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Preface

This book has evolved from lecture notes for a full-year undergraduate
course in general relativity which I taught from 1975 to 1980, an
experience which firmly convinced me that general relativity is not
significantly more difficult for undergraduates to learn than the standard
undergraduate-level treatments of electromagnetism and quantum
mechanics. The explosion of research interest in general relativity in the
past 20 years, largely stimulated by astronomy, has not only led to a
deeper and more complete understanding of the theory; it has also taught
us simpler, more physical ways of understanding it. Relativity is now in
the mainstream of physics and astronomy, so that no theoretical physicist
can be regarded as broadly educated without some training in the subject.
The formidable reputation relativity acquired in its early years (Inter-
viewer: ‘Professor Eddington, is it true that only three people in the
world understand Einstein’s theory?” Eddington: ‘Who is the third?’) is
today perhaps the chief obstacle that prevents it being more widely taught
to theoretical physicists. The aim of this textbook is to present general
relativity at a level appropriate for undergraduates, so that the student
will understand the basic physical concepts and their experimental impli-
cations, will be able to solve elementary problems, and will be well
prepared for the more advanced texts on the subject.

In pursuing this aim, I have tried to satisfy two competing criteria:
first, to assume a minimum of prerequisites; and second, to avoid watering

Xi



xii Preface

down the subject matter. Unlike most introductory texts, this one does
not assume that the student has already studied electromagnetism in its
manifestly relativistic formulation, the theory of electromagnetic waves,
or fluid dynamics. The necessary fluid dynamics is developed in the
relevant chapters. The main consequence of not assuming a familiarity
with electromagnetic waves is that gravitational waves have to be intro-
duced slowly: the wave equation is studied from scratch. A full list of
prerequisites appears below.

The second guiding principle, that of not watering down the treatment,
is very subjective and rather more difficult to describe. I have tried to
inttoduce differential geometry fully, not being content to rely only on
analogies with curved surfaces, but I have left out subjects that are not
essential to general relativity at this level, such as nonmetric manifold
theory, Lie derivatives, and fiber bundles.' I have introduced the full
nonlinear field equations, not just those of linearized theory, but I solve
them only in the plane and spherical cases, quoting and examining, in
addition, the Kerr solution. I study gravitational waves mainly in the
linear approximation, but go slightly beyond it to derive the energy in
the waves and the reaction effects in the wave emitter. I have tried in
each topic to supply enough foundation for the student to be able to go
to more advanced treatments without having to start over again at the
beginning.

The first part of the book, up to Ch. 8, introduces the theory in a
sequence whichis typical of manytreatments: a review of special relativity,
development of tensor analysis and continuum physics in special relativ-
ity, study of tensor calculus in curvilinear coordinates in Euclidean and
Minkowski spaces, geometry of curved manifolds, physics in a curved
spacetime, and finally the field equations. The remaining four chapters
study a few topics which I have chosen because of their importance in
modern astrophysics. The chapter on gravitational radiation is more
detailed than usual at this level because the observation of gravitational
waves may be one of the most significant developments in astronomy in
the next decade. The chapter on spherical stars includes, besides the
usual material, a useful family of exact compressible solutions due to
Buchdahl. A long chapter on black holes studies in some detail the
physical nature of the horizon, going as far as the Kruskal coordinates,

1 Thetreatment here is therefore different in spirit from that in my book Geometrical
Methods of Mathematical Physics (Cambridge University Press 19805b), which
may be used to supplement this one.
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then exploring the rotating (Kerr) black hole, and concluding with a
simple discussion of the Hawking effect, the quantum mechanical
emission of radiation by black holes. The concluding chapter on cos-
mology derives the homogeneous and isotropic metrics.and briefly studies
the physics of cosmological observation and evolution. There is an
appendix summarizing the linear algebra needed in the text, and another
appendix containing hints and solutions for selected exercises. One
subject I have decided not to give as much prominence to as other texts
traditionally have is experimental tests of general relativity and of alterna-
tive theories of gravity. Points of contact with experiment are treated as
they arise, but systematic discussions of tests now require whole books
(Will 1981). Physicists today have far more confidence in the validity of
general relativity than they had a decade or two ago, and | believe that
an extensive discussion of alternative theories is therefore almost as out
of place in a modern elementary text on gravity as it would be in one
on electromagnetism.

The student is assumed already to have studied: special relativity,
including the Lorentz transformation and relativistic mechanics;
Euclidean vector calculus; ordinary and simple partial differential
equations; thermodynamics and hydrostatics; Newtonian gravity (simple
stellar structure would be useful but not essential); and enough elemen-
tary quantum mechanics to know what a photon is.

The notation and conventions are essentially the same as in Misner et
al., Gravitation (W. H. Freeman 1973), which may be regarded as one
possible follow-on text after this one. The physical point of view and
development of the subject are also inevitably influenced by that book,
partly because Thorne was my teacher and partly because Graviration
has become such an influential text. But because I have tried to make
the subject accessible to a much wider audience, the style and pedagogical
method of the present bo_k are very different.

Regarding the use of the book, it is designed to be studied sequentially
as a whole, in a one-year course, but it can be shortened to accommodate
a half-year course. Half-year courses probably should aim at restricted
goals. For example, it would be reasonable to aim to teach gravitational
waves and black holes in half a year to students who have already studied
electromagnetic waves, by carefully skipping some of Chs. 1-3 and most
of Chs. 4, 7, and 10. Students with preparation in special relativity and
fluid dynamics could learn stellar structure and cosmology in half a year,
provided they could go quickly through the first four chapters and then
skip Chs. 9 and 11. A graduate-level course can, of course, go much
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more quickly, and it should be possible to cover the whole text in half
a year.

Each chapter is followed by a set of exercises, which range from trivial
ones (filling in missing steps in the body of the text, manipulating newly
introduced mathematics) to advanced problems that considerably extend
the discussion in the text. Some problems require programmable calcu-
lators or computers. 1 cannot overstress the importance of doing a
selection of problems. The easy and medium-hard ones in the early
chapters give essential practice, without which the later chapters will be
much less comprehensible. The medium-hard and hard problems of the
later chapters are a test of the student’s understanding. It is all too
common in relativity for students to find the conceptual framework so
interesting that they relegate problem solving to second place. Such a
separation is false and dangerous: a student who can’t solve problems
of reasonable difficulty doesn’t really understand the concepts of the
theory either. There are generally more problems than one would expect
a student to solve; several chapters have more than 30. The teacher will
have to select them judiciously. Another rich source of problems is the
Problem Book in Relativity and Gravitation, Lightman et al. (Princeton
University Press 1975).

I am indebted to many people for their help, direct and indirect, with
this book. I would like espectally to thank my undergraduates at Uni-
versity College, Cardiff, whose enthusiasm for the subject and whose
patience with the inadequacies of the early lecture notes encouraged me
to turn them into a book. And I am certainly grateful to Suzanne Ball,
Jane Owen, Margaret Vallender, Pranoat Priesmeyer and Shirley Kemp
for their patient typing and retyping of the successive drafts.

BFS
1984
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Special relativity

1.1 Fundamental principles of special relativity theory (SR)

The way in which special relativity is taught at an elementary
undergraduate level — the level which the reader is assumed competent
at —is usually close in spirit to the way it was first understood by physicists.
This is an algebraic approach, based on the Lorentz transformation (§ 1.7
below). At this basic level, one learns how to use the Lorentz transforma-
tion to convert between one observer’s measurements and another’s, to
verify and understand such remarkable phenomena as time dilation and
Lorentz contraction, and to make elementary calculations of the conver-
sion of mass into energy.

This purely. algebraic point of view began to change, to widen, less
than four years after Einstein proposed the theory.! Minkowski pointed
out that it is very helpful to regard (¢, x, y, z) as simply four coordinates
in a four-dimensional space which we now call spacetime. This was the
beginning of the geometrical point of view which led directly to general
relativity in 1914-16. It is this geometrical point of view on special
relativity which we must study before all else.

1 Einstein’s original paper was published in 1905, while Minkowski’s discussion
of the geometry of spacetime was given in 1908. Einstein's and Minkowski’s
papers are reprinted (in English translation) in The Principle of Relativity by
A. Einstein, H. A, Lorentz, H. Minkowski & H. Weyl (Dover).



2 Special relativity

As we shall see, spectal relativity can be deduced from two fundamental
postulates:

(1) Principle of relativity (Galileo): No experiment can measure the
absolute velocity of an observer; the results of any experiment performed
by an observer do not depend on his speed relative to other observers
who are not involved in the experiment.

(2) Universality of the speed of light (Einstein). The speed of light
relative to any unaccelerated observer is ¢ =3 x10° ms™', regardless of
the motion of the light’s source relative to the observer. Let us be quite
clear about this postulate’s meaning: two different unaccelerated ob-
servers measuring the speed of the same photon will each find it to be
moving at 3 X 10 ms™' relative to themselves, regardless of their state of
motion relative to each other.

As noted above, the principle of relativity is not at all amodern concept:
it goes back all the way to Galileo’s hypothesis that a body in a state of
uniform motion remains in that state unless acted upon by some external
agency. It is fully embodied in Newton’s second law, which contains
only accelerations, not velocities themselves. Newton’s laws are, in fact,
all invariant under the replacement

o()->v'()=v(1) Y,
where V is any constant velocity. This equation says that a velocity v(t)
relative to one observer becomes v'(f) when measured by a second
observer whose velocity relative to the first is V. This is called the Galilean
law of addition of velocities.

By saying that Newton’s laws are invariant under the Galilean law of
addition of velocities, we are making a statement of a sort which we will
often make in our study of relativity, so it is well to start by making it
very precise. Newton's first law, that a body moves at a constant velocity
in the absence of external forces, is unaffected by the replacement above,
since if v(r) is really a constant, say v,, then the new velocity v, —V is
also a constant. Newton’s second law,

F=ma=mdv/dt,
is also unafiected, since

a'=dv'/dt=d(v—-V)/dt=dv/dt=a.
Therefore the second law will be valid according to the measurements
of both observers, provided that we add to the Galilean transformation
law the statement that F and m are themselves invariant, i.e. the same
regardless of which of the two observers measures them. Newton’s third
law, that the force exerted by one body on another is equal and opposite
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to that exerted by the second on the first, is clearly unaffected by the
change of observers, again because we assume the forces to be invariant.

So there is no absolute velocity. Is there an absolute acceleration?
Newton argued that there was. Suppose, for example, that [ am in a train
on a perfectly smooth track,” eating a bow! of soup in the dining car.
Then if the train moves at constant speed the soup remains level, thereby
offering me no information about what my speed is. But if the train
changes its speed then the soup climbs up one side of the bowl, and I
can tell by looking at it how large and in what direction the acceleration
is.?

