logN
1
_ 2 _
= 27 = 39,7 /M try[1]dz. (4.47)
In the commutative case the following two scalar products
<K, p> = Retr, (k'¢|D|7M™), K, pcn(QPA), (4.48)
<k,p> = LIRetr, ([k+ JeJ '["[p+ JoJ '] |D|-™), (4.49)

are identical. This is not true in general. We anticipate that the generalization of the principle
of general relativity to noncommutative geometry, Connes’ second dreisatz, will exclude the

first scalar product.
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4.4 'The commutative Yang-Mills action

The message of this section is that the commutative spectral triple of spacetime M is a natural
tool to reconstruct Maxwell’s theory: this reconstruction unifies spacetime with internal space,
G = U(1). The first sign for this unification comes from the group of unitaries of A. Remember
that A is the algebra of complex valued functions on M with involution just complex conjuga-
tion. The group of unitaries U(A) := {u € A, uu* = u*u = 1} for this algebra is the group
of functions from spacetime into U(1) and this is Maxwell’s gauge group, U(A) = MU(1).
Maxwell’s four potential A € QLA is a 1-form that we take anti-Hermitean now in order to
harmonize the abelian and non-Abelian case. A gauge transformation or unitary u = exp i

acts affinely on the gauge potential by
pv(u)A = p(u)Ap(u™) + p(u)dp(u™) = A —id#. (4.50)
The field strength
F:=dA+A>=dA ¢ 92;29“4 (4.51)
transforms homogeneously under unitaries and is even gauge invariant in the commutative case,
pv(W)F = p(u)Fp(u™") = F. (4.52)
The obviously gauge invariant Maxwell action can be written,
Sl A] = =(F,F) = 2Re tr, (FF|9]™) = <5 /M Fra

= ﬁ/‘ F;VF“V(detg..)1/2d4x —. %/ F:VF“”(detg__)l/2d4x, (453>
M M

where z = /ey is the fine-structure constant or gauge coupling ey, = €*/(4meghe). The
commutative pure Yang-Mills theory is linear and to justify the word coupling, we have to add
matter, say an electron . The Dirac operator acts on it defining its kinetic energy, unitaries

act on it by

Pspinor (W)Y = p(u)p, weU(A), ¢ eH, (4.54)

and we define the minimal coupling by the covariant Dirac operator 1) := @ — w(A). We have
already noted that the gravitational field w drops out when we construct the differential forms.

The same is true for the electromagnetic field, €2 @A = QDA. The Dirac action then reads

Sol Al = [ 0 Puldetg [, (4.55)
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A mass term my1*1) may be added.
Let us stress again that in Connes’ formulation, the gauge coupling, that is the invariant
scalar product in internal space, is induced from the scalar product of differential forms over

spacetime.

4.5 Almost commutative geometries

One way to see the above commutative example is to say that the associative algebra of the
spectral triple is A, = F ® Ay, a tensor product of the commutative, infinite dimensionsal
algebra of real valued functions C°°(M) on spacetime and the commutative, finite dimensional,
real algebra Ay = C. The gauge group then is Abelian, G = U(1) C Ay. It is natural to
try noncommutative algebras for Ay to get non-Abelian gauge groups [11]. In this spirit we
consider tensor products of entire spectral triples, and the message of this section is that if the
fermionic representation breaks parity, the Higgs scalar and the symmetry breaking potential
come free of charge. We call almost commutative geometry this cheap tensor product of the
commutative, infinite dimensional spectral triple of a spacetime with a noncommutative finite
dimensional spectral triple of a matrix algebra [12]. Remember that the spinning particle in
quantum mechanics is also such a cheap tensor product, of an ordinary wave function with a
vector in a representation space of SU(2).

Let us denote by (F, £L3(S), @,7s, C') the commutative spectral triple of a four dimensional
spacetime and by (A, Hy, Dy, X7, Jr), -5 for finite, the one of a (zero dimensional) internal
space. Note that our C' is anti-unitary. According to the rules of noncommutative geometry

the tensor product of these two spectral triples (A, Hy, Dy, X¢, Ji), -+ for tensor, is:

A= Fo Ay, Hy=L2(S)@H;, Di= @1+ 95Dy,
Xt = 75 ® X/, J, = C®J;. (4.56)

Before turning the crank, we must talk about the internal Dirac operator Dy. From the axioms,
we infer that with respect to the decomposition (4.1]) of the fermionic Hilbert space H; the

internal Dirac operator has the form:

0O M 0 0 0O M 0 0
M* 0 0 0 M0 0 0

Df = 0 0 9 M or Df = 0 0 0 0 s (457)
0 0o M* 0 0 0 0 0

where M is the fermionic mass matrix. This is another manifestation of the unification of
spacetime and internal space, the naked Dirac operator @ and its mass matrix obey the same

axioms.
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As in the commutative case, we start by identifying the gauge group, the functions from
spacetime into the finite dimensional Lie group G = U(Ay). It is represented affinely on the

bosonic fields. They are anti-Hermitean 1-forms. But now,

Qp, A = Qbf@ﬂ%fAf - QO@f@@Q}DfAf
= QMM Ap) & FoQp Ay 3 A =: (A H). (4.58)

From the anti-Hermiticity of Ay, it follows that A is in fact a Lie algebra valued 1-form on
spacetime, A € Q'(M, g), i.e. a Yang-Mills potential. g := u(Ay) :={X € A;, X + X* =0}
is the Lie algebra of the group of unitaries G = U(Ay). On the other hand, the Higgs scalar H
is a O-form on spacetime, valued in a representation of the Lie group GG. The inhomogeneous

transformation law,

prv(W A = pi(w)Apr(u™) + pr(u)dipi(u™) = (pv(uw) A, ps(u)H), (4.59)
pr(wA = pr(u)Aps ()™ + pr(u)dps(u) ™, (4.60)
ps(WH = pp(u)Hpp(u™") + ps(u)dpps(u™), (4.61)

determines according to which group representation pg the Higgs scalar transforms and this
depends on the details of the internal spectral triple. We denote by p; the representation of A;
on H;, by p; the representation of A; on Hy, by ¢; the differential of Q2p, A; and so forth. Next
we define the field strengh,

To decompose the field strength, it is comfortable to change scalar variables,
®(z) = H(z) —iDy = =0 € Q"(M,Qp Ay). (4.63)

This change of variables is well defined within Q°(M, Q%)fAf) thanks to the orientability axiom
[13]. @ has the good taste to transform homogeneously under a gauge transformation u and

we can define its covariant exterior derivative,
D® = d® + [p;(A), ] € Q' (M, Qp Ay). (4.64)

The field strength decomposes as

= (F,C — aC, —D®d~s), (4.65)

with
F = dA+ A% € Q*(M,g), (4.66)
C = 00+ H? € Q°(M, Q5 Ay). (4.67)
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The internal field strength C, C' for curvature, should not be confused with the C' of charge
conjugation. aC € Q°(M, Q%fAf + JJ?) is the tricky piece of the computation, it comes from
the interference in degree two of spacetime junk and internal junk. The former is isomorphic
to Q°M, a happy circumstance that allows us to compute aC pointwise [14]. For fixed =,
C € Qp, Ay C EndH; and aC € 7(Q2A;) C EndH; are finite dimensional operators, i.e.
matrices. Let us denote by < &, ¢ > = 1Retr[(k+ Jf/ﬁJf_l)*(gijJfgoJ]?l)] the finite dimensional

scalar product. Then aC' is uniquely determined by the linear equations

<r,C—aC>=0 forall reppAyf), (4.68)
<j,C—aC>=0 forall jeJj, (4.69)

where the trace is over the finite dimensional Hilbert space Hy. Under a gauge transformation
u(x), the field strength transforms homogeneously and we can define, as before, the Yang-Mills

action,
Sym[A] = z(Fy, Fy) = zRe tr, (F/F,|Dy| ™). (4.70)

The differential algebra contains the Lie algebra as 0-forms and the scalar product (-, -) restricted
to the Lie algebra is an invariant scalar product. Therefore this action is gauge invariant. Let
us decompose it, Sym[A;] = Sym[A4, H]:

SymlA, H] = #/ (F,*F) + #/ (D®, «DP) + #/ «V (H), (4.71)
M M M
with
VH) =<C—-aC,C—-aC>=(C,C)—-<aC,aC > . (4.72)

The first term, a non-Abelian Yang-Mills action, is no surprise. The second, a Klein-Gordon
action, propagates the Higgs scalar. The Higgs potential V' (H) breaks the gauge group spon-
taneously, if the fermions break parity. As we shall see, the computation of the Higgs sector,
representation and potential, will be intricate even though it follows from a simple geometric
definition, Sym[A;] = 2(F}, Fy).

To end this section, we mention the Dirac Lagrangian, Lpiac = ¥*Dicovtp. The total,

covariant Dirac operator is
Dicov = Dy — mi(Ap) + Jo(Dy — m(A)) (4.73)
It is covariant with respect to the group representation,
pspinor (W) ¥ = po(w) Jipe(w) I 0, we U(A) = MU(Ay). (4.74)
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Note the appearance of charge conjugation that will be crucial. The decomposition of this

Lagrangian is:

Lpirac = V2P +ipr(A) + Jiips(A) I + * (s + Jii®ys T, ). (4.75)

In words: almost commutative geometry promotes the Higgs scalar to a connection and thereby
unifies the gauge couplings hidden in ps( 4) with the Yukawa couplings hidden in &.

The general Poincaré duality of noncommutative geometry is beyond the scope of this
introduction. In the almost commutative case the Poincaré duality can be stated easily. Since
it holds in commutative geometry we only have to worry about the finite dimensional internal
space. Let p; be a set of minimal projectors of Ay and define the intersection form N to be the

matrix

Nij = tr Xy pr (i) Tpps(py) T7 ] (4.76)

Poincaré duality holds if and only if the intersection form is non-degenerate, det N # 0. Note

that in the finite dimensional case, the Poincaré duality does not involve the Dirac operator.

4.6 A minimax example

It is time for an example. To the best of my knowledge, the simplest, nontrivial example —
a maximum of pleasure with a minimum of effort — is quite complicated. Strange enough, it
resembles the standard model of electro-weak forces, the example section [3.5

We just learned that all computations can be done in the finite dimensional, internal space.

Therefore we drop the subscript -;. Consider the internal spectral triple,

A = HaeC 3> (a,b), (4.77)
H = HioHrOH; OH; = (CCoCaC’aC) ®CY, (4.78)
pr(a) 0 0 0
_ 0  pr(d) O 0
0 0 0 pk(b)
a®ly 0 0 0
B 0  bly 0 0
= 0 0 bLely 0 | (4.79)
0 0 0 bly
0 M 0 0
M0 0 0 0 me 0
b= 0O 0 0 0] M—(1)®Mev Me—<0 H), (4.80)
0 0 00



—Lony 0 0 0
0 In 0 0
0

v = oy , (4.81)
0 0 0 1y
0 13n . .
J = o complex conjugation. (4.82)
]-3N 0

We denote by H the real, four dimensional algebra of quaternions. We write its elements as
complex 2 X 2 matrices,
(" Y C 4

a <y x)’ z,y € C. (4.83)
The involution in H is Hermitian conjugation and the group of unitaries of H is SU(2). The
algebra C > b is also taken as real, two dimensional algebra. The physical basis of the complex
fermionic Hilbert space consists of an electron and its left-handed neutrino in the first generation
and a muon and its left-handed neutrino in the second generation. Of course there are also the

anti-particles,

Ve v, Ve ‘ v, ‘ c c
’ ) €R, ’ ) s €n, . 4.84
<€)L ('U’)L o <6>L (M)L B MR ( )

N counts the number of generations, N = 2.