Therefore, it is reasonable and useful to single out a class of preferred
observers: those who are unaccelerated. They are called inertial observers,
and each one has a constant velocity with respect to any other one. These
inertial observers are fundamental in special relativity, and when we use
the term ‘observer’ from now on we will mean an inertial observer.

The postulate of the universality of the speed of light was Einstein’s
great and radical contribution to relativity. It smashes the Galilean law
of addition of velocities because it says that if v has magnitude ¢ then
so does v’, regardless of V. Einstein felt that the postulate was forced
on him by, among other things, the Michelson—-Morley experiment. The
counter-intuitive predictions of special relativity all flow from this postu-
late, and they are amply confirmed by experiment. In fact it is probably
fair to say that special relativity has a firmer experimental basis than
any other of our laws of physics, since it is tested every day in all the
giant particle accelerators, which send particles nearly to the speed of
light.

Although the concept of relativity is old, it is customary to refer to
Einstein’s theory simply as ‘relativity’. The adjective ‘special’ is applied
in order to distinguish it from Einstein’s theory of gravitation, which
acquired the name ‘general relativity’ because it permits one to describe
physics from the point of view of both accelerated and inertial observers
and is in that respect a more general form of relativity. But the real
physical distinction between these two theories is that special relativity
(SR) is capable of describing physics only in the absence of gravitational
fields, while general relativity (GR) extends SR to describe gravitation

2 Physicists frequently have to make such idealizations, which often are farremoved

from common experience! S
3 For Newton's discussion of this point, see the excerpt from his Principia in
Williams (1968).
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itself.* One can only wish that an earlier generation of physicists had
chosen more appropriate names for these theories!

1.2 Definition of an inertial observer in SR
It is important to realize that an ‘observer’ is in fact a huge
information-gathering system, not simply one man with binoculars. In
fact, we shall remove the human element entirely from our definition,
and say that an inertial observer is simply a coordinate system for
spacetime, which makes an observation simply by recording the location
(x, y, z) and time (¢) of any event. This coordinate system must satisfy
the following three properties to be called inertial:
(1) The distance between point P, (coordinates x,, y,, z,) and point
P, (coordinates x,, y,, z,) is independent of time.
(2) The clocks that sit at every point ticking off the time coordinate
t are synchronized and all run at the same rate.
(3) The geometry of space at any constant time ¢ is Euclidean.
Notice that this definition does not mention whether the observer
accelerates or not. That will come later. It will turn out that only an
unaccelerated observer can keep his clocks synchronized. But we prefer
to start out with this geometrical definition of an inertial observer. It is
a matter for experiment to decide whether such an observer can exist:
it is not self-evident that any of these properties must be realizable,
although we would probably expect a ‘nice’ universe to permit them!
However, we will see later in the course that a gravitational field does
in fact make it impossible to construct such a coordinate system, and
this is why GR is required. But let us not get ahead of the story. At the
moment we are assuming that we can construct such a coordinate system
(that, if you like, the gravitational fields around us are so weak that they
do not really matter). One can envision this coordinate system, rather
fancifully, as a lattice of rigid rods filling space, with a clock at every
intersection of the rods. We shall now define how we use this coordinate
system to make observations.
An observation made by the inertial observer is the act of assigning to
any event the coordinates x, y, z of the location of its occurrence, and

4 It is easy to see that gravitational fields cause problems for SR. If an astronaut
in orbit about Earth holds a bowl of soup, does the soup climb up the side of
the bowl in response to the gravitational ‘force’ which holds the spacecraft in
orbit? Two astronauts in different orbits accelerate relative to one another, but
neither feels an acceleration. Problems like this make gravity special, and we
will have to wait until Ch. 5 to resolve them, Until then, the word ‘force’ will
refer to a nongravitational force.
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the time read by the clock at (x, y, z) when the event occurred. It is not
the time ¢ on the wrist watch worn by a scientist located at (0, 0, 0) when
he first learns of the event. A visual observation is of this second type:
the eye regards as simultaneous all events it sees at the same time; an
inertial observer regards as simultaneous all events that occur at the same
time as recorded by the clock nearest them when they occurred. This
distinction is important and must be borne in mind. Sometimes we will
say ‘an observer sees ...’ but this will only be shorthand for ‘measures’.
We will never mean a visual observation unless we say so explicitly.

An inertjal observer is also called an inertial reference frame, which
we will often abbreviate to ‘reference frame’ or simply ‘frame’.

1.3 New units

Since the speed of light ¢ is so fundamental, we shall from now
on adopt a new system of units for measurements in which ¢ simply has
the value 1! It is perfectly okay for slow-moving creatures like engineers
to be content with the SI units: m, s, kg. But it seems silly in SR to use
units in which the fundamental constant c has the ridiculous value 3 X 10°.
The SI units evolved historically. Meters and seconds are not funda-
mental; they are simply convenient for human use. What we shall now
do is adopt a new unit for time, the meter. One meter of time is the time
it takes light to travel one meter. (You are probably more familiar with
an alternative approach: a year of distance ~ called a ‘light year’ — is the
distance light travels in one year.) The speed of light in these units is:

o= distance light travels in any given time interval

the given time interval
_ I m
the time it takes light to travel one meter

So if we consistently measure time in meters, then ¢ is not merely 1, it
is also dimensionless! In converting from SI units to these ‘natural’ units,
you can use any of the following relations:
3x10°ms™' =1,
1s=3x10°m,
1
3x10°

The ST units contain many ‘derived’ units, such as joules and newtons,

Im= S.
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which are defined in terms of the basic three: m, s, kg. By converting
from s to'm these units simplify considerably: energy and momentum
are measured in kg, acceleration in m™', force in kg m~!, etc. Do the
exercises on this. With practice, these units will seem as natural to you
as they do to most modern theoretical physicists.

1.4 Spacetime diagrams
A very important part of learning the geometrical approach to
SR is mastering the spacetime diagram. In the rest of this chapter we
will derive SR from its postulates by using spacetime diagrams, because
they provide a very powerful guide for threading one’s way among the
many pitfalls SR presents to the beginner. Fig. 1.1 below shows a two-
dimensional slice of spacetime, the t—x plane, in which are illustrated

L 3

world line of light,v =1

accelerated

{world line world line of particle moving at

speed lvl<}

@an event

elocity v > |

world line with v

1
) ‘ x {m)
Fig. 1.1 A spacetime diagram in natural units.

the basic concepts. A single point in this space’ is a point of fixed x and
fixed 1, and is called an event. A line in the space gives a relation x = x(?),
and so can represent the position of a particle at different times. This is
called the particle’s world line. Its slope is related to its velocity,

slope =dt/dx =1/,
Notice that a light ray (photon) always travels on a 45° line in this diagram.

5 We use the word ‘space’ in a more general way than you may be used to. We
da not mean a Euclidean space in which Euclidean distances are necessarily
physically meaningful. Rather, we mean just that it is a set of points which is
continuous (rather than discrete, as a lattice is). This is the first éexample of what
we will define in Ch. 5 to be a ‘manifold’.
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We shall adopt the following notational conventions:

(1) Events will be denoted by cursive capitals, e.g. &, B, . However,
the letter O is reserved to denote observers.

(2) The coordinates will be called (1, x, y, z). Any quadruple of numbers
like (5, —3, 2, 10'®) denotes an event whose coordinates are t =5, x = =3,
y =2, z=10'®, Thus, we always put t first. All coordinates are measured
in meters.

(3) It is often convenient to refer to the coordinates (f, x, y, z) as a
whole, or to each indifferently. That is why we give them the alternative
names (x°, x', x?, x*). These superscripts are not exponents, but just
labels, called indices. Thus (x’)* denotes the square of coordinate 3
(which is z), not the square of the cube of x. Generically, the coordinates
x° x', x? and x* are referred to as x°. A Greek index (e.g. a, B, i, v)
will be assumed to take a value from the set (0, 1, 2, 3). If « is not given
a value, then x* is any of the four coordinates.

(4) There are occasions when we want to distinguish between ¢ on the
one hand and (x, y, z) on the other. We use Latin indices to refer to the
spatial coordinates alone, Thus a Latin index (e.g. a, b, i,J, k, 1) will be
assumed to take a value from the set (1, 2, 3). If i is not given a value,
then x' is any of the three spatial coordinates. Our conventions on the
use of Greek and Latin indices are by no means universally used by
physicists. Some books reverse them, using Latin for {0, 1, 2, 3} and Greek
for {1, 2, 3}; others use a, b, ¢,... for one set and i, j, k for the other.
Students should always check the conventions used by whatever work
they are reading.

1.5 Construction of the coordinates used by another observer
Since any observer is simply a coordinate system for spacetime,
and since all observers look at the same events (the same spacetime), it
should be possible to draw the coordinate lines of one observer on the
spacetime diagram drawn by another observer. To do this we have to
make use of the postulates of SR. .

Suppose an observer 0 uses the coordinates f, x as above, and that
another observer 6, with coordinates 7, %, is moving with velocity v in
the x direction relative to 0. Where do the coordinate axes for f and x
go in the spacetime diagram of 07
t axis: This is the locus of events at constant X =0 (and =2 =0, too,
but we shall ignore them here), which is the locus of the origin of @’s
spatial coordinates. This is 0's world line, and it looks like that shown
in Fig. 1.2.
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t

~j

tangent of this
angle isv

R 4

Fig. 1.2 The time-axis of a frame whose velocity is v.

X axis: To locate this we make a construction designed to determine the
locus of events at f =0, i.e. those that @ measures to be simultaneous
with the event t =X =0.

Consider the picture in 0°s spacetime diagram, shown in Fig. 1.3. The
events on the X axis all have the following property: A light ray emitted
at event € from x =0 at, say, time [ = —a will reach the % axis at x=a
{we call this event P); if reflected, it will return to the point X =0 at
! = +a, called event &. The X axis can be defined, therefore, as the locus
of events that reflect light rays in such a manner that they return to the

™

—a

Fig. 1.3 Light reflected at a, as measured by &.
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t axis at +a if they left it at —a, for any a. Now look at this in the
spacetime diagram of 0, Fig. 1.4.

v

Fig. 1.4 The reflection in Fig. 1.3, as measured O,

We know where the 7 axis lies, since we constructed it in Fig. 1.2. The
events of emission and reception, f = —a and 1 = +a, are shown in Fig.
1.4. Since a is arbitrary, it does not matter where along the negative ¢
axis we place event ¥, so no assumption need yet be made about the
calibration of the 7 axis relative to the t axis. All that matters for the
moment is that the event & on the ¢ axis must be as far from the origin
as event &. Having drawn them in Fig. 1.4, we next draw in the same
light beam as before, emitted from ¥, and traveling on a 45° line in this
diagram. The reflected light beam must arrive at &, so it is the 45° line
with negative slope through . The intersection of these two light beams
must be the event of reflection 2. This establishes the location of 2 in
our diagram. The line joining it with the origin — the dashed line — must
be the X axis: it does not coincide with the x axis. If you compare this
diagram with the previous one you will see why: in both diagrams light
moves on a 45° line, while the ¢ and 1 axes change slope from one diagram
to the other. This is the embodiment of the second fundamental postulate
of SR: that the light beam in question has speed ¢ = 1 (and henceslope =1)
with respect to every observer. When we apply this to these geometrical
constructions we immediately find that the events simultaneous to & (the
line r =0, his x axis) are not simultaneous to O (are not parallel to the
line t =0, the x axis). This failure of simultaneity is inescapable.
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The following diagrams (Fig. 1.5) represent the same physical situation.
The one on the left is the spacetime diagram O, in which & moves to the
right. The one on the right is drawn from the point of view of €, in which
O moves to the left. The four angles are all equal to arc tan |v|, where ||
is the relative speed of € and &.