We are ready to turn the crank and start with the commutator

0 Mpr(b) — pr(a)M 0 0
M*pr(a) — pr(b) M* 0 0 0
D.p(ab) = | MU er) ’ - (4.85)
0 0 0 0
We take advantage of the following simplification in our model,
b 0
Mon) = o1 () §) M =5 u(B)M (1.56)
to compute a general 1-form. It is a sum of terms
0 pr(ag(By —a ) )M 0 0
| M*pr(B - B 0 0 0
w((ag,bo)oan, br)) = —i | PPl = BY) X ool as
0 0 0 0
and as vector space
0 pr(h)M 0 0
M*pr(h*) 0 0 0 =
1 _
QpA = 0 0 0o ol h,h e H ;. (4.88)
0 0 0 0



The Higgs being an anti-Hermitian 1-form

0 pr(M)M 0 0 B
. M*pL(h*) 0 0 0 _ hl —hg
H=1 0 0 0 ol h = hy cH (4.89)
0 0 0 0
is parameterized by one complex doublet
hy
hy ) hi, hy € C. (4.90)
Likewise a general element in w(Q22A) is
7T((CLO,bo)é(al,bl)é(ag,bg)) == (491)
pL(ao)pL(a1 — Bl)MM*pL(a2 — Bg) 0 0 0
0 M*pL(BO)pL(a1 — Bl)pL(CLQ — BQ)M 0 0
0 0 0 0
0 0 0 0

We rewrite the (1,1) matrix element,

(12 @ X)pr(ao)pr(ar — Br)pr(az — B2) + (1o ® A)pr(ag)pr(ar — Bi)(o3 @ 1y)pr(az — Ba),

where we have used the decomposition

. (0 0\
MM _(0 MEM:)_12®Z+03®A (4.92)
with
— (1Y L=LiMm .M, A= -Lipm M 4
03 = 0 —1 s = 5iVielM, = TV, . ( 93)

A general element in (ker 7)! is a finite sum of the form

D>_(ab,b)3(a, b) (4.94)

with the two conditions

[Z pr(ad)pr(al — B])| M

Therefore the corresponding general element in 7(d(ker 7)!) has only one nonvanishing matrix

=0, M [Z pL(B — B))| =o0. (4.95)

element in position (1,1):

(1L®y) ZpL — B)p,(dl + (1, @A) ZpL — B (03 ® 1y)pL(al — Bl) (4.96)
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still subject to the two conditions and we have the following inclusion

(1. ®A) S, prlap(ios)al) 0 0 0
7(0(kerm)') D i 8 8 8 8 : Zaga{ =0,. (4.97)
0 000 g

Note that py, is faithful and that

{zaauagm, Sl - o}
J J

is an ideal in H. This ideal is not zero, take for example

10 0 -1 0 i i 0
0= (o V) A= () e (0a) = 5

zj:aé(ws)a{ = -2 (? 8) : (4.98)

The quaternions being a simple algebra, the ideal is the entire algebra and the junk is

with

J®A 0 0 0
2 N 0 0 0 0 .
J*=n(d(kerm)’) =i 0 00 o0l 7€ Hp. (4.99)
0 0 0 0
Next we have to project out the junk using the scalar product,
C® X 0 0 0
2 4 0 Mpr(e)M 0 0 .
QHA = 0 0 0 0| Gce H 5. (4.100)
0 0 0 0

Since 7 is a homomorphism of involution algebras, the product in 2p.A is given by matrix
multiplication followed by the orthogonal projection P and the involution is given by transpo-
sition complex conjugation. In order to calculate the differential §, we go back to the universal

differential envelope. The result is

§:ObA — 024

0 pu(WM 0 0 ‘Y 0 00

| MFpr(hF) 0 00 0 M*pr(ec)M 0 0

! 0 o oo 0 0 0 0 (4.101)
0 0 0 0 0 0 0 0
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with & = ¢ = h + h*.

We are now in position to compute the curvature:

ly® X 0 0 0
— 2 (1 A2 0 MM 0 0
C:=6H+ H?=(1—|¢]) 0 6 0 0 (4.102)
0 0 0 0
with the homogeneous scalar variable
0 pr(@)M 0 0
.| MeL(e7) 0 0 0 _ (o1 —po
b:=H—iD=:i 0 0 0 ol O = o B e H, (4.103)
0 0 0 0
_ (% 2 _ 2 2
e=(21) lel =l + lonf (4.104)

In the example of section we also had two useful parameterizations of the scalar field, ¢ and
h. They coincide precisely with the two parameterizations here, only they appear in opposite
chronology. The computation of aC' is long but presents no difficulty. In this example there is

no junk component:

aC = (1 - |¢]?) plals, B). (4.105)
The real numbers o and 3 are determined by the two linear equations

Noa + Nf = 3(mZ+m?),

(4.106)
Na + 3NB = 3(m2+4+m).
Their solution is
a=0, B=(m+ mi), (4.107)
and the Higgs potential is,
V(H) = (C,C) = < aC,aC >= Z3(1— |¢)’[mi + m), — % (m2 +m2)*].  (4.108)

Now we can explain why our minimax model must contain at least N = 2 generations of leptons
with distinct masses. Otherwise the Higgs potential vanishes.

Next we compute the Klein-Gordon action,
— /M(Dc;[), «D®) = £Z52(m? +m) /M Dy* * Dop. (4.109)
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The covariant derivative with respect to the gauge potential A = (?4, 1 WA) € Q'(M, su(2) &
u(1)) follows from the group representation carried by the scalar doublet, equations (£64) and

(£.103),
Dy =dp + PAp + %(1)14@. (4.110)

The factor % in front of 1A is conventional: we want the hypercharge of the Higgs scalar to be

one half. To put the scalar Lagrangian into conventional form,
DD opn + Algpnl" — 54 [opnl”, (4.111)
we renormalize the scalar field,
|opn|* = [g22 4 (mZ +m)] . (4.112)
The physical scalar ¢, now has the correct dimensions of a mass and we will drop the subscript
-ph- For the scalar couplings we get,

A= e T =3 — —(m24+md)|.  (4113)

32 [ mg+m, 1 s o[ metmy 1
= ) w =
4z | (m2 +m2)? N (m2 +m2) N
The energy of the vacuum or cosmological constant V' (¢g) vanishes automatically. The vacuum

expectation is,
lpol? =0 = 2 (m? +m). (4.114)

and the group of unitaries SU(2) x U(1) is broken spontaneously down to U(1). To avoid
any misunderstanding, the miracle is not the symmetry breaking. This symmetry breaking
is introduced by hand with the masses for chiral fermions. The miracle is that this explicit
symmetry breaking produces a Higgs field and that this Higgs field promotes the symmetry
breaking from explicit to spontaneous. The spontaneous symmetry breaking in turn produces
the gauge boson masses. In other words, in almost commutative geometry the invariance group
of the fermionic mass matrix is necessarily equal to the invariance group of the mass matrix of
the gauge bosons, the little group. This is not true in a general Yang-Mills-Higgs model, but
it is true in the standard model.

We compute the Yang-Mills action,

82

2 / (F,*F) = & / [Ntr®F* « @OF 4+ 3N Op* s« OF] (4.115)
M M
Comparing with the action in conventional form,

1 2 2) 2 1 (1) 1
5/M [E“( B OF 4 L Opy ()F,] (4.116)
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we get the gauge couplings,

872 872
2 2
= — = : 4.117
The weak mixing angle 6,, is therefore fixed,
2 g 1
sin” 0y, = = 7. (4.118)
gi+o *
Also fixed is the p-factor,
2
pi=— W _q (4.119)

~ cos?(6,) m3

It is unit because the scalar sits in a doublet.
Noncommutative geometry unifies the gauge, Higgs and Yukawa couplings, in the same way

that gauge invariance unifies the tri- and quadri-linear self couplings of the gauge bosons and

the minimal couplings of the gauge bosons to fermions and scalars:

A= (N =1)g + O(m/my) g5, (4.120)
2 2

2 Mg op2 me _ 2/ 2\ 2

e = @ T T mEemE O(me/my) 95, (4.121)
2 2

2 _ My oo my, _ N 2 2/, 2\ 2

I = 2 = miemd 79 + O(mZ/m;) g;. (4.122)

A general lesson that we learn from our minimax example is the link between parity break
down and spontaneous gauge symmetry break down. They go together in almost commutative
models. Indeed take any vectorial model, that means p;, = pr and a mass matrix M com-
muting with this representation py. Examples of vectorial theories are the parity preserving
electromagnetic and strong forces. For these models, the internal differential forms vanish iden-
tically except in degree zero. Consequently there is no Higgs scalar, no spontaneous symmetry
break down and the gauge bosons, e.g. the photon and the gluons remain massless. The Yang-
Mills-Higgs model building kit on the other hand allows for spontaneous symmetry break down
of any model, parity violating or vectorial.

The last item we have to discuss is Poincaré duality. There are two minimal projectors,

p1 = (12,0) and py = (0,1). The intersection form is computed easily,

=t o) o) 7] = -2 (1)) (1123)

It is non-degenerate and Poincaré duality holds.
Before we leave our minimax model we must talk about its short coming, the quarks with
their electric charges are difficult to fit in. This problem will be cured by the inclusion of strong

interactions.
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4.7 The standard model from Connes’ first dreisatz

The strong interactions being vectorial their addition to the minimax example is not difficult
and we go quickly over the calculations [6][11][8][I5]. The finite dimensional algebra is chosen
to reproduce SU(2) x U(1) x SU(3),

A=H&Cao® M;(C) > (a,b,c). (4.124)
The fermionic Hilbert spaces are copied from the standard model,

H, = (CeC"eC%) & (CCeC¥xC), (4.125)
Hr = (CeC)oCV"®C’) @ (CoCV®C). (4.126)

In each summand, the first factor denotes weak isospin doublets or singlets, the second denotes

N generations, N = 3, and the third denotes color triplets or singlets. Let us choose the
following basis of H = C%:

(), (0, ), (), G (5,
(), () G (), () (),

c C C
Up, CR» tR’ e :U“C 7<
dg, sk, bR, FOTRR

The representation p acts on ‘H by

pr(a) 0 0 0
{ pw(a,b) 0 B 0 puwr(b) 0 0
pla,b,c) = ( 0 7, c)) 0 0 Fur (b, ) 0 (4.127)
0 0 0 Furlbe)
with
a@1Iy®1 0 Bly®l1 0
pr(CL) = ( 87 ’ a®ly ) ) pr(b) = ( 6V ’ blN) >(4128)
B = (8 2) (4.129)
la®ly®c 0 LL@ly®c 0
psL(b> C) = < ? ON 612 ® 1N) ) psR(b> C) = < ? ON blN) (4130)
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The chosen representation p takes into account weak interactions p,(a,b), a € H, b € C, and
strong interactions p,(b,c), ¢ € M3(C), ¢ for color. This choice discriminates between leptons
(color singlets) and quarks (color triplets). The role of b € C appearing in both weak interac-
tions py,(a,b) and strong interactions ps(b, ¢) is crucial to make p(a, b, c) a representation of A
and is crucial for weak hypercharge computations. There is an apparent asymmetry between
particles and anti-particles, the former are subject to weak, the latter to strong interactions.
However, since particles and anti-particles are permuted in the covariant Dirac operator (£.73))
by

J = 0 115N) o complex conjugation, (4.131)
Iisy 0
the theory is invariant under charge conjugation. For completeness, we record the chirality as
matrix
—1sy O 0 0
_ 0 17wy 0 0
X = 0 0 —lgv 0 (4.132)
0 0 0 L7y
The third item in the spectral triple is the Dirac operator
0O M 0 0
M0 0 0
D= 0 0 0 0 (4.133)
0 0 0 0
The fermionic mass matrix of the standard model is
1 0 0 0
(0 0)®Mu®13+(0 1)®Md®13 0
M= 0 , (4.134)
o (1)
1
with
Mu = 0 me 0 y Md = CKM 0 mg 0 y (4135)
0 0 my 0 0 mp
me. O 0
M= 0 m, 0 |]. (4.136)
0 0 m,

All indicated fermion masses are supposed positive and different. The Cabibbo-Kobayashi-
Maskawa matrix Ckps is supposed non-degenerate in the sense that there is no simultaneous

mass and weak interaction eigenstate.