Hig

@) ®)
Fig. 1.5 Spacetime diagrams of O (left) and € (right).

1.6 Invariance of the interval
We have, of course, not quite finished the construction of O’s
coordinates. We have the position of his axes but not the length scale
along them. We shall find this scale by proving what is probably the
most important theorem of SR, the invariance of the interval.

Consider two events on the world line of the same light beam, such
as € and 2 in Fig. 1.4. The differences between the coordinates of &
and 2 in some frame O (At, Ax, Ay, Az) satisfy the relation (Ax)* +(Ay)* +
(Az)> —(Ar)*=0, since the speed of light is 1. But by the universality of
the speed of light, the coordinate differences between the same two events
in the coordinates of & (A7, A%, Ay, AZ) also satisfy (A%)’ +(A7)* +(AZ)* -
(A1)’ =0. We shall define the interval between any two events (not
necessarily on the same light beam’s world line) that are separated by
coordinate increments (At, Ax, Ay, Az) to be®

¢ As’=—(AD)* +(Ax)* +(Ay)* +(Az)’. (1.1

6 The student to whom this is new should probably regard the notation As?® as a
single symbo}, not as the square of a quantity As. Since As? can be either positive
or negative, it is not convenient to take its square root. Some authors do, however,
call As® the ‘squared interval', reserving the name ‘interval’ for As= J(As’).
Note also that the notation As? never means A(s?).
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It follows that if As>=0 for two events using their coordinates in 0,
then A§” =0 for the same two events using their coordinates in 6, What
does this imply about the relation between the coordinates of the two
frames? To answer this question, we shall assume that the relation
between the coordinates of @ and 0 is linear and that we choose their
origins to coincide (i.e. thattheevents i =X=j=Z=0and t=x=y=z=
0 are the same). Then in the expression for A5,

A§* = —(AT)’ +(AX)* +(AF)? +(AZ),
the numbers (A7, AX, Ay, AZ) are linear combinations of their unbarred

counterparts, which means that A5 is a quadratic function of the unbarred
coordinate increments. We can therefore write

AR = 3 T M,s(x")(AxP) (1.2)

a=0pg=0

for some numbers {M,3; @, B=0,...,3}, which may be functions of v,
the relative velocity of the two frames. Note that we can suppose that
M,z = M, for all a and B, since only the sum M,z + M,, ever appears
in Eq. (1.2) when a # 8. Now we again suppose that As’=0, so that
from Eq. (1.1) we have

At=Ar, Ar=[(Ax)*+(Ay)* +(A2)"]V2

(We have supposed At>0 for convenience.) Putting this into Eq. (1.2)
gives

3
AF?= MOO(Ar)2+2( 5 Mo,.Ax")Ar
i=1

3 3 _
+¥ ¥ MAx'Ax. (1.3)
i=1j=1
But we have already observed that A§” must vanish if As? does, and this
must be true for arbitrary {Ax’, i=1, 2, 3}. It is easy to show (see Exer.
8, § 1.14) that this implies

My=0 i=1,23 (1.42)
and _
where 8, is the Kronecker delta, defined by
1 ifi=},
5. =
i {0 i) (1.4¢)

From this and Eq. (1.2) we conclude that
A5 = Mool (A1)’ (Ax)* — (Ay) —(Az)’].
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If we define a function
¢(v) = _M()Oa
then we have proved the following theorem: The universality of the speed

of light implies that the intervals As®> and A5? between any two events as
computed by different observers satisfy the relation
A§’ = $p(v)As>. (1.5)
We shall now show that, in fact, ¢(v)= 1, which is the statement that
the interval is independent of the observer. The proof of this has two
parts. The first part shows that ¢(v) depends only on |v|. Consider a rod
which is oriented perpendicular to the velocity v of @ relative to .
Suppose the rod is at rest in @, lying on the y axis. In the spacetime
diagram of @ (Fig. 1.6), the world lines of its ends are drawn and the

of
Fig. 1.6 A rod at rest in @, lying on the y-axis.

region between shaded. It is easy to see that the square of its length is
just the interval between the two events & and & that are simultaneous
in O (at t =0) and occur at the ends of the rod. This is because, for these
events, (AX) gz = (A2)ys =(At)uz =0. Now comes the key point of the
first part of the proof: the events & and % are simultaneous as measured
by € as well. The reason is most easily seen by the construction shown
in Fig. 1.7, which is the same spacetime diagram as Fig. 1.6, but in which
the world line of a clock in € is drawn. This line is perpendicular to the
y axis and parallel to the r—x plane, i.e. parallel to the r axis shown in
Fig. 1.5(a).

Suppose this clock emits light rays at event 2 which reach events &
and @. (Not every clock can do this, so we have chosen the one clock
in & which passes through the y axis at ¢ = 0 and can send out such light
rays.) The light rays reflect from o and %, and one can see from the
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' s

clock in @

Fig. 1.7 A clock of @s frame, moving in the x-direction in ©’s frame.

geometry (if you can allow for the perspective in the diagram) that they
arrive back at &’s clock at the same event 2. Therefore, from &’s point
of view, the two events occur at the same time. (This is the same
construction we used to determine the X axis.) But if & and B are
simultaneous in &, then the interval between them in € is also the square
of their length in &. The result is:
(length of rod in 6)* = ¢(v)(length of rod in O)°.

On the other hand, the length of the rod cannot depend on the direction
of the velocity, because the rod is perpendicular to it and there are no

preferred directions of motion (the principle of relativity). Hence the first
part of the proof concludes that

é(v) = ¢(|v)). (1.6)
The second step of the proof is easier. It uses the principle of relativity
to show that ¢(|v|)=1. Consider three frames, 0, &, and 6. Frame €
moves with speed v in, say, the x direction relative to €. Frame ¢ moves
with speed v in the negative x direction relative to &. It is clear that &
is in fact identical to O, but for the sake of clarity we shall keep separate
notation for the moment. We have, from Egs. (1.5) and (1.6),
2 =2

A o e ar-tsrast
But since 0 and ¢ are identical, A5 and As? are equal. It follows that

¢(v)==x1.

We must choose the plus sign, since in the first part of this proof the
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square of the length of a rod must be positive. We have therefore proved
the fundamental theorem that the interval between any two events is the
same when calculated by any inertial observer:

® AF?=As% (1.7)

Notice that from the first part of this proof we can also conclude now
that the length of a rod oriented perpendicular to the relative velocity of
two frames is the same when measured by either frame. It is also worth
reiterating that the construction in Fig. 1.7 above proved a related result,
that two events which are simultaneous in one frame are simultaneous in
any frame moving in a direction perpendicular to their separation relative
to the first frame.

Because As”is a property only of the two events and not of the observer,
it can be used to classify the relation between the events. If As? is positive
(so that the spatial increments dominate At) the events are said to be
spacelike separated. If As® is negative the events are said to be timelike
separated. If As® is zero (so the events are on the same light path) the
events are said to be lightlike or null separated.

The events that are lightlike separated from any particular event &,
lie on a cone whose apex is & This cone is illustrated in Fig. 1.8. This

tll

\

I

|

)

[}

)
LB

¥

Fig. 1.8 The light cone of an event. The z-dimension is suppressed.

is called the light cone of . All events within the light cone are timelike
separated from & ; all events outside it are spacelike separated. Therefore
all events inside the cone can be reached from & on a world line which
everywhere moves in a timelike direction. Since we will see later that
nothing can move faster than light, all world lines of physical objects
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move in a timelike direction. Therefore events inside the light cone are
reachable from & by a physical object, whereas those outside are not.
For this reason the events inside the ‘future’ or ‘forward’ light cone are
sometimes called the absolute future of the apex; those within the ‘past’
or ‘backward’ light cone are called the absolute past; and those outside
are called the absolute elsewhere. The events on the cone are therefore
the boundary of the absolute past and future. Thus, although ‘time’ and
‘space’ can in some sense be transformed into one another in SR, it is
important to realize that we can still talk about ‘future’ and ‘past’ in an
invariant manner. To Galileo and Newton the past was everything ‘earlier’
than now; all of spacetime was the union of the past and the future,
whose boundary was ‘now’. In SR, the past is only everything inside the
past light cone, and spacetime has three invariant divisions: SR adds the
notion of ‘elsewhere’. What is more, although all observers agree on
what constitutes the past, future and elsewhere of a given event (because
the interval is invariant), each different event has a different past and
future; no two events have identical pasts and futures, even though they
can overlap. These ideas are illustrated in Fig. 1.9.

1.7 Invariant hyperbolae
We can now calibrate the axes of @’s coordinates in the spacetime
diagram of O, Fig. 1.5. We restrict ourselves to the t—x plane. Consider
a curve with the equation

- +x*=a’

where a is a real constant. This is a hyperbola in the spacetime diagram
of 0, and it passes through all events whose interval from the origin is
a®. By the invariance of the interval, these same events have interval a’
from the origin in &, so they also lie on the curve —#* + %> =a’. This is
a hyperbola spacelike separated from the origin. Similarly, the events on
the curve

-2 +x2=~p?

all have timelike interval —b” from the origin, and also lie on the curve
—*+x%=—b> These hyperbolae are drawn in Fig. 1.10. They are all
asymptotic to the lines with slope +1, which are of course the light paths
through the origin. In a three-dimensional diagram (in which we add the
y axis, as in Fig. 1.8), hyperbolae of revolution would be asymptotic to
the light cone.