63



Let us turn the crank and record a few intermediate steps:

0 pulIM 0 0
M*pyr(h*) 0 0 0 =
1 —
QpA = 0 0 0 0 , hyh e H
0 0 0 0
The Higgs being an anti-Hermitian 1-form
0 puM 0 0 )
| MFpr(hY) 0 0 0 [ h1 —hs
H=1 0 0 ool "T\h n
0 0 0 0

is parameterized by one complex doublet

The internal junk in degree two is again

J®A 0 0 0

, 0O 00 0

T =91 o o0 of J€H
0 00 0

with

A=1

(wmm—Mwm®h 0 )
2

0 — M, M?

also containing the quark masses. The homogeneous scalar variable is:

0 pur(@)M 0 0
. | M Pur(¢7) 0 0 0 _
¢:=H —iD =1 0 0 0 ol =
0 0 0 0

and with ¢ := (1, p2), the internal field strength is:

LOY 0
._ 2 (1 A2 0 MM
C o= SH+H=(1-[¢P)| 0
0 0
o1 (M + MM 15 0
o2 0 M, M

Again aC has no junk component,
aC = (1 - |S0|2) p(Oé127ﬂ7’}/13).
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(4.142)
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To compute the real numbers «, (3, 7, we neglect all fermion masses with respect to the top

mass. This approximation is good to m?/m? = 0.0006 and we have the three linear equations:

AN a0 + Nﬂ—i—Bny:%

2

my

2Na + 12Np3 + 6N~y = 3m? (4.145)
S3Na + 3NpB + 6N~y = 3m2,

with solution

The Higgs and Yukawa couplings follow:

3 1
pto= (5 - N) my,
2

3 1
A= &(ﬁ_ﬁ)’

9 m? 272
gt = _— = —,
V2 3z

Before computing the gauge couplings, we face a problem.

(4.146)

(4.147)
(4.148)

(4.149)

The group of unitaries SU(2) x

U(1) x U(3) is too big by one U(1) factor. Indeed there is no associative algebra with SU(3)

as unitary group. Howerver there is an encouraging miracle, the representation of a linear

combination of the two u(1)s coincides with the representation of the hypercharge Y in the

standard model. This miracle needs three colours and vectorial couplings of the U(3). These

vectorial couplings, in turn, are an immediate consequence of the first order condition in spectral

triples together with the maximal parity violation of weak interactions [S][16][I7]. All four ad

hoc features of the standard model,
e gluons couple vectorially,
e gluons are massless,
e the W couples axially,

e the IV is massive,

are rigidly tied together by the axioms of the spectral triple. To obtain the standard model we

can project out the other, unwanted linear combination of the two u(1)s in g by imposing the

so-called unimodularity condition,

tr [P (pla, b, ¢) + Jp(a,b,c)J )] =
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where P is the projection on H; @ Hpg, the space of particles. We note that this condition is
equivalent to the condition of vanishing gauge anomalies [18]. Nevertheless the unimodularity
condition is at this stage an artefact. Connes second dreisatz will improve this situation [7].

The computation of the gauge couplings is now straightforward,

272 272 672
2 2 2
= - = = ) 4.151
93 Nz’ 92 Nz’ 91 5Nz ( )
In particular we have
SiIl2 ew - %7 g3 = g2, (4152>

as in grand unified theories and from the geometric unification of gauge and Higgs bosons,

A=382243 gl =593 (4.153)

The confrontation of these four constraints with experiment calls for the renormalization group
flow to be discussed in the next chapter.
Before leaving the standard model, we must verify its Poincaré duality. We have now three

minimal projectors,

(4.154)

o O O
o O O

1
P11 = (127070)7 P2 = (Oa 190)7 P3s = 0707 0
0

Note that 13 is not minimal in M3(C) because it is a sum of three projectors of rank one,

1 0 0 1 0 0 0 0 0 0 0 0
01 0|=100O0+{0 1T O0)+(0 0 0]. (4.155)
0 0 1 0 00 0 0 0 0 0 1
All three are unitarily equivalent. The intersection form,
0 1 1
n=-2N|[1 -1 -1], (4.156)
1 -1 0

is non-degenerate. However if we add right-handed neutrinos to the standard model, massive

or not, then the intersection form,

0 1 1
n=-2N|[1 -2 -1], (4.157)
1 -1 0

is degenerate and Poincaré duality fails.
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4.8 Necessary conditions

We have become accustomed to see supersymmetric versions of any theory or model already
on the market, supersymmetric quantum mecanics, supersymmetric Yang-Mills theories, su-
persymmetric o-models, super gravities, super strings,... You should not believe that you can
put noncommutative in front of any theory, not even in front of any Yang-Mills theory. It
remains a miracle that the standard model is in the tiny, priviledged class of Yang-Mills the-
ories allowing a noncommutative generalization and that putting almost commutative in front
of the standard model produces its correct Higgs sector. The purpose of the present section
is to assess this miracle. Needless to say that we call it a miracle because we do not have the
slightest explanation for it today.

Recall the input bills of a Yang-Mills theory, a finite dimensional, real, compact Lie group G
and two unitary representations py and pg. The classification of all such groups teaches us that
its Lie algebras g are direct sums of simple Lie algebras from the three classical series so(n),
su(n), sp(n), and of the five exceptional Lie algebras Go, Fy, Fgs, Er, Es. Each of the simple
Lie algebras has an infinite number of irreducible representations, for example u(1) = so(2)
has one irreducible representation for any charge y € R and su(2) = sp(1) has an irreducible
representation of any dimension d € N corresponding to spin j = (d — 1)/2.

The input bills of an almost commutative Yang-Mills theory are a finite dimensional, real,
associative involution algebra with unit, A and two faithful representations p; and pr. The
classification of these algebras is easier than the one for groups. Any such algebra is a direct
sum of finite algebras from the three series, M, (R), M, (C), M,(H), the n x n matrices with
real, complex and quaternionic entries. The corresponding groups of unitaries have Lie algebras
so(n), su(n), sp(n). Therefore the exceptional Lie groups are unsuitable for Connes’ dreisatz,
not a great loss. Things are more exciting concerning the representations. Any associative
algebra representation induces a Lie algebra representation but only very few Lie algebra rep-
resentations can be extended to a representation of the ambient associative algebra. The tensor
product of two g representations is a g representation. The tensor product of two A represen-
tations is not an A representation. The only irreducible representations of M;(C) have charge
1 and —1, the only irreducible representation of M;(H) is on C% In general M, (R) has only
one irreducible representation, the fundamental one, on R, M, (C) has two, the fundamental
one, on C", and its conjugate, and M, (H) has one, the fundamental one, on C?". Note that the
fermions of the standard model only contain colour triplets and singlets and isospin doublets
and singlets. The singlets are admitted thanks to the real structure J. The hypercharges may
deviate from 41 thanks to the unimodularity condition. The above general conditions on the

group and its fermionic representations exclude already all popular grand unified models from
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almost commutative geometry. The axioms of the spectral triple contain further restrictions
on the fermionic representations, the first order axiom and Poincaré duality. The complete
classification of almost commutative geometries is given in [I7]. The standard model is in
this classification, the first order axiom implies that strong interactions are vectorial, Poincaré
duality excludes right-handed neutrinos.

Concerning the coins, the Yang-Mills input is any invariant scalar product on the Lie algebra.
In almost commutative geometry, this scalar product is the restriction of a scalar product on
the entire space of differential forms. However, anticipating on Connes’ second dreisatz we have
not taken the most general such scalar product on forms, but we have picked one of the two
simplest, (4.49). It involves only one positive constant, z, and consequently the three gauge
couplings of the standard model are related by two constraints, equations (£.152)). Finally, in
almost commutative geometry all parameters in the fermionic mass matrix are input coins. The
scalar representation is only a group representation and is computed to be a subrepresentation
of the tensor product Hj ® Hg and its conjugate [19]. This subrepresentation depends on the
details of the fermionic mass matrix. The inclusion is however sufficient to exclude all left-right
symmetric models from almost commutative geometry [20]. In left-right symmetric models
parity violation is spontaneous, induced from the mass matrix of the gauge bosons. Finally the
Higgs couplings are also computed as a function of the fermionic mass matrix, equations (4153
for the standard model. The induced mass matrix of the gauge bosons has the same invariance
as the fermionic mass matrix. As the minimax example shows, the computation of the Higgs
representation and couplings is involved. The most modest Yang-Mills-Higgs model beyond the
standard model has the group SU(3) x SU(2) xU(1) xU(1). Any model in almost commutative
geometry yielding this group, like for instance the standard model without the unimodularity
condition, is incompatible with experiment [2I]. At present we have no complete classification
of all Yang-Mills-Higgs models accessible to almost commutative geometry. Figure d.1] tries to

give an impression of the situation.
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Figure 4.1: An artist’s partial view of the space of bills of all Yang-Mills-Higgs models and
some of its subsets. GUT stands for ‘Grand Unified Theories’, L — R stands for left-right
symmetric models, SM stands for standard model and Y M, for almost commutative
Yang-Mills models.
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Chapter 5

Running coupling constants

Quantum field theory teaches us that coupling constants are functions of the energy used to
measure them. Today this energy dependence is accessible to accelerator experiments. Physi-
cally it can be understood in analogy with the screening effect from condensed matter physics.
The computational origin of this energy dependence lies in divergent Feynman diagrams.

Consider an electric charge () placed in a dielectric medium, like water. The water molecules
carry an electric dipole moment. These dipoles orient themselves around the charge such that
the effective charge seen from far away is smaller than ): the cloud of dipoles surrounding
the charge partially screens ). By convention we keep the charge constant and say that the
effective coupling constant (e?/¢)!/? has decreased. In the vacuum ¢y = 8.85-107'2s2 C2/(m? kg)
is also called vacuum permittivity, otherwise € is the permittivity of the dielectric medium,
€ =699 - 1071252 C?/(m3 kg) for water.

x / +q
N/C
T Q) —=
N

g N

Figure 5.1: Vacuum polarization
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Let us now place the central charge ) in the vacuum and let us measure the effective
coupling dynamically by scattering a test charge ¢ off the central charge () with an energy F,
figure 5.1l Dirac tells us that electron positron pairs are created, dipoles that will screen the
central charge like the dipole moments of the water molecules before. With increasing energy
the test charge penetrates deeper into the dipole cloud and we measure an increasing effective
charge or equivalently an increasing effective coupling constant squared e?/ey(E). The vacuum
permittivity is a decreasing function of energy, for instance ey = 8.27 - 1072s* C?/(m? kg) at
E = my. The effect is now called vacuum polarization or running coupling constant.