16 Special relativity
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Fig. 19 Oid and new concepts of spacetime.

We can now calibrate the axes of 0. In Fig. 1.11 are drawn the axes
of € and @, and an invariant hyperbola of timelike interval —1 from the
origin. Event & is on the ¢ axis, so has x = 0. Since the hyperbola has
the equation

P+ x*= -1,
it follows that event & has =1, Similarly, event & lies on the 7 axis,
so has ¥ =0. Since the hyperbola also has the equation

-P+x’=-1,
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Fig. 1.10 Invariant hyperbolae, for a > b.

it follows that event & has 7 = 1. We have therefore used the hyperbolae
to calibrate the 7 axis. In the same way, the invariant hyperbola
-t +x’=4

shows that event &€ has coordinates t=0, x =2 and that event & has
coordinates f =0, X = 2. This kind of hyperbola calibrates the spatial axes
of 6.

Notice that event % looks to be ‘further’ from the origin than . This
again shows the inappropriateness of using geometrical intuition based

tt

v

Fig. 1.1l  Using the hyperbolae through events & and & to calibrate the % and
I axes,
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upon Euclidean geometry. Here the important physical quantity is the
interval —(At)* +(Ax)?, not the Euclidean distance (Af)’+(Ax)>. The
student of relativity has to learn to use As’ as the physical measure of
‘distance’ in spacetime, and he has to adapt his intuition accordingly.
This is not, of course, in conflict with everyday experience. Everyday
experience asserts that ‘space’ (e.g. the section of spacetime with 1=10)
is Euclidean. For events that have At =0 (simultaneous to observer 0),
the interval is
As® =(Ax)* +(Ay) +(Az)°.

This is just their Euclidean distance. The new feature of SR is that time
can (and must) be brought into the computation of distance. It is not
possible to define ‘space’ uniquely since different observers identify
different sets of events to be simultaneous (Fig. 1.5). But there is still a
distinction between space and time, since temporal increments enter As’
with the opposite sign from spatial ones.

In order to use the hyperbolae to derive the effects of time dilation
and Lorentz contraction, as we do in the next section, we must point out
a simple but important property of the tangent to the hyperbolae,

In Fig. 1.12(a) we have drawn a hyperbola and its tangent at x=0,
which is obviously a line of simultaneity t=const. In Fig. 1.12(b) we
have drawn the same curves from the point of view of observer & who
moves to the left relative to 0. The event ? has been shifted to the right:
it could be shifted anywhere on the hyperbola by choosing the Lorentz
transformation properly. The lesson of Fig. 1.12(b) is that the tangent to
a hyperbola at any event 2 is a line of simultaneity of the Lorentz frame
whose time axis joins 2 to the origin. If this frame has velocity v, the
tangent has slope 1/v.

1.8 Particularly important results
Time dilation. From Fig. 1.11 and the calculation following it,
we deduce that when a clock moving on the f axis reaches 98 it has a
reading of 7 = 1, but that event # has coordinate t=1/v/(1—v?) in 0. So
to O it appears to run slowly:

(Ai)measure in
(At)measured ing = \/(l “U:) 6- (18)

Notice that A7 is the time actually measured by a single clock which
moves on a world line from the origin to 93, while At is the difference
in the readings of two clocks at rest in 0, one on a world line through
the origin and one on a world line through %. We shall return to this
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Fig. .12 (a) A line of simultaneity in O is tangent to the hyperbola at #. (b)
The same tangency as seen by ©.

observation later. For now, we define the proper time between events %
and the origin to be the time ticked off by a clock which actually passes
through both events. It is a directly measurable quantity, and it is closely
related to the interval. Let the clock be at rest in frame €, so that the
proper time A7 is the same as the coordinate time Ar. Then, since the
clock is at rest in O, we have Ax=Aj=Az=0, so

As*=-AP=-A7% (1.9)
The proper time is just the square root of the negative of the interval. By
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expressing the interval in terms of 0’s coordinates we get
Ar=[(A1)’ —~(Ax)’ ~(Ay)* ~(Az)*]"/?
=AtV(1 ~vY). (1.10)
This is the time dilation all over again.

Lorentz contraction. In Fig. 1.13 below we show the world path of a rod
at rest in @. Its length in O is the square root of As’e, while its length

r4

=¥

Fig. 1.13  The proper length of A% is the length of the rod in its rest frame,
while that of 4% is its length in €.

in O is the square root of As%y. If event € has coordinates 1 =0, x=1
then by the identical calculation from before it has x coordinate in ©
xe=1/vV(1—0?),
and since the X axis is the line ¢ = vx, we have
te=vl/V(1 —v%).
The line B%€ has slope
Ax/At =1,
and so we have
Xg — X
le— lg -5
and we want to know xz when tg = 0. Thus,
X = Xg — Ulg
1 vl
“V(1-v) J(1-v)

This is the Lorentz contraction.

= V(1 - vd). (1.1hH
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Conventions. The interval As® is one of the most important mathematical
concepts of SR but there is no universal agreement on its definition:
many authors define As?=(At)’ —(Ax)* —(Ay)* —(Az)*. This overall sign
is a matter of convention (like the use of Latin and Greek indices we
referred to earlier), since invariance of As® implies invariance of —As?,
The physical result of importance is just this invariance, which arises
from the difference in sign between the (A7)* and [(Ax)* +(Ay)* +(Az)?]
parts. As with other conventions, students should ensure they know which
sign is being used: it affects all sorts of formulae, for example Eq. (1.9).

Failure of relativity? Newcomers to SR, and others who don’t understand
it well enough, often worry at this point that the theory is inconsistent,
We began by assuming the principle of relativity, which asserts that all
observers are equivalent. Now we have shown that if & moves relative
to 0, the clocks of & will be measured by € to be running more stowly
than those of O. So isn’t it therefore the case that & will measure €’s
clocks to be running faster than his own? If so, this violates the principle
of relativity, since we could as easily have begun with & and deduced
that @’s clocks run more slowly than @’s.

This is what is known as a ‘paradox’, but like all ‘paradoxes’ in SR,
this comes from not having reasoned correctly. We will now demonstrate,
using spacetime diagrams, that @ measures 0’s clocks to be running more
slowly. Clearly, one could simply draw the spacetime diagram from 0s
point of view, and the result would follow. But it is more instructive to
stay in 0’s spacetime diagram.

Different observers will agree on the outcome of certain kinds of
experiments. For example, if A flips a coin, every observer will agree on
the result. Similarly, if two clocks are right next to each other, all observers
will agree which is reading an earlier time than the other. But the question
of the rate at which clocks run can only be settled by comparing the
same two clocks on two different occasions, and if the clocks are moving
relative to one another then they can be next to each other on only one
of these occasions. On the other occasion they must be compared over
some distance, and different observers may draw different conclusions.
The reason for this is that they actually perform different and inequivalent
cxperiments. In the following analysis, we will see that each observer
uses two of his own clocks and one of the other’s. This asymmetry in
the ‘design’ of the experiment gives the asymmetric result.

Let us analyze O's measurement first, in Fig. 1.14. This consists of
comparing the reading on a single clock of § (which travels from & to
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Fig. 1.14 The proper length of % is the time ticked by a clock at restin 6,
while that of #¥ is the time it takes to do so as measured by €.

@) with two clocks of his own: the first is the clock at the origin, which
reads 0s clock at event &/; and the second is the clock which is at % at
t=0 and coincides with @’s clock at @. This second clock of @ moves
parallel to the first one, on the vertical dashed line. What € says is that
both clocks at o read t =0, while at & the clock of € reads 7 = 1, while
that of @ reads a later time, ¢ =(1-v*)""/2 Clearly, € agrees with this,
as he is just as capable of looking at clock dials as © is. But for 0 to
claim that 6’s clock is running slowly, he must be sure that his own two
clocks are synchronized, for otherwise there is no particular significance
in observing that at & the clock of & lags behind that of 0. Now, from
0’s point of view his clocks are synchronized, and the measurement and
its conclusion are valid. Indeed, they are the only conclusions he can
properly make.

But 6 need not accept them, because to him O's clocks are not
synchronized. The dotted line through % is the locus of events that &
regards as simultaneous to %. Event & is on this line, and is the tick of
0’s first clock which & measures to be simultaneous with event 3. A
simple calculation shows this to be at ¢ = (1 — v%)"/?, earlier than 0’s other
clock at &, which is reading (1—v%)""/2. So € can reject 0’s measurement
since the clocks involved aren’t synchronized. Moreover, if 6 studies 0’s
first clock, he concludes that it ticks from ¢t =0 to t=(1 - v%)"/? (i.e. from
& to €) in the time it takes his own clock to tick fromf=0to =1 (i.e.
from & to B). So he regards O’s clocks as running more slowly than his
own.
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It follows that the principle of relativity is not contradicted: each
observer measures the other’s clock to be running slowly. The reason
they seem to disagree is that they measure different things. Observer 0
compares the interval from & to @ with that from &/ to 6. The other
observer compares that from &/ to 8 with that from &/ to . All observers
agree on the values of the intervals involved. What they disagree on is
which pair to use in order to decide on the rate at which a clock is
running. This disagreement arises directly from the fact that the observers
do not agree on which events are simultaneous. And, to reiterate a point
that needs to be understood, simultaneity (clock synchronization) is at
the heart of clock comparisons: @ uses two of his clocks to ‘time’ the
rate of O’s one clock, whereas @ uses two of his own clocks to time one
clock of O.

Is this disagreement worrisome? It should not be, but it should make
the student very cautious. The fact that different observers disagree on
clock rates or simultaneity just means that such concepts are not invariant:
they are coordinate dependent. It does not prevent any given observer
from using such concepts consistently himself. For example, € can say
that & and & are simultaneous, and he is correct in the sense that they
have the same value of the coordinate t. For him this is a useful thing
to know, as it helps locate the events in spacetime. Any single observer
can make consistent observations using concepts which are valid for him
but which may not transfer to other observers. All the so-called paradoxes
of relativity involve, not the inconsistency of a single observer’s deduc-
tions, but the inconsistency of assuming that certain concepts are indepen-
dent of the observer when they are in fact very observer dependent.

Two more points should be made before we turn to the calculation of
the Lorentz transformation. The first is that we have not had to define
a ‘clock’, so our statements apply to any good timepiece: atomic clocks,
wrist watches, circadian rhythm, or the half-life of the decay of an
elementary particle. Truly, all time is ‘slowed’ by these effects. Put more
properly, since time dilation is a consequence of the failure of simul-
taneity, it has nothing to do with the physical construction of the ¢lock
and it is certainly not noticeable to an observer who looks only at his
own clocks. Observer € sees all his clocks running at the same rate as
each other and as his psychological awareness of time, so all these
processes run more slowly as measured by €. This leads to the twin
‘paradox’, which we discuss later.