The quantitative treatment of the running coupling is cumbersome. So far we only have
perturbative calculations. The cross section is computed as a power series in the fine structure
constant e?/(4meg hc) at a fixed energy. Even for small couplings this power series diverges
and physicists take a pragmatic point of view. As the computation of the higher order terms
is exceedingly complicated, the power series is truncated at first (or second) order. One talks
about 1-loop contributions, this means that the photon exchanged between the central charge
and the test charge produces one particle antiparticle pair only, figure In 2-loop one
admits the possibility that one of the particles of the pair may in turn produce new particles
e.g. via bremsstrahlung, figure 5.3l Even at 1-loop, one has to live with divergent integrals,
essentially short distance or ultra-violet divergences. For example consider figure 5.2], call x;
the point of pair creation and x5 the point of pair annihilation. The integral over z; and xs
diverges for short distances between the two points. This divergence has to be regularized to
get a finite cross section, a delicate manceuvre trusted only in renormalizable models. Even
in renormalizable models, there are different regularization schemes leading to different cross
sections. Fortunately the scheme dependence is weak and again physicists take a pragmatic
point of view. This point of view is backed by an impressive agreement between the computed
and measured numbers and adds to the humiliation of the standard model. Let us note that
95 % of physics is described without the use of loops. Renormalization is needed to fit the

experimental numbers with higher precision.

Figure 5.2: A 1-loop graph

One major motivation for noncommutative geometry in particle physics is that a spacetime

uncertainty naturally cures short distance divergences. In fact most of these divergences are
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Figure 5.3: A 2-loop graph

logarithmic and resemble the divergences encountered under the Dixmier trace (A.38]).
To cut a long story short, the running of the couplings is governed order by order by

differential equations, the renormalization group equations,

% = B,, t:=log E/A. (5.1)

A is the energy cut off from the regularization. The rhs of the differential equation is called
the 3 function of the coupling ¢g. For the standard model with N = 3 generations, in 1-loop
‘approximation’, neglecting threshold effects and neglecting all fermion masses with respect to

the top mass, the § functions are [22]

b = =448 (5.2)
By = —m g O (5.3)
By = —152 7 95 (5.4)
Bo= 1oz (997 — 8950 — 29300 — Togign), (5.5)
Br = 1o (960 4 24Mg; — 69/ — 9N — 3Ag} + 05 + 0t + 2g397),  (5.6)
Bz = g5 1 (48N +12g7 — 595 — 347). (5.7)

E
. Log( )
0 5 10 15 m,

Figure 5.4: The evolution of the three gauge couplings
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With the cited approximations, the three gauge couplings g; decouple from the Yukawa and

Higgs couplings and can be solved immediately,

9:2(t) = g;7%(0) — gheait, B =i = cigl. (5.8)

Figure 5.4l shows the logarithmic running of the three gauge couplings with experimental initial
values, g3 = 1.207, g» = 0.6507, g; = 0.3575 at £ = my. In agreement with our hand waving
argument, the abelian coupling g; increases with energy. The non-Abelian ones, the weak and
strong couplings decrease with energy. This is called asymptotic freedom and has rendered
non-Abelian Yang-Mills theories popular. At energies below 1 GeV the curve of the strong
coupling constant loses all meaning because it leaves the perturbative regime. This is taken
as evidence for confinement. On the other side, the curves have been extrapolated to science
fiction energies of 10! GeV with the insolent hypothesis of the big desert. I.e. we pretend that
from presently accessible energies of 10> GeV all the way up to 10* GeV, energies that will
never be accessible to man, no new forces, no new particles exist. This hypothesis was invented
in the seventies together with grand unified theories. To ease somewhat the humiliation of the
standard model, some physicists were looking for a simple Lie group like SU(5) that contains
SU(3) x SU(2) x U(1). As a simple Lie group only has one coupling constant, this idea

constrains the three gauge couplings:

93 =92, g1 = \/ggz (5.9)

The picture was that at the unification energy A of around 10 GeV SU(5) breaks sponta-
neously down to SU(3) x SU(2) x U(1). The gauge bosons that acquire a mass of the order of A
are called lepto-quarks because they mediate transitions between leptons and quarks rendering
the proton unstable with a life time of the order of hA*/m;, some 10* years. m,c*> = 0.938
GeV is the proton mass. At energies E below A the lepto-quarks decouple leaving the standard
model with its three couplings g; running as in figure 5.4l In the seventies the experimental
initial conditions and uncertainties were different, such that the three curves could cross in
one single point. Furthermore the experimental lower limit on the life time of the proton was
10?8 years, compatible with the theoretical value. It was also clear that the lower limit could
be improved by several orders of magnitude within a few years falsifying grand unification or
discovering new physics. The former happened, today the proton life time is longer than 103
years.

But grand unification also implied constraints on the Yukawa and Higgs couplings and

therefore on the top and Higgs masses,
me =2gi/g2 mwy, my = 42 \/X/gg my . (5.10)
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The [ functions (5.2H5.7)) have been computed with dimensional regularization and the modified
minimal subtraction scheme where only logarithmic divergences are kept. With Wilson’s lattice
regularization, p has in addition to its logarithmic divergence a quadratic one that modifies its
0 function. To avoid this ambiguity we note that, thanks to its dimensionality, © decouples
from the other couplings which are dimensionless. If we identify the pole masses m, = m(m,)
with their running masses at the Z mass m(my), and only compute mass ratios we never need

the ambiguous renormalization behaviour of pu.

8, ()
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Figure 5.5: The top coupling
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Figure 5.6: The Higgs selfcoupling for my(my) = 120 (lower graph), 160 and 180 Gev
(upper graph) for my(mz) = 175 GeV

In 1-loop the Yukawa coupling decouples from the Higgs couplings. Figure shows its
energy dependence with an initial value of m;(mz) = 175 GeV. All initial conditions not
mentioned are set to their central experimental values. Finally figure shows the Higgs

coupling A with three initial values mpy(myz) = 120, 160 and 180 GeV (upper curve) and
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Figure 5.7: Two allowed domains of initial values for A = 10 GeV (fat lines) and
A = 10" GeV (thin lines)

with my(my) = 175 GeV. We see that two catastrophes may happen while traversing the
big desert from my to A [23]: the Higgs coupling may become negative, rendering the Higgs
potential unstable or the Higgs coupling may become too large and ruin the perturbative
computation. Figure 5.7 shows the allowed domain of initial values m;(mz), mg(mz) that
avoid both catastrophes up to A = 10! GeV, thin lines, and up to A = 10 GeV, fat lines.
The upper curves limit perturbation, the lower curves limit stability. The three points indicate
the initial conditions of figure [5.6l

Let us now discuss the constraints from almost commutative Yang-Mills for the standard

g3 = 92, 912\/§92

g =02, A=505 (5.11)

model,

Again we suppose that they hold at some energy scale A which immediately implies that we
must swallow the big desert. In grand unification A characterizes new gauge interaction, here it
characterizes a new spacetime geometry. A measures the spacetime uncertainty like A measures
the phase space uncertainty. Today the experimental values of the three gauge couplings do not
allow to fit the constraints at one energy, figure 5.4 A = 10** — 10'" GeV. The corresponding
mismatch in the gauge couplings is on the 10 % level. We expect that the new uncertainty will
explain this mismatch. Indeed at energies close to the cut off A the  functions computed from
the ultra-violet divergences cannot be trusted together with noncommutative geometry. But

so far we do not have a quantum field theory on noncommutative spacetimes. Nevertheless we
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cannot refrain from computing the numbers produced by the other two constraints:
my = 187 £ 14 GeV, mpy =197 £9 GeV. (5.12)

The low value of A produces the low top mass and the low Higgs mass. All masses are auto-
matically compatible with a stable and perturbative Higgs coupling.

We believe that almost commutative geometry is just a low energy mirage of a truly non-
commutative geometry on the high energy side of the big dessert. In grand unification, the
direct product of groups was replaced by one group at the scale A. In the new picture, the ten-
sor product of algebras should be replaced by one algebra at the scale A. We find it encouraging

that this scale is close to, but lower than the Planck mass,

mp =1/ % =~ 10" GeV. (5.13)

Indeed there is an old hand waving argument combining Heisenberg’s uncertainty relation of
phase space with the Schwarzschild horizon to find an uncertainty relation in spacetime with
a scale A smaller than the Planck mass: To measure a position with a precision Ax we need,
following Heisenberg, at least a momentum h/Ax or, by special relativity, an energy hc/Ax.
According to general relativity, such an energy creates an horizon of size Ghc™3/Ax. If this
horizon exceeds Az all information on the position is lost. The best we can do is resolve
positions with Az such that Az = Ghc™3/Ax, that is Az = h/(mpc), the Planck length. The
problem with this argument is that we do not have a consistent quantum theory in curved
spaces. Despite many efforts no renormalizable quantum field theory of gravity is known. Even
the pragmatic physicists cannot agree on the energy dependence of the gravitational coupling
G. The numerical static value, used in the hand waving argument does not seem reasonable.

It is time to talk about gravity.
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Chapter 6

The Riemannian dreisatz

e Newton + Riemannian geometry = Einstein-Hilbert.

Einstein was a passionate sailor. We speculate that this was no accident. The subtle harmony
between geometries and forces becomes palpable to the sailor, he sees the curvature of the sail
and feels the force that it produces. Before Einstein, it was generally admitted that forces
are vector fields in an Euclidean space, R3, the scalar product being necessary to define work
and energy. Einstein generalized Fuclidean to Minkowskian and Riemannian geometry and
found special and general relativity with invariance groups, the Lorentz group SO(1,3) and
the diffecomorphism group Diff(M). These groups define the principles of special and general

relativity.

6.1 First stroke

Newton’s universal, static law of gravity,

mM

F=0=;

, (6.1)

the proportionality constant being Newton’s constant G = 6.670 - 10~ m?®/(s’kg), resembles
Coulomb’s law. However there is a subtle difference, the electric charge is Lorentz invariant, the
mass is not. Minkowskian geometry is the geometry of a flat spacetime, with the flat Minkowski
metric . Riemannian geometry is the geometry of curved spacetimes, with an arbitrary metric
g. Riemannian geometry also suggests the principle of general relativity, invariance under
general coordinate transformations whereas in Minkowskian geometry or special relativity we
only had invariance under the Lorentz group, under those special transformations that map
inertial coordinates (holonomic, orthonormal frames) into inertial coordinates.

As for Maxwell, the extension of Newton’s law is done in two strokes and starts with the
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trajectory of a test mass m,

d*z
m— =0, 6.2
P (6.2)
in inertial coordinates, a straight line. In arbitrary coordinates, still in flat spacetime this

becomes the geodesic equation,

d?x? ,  da# da”
= — , — , 6.3
" T (63)
F)\MV = %nAH [a;ﬂ?/w + aunnu - ann;w] . (64)

The Christoffel symbols I' are first derivatives of the matrix 7, of the flat metric in the
coordinates z*, defined by equation (2.43]). The geodesic equation and the definition of the

Christoffel symbols are to be compared to their Maxwell brothers,

d2at da¥
My = qF*, T (6.5)
Fy = 0,4, — 8,4, (6.6)

The geodesic equation simply describes the straight line in non-Cartesian coordinates. Nev-
ertheless it already contains a lot of physics. If the z# are the coordinates of the rotating
disk the geodesic equation is nothing but centrifugal and Coriolis forces. We can also repeat
the above argument replacing the free particle of Newton’s mechanics with the free particle of
Schrodingers quantum mechanics, i.e. a plane wave. Then choosing for z* oscillating coordi-
nates, we understand some observed interference patterns of neutrons [24].