The second point is that these effects are not optical illusions, since
our observers exercise as much care as possible in performing their
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experiments. Beginning students often convince themselves that the prob-
lem arises in the finite transmission speed of signals, but this is incorrect.
Observers define ‘now’ as described in § 1.5 for observer €, and this is
the most reasonable way to do it. The problem is that when two different
observers each define ‘now’ in the most reasonable way, they don’t agree.
This is an inescapable consequence of the universality of the speed of
light.

1.9 The Lorentz transformation

We shall now make our reasoning less dependent on geometrical
logic by studying the algebra of SR: the Lorentz transformation, which
expresses the coordinates of @ in terms of those of ©. Without losing
generality, we orient our axes so that & moves with speed v on the
positive x axis relative to 0. We know that lengths perpendicular to the
x axis are the same when measured by © or 0. The most general linear
transformation we need consider, then, is

where a, 3, v, and o depend only on v.
From our construction in § 1.5 (Fig. 1.4) it is clear that the f and X
axes have the equations:
taxis (x=0): vt —x =0,
xaxis(f=0): ox~t=0.
The equations of the axes imply, respectively:
y/o=-vB/a=—y,
which gives the transformation
= a(t- vx),
X=o(x—vt).
Fig. 1.4 gives us one other bit of information: events (f =0, X = @) and

(f = a, ¥=0) are connected by a light ray. This can easily be shown to
imply that a = 0. Therefore we have, just from the geometry:

t=a(t—vx),
X = a(x—uvt).

Now we use the invariance of the interval:
—(AF)? +(AX) = —(At)’ +(Ax)’.

This gives, after some straightforward algebra,
a=x1/V(1-0%.
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We must select the + sign so that when v =0 we get an identity rather
than an inversion of the coordinates. The complete Lorentz transforma-
tion is, therefore,

- t vXxX
¢ t_x/(l—vz)—x/(l—vz)’
o _ -t X
¢ x \/(1-—02)+\/(l"vz)’
_ (1.12)
L 4 =1y,
L 2 Z=1z

This is called a boost of velocity v in the x direction.

This gives the simplest form of the relation between the coordinates
of & and 0. For this form to apply, the spatial coordinates must be
oriented in a particular way: & must move with speed v in the positive
x direction as seen by O, and the axes of & must be parallel to the
corresponding ones in 0. Spatial rotations of the axes relative to one
another produce more complicated sets of equations than Eq. (1.12), but
we will be able to get away with Eq. (1.12).

1.10 The velocity-composition law
The Lorentz transformation contains all the information one
needs to derive the standard formulae, such as those for time dilation
and Lorentz contraction. As an example of its use we will generalize the
Galilean law of addition of velocities (§ 1.1).

Suppose a particle has speed W in the x direction of 0, i.e. Ax/Af = W.
In another frame O its velocity will be W’'=Ax/At, and we can deduce
Ax and At from the Lorentz transformation. If & moves with velocity v
with respect to 0, then Eq. (1.12) implies Ax = (A% + vAT)/(1 - v?)"/? and
At=(Af +vA%)/(1-v")"% Then we have
_Ax_(Ax+vAf)/(1 —v%)!/?
T At (AF+pAR)/ (1-0%)?
_ Ax/At+v  W+o
T 1+vAX/AT 1+ Wo
This is the Einstein law of composition of velocities. The important point
is that | W'} never exceeds 1 if | W| and |v| are both smaller than 1. To
see this, set W'=1. Then Eq. (1.13) implies

(1-v)(1-W)=0,
i.e. that either v or W must also equal 1. Therefore, two ‘subluminal’
velocities produce another subluminal one. Moreover, if W=1 then

!

(1.13)
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W’ =1 independently of v: this is the universality of the speed of light.
What is more, if | W|« 1 and |v|« 1, then, to first order, Eq. (1.13) gives

W=W+np

This is the Galilean law of velocity addition, which we know to be valid
for small velocities. This was true for our previous formulae in § 1.8: the
relativistic ‘corrections’ to the Galilean expressions are of order v, and
so are negligible for small v.

1.11 Paradoxes and physical intuition
Elementary introductions to SR often try to illustrate the physical
differences between Galilean relativity and SR by posing certain problems
called ‘paradoxes’. The commonest ones include the ‘twin paradox’, the
‘pole-in-the-barn paradox’, and the ‘space-war paradox’. The idea is to
pose these problems in language that makes predictions of SR seem
inconsistent or paradoxical, and then to resolve them by showing that a
careful application of the fundamental principles of SR leads to no
inconsistencies at all: the paradoxes are apparent, not real, and result
invariably from mixing Galilean concepts with modern ones. Unfortu-
nately, the careless student (or the attentive student of a careless teacher)
often comes away with the idea that SR does in fact lead to paradoxes.
This is pure nonsense. Students should realize that all ‘paradoxes’ are
really mathematically ill-posed problems, that SR is a perfectly consistent
picture of spacetime which has been experimentally verified countless
times in situations where gravitational effects can be neglected, and that
SR forms the framework in which every modern physicist must construct
his theories. (For the student who really wants to study a paradox in
depth, the appendix to this chapter discusses the twin ‘paradox’.)
Psychologically, the reason that newcomers to SR have trouble and
perhaps give ‘paradoxes’ more weight than they deserve is that we have
so little direct experience with velocities comparable to that of light (see
Fig. 1.15). The only remedy is to solve problems in SR and to study
carefully its ‘counter-intuitive’ predictions. One of the best methods for
developing a modern intuition is to be completely familiar with the
geometrical picture of SR: Minkowski space, the effect of Lorentz trans-
formations on axes, and the ‘picture’ of such things as time dilation and
Lorentz contraction. This geometrical picture should be in the back of
your mind as we go on from here to study vector and tensor calculus;
we shall bring it to the front again when we study GR.
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‘Its top speed is 186 mph - that’s 1/3 600 000 the speed of light.’

Fig. 1.15 The speed of light is rather far from our usual experience!

1.12 Bibliography

There are many good introductions to SR, but a very readable
one which has guided our own treatment and is far more detailed is
Taylor & Wheeler (1966). More traditional introductions include Durrell
(1960), French (1968), Sears & Brehme (1968), and Smith (1965). For
treatments that take a more thoughtful look at the fundamentals of the
theory, consult Arzeliés (1966), Bohm (1965), Borel (1960), Dixon (1978),
Geroch (1978), Jammer (1969), or Williams (1968). Paradoxes are dis-
cussed in some detail by Arzeliés (1966), Marder (1971) and Terletskii
(1968). For a scientific biography of Einstein, see Pais (1982).

Our interest in SR in this text is primarily because it is a simple special
case of GR in which it is possible to develop the mathematics we shall
later need. But SR is itself the underpinning of all the other fundamental
theories of physics, such as electromagnetism and quantum theory, and
as such it rewards much more study than we shall give it. See the advanced
discussions in Synge (1965), Schrédinger (1950), Mgller (1972), or Robert-
son & Noonan (1968).

The original papers on SR may be found in Kilmister (1970).
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1.13 Appendix: A full discussion of the twin ‘paradox’

The problem

Diana leaves her twin Artemis behind on Earth and travels in her
rocket for 2.2 x10%s (=7 yr) of her time at 24/25 = 0.96 the speed of light. She
then instantaneously reverses her direction (fearlessly braving those gs) and
returns to Earth in the same manner. Who is older at the reunion of the twins?
A spacetime diagram can be very helpful.

Brief solution. Refer to Fig. 1.16 below. Diana travels out on line 9. In her
frame, Artemis’ event & is simultaneous with event %, so Artemis is indeed
ageing slowly. But as soon as Diana turns around she changes inertial reference
frames: now she regards & as simultaneous with Artemis’ event €! Effectively,
Diana sees Artemis age incredibly quickly for a moment. This one spurt more
than makes up for the slowness Diana observed all along. Numerically, Artemis
ages 50 years for Diana’s 14.

reunion
S0 yr
€N Diana’ d line of simultanei
N\, Diana’s second line of simultaneity
N
4 Diana’s second time-axis
°
E
25 yr a4 > reversal (Diana changes reference frames)
/4
/4
é T — Diana's first line of simultaneity
2
L
< Diana’s first time-axis
o N
2 |departure Artemis’ line of simultaneity

Fig. 1.16 The idealized twin ‘paradox’ in the spacetime diagram of the stay-at-
home twin.

Fuller discussion. For readers who are unsatisfied with the statement ‘Diana sees
Artemis age incredibly quickly for a moment’, or who wonder what physics lies
underneath such a statement, we will discuss this in more detail, bearing in mind
that the statement ‘Diana sees’ really means ‘Diana observes’, using the rods,
clocks, and data bank that every good relativistic observer has.

Diana might make her measurements in the following way. Blasting off from
Earth, she leaps on to an inertial frame called € rushing away from the Earth
at v=10.96. As soon as she gets settled in this new frame she orders all clocks
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synchronized with hers, which read f =0 upon leaving Earth. She further places
a graduate student on every one of her clocks and orders each of them who rides
a clock that passes Earth to note the time on Earth’s clock at the event of passage.
After traveling seven years by her own watch, she leaps off inertial frame & and
grabs hold of another one & that is flying foward Earth at v = 0.96 (measured in
Earth’s frame, of course). When she settles into this frame she again distributes
her graduate students on the clocks and orders all clocks to be synchronized
with hers, which read =7 yr at the changeover. (All clocks were already syn-
chronized with each other — she just adjusts only their zero of time.) She further
orders that every graduate student who passes Earth from 7 =7 yr until she gets
there herself should record the time of passage and the reading of Earth’s clocks
at that event.

Diana finally arrives home after ageing 14 years. Knowing a little about time
dilation, she expects Artemis to have aged much less, but to her surprise Artemis
is a wizened old prune, a full 50 years older! Diana keeps her surprise to herself
and runs over to the computer room to check out the data. She reads the dispatches
from the graduate students riding the clocks of the outgoing frame. Sure enough,
Artemis seems to have aged very slowly by their reports. At Diana’s time 1 =7 yr,
the graduate student passing Earth recorded that Earth’s clocks read only slightly
less than two years of elapsed time. But then Diana checks the information
from her graduate students riding the clocks of the ingoing frame. She finds that
at her time f=7yr, the graduate student reported a reading of Earth’s
clocks at more than 48 years of elapsed time! How could one student see Earth
to be at t =2 yr, and another student, at the same time, see it at t =48 yr? Diana
leaves the computer room muttering about the declining standards of undergradu-
ate education today.

We know the mistake Diana made, however. Her two messengers did not pass
Earth at the same time. Their clocks read the same amount, but they encountered
Earth at the very different events & and €. Diana should have asked the first
frame students to continue recording information until they saw the second
frame’s f =7 yr student pass Earth. What does it matter, after all, that they would
have sent her dispatches dated 7 = 171 yr? Time is only a coordinate. One must
be sure to catch all the events.