The equivalence principle says that in absence of friction with air, a down falls as fast as
a marble. In other words, inertial and gravitational masses are equal. This suggests to use a
non-flat metric g to describe the trajectory of the marble in a non-vanishing gravitational field.
The mass on the lhs of the geodesic equation is inertial, on the rhs the mass is gravitational

and the two masses still cancel by virtue of the equivalence principle. The Christoffel symbols,

T = 3™ (04w + Ougrp — Ongun] (6.7)

are the gravitational field, the underlying metric g is the gravitational potential. The electro-
magnetic potential A can only be measured partially as integral over a closed curve and this
only via quantum effects, the Aharonov-Bohm effect. The metric can be measured classically,

but again only as integral over a curve, the proper time,
c*dr? = g, datdz”. (6.8)

Let us emphazise that the geodesic equation and the proper time are invariant under general

coordinate transformations.
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6.2 Second stroke

In the second stroke, Einstein used the full power of the principle of general relativity to derive

the dynamics of the gravitational field. The source of electromagnetism is charge,

(DMaxwellA)M = _60%]# (69)

We know the coupling constant from Coulomb’s law and we know that the differential operator
Diaxwenn must reduce to the Laplace operator in the static case. The source of gravity is mass

or — with special relativity — energy,

(,DEinstoing)“l, = SZALGT,LLV’ (610)

The energy-momentum tensor has the good taste to be symmetric, 799 is the energy density, 7;
are the energy currents, 7,0 are the momentum densities and 7;; their currents. Newton’s law
fixes the coupling constant G and from the 1/r? fall-off we know that Dgiystein 1S second order.
Covariance under general coordinate transformations and energy-momentum conservation then

determine the differential operator uniquely:
(DEinsteing)W = G;w - ACQ;w’ (6-11)
where G, = Ry, — %Rg,w is the Einstein tensor.
R = 0,17 — 0,1, + 17,14, — T, T, (6.12)

is the Riemann tensor, R,. := R)‘M,\,i is the Ricci tensor and R := R,,¢" is the curvature
scalar. A¢ is the cosmological constant that we discard for phenomenological reasons. Maxwell’s
differential operator, equation (I.23]), is linear and has eight terms. Einstein’s operator is non-
linear and has roughly 80 000 terms. Otherwise the two theories are very similar. As light from
Maxwell’s equation, Einstein’s equation has plane wave solutions, ‘gravitational waves’. They
too travel at the speed of light. ‘Gravito—magnetic’ forces with feeble couplings are contained
in Einstein’s equations and have been measured, as the advance of perihelia, the curvature of
light in a gravitational field, radar delay, or spin precession.

Einstein’s equation derives from an action, the Einstein-Hilbert action

Slg] = % /R4 R|det g.|"?d"z + matter, (6.13)

where R is the curvature scalar. The energy momentum tensor 7, is the variation of the matter

action with respect to g"”.
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6.3 The principle of general relativity

Connes’ second dreisatz will unify Yang-Mills theories with general relativity. To understand
Yang-Mills theories in terms of noncommutative geometry, it was very useful to formulate them
with differential forms. The same is true for general relativity. The remaining sections of this
chapter continue the technical interlude of chapter 2. We will use the local concepts of chapter
to construct general relativity in presence of spinors. Spacetime is an open subset U of R*
with signature + — —— for concreteness. The generalization to any dimension and signature
is immediate. The outcome of this construction will be a gauge theory based on the Lorentz
group SO(1,3) or its spin cover and the coupling of the gravitational field to matter will be
minimal, i.e. a covariant derivative.

General relativity promotes the spacetime metric to a dynamical field describing gravity.
Therefore we look for differential equations determining the metric. By definition the metric
is a differentiable family of bilinear symmetric forms, and we do not know what differential
equations for such objects are. We have seen that any metric can be described using a frame
of 1-forms. For 1-forms we know differential operators. Einstein has used holonomic frames.
The principle of general relativity requires that the metric and only the metric generates grav-
itational interaction. Therefore we want field equations that do not depend on the particular
coordinate system used to define the holonomic frame. In the following, we use orthonormal
frames of 1-forms to parameterize all metrics. The principle of general relativity now requires
that the particular orthonormal frame chosen to describe a given metric is irrelevant. Our task
therefore is to find differential equations for the orthonormal frames e’ which are covariant
under gauge transformations A:

¢'=NANe', Ae YSO(1,3). (6.14)

J

We restrict ourselves to orientation preserving Lorentz transformations because we use the
Hodge star. It is sometimes convenient to consider the orthonormal frame e’ as a 1-form
e with values in the fundamental representation of SO(1,3). To be more precise, we must
add the restriction that the e’ be linearly independent which is compatible with the gauge
transformation ¢/ = Ae. To get gauge covariant field equations for e we use the Yang-Mills
trick: We introduce a connection, write down an invariant action and obtain the desired field
equations by variation. In Yang-Mills theories the connection actually represents new physical
fields like the photon or the weak bosons W=, Z. Here we just signed the principle prohibiting
the introduction of new fields. A natural solution of this dilemma will show up automatically,

and for the moment we allow for a new field, the connection w, a 1-form with values in the Lie
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algebra of SO(1,3)
w € Q' (U, s0(1,3)), (6.15)

also called spin connection. As a connection it is supposed to transform under gauge transfor-

mations according to
W' = AwATt + AdAT (6.16)
As before we define the curvature
Ri=dw+iw,w € Q*(U, so(l,3)). (6.17)

This definition is known as Cartan’s second structure equation. Again we have immediately

the homogeneous transformation property of the curvature:
R = ARAL. (6.18)
We define torsion by Cartan’s first structure equation
T := de +we = De € Q' (U, RY). (6.19)

As a covariant derivative, also the torsion transforms homogeneously under gauge transforma-

tions:
T = AT. (6.20)
From d* = 0 and the Jacobi identity, we obtain the Bianchi identities:

DR = dR+[w,R] =0, (6.21)
DT = dT + wT = Re. (6.22)

6.4 The Einstein-Cartan equations

For a Yang-Mills theory without matter the cheapest gauge invariant action is quadratic in the

curvature:
1
SYM[A] = — ? /F*ab * Fba. (623)

For the moment the pure gravitational field is coded into two fields e and w. Consequently, we

have an invariant action already linear in the curvature,

1
Seulew] = 25 / R® + (ebey). (6.24)
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where indices are raised and lowered with 7% and 7, and e always denotes orthonormal frames
of 1-forms. Equation (6.24]) is the Einstein-Hilbert action. Using the definition of the Hodge
star in four dimensions the Einstein-Hilbert action can also be written,

—1

327TG R“becedeabcd. (625)

SEH[e, w] =

We introduce matter by adding a functional | £); depending on the matter fields and on e and
w?

-1
- 327G

S[e, w] RabecedEGbcd + /EM[e, w, ] (626)

For example, the matter could be a Yang-Mills action (6.23]) with A now considered as matter
field. This particular matter action depends only on e (through the Hodge star) and not on w.
Let us derive the field equations following from (G.2G]).

Variation of e:  We call 7 the variation of the matter Lagrangian with respect to e:
Latle + ] = Lufle] = —for + O(2), (6.27)
where 7 is a 3-form with values in R,
€ Q3(U,RY), (6.28)

the ‘energy momentum tensor’. Integrating 7 over a 3-dimensional volume yields the energy

momentum contained in that volume. E.g. for pure electromagnetic radiation,
Ly =—FF" *F, (6.29)
we obtain after a lengthy calculation
00 = 2L(E? + B?) (6.30)
with
* T = Tegl”. (6.31)
Variation of the total action (6.26) with respect to e gives immediately the Einstein equations:
R™e? € poq = — 167G T (6.32)

For given energy momentum 7, they are non-linear first order differential equations for the con-

nection. They are also linear equations for the curvature, ‘energy is the source of curvature’.
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Despite the algebraic nature of the equations curvature propagates in four dimensions: Van-
ishing 7 does not imply vanishing curvature as is illustrated, for example, by Schwarzschild’s
solution. This comes from the fact that the curvature has 6 x 6 = 36 independent coefficients
Rab

takes values in the Lorentz algebra) while Einstein’s equation, being an equation for 3-forms

. (antisymmetric in p and v because R is a 2-form, antisymmetric in a and b because R
with values in R* contains only 4 x 4 = 16 linear equations. In two- and three-dimensional
space times the counting is different and curvature does not propagate.

Variation of w: We define the spin density

S € (U, s0(1,3)) (6.33)

;CM[W + X] - ,CM[W] = _%Xabsab + O(X2) (634)

Of course, the spin density is zero for the Yang-Mills action (623). It is non-vanishing, for
instance, for the Dirac action describing spin % fields, which motivates the name spin density.

Varying w in the total action (6.20) yields, after an integration by parts, the equation
Tced €abed — —87TG8ab. (635)

‘Spin is the source of torsion’. If we now count the number of linear equations and unknowns,
we find them to match in any dimension. Torsion does not propagate: Vanishing spin density

implies vanishing torsion.

6.5 A farewell to w

We now come to the promised elimination of the spin connection as an independent field. There
are two possible routes.

Einstein’s point of view: FEinstein puts torsion to zero right from the beginning. By virtue

of equation (6.19),
0=T =de+ we (6.36)

is a covariant constraint and therefore it does not spoil the covariance of Einstein’s equation.

Let us consider this constraint as a system of linear equations with the components of the spin

b
I

and b and there are 6 x 4 unknowns. On the other hand, (6.36) is an equation for R*-valued

2-forms and has 4 x 6 components 7,. Consequently, there exists (for any signature and

connection w® as unknowns. Since w is so(1,3)-valued, it is antisymmetric in the indices a
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dimension) a unique solution expressing the spin connection as a function of the frame and
its first derivatives. This solution is called Riemannian connection. Its explicit form is most

conveniently written down expanding w with respect to the orthonormal frame e:
w = w €. (6.37)
Then the Riemannian connection is given by

Whe = %(Cabc -G —C ab)v (6-38)

C c

where the functions C are defined by
de* =: 10, €’e". (6.39)

Substituting the Riemannian connection w(e, de) into Einstein’s equations they become non-
linear second order differential equations for the orthonormal frame. Alternatively they can be
obtained by substituting first the Riemannian connection into the Einstein-Hilbert action and
then varying with respect to the frame, ‘second order formalism’.

Let us make the link between the Riemannian connection with respect to the orthonormal
frame e, the so(1,3) valued 1-form w and the same Riemannian connection with respect to
a holonomic frame da*, the gl valued 1-form I'. The link between the two frames is a GL}

gauge transformation:
e =~ da*, ye¥ GLY, (6.40)

and consequently the link between the the two expressions of the Riemannian connection with

respect to the two frames is:
w =Tyt +~ydy™t (6.41)

In holonomic components this last equation reads:

0
ox”

The YGL] element 7%, is often denoted e?, and called vierbein. (Attention, the lhs of the

last equation is often called covariant derivative of the vierbein and the equation is confused

Vau - Vaara;w + Wazfybu = 0. (642)

with the metricity property of the Riemannian connection by calling the vierbein a square root
of the metric, g, (z) = 1 €®,(z)eb,().) The coefficients of the gl; valued 1-form I'*,, dz” of

the Riemannian connection with respect to the orthonormal frame are the Christoffel symbols,

equation (6.7).
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Cartan’s point of view: Cartan keeps w as an independent field which eliminates itself at
the end through its own (algebraic) field equation (6.35): w = w(e, de,S). Therefore in this
so-called Einstein-Cartan theory Riemannian geometry is only valid outside matter with spin.
Only there it is verified experimentally. Furthermore the observed spin density in the universe
is small and torsion couples to it via the universal coupling constant GG implying that although
different in principle Einstein’s and Einstein-Cartan’s theories are presently indistinguishable
experimentally.