What Diana really did was use a bad coordinate system. By demanding
information only before 7 =7 yr in the outgoing frame and only after =7 yr in
the ingoing frame, she left the whole interior of the triangle /%% out of her
coordinate patches (Fig. 1.17(a)). Small wonder that a lot happened that she
did not discover! Had she allowed the first frame’s students to gather data until
1 =171 yr, she could have covered the interior of that triangle.

One can devise an analogy with rotations in the plane (Fig. 1.17(b)). Consider
trying to measure the length of the curve ABCD, but being forced to rotate
coordinates in the middle of the measurement, say after you have measured from
Ato Binthe x—y system. If you then rotate to -, you must resume the measuring
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Fig. 1.17 Diana’s change of frame is analogous to a rotation of coordinates in
Euclidean geometry.

at B again, which might be at a coordinate y = —35, whereas originally B had
coordinate y =2. If you were to measure the curve’s length starting at whatever
point had j=2 (same j as the y value you ended at in the other frame), you
would begin at C and get much too short a length for the curve.

Now, nobody would make that error in measurements in a plane. But lots of
people would if they were confronted by the twin paradox. This comes from our
refusal to see time as simply a coordinate. We are used to thinking of a universal
time, the same everywhere to everyone regardless of their motion. But it is not
the same to everyone, and one must treat it as a coordinate, and make sure that
one’s coordinates cover all of spacetime.

Coordinates that do not cover all of spacetime have caused a lot of problems
in GR. When we study gravitational collapse and black holes we will see that
the usual coordinates for the spacetime outside the black hole do not reach inside
the black hole. For this reason, a particle falling into a black hole takes infinite
coordinate time to go a finite distance. This is purely the fault of the coordinates:
the particle falls in a finite proper time, into a region not covered by the ‘outside’
coordinates. A coordinate system that covers both inside and outside satisfactorily
was not discovered until the mid-1950s.

1.14 Exercises
1 Convert the following to units in which ¢ = 1, expressing everything in
terms of m and kg:
(a) Worked example: 10J. In SI units, 10 J=10kgm?s™2, Since c=1, we
have 1s=3x10*m, and so 1s5s72=(9 x10'%)"' m™2 Therefore we get
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10J=10kgm? (9x10'®)™" m~2=1.1x 107'® kg. Alternatively, treat ¢ as
a conversion factor:
1=3x10.ms™’,
1=3x10%"'m™ s,
10J=10kgm?s™*=10kg m?s™% x(1)?
=10kgm?s 2 x(3x10%) " 2s*m™2
= 1.1 x 107 "% kg.
One is allowed to multiply or divide by as many factors of ¢ as are
necessary to cancel out the seconds.
The power output of 100 W.
Planck’s constant, i=1.05x10"3*7Js.
Velocity of a car, v=30m s,
Momentum of a car, 3x 10*kgms™".
Pressure of one atmosphere = 10° Nm™2,
Density of water, 10° kg m >,
Luminosity flux 10°Js™' cm™2

Convert the following from natural units (¢ = I) to SI units:
A velocity v =107
Pressure 10'° kgm™.

Time t=10"%m.

Energy density u=1kgm™.

Acceleration 10m™!.

Draw the ¢t and x axes of the spacetime coordinates of an observer 0
and then draw:

The world line of @’s clock at x =1 m.

The world line of a particle moving with velocity dx/dz = 0.1, and which
is at x =0.5m when t=0.

The 7 and % axes of an observer @ who moves with velocity v=0.5 in
the positive x direction relative to © and whose origin (X =1=0)
coincides with that of O.

The locus of events whose interval As? from the origin is —1 m?.

The locus of events whose interval As® from the origin is +1 m>.

The calibration ticks at one meter intervals along the % and 7 axes.
The locus of events whose interval As? from the origin is 0.

The locus of events, all of which occur at the time ¢ = 2 m (simultaneous
as seen by 0).

The locus of events, all of which occur at the time f = 2 m (simultaneous
as seen by 0).

The event which occurs at f =0 and x=0.5m.

The locus of events ¥ =1 m.

The world line of a photon which is emitted from the event t=-1m,
x =0, travels in the negative x direction, is reflected when it encounters
a mirror located at x=—1 m, and is absorbed when it encounters a
detector located at x =0.75 m.
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Write out all the terms of the following sums, substituting the coordinate
names (¢, x, y, z) for (x°, x', x*, x*):

):1:0 V,Ax®, where {V,, a=0,...,3} is a collection of four arbitrary
numbers.

Y (Ax')

Use the spacetime diagram of an observer € to describe the following
experiment performed by 0. Two bursts of particles of speed v =0.5 are
emitted from x = 0 at ¢t = ~2 m, one traveling in the positive x direction
and the other in the negative x direction. These encounter detectors
located at x =2 m. After a delay of 0.5 m of time, the detectors send
signals back to x =0 at speed v =10.75.

The signals arrive back at x=0 at the same event. (Make sure your
spacetime diagram shows this!) From this the experimenter concludes
that the particle detectors did indeed send out their signals simul-
taneously, since he knows they are equal distances from x = 0. Explain
why this conclusion is valid.

A second observer 0 moves with speed v=0.75 in the negative x
direction relative to 0. Draw the spacetime diagram of & and in it depict
the experiment performed by €. Does & conclude that particle detectors
sent out their signals simultaneously? If not, which signal was sent first?
Compute the interval As® between the events at which the detectors
emitted their signals, using both the coordinates of @ and those of €.

Show that Eq. (1.2) contains only M, + My, when a # 8, not M, and
My, independently. Argue that this enables us to set M,z = M, without
loss of generality.

In the discussion leading up to Eq. (1.2), assume that the coordinates
of @ are given as the following linear combinations of those of ©:

X = pt +vx,
y=ay,
Z=bz

where a, B, i, v, a, and b may be functions of the velocity v of &
relative to O, but they do not depend on the coordinates. Find the
numbers {M,g, a, b=0,...,3} of Eq. (1.2) in terms of «, B, u, v, a, and b.

Derive Eq. (1.3) from Eq. (1.2), for general {M,g5, o, B=0,...,3}.
Since A5?=0 in Eq. (1.3) for any {Ax'}, replace Ax' by —Ax' in Eq.
(1.3) and subtract the resulting equation from Eq. (1.3) to establish that
M, =0fori=1,2,3.

Use Eq. (1.3) with A§> =0 to establish Eq. (1.4b). (Hint: Ax, Ay, and Az
are arbitrary.)

Explain why the line #2 in Fig. 1.7 is drawn in the manner described
in the text.
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For the pairs of events whose coordinates (¢, x, y, z) in some frame are
given below, classify their separations as timelike, spacelike, or null.
(0,0,0,0) and (-1,1,0,0),

(1,1,-1,0) and (-1, 1,0,2),

(6,0,1,0) and (5,0, 1, 0),

(-1,1,-1,1) and (4,1, -1, 6).

Show that the hyperbolae —-t*+x>=a> and —t*+x?=-b> are
asymptotic-to the lines ¢ = £x, regardless of a and b.

Use the fact that the tangent to the hyperbola 93 in Fig. 1.14 is the
line of simultaneity for & to show that the time interval <€ is shorter
than the time recorded on ©°s clock as it moved from o to ®.
Calculate that

(As") g = (1 = 0*)(As") ya.
Use (b) to show that & regards @'s clocks to be running slowly, at just
the ‘right’ rate.

The half-life of the elementary particle called the pi meson (or pion) is
2.5x%107® s when the pion is at rest relative to the observer measuring
its decay time. Show, by the principle of relativity, that pions moving
at speed v =0.999 must have a half-life of 5.6 X107’ s, as measured by
an observer at rest.

Suppose that the velocity v of © relative to @ is small, |v|« 1. Show
that the time dilation, Lorentz contraction, and velocity-addition for-
mulae can be approximated by, respectively:

At=(1 +3pHAl.

Ax=(1—-1v?)Ax%

w =w+ v~ wu(w + v) (with|w|« | as well).

What are the relative errors in these approximations when |v|=w=0.1?

Suppose that the velocity v of & relative to € is nearly that of light,
loj]=1-¢ 0<exl.

Show that the same formulae of Exer. 14 become

At=At/V(2e),

Ax = AxV(2¢),

w=1=-g(1-w)/(l+w).

What are the relative errors on these approximations when € =0.1 and
w=09?

Use the Lorentz transformation, Eq. (1.12), to derive (a) the time dilation,
and (b) the Lorentz contraction formulae. Do this by identifying the
pairs of events whose separations (in time or space) are to be compared,
and then using the Lorentz transformation to accomplish the algebra
that the invariant hyperbolae had been used for in the text.
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A lightweight pole 20 m long lies on the ground next to a barn 15m
long. An Olympic athlete picks up the pole, carries it far away, and
runs with it toward the end of the barn at a speed 0.8¢c. His friend
remains at rest, standing by the door of the barn. Attempt all parts of
this question, even if you can’t answer some.

How long does the friend measure the pole to be, as it approaches the
barn?

The barn door is initially open, and immediately after the runner and
pole are entirely inside the barn, the friend shuts the door. How long
after the door is shut does the front of the pole hit the other end of the
barn, as measured by the friend? Compute the interval between the
events of shutting the door and hitting the wall. Is it spacelike, timelike,
or null?

In the reference frame of the runner, what is the length of the barn and
the pole?

Does the runner believe that the pole is entirely inside the barn when
its front hits the end of the barn? Can you explain why?

After the collision, the pole and runner come to rest relative to the barn.
From the friend’s point of view, the 20 m pole is now inside a 15m
barn, since the barn door was shut before the pole stopped. How is this
possible? Alternatively, from the runner’s point of view, the collision
should have stopped the pole before the door closed, so the door could
not be closed at all. Was or was not the door closed with the pole inside?
Draw a spacetime diagram from the friend’s point of view and use it
to illustrate and justify all your conclusions.

The Einstein velocity-addition law, Eq. (1.13), has a simpler form if we
introduce the concept of the velocity parameter u, defined by the equation
v=tanh u.

Notice that for —o0 <u <0, the velocity is confined to the acceptable
limits —1 < v < 1. Show that if

v=tanhu

and

w=tanh U,

then Eq. (1.13) implies

w'=tanh (u + U).

This means that velocity parameters add linearly.

Use this to solve the following problem. A star measures a second star
to be moving away at speed v =0.9c, The second star measures a third
to be receding in the same direction at 0.9¢. Similarly, the third measures
a fourth, and so on, up to some large number N of stars. What is the
velocity of the Nth star relative to the first? Give an exact answer and
an approximation useful for large N.
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Using the velocity parameter introduced in Exer. 1.18, show that the
Lorentz transformation equations, Eq. (1.12), can be put in the form

f =1 cosh u —xsinh u, F=y

X = —t sinh u+ x cosh u, Z=2

Use the identity cosh? u —sinh? u =1 to demonstrate the invariance of
the interval from these equations.

Draw as many parallels as you can between the geometry of spacetime
and ordinary two-dimensional Euclidean geometry, where the coordi-
nate transformation analogous to the Lorentz transformation is
X=xcos8+ysinéd

y=—xsin 6 +y cos 6.

What is the analogue of the interval? Of the invariant hyperbolae?

Write the Lorentz transformation equations in matrix form.

Show that if two events are timelike separated, there is a Lorentz frame
in which they occur at the same point, i.e. at the same spatial coordinate
values.

Similarly, show that if two events are spacelike separated, there is a
Lorentz frame in which they are simultaneous.
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Vector analysis
In special relativity

2.1 Definition of a vector
For the moment we will use the notion of a vector that one
carries over from Euclidean geometry, that a vector is something whose
components transform like the coordinates do under a coordinate trans-
formation. Later on we shall define vectors in a more satisfactory manner.
The typical vector is the displacement vector, which points from one
event to another and has components equal to the coordinate differences:

. A% (A1 Ax, Ay, Az). @2.1)

In this line we have introduced several new notations: an arrow over a
symbol denotes a vector (so that X is a vector having nothing particular
to do with the coordinate x); the arrow after AX means ‘has components’
and the 0 underneath it means ‘in the frame 0’; the components will
always be in the order ¢, x, y, z (equivalently, indices in the order 0, 1, 2, 3).
The notation - 4 is used in order to emphasize the distinction between
the vector and its components. The vector AX is an arrow between two
events, while the collection of components is a set of four coordinate-
dependent numbers. We shall always emphasize the notion of a vector
(and, later, any tensor) as a geometrical object: something which can be
defined and (sometimes) visualized without referring to a specific coordin-
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ate system. Another important notation is
Ai—; {Ax=}, (2.2)

where by {Ax*} we mean all of Ax°, Ax', Ax? Ax>. If we ask for this
vector's components in another coordinate system, say the frame &, we
write

Ax‘—fz {Ax“).

That is, we put a bar over the index to denote the new coordinates, The
vector AX is the same, and no new notation is needed for it when the
frame is changed. Only the components of it change.' What are the new
components Ax*? We get them from the Lorentz transformation:

Ax° vAx'

V(1=13) (-1

Since this is a linear transformation, it can be written

Ax®= etc.

I S
Ax°= ¥ A"5AxP
B=0

where {Aﬁﬁ} are four numbers, one for each value of B. In this case
A%=1/V(1-0%), A% =-p/V(1-vD),
A% =A%=0.

A similar equation holds for Ax', and so in general we write

3
Ax®= ¥ A%;Ax?, for arbitrary @. (2.3)
B=0

Now {A%} is a collection of 16 numbers, which constitutes the Lorentz
transformation matrix. The reason we have written one index up and the
other down will become clear when we study differential geometry. For
now, it enables us to introduce the final bit of notation, the Einstein
summation convention: Whenever an expression contains one index as a
superscript and the same index as a subscript, a summation is implied
over all values that index can take. That is,

A,B° and TE,,
are shorthand for the summations

3 3
Y A.B“ and g T’E,.,

a=0 ¥y=0

1 This is what some books on linear algebra call a ‘passive’ transformation: the
coordinates change, but the vector does not.
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while

A.B?, T7Eg,, and A A,
do not represent sums on any index. The Lorentz transformation, Eq.
(2.3), can now be abbreviated to
L 2 Ax®=A%;Ax", ' (2.4)
saving some messy writing,.

Notice that Eq. (2.4) is identically equal to

Ax®=A%Ax".
Since the repeated index (B in one case, y in the other) merely denotes
a summation from 0 to 3, it doesn’t matter what letter is used. Such a
summed index is called a dummy index, and relabeling a dummy index
(as we have done, replacing B by vy) is often a useful tool in tensor
algebra. There is only one thing one should not replace the dummy index
B with: a Latin index. The reason is that Latin indices can (by our
convention) only take the values 1, 2, 3, whereas 8 must be able to equal
zero as well. Thus, the expressions

A%3Ax? and A% AX
are not the same; in fact we have
L A%gAxP = A% Ax%+ A% Ax’, (2.5)
Eq. (2.4) is really four different equations, one for each value that &
can assume. An index like &, on which no sum is performed, is called a
Jree index. Whenever an equation is written down with one or more free
indices, it is valid if and only if it is true for all possible values the free

indices can assume. As with a dummy index, the name given to a free
index is largely arbitrary. Thus, Eq. (2.4) can be rewritten as

AxT=A7 Ax",

This is equivalent to Eq. (2.4) because ¥ can assume the same four values
that & could assume. If a free index is renamed, it must be renamed
everywhere. For example, the following modification of Eq. (2.4),

Ax*= A&prB,
makes no sense and should never be written. The difference between
these last two expressions is that the first guarantees that, whatever value
y assumes, both Ax” on the left and A7, on the right will have the same

free index. The second expression does not link the indices in this way,
so it is not equivalent to Eq. (2.4).
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The general vector’ is defined by a collection of numbers (its com-
ponents in some frame, say 0)

A» (A% A, A%, A)={A"}, , (2.6)
and by the rule that its components in a frame & are
AS= A%, AP, @n

That is, its components transform the same way the coordinates do.
Remember that a vector can be defined by giving four numbers (e.g. (10,
-107'%, 5.8368, 7)) in some frame; then its components in all other
frames are uniquely determined. Vectors in spacetime obey the usual
rules: if A and B are vectors and g is a number, then A+ B and uA are
also vectors, with components

A’+B’-g (A°+B° A'+B' A’ + B* A*+B?),

. (2.8)
nA= (uA% pA', uA, uA’).

Thus, vectors add by the usual parallelogram rule. Notice that one can
give any four numbers to make a vector, except that if the numbers are
not dimensionless they must all have the same dimensions, since under
a transformation they will be added together.

2.2 Vector algebra
Basis vectors. In any frame O there are four special vectors,
defined by giving their components:

€>(1,0,0,0),
é.l -(; (0, l, 0’ 0)’
é‘2 3 (0’ 0’ la O)a
&(0,0,0,1).

> (2.9)

These definitions define the basis vectors of the frame O. Similarly, &

2 Such a vector, with four components, is sometimes called a four-vector to
distinguish it from the three-component vectors one is used to in elementary
physics, which we shall call three-vectors. Unless we say otherwise, a ‘vector’ is
always a four-vector. We denote four-vectors by arrows, e.g. A, and three-vectors
by boldface, e.g. A. :
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has basis vectors
é‘ag (1,0,0,0), etc.

Generally, é;5# é,, since they are defined in different frames. The reader
should verify that the definition of the basis vectors is equivalent to

(€)% =87, (2.10)

that is, the 8 component of €, is the Kronocker delta: 1 if 8=« and 0
if B # a.
Any vector can be expressed in terms of the basis vectors.| If

A-g (A% A, A%, AY),

then

A= Aoéo“i‘“Alél +A262+A3é'3,
* A= A%, (2.11)

In the last line we use the summation convention (remember always to
write the index on ¢ as a subscript in order to employ the convention in
this manner). The meaning of Eq. (2.11) is that A is the linear sum of
four vectors A%é,, A'é,, etc.

Transformation of basis vectors. The discussion leading up to Eq. (2.11)
could have been applied to any frame, so it is equally true in &:

A= A%,

This says that A is also the sum of the four vectors Aﬁé'a, ATET, etc. These
are not the same four vectors as in Eq. (2.11), since they are parallel to
the basis vectors of @ and not of 0, but they add up to the same vector
A Ttis important to understand that the expressions A€, and A%é; are
not obtained from one another merely by relabeling dummy indices.
Barred and unbarred indices cannot be interchanged, since they have
different meanings. Thus, {A°} is a different set of numbers from {A°},
just as the set of vectors {é;} is different from {é,}. But, by definition,
the two sums are the same:

A%é, = A%E;, (2.12)
and this has an important consequence: from it we deduce the transforma-
tion law for the basis vectors, i.e. the relation between {é,} and {é;}.
Using Eq. (2.7) for A%, we write Eq. (2.12) as

A% APE; = A%E,,
On the left we have two sums. Since they are finite sums their order
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doesn’t matter. Since the numbers A%, and A® are just numbers, their
order doesn’t matter, and we can write

APAN% 8= A%,
Now we use fhe fact that 8 and & are dummy indices: we change g to
a and a to B,

A®AP é5= A%,
This equation must be true for all sets { A%}, since A is an arbitrary vector.
Writing it as

we deduce

A‘iaé',;—- é, =0 for every value of «,
or
. €. =AP.é;5 (2.13)
This gives the law by which basis vectors change. It is nof a component
transformation: it gives the basis {€,} of € as a linear sum over the basis
{é5} of 6. Comparing this to the law for components, Eq. (2.7),

AP =A% A
we see that it is different indeed.

The above discussion introduced many new techniques, so study it
carefully. Notice that the omission of the summation signs keeps things
neat. Notice also that a step of key importance was relabeling the dummy
indices: this allowed us to isolate the arbitrary A® from the rest of the
things in the equation.

An example. Let 0 move with velocity v in the x direction relative to O.
Then the matrix [A?,] is

vy -vy 0 0
- vy vy 0 0
B -
[A%] 0 0 1 0of
0 0 0 1

where we use the standard notation
y=1/v(1 - v}.
Then, if A > (5,0,0,2), we find its components in € by
AP =A% A +A%A +. ..
=y 5+(—vy)-0+0-0+0-2
=357.
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Similarly,
A'=-50y,
A’=0,

Ad=2,
Therefore A 3 (5%, =5v7,0,2).

The basis vectors are expressible as

&, =N é;
or
Eo=A%f+AToEr+- -
= y€5— VYE].
Similarly,
€= —vyés+ véy,
é,=és,
é;=és.

This gives 0’s basis in terms of @'s, so let us draw the picture (Fig. 2.1)
in @s frame: This transformation is of course exactly what is needed to
keep the basis vectors pointing along the axes of their respective frames.
Compare this with Fig. 1.5(b).