It can be shown [25] that the Einstein-Hilbert action is the unique action that leads to
vanishing torsion in the vacuum as field equation, unique of course up to terms containing no

spin connection, the cosmological term
1}1_!0 / eaebeced €abed - (643)

As promised we now show that a piece of the 2-dimensional unit sphere (chapter 2l) cannot
have a holonomic and orthonormal frame.
Theorem: An open subset U of R™ with a metric ¢ admits a holonomic and orthonormal
frame if and only if its Riemannian connection has everywhere vanishing curvature.

We use equation (6.38)) to calculate the Riemannian connection from

el =sinfdy, e*=db (6.44)
and
0
det = — 7 e'e?, de? =0. (6.45)
sin 6
Therefore
0
Ol = —C' gy = =27 6.46
12 21 s’ ( )

and all other C’s vanish. Consequently, the Riemannian connection is

1 cos 6
W2:

1 _
g = cosfdep (6.47)

and its curvature
R', = e'e? (6.48)

is different from zero.
To conclude, following Cartan we have presented general relativity using orthonormal frames.
This may be somewhat unfamiliar because Einstein formulated his theory with the help of holo-

nomic frames. Of course, both approaches have advantages and inconveniences. Two major
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shortcomings of holonomic frames are: Their invariance group is G L, which does not admit
spinor representations [26] therefore excluding fields with half integer spin. Holonomic frames
break the gauge invariance of general relativity, ignoring today’s belief that all fundamental

interactions are described by gauge theories.

6.6 The Dirac operator

Quantum mechanical experiments with neutrons teach us that interference patterns repeat
themselves only after a rotation through 720° of one of the two neutrons [27]. Mathematically
this means that the relevant group for spin % is not the rotation group SO(3) put its universal
cover SU(2). In relativistic theories the rotation group is embedded in the Lorentz group
SO(1,3) and we need its universal cover, the Clifford group Spin(1,3). The Dirac spinor is a
vector in the fundamental representation of the Clifford group. In curved spacetime the Lorentz
group is gauged and so we must gauge the Clifford group in order to define the Dirac operator
there. You will not be surprised that in the gauged case, we need a covariant derivative. The
connection takes values in the Lie algebra of the group, here the Clifford group. By definition
the Lie algebra of a Lie group is the same as the Lie algebra of its universal cover. This is the
short cut that we use to avoid developing the theory of Clifford algebras and groups. All we

need is the representation of an infinitesimal Lorentz transformation X%, € so(1,3) on a spinor

P
AX) W = 3 XYY = g X[y (6.49)

This transformation law tells us that the Dirac spinor has spin % and this is the transforma-
tion law that we should have given already in section [3.4] to prove the Lorentz invariance of
the Dirac equation. We recall that we use the flat metric 7,, to lower latin indices and that
Xop = X Mo is antisymmetric. The v matrices with latin indices are the z-independent Dirac
matrices introduced in section 3.4l To write down the Dirac operator we need partial deriva-
tives. They are calculated in a holonomic frame. On the other hand we need an orthonormal
frame to represent Lorentz transformations. The link between the two frames is a GL] gauge

transformation, the (inverse) vierbein e, (z):
dat = et e (6.50)
We use it to define x-dependent + matrices,

Y (x) == e (z)y°. (6.51)
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We are ready to define the Dirac operator,

9 = 0#0) (o + ) ¥ = @) (o + e v (652)

oxH

In flat Minkowski space with inertial coordinates x*, the holonomic frame is orthonormal,

et. = 0., the spin connection w vanishes and we retrieve the flat Dirac operator.

6.7 The Dirac action

To derive the Dirac equation from an action principle we need a pseudo scalar product on the
space of spinors, invariant under the Clifford group. At this point the signature of spacetime

matters. With Minkowskian signature and unitary Dirac matrices, this product is,

(1, x) = ¥x = ", (6.53)

where here the star -* denotes the transposed, complex conjugate. With Euclidean signature,

we have a genuine scalar product,

(¥, x) = ¥"x. (6.54)

In both signatures, the Dirac action reads:

Spiracle, w, V] = /*(qp, M) = %/(¢,7“Dw) ePeCelepea, (6.55)
with the exterior covariant derivative,

Dy = dp + p(w)p = A + jwapy™". (6.56)

Two remarks are in order. If the torsion vanishes the Dirac action is real, the Dirac operator
is selfadjoint in Euclidean signature. Second remark, in the Euclidean, due to the missing ~°
in the scalar product, the Dirac action for a chiral, say left-handed, fermion vanishes. We shall

have to pay due attention to this last point during the ‘Wick rotation’.

6.8 The Lichnérowicz formula

Dirac’s first motivation for his operator was a square root of the wave operator. Indeed, in
flat Minkowski space we have @2 = —[O14. Let us generalize this formula to curved space.
We suppose vanishing torsion but allow the spinor to couple minimally also to a Yang-Mills
potential A and to a Higgs scalar & € H} ® Hp,

Dy — ([@@ 1 + ie'y? @ pr(A,)] % ® P ) . (6.57)
,COV 5 ® o [@ Q1lg + z'e“ﬂj & pR(AM)]
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To keep notations simple we have left out the antiparticle part. The square of this total
covariant Dirac operator is
DZ

t,cov

= —0+E, (6.58)

O is the covariant wave operator

. 0
o = g’w {(@14 ® 1y + iwabuvavb QI+ 14, ® p(Au) 0'5 — FV,;“14 X 17-(}

0
% {@14 ® 1y + jWann VY’ @ 1y + 14 ® ,o(Au)} (6.59)

with the internal representation p := pp @ pgr on ' H := Hy & Hg. E, for endomorphism, is a
zero order operator, that is a matrix of size 4 dim’H whose entries are functions constructed

from the bosonic fields and their first and second derivatives,

(6.60)

L @dd* iyt ©D,P
E=%Wv”®1H]Rw+( e DY P )

R is the total curvature, a 2-form with values in the (Lorentz @ internal) Lie algebra represented

on (spinors ® H). It contains the curvature 2-form R = dw + 3[w,w] and the field strength
2-form F = dA + 3[A, A], in components

R = 2Ry’ ® Iy + La ® p(F). (6.61)

An easy calculation shows that the first term in equation (6.60) produces the curvature scalar
that we also (!) denote by R,

Lleteiyy™] L Rapuy™ = LR1,. (6.62)

In our conventions, the curvature scalar is positive on spheres (with signature ++). Finally D
is the covariant derivative appropriate to the representation of the scalars.

The Lichnérowicz formula with arbitrary torsion can be found in [2§].

6.9 Wick rotation

In this section we put together the action of gravity and of the standard model with emphasis on
the relative signs. We also indicate the changes when passing from Minkowskian to Euclidean
signature.

In 1983 the meter disappeared as fundamental unit of science and technology. The concep-

tual revolution of general relativity, the abandon of length in favour of time, had made its way
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up to the domain of technology. Said differently, general relativity is not really geo-metry, but
chrono-metry. Hence our natural choice of Minkowskian signature is + — ——.

With this choice and the conventions,

F, = 0,A,—-0,A,, (6.63)
FA;W = %g)\n [&Lgnu"'_augnu_aﬁg;w]v (6'64)
R = 0T, — 0, +T7,1, —T7,T, (6.65)
R;m = RA;LAH’ (666)
R = Ruygﬂl” (667)
1 0 O 0 0 0 0 1
_ 01 0 0 _ 0 0 1 0
a=0 __ a=1 __
T~ 1loo -1 0of " Tlo -1o0o0f (6.68)
00 0 -1 -1 0 0 O
0 0 0 —i 0 0 1 0
=2 0 0 ¢ O =3 0 0 0 -1
T~ 1o io0o o7 T l-100 0] (6.69)
- 0 0 0 0 1 0 O
0 01 0
0 0 0 1
I _ p a —
@) = @t s = 0 ol (6.70)
01 0 0
the combined Einstein-Hilbert Maxwell Higgs Dirac Lagrangian reads,
{— mzmb R — fate(F, F*) + gmitr(ArAY)
+35 (Dup) Do — gmilol* + 5 12lel* — Agl*
+ " [i9"Dy — myla v} |det g%, (6.71)

This Lagrangian is real if we suppose that all fields vanish at infinity. The relative coeffients
between kinetic terms and mass terms are chosen as to reproduce the correct energy momentum
relations from the free field equations using Fourier transform and the de Broglie relations as

explained after equation ([3.29). With the chiral decomposition

v = 5By, ¢y = BBy, (6.72)

the Dirac Lagrangian reads

@b*VO [iVMDu — myla]
= 17 i Du b + i’ iy Dy e — mytpiy bR — mytiy e (6.73)

The relativistic energy momentum relations are quadratic in the masses. Therefore the sign of

the fermion mass m, is conventional and merely reflects the choice: who is particle and who
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is antiparticle. We can even adopt one choice for the left-handed fermions and the opposite
choice for the right-handed fermions. Formally this can be seen by the change of field variable

(chiral transformation):
¥ = exp(iays) Y. (6.74)
It leaves invariant the kinetic term and the mass term transforms as,
— myth" 7 [cos(2a) 14 + i sin(2a) 3¢ (6.75)
With o« = —m /4 the Dirac Lagrangian becomes:

VA D, + imyysy

= V' Dby, + ) Y DL g A mypd I iy A+ myd my sy

=17 "Dy, + VDt g+ imy Y g — img Y (6.76)
We have seen that gauge invariance forbids massive gauge bosons, m4 = 0, and that parity
violation forbids massive fermions, m,, = 0. This is fixed by spontaneous symmetry breaking,
where we take the scalar mass term with wrong sign, m, = 0, p > 0. The shift of the scalar
then induces masses for the gauge bosons, the fermions and the physical scalars. These masses
are calculable in terms of the gauge, Yukawa and Higgs couplings.

The other relative signs in the combined Lagrangian are fixed by the requirement that the
energy density of the non-gravitational part 79y be positive (up to a cosmological constant) and
that gravity in the Newtonian limit be attractive. In particular this implies that the Higgs
potential must be bounded from below, A > 0. The sign of the Einstein-Hilbert action may
also be obtained from an asymptotically flat space of weak curvature, where we can define
gravitational energy density. Then the requirement is that the kinetic terms of all physical

bosons, spin 0, 1 and 2, be of the same sign. Take the metric of the form

G = N + h;wa (677)
h,, small. Then the Einstein-Hilbert Lagrangian becomes [29],

— g Rldet g.|"? = 25{30,hap0"h®® — 10,h, 0"’
—[Ouhy” — 10,010 W — 20"h, ] + O(h)}.  (6.78)
Here indices are raised with 1. After an appropriate choice of coordinates, ‘harmonic coor-
dinates’, the bracket [8,,@” — %@hy”] vanishes and only two independent components of A,

remain, hi; = —hgo and his. They represent the two physical states of the graviton, helicity

+2. Their kinetic terms are both positive, e.g.:
+ e 10uP120" haa. (6.79)
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Likewise, by an appropriate gauge transformation, we can achieve 9, A" = 0, ‘Lorentz gauge’,
and remain with only two, ‘transverse’ components A;, As of helicity +1. They have positive

kinetic terms, e.g.:
+ ﬁtr(auA’{a“Al). (6.80)
Finally the kinetic term of the scalar is positive:
+ 10,47 0"p. (6.81)

An old recipe from quantum field theory, ‘Wick rotation’, amounts to replace spacetime by
a compact Riemannian manifold with Euclidean signature. Then certain calculations become
feasible or easier. One of the reasons for this is that Euclidean quantum field theory resembles
statistical mechanics, the imaginary time playing formally the role of the inverse temperature.
Only at the end of the calculation the result is ‘rotated back’ to real time. In some cases,
this recipe can be justified rigorously. The precise formulation of the recipe is that the n-
point functions computed from the Euclidean Lagrangian be the analytic continuations in the
complex time plane of the Minkowskian n-point functions. We shall indicate a hand waving
formulation of the recipe that for our purpose is sufficient: In a first stroke we pass to the
signature — + ++. In the second stroke we replace t by it and replace all Minkowskian scalar
products by the corresponding FEuclidean ones.

The first stroke amounts simply to replacing the metric by its negative. This leaves in-
variant the Christoffel symbols, the Riemann and Ricci tensors, but reverses the sign of the
curvature scalar. Likewise, in the other terms of the Lagrangian we get a minus sign for every
contraction of indices, e.g.: 9,p*"Mp = 0,0*0wipg"" becomes 9,0*0rp(—g"') = —0,p* M.
After multiplication by a conventional overall minus sign the combined Lagrangian reads now,

{—zmp R + g2tr(F, F") + 5 (Dup) Dy — 5 1?lol* + Al

+ " Liy"D,, + myly ]} |det g |2 (6.82)

To pass to the Euclidean signature, we multiply time, energy and mass by . This amounts

to n* = ¢ in the scalar product. In order to have the Euclidean anticommutation relations,
Yy =261, (6.83)

we change the Dirac matrices to the Euclidean ones, (£.4)), (4.5), ([A8]), that are all self adjoint.
The Minkowskian scalar product for spinors has a 4°. This 7° is needed for the correct physical
interpretation of the energy of antiparticles and for Lorentz invariance, Spin(1,3). In the

Euclidean, there is no physical interpretation and we can only retain the requirement of a
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Spin(4) invariant scalar product. This scalar product has no 7°. But then we have a problem
if we want to write the Dirac Lagrangian in terms of chiral spinors as above. For instance,
Y7 iy*D,, 1, vanishes identically because 75 anticommutes with the four 4#. The standard trick
of Euclidean field theoreticians is fermion doubling, v);, and ¢ r are treated as two independent,
four component spinors. They are not chiral projections of one four component spinor as in
the Minkowskian, equation (6.72). The spurious degrees of freedom in the Euclidean are kept
all the way through the calculation. They are projected out only after the Wick rotation back
to Minkowskian, by imposing v5¢;, = =1, 75¢¥r = V.

In noncommutative geometry the Dirac operator must be self adjoint, which is not the
case of the Euclidean Dirac operator iy*D,, + im,14 we get from the Lagrangian (6.82) after
multiplication of the mass by i. We therefore prefer the primed spinor variables )" producing
the self adjoint Euclidean Dirac operator iy*D,, + my75. Dropping the prime, the combined

Lagrangian in the Euclidean then reads:

T

+ 0 VD + YR iV D bR + mylivsr + myliystn} (det g.)Y2 (6.84)

{—15zmp R + g2t0(Fp, F") + 5 (Dup) Do — 51|l + Neol*

In flat space, this is precisely the Yang-Mills-Higgs Lagrangian (£.7T]) and the Dirac Lagrangian
(A75) in the form obtained from Connes’ first dreisatz.
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Chapter 7

Connes’ second dreisatz

Again our starting point is the one—to—one correspondence between commutative spectral triples
(A, H, D) and compact Riemannian manifolds (M, ¢g) with spin structure. Noncommutative or
fuzzy spaces are defined by relaxing the condition of commutativity. In these spaces the Dirac

operator D plays several important roles:

e It defines the differential structure in terms of the exterior derivative d = [D, -].

e The dimension of the space can be read in the spectrum of D, the eigenvalues A,

grow like n!/ i,

e The Dirac operator allows to define integration by regularizing the scalar product

of differential forms &, ¢:

(K, ) = tRe tr, ([ + JEJ ' [ + JoJ 1 D]~ ™). (7.1)

e The Dirac operator generalizes the metric. Indeed on commutative spaces M, the
metric g can be retrieved from the Dirac operator via the geodesic distance between

two points x1,x9 € M,
d(x1,79) = Sup{|f(z1) — f(z2)|; f €A [I[D,p(N]ll <1}, (7.2)
with A = C*(M), (p(f)¥)(x) = f(x)¢(x) and D = 9.

For gravity the last role is vital because the metric is the dynamical variable on spacetime
M.
7.1 The spectral principle

Einstein used the matrix g,,(z) of the metric g with respect to a holonomic frame 9/0z* to

parameterize the set of all metrics on a fixed spacetime M. The coordinate system z* being
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unphysical, Einstein required his field equations for the metric to be covariant under coordinate
transformations, the principle of general relativity. Following physicists’ habits we will confuse
coordinate transformations and diffeomorphisms. Elie Cartan used orthonormal frames, repéres
mobiles, to parameterize the set of all metrics. This parameterization allowed to generalize the
Dirac operator D to curved space-times and also reformulated general relativity as a gauge
theory under the Lorentz group. Connes [7] goes one step further by relating the set of all
metrics to the set of all Dirac operators. The Einstein-Hilbert action, from this point of view,
is the Wodzicki residue of the second inverse power of the Dirac operator [30] and is computed
most conveniently from the second coefficient of the heat kernel expansion of the Dirac operator
squared.

The natural question now is: what becomes the principle of general relativity in Connes’
point of view? Connes’ answer is as natural: Invariance under the group of automorphisms
of the algebra A. Indeed in the commutative case, A = C*(M), this group is the group of
diffeomorphisms Diff(M). And what is an intrinsic property of the Dirac operator, a property
invariant under algebra automorphisms? It is the spectrum of D and Connes proposes to

generalize the principle of general relativity in terms of the spectral principle:
e Physics is coded in the spectrum of the Dirac operator.

If instead of the Dirac operator we take its square, the Laplace operator, on a flat two dimen-

sional space, then the spectral principle asks an old question:
e Can you hear the shape of a drum?

Let us apply the spectral principle to almost commutative geometries, A, = C*(M) ® Ay.

Its group of automorphisms is the semidirect product of the group of diffeomorphisms with a

gauge group,
Diff(M)® M@, (7.3)

where G is the automorphism group of A;. Up to discrete symmetries, all automorphisms of

the inner space A are inner automorphisms,
ou(a) =uau™', for all a € Ay, (7.4)

for a unitary element v € U(Ay). Consequently (up to discrete symmetries) the automorphism
group of Ay is a subgroup of its group of unitaries, G C U(Ay). For instance, Ay = H, G =
U(Ay) = SU(2), and Ay = M3(C), G =SU(3), U(Ay) = U(3). Therefore the spectral princi-

ple explains the invariance group of the combined actions of gravity with certain non-Abelian
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Yang-Mills theories, the above semidirect product, in terms of almost commutative geometries.
It was precisely these geometries, that explained the Higgs and spontaneous symmetry breaking
in Connes’ first dreisatz. In other words, as quantum mechanics is behind the (Abelian) U(1) in
the gauge dreisatz, almost commutative geometries are behind certain non-Abelian Lie groups

in the same dreisatz.

7.2 First stroke

Let us now follow the Riemannian dreisatz in two strokes to derive the field variables [7] and
their dynamics [31] from the spectral principle and almost commutative geometry.

Of course the matter equation we use in the first stroke is the Dirac equation for a free,
massive fermion ¢ in inertial coordinates (coordinates whose holonomic frame is orthonormal)
rather than Newton’s equation for a free point mass in inertial coordinates. We have to ask
how the Dirac equation changes under an automorphism. In almost commutative geometry an
automorphism has two parts. An outer part which is a spacetime diffeomorphism — C*(M)
being commutative has no inner automorphism — and an inner part which is a gauge transfor-
mation. We already know how the naked Dirac operator ¢ changes under a diffeomorphism,
it becomes covariant with respect to the flat spin connection w(e) induced by the diffeomor-
phism. This is the gravitational coupling that the principle of general relativity orders. The
inner Dirac operator D or fermionic mass matrix is invariant. Let us now see how the inner
automorphism ¢, u € U(A;) being a gauged unitary, modifies the naked, total Dirac operator
D= @®1 + v5® Dy . Since the spinor transforms under this unitary as, cf. section (.5

pspinor (W) = py() Jppp(u) Tt 0, w e UA) = MU(Ay), (7.5)

the naked, Dirac D; becomes:

(p1(w) Jepe(w) I ) D (pilua) Jope(w) It~

= pe(w) Jope(w) I Dy po(u™) Jype(u™h) I

= pi(u) Jype(uw) I (pe(u™) Dy + [Dy, po(w™ )] Jepe(u™) I

= Jipe(w) I, Diipr(u™) I 4 pe(w)[Dy, pr(u™)] = Topi(w)Dapp(u™) I 4 pi(w)[Dy, pr(u™))]
= Ju(pe(w)[ Dy, pe(w™)] + Di) It + pu(w) [ Dy, pu(u™)]

=D, — m(A) — Jem (A)J (7.6)

with the flat connection:

A = ubu* = udu* +udpu* = A+ H € Q' (M, u(Ap)) @ C*(M) ® lef.Af. (7.7)
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In the chain (.6 we have used successively the following three axioms of spectral triples,
[p(u1), Jp(uz)J 1] = 0, the first order condition [[D, p(u1)], Jp(uz)J '] = 0 and [D, J| = 0. The
result means that the naked Dirac operator becomes covariant with respect to the Yang-Mills
potential A and with respect to the Higgs scalar H. The spectral principle implies that in
almost commutative geometry, the gravitational field coded in the metric or equivalently in the
Dirac operator is necessarily accompanied by the spin 1 field A and the spin 0 field H.

So far the three connections w(e), A, H have no curvature. We now promote them to

general fields. Then we have the total, covariant Dirac operator,
Dt,cov = Dt — Tt(At) - Jtﬂ't(At)Jt_l, (78)

which is precisely the one of Connes’ first dreisatz, section [£.5

7.3 Second stroke

So far the gravitational, Yang-Mills and Higgs fields are adynamical, only the fermion 1 prop-
agates in the fixed background ((e,w(e)), A, H). In the second stroke, Chamseddine & Connes
[31] develop the full power of the spectral principle to derive the dynamics of the spin 2, 1 and
0 fields from the total, covariant Dirac operator Dy coy-

In even dimensions, the spectrum of the Dirac operator is even and it is sufficient to consider
the positive part of the spectrum which in the Euclidean is conveniently characterized by a

distribution function
§ = (0 (D} /A?). (7.9)

where A is an energy cutoff and f : R, — R, is a positive, smooth function with finite

‘momenta’,

Jfo = /Oouf() (7.10)

f = / f( (7.11)
fa = f(0), (7.12)
fo = —1'0), (7.13)
fo = F(0), .. (7.14)

Asymptotically, for large A, the distribution function of the spectrum is given in terms of the
heat kernel expansion [32]:

1

S = trf(,Dt%cov/A2> = 1672

/ [A4f0ao + A2f2a2 + faas + A_2f6a6 + ..]\/detg d4 (7.15)
M
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where the a; are the coefficients of the heat kernel expansion of the Dirac operator squared [33],

ap = tr(ly ® 1), (7.16)
az = gRtr(ly® 1y) — trkE, (7.17)
ay = SRMr(ly® 1y) — 5 R R*™tr(1s © 1) + 1hs Ruvpo R*7tr(14 @ 1)
+5tr(R,R*Y) — LRtrE + LtrE? + surface terms. (7.18)
We have used the Lichnérowicz formula for the square of the Dirac operator, D7, = —A+ E.

Note that for large A the positive function f is universal in the sense that only the three first
momenta, fy, fo and f; matter.

Let us first check the normalization 167 of equation (ZI5). Again we take M to be the
flat 4-torus with unit radii, Hy, = C, Hg = 0 and A = ¢ = 0. Remember from section that
for large A there are 4B,A* eigenvalues (counted with their multiplicity) whose absolute values
are smaller than A. B, = 72/2 denotes the volume of the unit ball in R*. On the other hand if
we take for f a smooth approximation of the characteristic function of the unit interval, then
fo= % and S simply counts the eigenvalues of the square of the Dirac operator less than A2:

1
~ 1672
The computation of the Chamseddine-Connes action S for the Dirac operator of the stan-

S = 4im*A A*14(2m)t (7.19)

dard model is straightforward. We give a few intermediate steps, a full account can be found
in [34].

ag = 4dimH, (7.20)
trE = dimH R+ 8tr®*® = dim H R + 8L|p/v|?, (7.21)
L = 3tr(M;M,)+ 3tr(M;M,) + tr(M; M.)
= 3(mt2+m3+mi+m§+m§+m§)+mi+mi+mg, (7.22)
az = 2dimHR—dimH R —8L|p/v|?
= —5dimH R —8L|p/v|?, (7.23)
tr (3002 13051 = A -] (7.24)
R, R = —1dimH Ry, R*™P7 — dtrp(F,) p(F*), (7.25)
trE? = LldimH R+ 2trp(F,)*p(F*)
+8Qlp/v|* +8L(Dup/v)"(D"p/v) + AL|p/v[*R, (7.26)
Q = 3tr[M;M,)* + 3tr [M; M) + tv [MM,]?

= 3(m}+mi4+mi+mp+mi+m) +md+ mﬁ +mt (7.27)
Using the Weyl tensor,

Cuvpo = Ruvpo — %(gupr = GuoRop + Guo Ryp — GupBus) + %(gupgw — GuoGup) Ry (7.28)
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we can assemble all higher derivative gravity terms in a4 to form the square of the Weyl tensor
CrvpeCH"P" = Ry e R*"P7 — 2R, R + %R2 = 2R, R" — §R2 + surface terms,  (7.29)

because R, o R"*" — 4R, R" + R* is proportional to the Euler characteristic of M. Then, up

to this surface term, we have

— g dim A [TRp0 RBP4 8RR — 5R?] = — &k dim H Cpe 7. (7.30)

Finally we have up to surface terms,

as = —55 AiMH CpupoC*7 + 2trp(F, ) p(F*)
+4Qlp/v|* + 4L(Dyup/v)* (DM /v) + 3 Llp/v[*R. (7.31)

We have used a trick to compute the second and forth power of the homogeneous scalar variable
®, a trick proper to the noncommutative formulation of the standard model. Remember from
section 7 the embedding of the scalar doublet ¢ = (1, ¢2) in Hj @ Hr ®& Hi ® Hi:

1M, —_@2Md ® 15 0
1 waM, 91 My
b= - _ , (7.32)
v 0 _Q02Me
( @lMe )

with v denoting the vacuum expectation value. This embedding, which is nothing but the

Yukawa couplings, takes the form of a matrix product,

= po(IM/v, 6= (:j; ‘@?) cH, (7.33)

and the powers of ® follow easily from the identity

06 = 0¢" = (lp1* + |2 *) 12 = |01 (7.34)

7.4 The unified action

Chamseddine & Connes’ distribution function S or spectral action unifies the Einstein-Hilbert

action, the Yang-Mills action, the Klein-Gordon action and the Higgs potential.
e relativity + noncommutative geometry = FEinstein-Hilbert-Yang-Mills-Higgs.

We still have to properly normalize the kinetic terms of the gravitational, Yang-Mills and

Higgs fields to deduce their couplings, Newton’s constant G, the gauge couplings ¢; and the
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Higgs couplings A and . We also have a cosmological constant A, the conformal scalar gravity

coupling and a higher derivative gravity term with coefficient a in the spectral action,

(rf(D2/A%) = / L mp(A2 R — Ac(A)
M
+1g3(N) P ED PO 4 Ly (A) 2 e FOm 4 g (M) F()* O

)"
+ 35 (Dup) Do + A(A )|<p|4 — 3 u(A)? Isol2
— a(A)ClpoC"P° + L|oPR ](detg.)?d'z + O(A7?). (7.35)

Before identifying Newton’s constant G = hc m;z and the cosmological constant Ax, we have
to shift the Higgs field by its vacuum expectation value, |p| = v(A) = pu(A)/(2vVA(A)). With

N generations of quarks and leptons, N = 3, we have:

mp(A)? = 1f, [5N—§%}A2 ~ 1fBN —2]A% (7.36)
2 2
Ac(A) = 1= H—?% — 15Nf0} A 2 {% - 5Nf0] A*, (7.37)
(M) = gufu, (7.38)
@A) = L, (7.39)
a(AN)? = 2057, (7.40)
L2
N = L=~ 3, )
A(A) = f g~ f (7.41)
w(A)? = 2%/\2, (7.42)
CL(A) = 647r2 .f4 (743)

The indicated approximation concerns the dominating top mass. Comparing with the combined
Euclidean action (6.84]), we see that each relevant term comes with its correct sign!
Identifying f, = %z the constraints on the three gauge couplings from noncommutative
Yang-Mills coincide with the constraints from noncommutative relativity. This is not an ac-
cident. In noncommutative Yang-Mills, we have chosen the scalar product symmetrized with

respect to charge conjugation,
<K, p> = ZRetr, ([k+ JeJ o+ JoJ D", ko €m(QPA). (7.44)

In the spectral action this scalar product is induced from the symmetrized covariant Dirac
operator D — 7(A) — Jm(A)J~!. The non-symmetrized covariant Dirac operator D — m(A)

would induce the non-symmetrized scalar product,
<K, p> = zRe tr, (K" p|D|”M™), (7.45)
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in the spectral action. Physics requires the use of the symmetrized Dirac operator in the
fermionic action, ¢*(D — 7(A) — Jr(A)J')e. In the noncommutative Yang-Mills setting we
were still free to use either Dirac operator — symmetrized or not — in the bosonic action. This is
no longer true in noncommutative relativity where the spectral principle requires one and the
same Dirac operator in both actions, the fermionic and the bosonic. This is why we committed
to the symmetrized scalar product already in noncommutative Yang-Mills. Here there is no
choice and we are forced to swallow the big desert and to extrapolate running couplings to
energies A = 10" — 101" GeV where f; = 3z = (0.80 — 0.94)47?. This of course means
that we have to return humblely to flat space because, despite the higher derivative term a,
gravity remains unrenormalizable. Fortunately, thanks to fy and f,, the Planck mass and the
cosmological constant decouple from the gauge couplings. Since the evolution of p strongly
depends on the regularization scheme there is only one more unambiguous constraint from

noncommutative relativity,
A(A) = Fg2(A)*. nc relat. (7.46)
Remember the corresponding constraint from noncommutative Yang-Mills,

A(A) = 3=2g,(A)?. nc YM (7.47)

They would coincide for N = 6 generations. For N = 3, their mismatch is still acceptable, in

terms of the resulting Higgs mass, we have,
myg =182+ 10+ 7 GeV. nc relat. (7.48)

The first error is from the uncertainty in A = 10 — 10'7 GeV. The second is from the present
experimental uncertainty in the top mass, m; = 175 &+ 6 GeV. Indeed we must admit that
noncommutative relativity does not constrain the Yukawa coupling or equivalently the top

mass as was the case in noncommutative Yang-Mills where we had

my = 1974+9+0 GeV,
m; = 18741440 GeV. nc YM (7.49)

The mismatch between the two Higgs couplings or masses from noncommutative Yang-
Mills and from noncommutative relativity is of the same order of magnitude as the mismatch
between the experimental and theoretical values of the three gauge couplings. We blame this
mismatch on the enormous extrapolation through the big desert. We take the mismatch as
indication that at energies A = 10*® — 10'7 GeV almost commutative geometry will merge into

a truely noncommutative geometry and that gravitational quantum effects will no longer be
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small. In any case we find it encouraging that noncommutative Yang-Mills and noncommutative
relativity produce comparable results for the standard model. This is another miracle of the
standard model. Indeed applied to the commutative example of section [£.4] the two dreisitze
produce quite different outputs, the first has a photon the second does not. Similarly the
minimax model, [4.6] with one generation of leptons, has no spontaneous symmetry break down
in noncommutative Yang-Mills, but does enjoy spontaneous break down in noncommutative
relativity because there junk does not happen.

In the standard model with N = 3 generations, the two Higgs mass predictions have a non-
empty intersection . This intersection is my = 188 — 199 GeV, an energy range experimentally

accessible to the Large Hadron Collider LHC in Geneva within ten years.

7.5 Outlook

Connes’ noncommutative geometry has impressive unification power. Almost commutative ge-
ometry unifies the non-Abelian gauge dreisatz with the Riemannian dreisatz. At the same time
it indicates a sequence of dreisatze, the Minkowskian, Riemannian and Connes’ second dreisatz
indexed by the nested invariance groups, the Lorentz, diffeomorphism and A;—automorphism
groups. It seems natural to pursue this sequence to truely noncommutative geometries. Indeed
A = C®(M) ® (H@ C® Ms(C)) is almost as ugly as Diff(M)®M(SU(2) x U(1) x SU(3)).
Noncommutative geometry grew out of quantum mechanics. Almost commutative geometry
unifies gravity with the subnuclear forces. We expect noncommutative geometry to reconcile
gravity with quantum field theory.

The basic variable of noncommutative geometry is the Dirac operator acting on fermions.
The fermions must define a representation of an associative algebra and are constrained by the
axioms of noncommutative geometry, i.e. of spectral triples. These axioms still leave many
choices, one of which the quarks and leptons of the standard model with their mass matrix
taken from experiment. Of course, we want an explanation for this choice. To define the Dirac
operator in Riemannian geometry, the spin group is essential. There is no generalization of
the spin group to noncommutative geometry yet. According to Connes [§], this generalization
should be a quantum group and it should help us to get a handle on the arbitrariness of the
fermion representation.

Minkowskian geometry explains the magnetic field, Riemannian geometry explains grav-
ity. Both geometries have operated revolutions on spacetime that today are well established
experimentally: the loss of absolute time and the loss of universal time. Can we observe the
noncommutative nature of time, its uncertainty or ‘fuzziness’, despite its ridiculously small
scale i/ A = 10710 g7
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So far noncommutative geometry is developed in Euclidean, compact spacetimes, so ‘Wick
rotation” and 341 split remain to be understood [35]. After this, we expect noncommutative
geometry to change our picture of black holes in a similar fashion that Heisenberg’s uncertainty
relation has cured the Coulomb singularity of the hydrogen atom. Also our picture of the big
bang, cosmology and the origin of time is expected to be revised [36].

Planatary motion has degraded circles to epicycles and dismissed them all together in favour
of ellipses. Particle physics is about to dismiss Riemannian geometry in favour of noncommu-

tative geometry and the question is, what dynamics is behind these new ellipses?

I am indepted to Daniel Kastler, the Emminence grise de Marseille. It is also a pleasure
to acknowledge years of enjoyable collaboration with Lionel Carminati, Robert Coquereaux,
Gilles Esposito-Farese, Meinulf Gockeler, Bruno Iochum, Thomas Krajewski, Igor Pris and
Daniel Testard. Vaughan Jones and Raymond Stora’s continuous support and friendship are

behind my ellipse. Time will show if this School was successful. If so, we owe this success to
Paulo Almeida.
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