Fig. 2.1 Basis vectors of 0 and & as drawn by &

Inverse transformations. The only thing the Lorentz transformation A%,
depends on is the relative velocity of the two frames. Let us for the
moment show this explicitly by writing

AR, = AP ().
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Then

&, = AP, (v)é;. (2.14)
If the basis of O is obtained from that of & by the transformation with
velocity v, then the reverse must be true if we use —v. Thus we must have

€;=A"z(-v)é. (2.15)
In this equation I have used & and » as indices to avoid confusion with
the previous formula. The bars still refer, of course, to the frame €. The
matrix [A”;] is exactly the matrix [AE,,] except with v changed to —uv.
The bars on the indices only serve to indicate the names of the observers
involved: they affect the entries in the matrix [A] only in that the matrix
is always constructed using the velocity of the upper-index frame relative
to the lower-index frame. This is made explicit in Eqs. (2.14) and (2.15).
Since v is the velocity of & (the upper-index frame in Eq. (2.14)) relative
to 0, then —uv is the velocity of O (the upper-index frame in Eq. (2.15))
relative to 0. Exer. 11, § 2.9, will help you understand this point.

We can rewrite the last expression as

éz=A"5(-v)é.
Here we have just changed s to 8. This doesn’t change anything: it is
still the same four equations, one for each value of . In this form we
can put it into the expression for ¢€,, Eq. (2.14):

é, = AP (0)é5= A" (D)A"5(-D)E,. (2.16)
In this equation only the basis of & appears. It must therefore be an
identity for all v. On the right there are two sums, one on 8 and one on
v. If we imagine performing the 8 sum first, then the right is a sum over
the basis {€.} in which each basis vector &, has coefficient

T AP (0)A"5(-v). (2.17)
B

Imagine evaluating Eq. (2.16) for some fixed value of the index a. If the
right side of Eq. (2.16) is equal to the left, the coefficient of é, on the
right must be 1 and all other coefficients must vanish. The mathematical
way of saying this is

AP (D)A"5(~v)= 8",
where 87, is the Kronecker delta again. This would imply

€, =08",¢,,
which is an identity.

Let us change the order of multiplication above and write down the

key formula

. A*s(-v)AP.(v) = 8%,. (2.18)
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This expresses the fact that the matrix [A"5(—v)] is the inverse of [Aé.,(v)],
because the sum on S is exactly the operation one performs when one
multiplies two matrices. The matrix (8",,) is, of course, the identity matrix.

The expression for the change of a vector’s components,

AP = AP (v)A®,
also has its inverse. Let us multiply both sides by A”5(—v) and sum on
B. We get
A 5(—0)Af = A” 5(-v)AP, (v) A®
=8",A°
= A",
This says that the components of A in O are obtained from those in
by the transformation with —v, which is, of course, correct.

The operations we have performed should be familiar to you in concept
from vector algebra in Euclidean space. The new element we have
introduced here is the index notation, which will be a permanent and
powerful tool in the rest of the course. Make sure that you understand
the geometrical meaning of all our results as well as their algebraic
justification.

2.3 The four velocity |

A particularly important vector is the four-velocity of a world
line. In the three-geometry of Galileo, the velocity was a vector tangent
to a particle’s path. In our four-geometry we define the four-velocity U
to be a vector tangent to the world line of the particle, and of such a
length that it stretches one unit of time in that particle’s frame. For a
uniformly moving particle, let us look at this definition in the inertial
frame in which it is at rest. Then the four-velocity points parallel to the
time axis and is one unit of time long. That is, it is identical with &, of
that frame. Thus we could also use as our definition of the four-velocity
of a uniformly moving particle that it is the vector é, in its inertial rest
frame. The word ‘velocity’ is justified by the fact that the spatial com-
ponents of U are closely related to the particle’s ordinary velocity v,
which is called the three-velocity. This will be demonstrated in the
example below, Eq. (2.21).

An accelerated particle has no inertial frame in which it is always at
rest. However, there is an inertial frame which momentarily has the same
velocity as the particle, but which a moment later is of course no longer
comoving with it. This frame is the momentarily comoving reference frame
(MCRF), and is an important concept. (Actually, there are an infinity of
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MCREFs for a given accelerated particle at a given event; they all have
the same velocity, but their spatial axes are obtained from one another
by rotations. This ambiguity will usually not be important.) The four-
velocity of an accelerated particle is defined as the é, basis vector of its
MCREF at that event. This vector is tangent to the (curved) world line of
the particle. In Fig. 2.2 the particle at event &/ has MCRF 0, whose basis
vectors are shown. The vector &; is identical to U there.

- -
€ =

] x

Fig. 2.2 The four-velocity and MCRF basis vectors of the world line at .

24 The four-momentum
The four-momentum p is defined as
¢ p=mU, (2.19)
where m is the rest mass of the particle, which is its mass as measured
in its rest frame. In some frame O it has components conventionally
denoted by

ﬁ_g (E: pl’ pza P3)- (2'20)

We call p° tie energy E of the particle in the frame 0. The other
components are its spatial momentum pi.

An example. A particle of rest mass m moves with velocity v in the x
direction of frame 0. What are the components of the four-velocity and
four-momentum? Its rest frame @ has time basis vector €;, so, by definition
of p and U, we have

- —

U= ¢, p=mU,
U“=Aa§(éﬁ)3=Aa5, P =mA%,. (2.21)
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Therefore we have

US=(1-v?)""2 p°=m(1 - p?)~'/2
U'=so(1-vH)Y%  p'=mo(1-0%)""3
U?=0, p?=0,

U’=0, p’=0.

For small v the spatial components of U are (,0, 0), which justifies
calling it the four-velocity, while the spatial components of j are (mv, 0, 0),
justifying its name. For small v the energy is

E=p°=m@ -0} "?=m+imv’.
This is the rest-mass energy plus the Galilean kinetic energy.

Conservation of four-momentum. The interactions of particles in Galilean
physics are governed by the laws of conservation of energy and of
momentum. Since the components of p reduce in the nonrelativistic limit
to the familiar Galilean energy and momentum, it is natural to postulate
that the correct relativistic law is that the four-vector p is conserved.
That is, if several particles interact, then

p= g.l Pay (2.22)

particles
(N

where p;, is the ith particle’s momentum, is the same before and after
each interaction.

This law has the status of an extra postulate, since it is only one of
many whose nonrelativistic limit is correct. However, like the two funda-
mental postulates of SR, this one is amply verified by experiment. Not
the least of its new predictions is that the energy conservation law must
include rest mass: rest mass can be decreased and the difference turned
into kinetic energy and hence into heat. This happens every day in nuclear
power stations.

There is an important point glossed over in the above statement of
the conservation of four-momentum. What is meant by ‘before’ and
‘after’ a collision? Suppose there are two collisions, involving different
particles, which occur at spacelike separated events, as below. When
adding up the total four-momentum, should one take them as they are
on the line of constant time ¢ or on the line of constant 1? As measured
by O, event & in Fig. 2.3 occurs before t =0 and % after, so the total
momentum at ¢t =0 is the sum of the momenta after & and before %.
On the other hand, to € they both occur before i =0 and so the total
momentum at f = 0 is the sum of the momenta after &/ and after ®8. There
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!

Fig. 2.3 When several collisions are involved, the individual 4-momentum
vectors contributing to the total 4-momentum at any particular time may depend
upon the frame, but the total 4-momentum is the same 4-vector in all frames;
its components transform from frame to frame by the Lorentz transformation.

is even a frame in which & is later than & and the adding-up may be
the reverse of 0’s. There is really no problem here, though. Since each
collision conserves momentum, the sum of the momenta before & is the
same as that after &/, and likewise for 9. So every inertial observer will
get the same total four-momentum vector p. (Its components will still be
different in different frames, but it will be the same vector.) This is an
important point: any observer can define his line of constant time (this
is actually a three-space of constant time, which is called a hypersurface
of constant time in the four-dimensional spacetime), at that time add up
all the momenta, and get the same vector as any other observer does. It
is important to understand this, because such conservation laws will
dppear again.

Center of momentum (CM) frame. This is defined as the inertial frame
where

Z Pai ot (Etotan, 0,0,0). (2.23)

As with MCRFs, any other frame at rest relative to a CM frame is also
a CM frame.

2.5 Scalar product
Magnitude of a vector. By analogy with the interval we define

AZ= —(AD? +(A') +(A%) +(A%) (2.24)
to be the magnitude of the vector A. Because we defined the components
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to transform under a Lorentz transformation in the same manner as
(At, Ax, Ay, Az), we are guaranteed that
-(Ao)z +(A')2 +(A2)2 +(A3)2 - __(A('))z +(AT)2 +(A§)2 +(A§)2.
(2.25)
The magnitude so defined is a frame-independent number, i.e. a scalar
under Lorentz transformations.

This magnitude doesn’t have to be positive, of course. As with intervals
we adopt the following names: if A” is positive, A is a spacelike vector;
if zero, a null vector; and if negative, a timelike vector. Thus, spatially
pointing vectors have positive magnitude, as is usual in Euclidean space.
It is particularly important to understand that a null vector is not a zero
vector. That is, a null vector has A?=0, but not all A® vanish; a zero
vector is defined as one, all of whose components vanish. Only in a space
where A? is positive-definite does A>= 0 require A° =0 for all a.

Scalar product of two vectors. We define
* A-B=-A°B°+A'B' +A’B* + A’B® (2.26)
in some frame 0. We now prove that this is the same number in all other
frames. We note first that A- A is just A%, which we know is invariant.
Therefore (A + B)- (A + B), which is the magnitude of A+ B, is also
invariant. But from Eqs. (2.24) and (2.26) it follows that

(A+B)-(A+B)=A’+B>+2A-B.
Since the left-hand side is the same in all frames and the first two terms
on the right also are, then the last term on the right must be as well. This
proves the frame invariance of the scalar product.

Two vectors A and B are said to be orthogonal if A+ B = 0. The minus
sign in the definition of the scalar product means that two vectors
orthogonal to one another are not necessarily at right angles in the
spacetime diagram (see examples below). An extreme example is the null
vector, which is orthogonal to itself! Such a phenomenon is not encoun-
tered in spaces where the scalar product is positive-definite.

Example. The basis vectors of a frame @ satisfy:

€y €= —1,

€° €, =€, €= €;-é;=+1,

€.-e5=0 if a#B.
They thus make up a tetrad of mutually orthogonal vectors: an orthonor-
mal tetrad, which means orthogonal and normalized to unit magnitude.
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(A timelike vector has ‘unit magnitude’ if its magnitude is —1.) The
relations above can be summarized as

* €, €5 = M,p, (2.27)
where 7,p is similar to a Kronecker delta in that it is zero when a # §3,
but it differs in that ny = —1, while n,, = 12, = 933 = +1. We will see later
that 7., is in fact of central importance: it is the metric tensor. But for
now we treat it as a generalized Kronecker delta.

Example. The basis vectors of & also satisfy

€s' €5="masp,
so that, in particular, &;-&; =0. Look at this in the spacetime diagram
of O, Fig. 2.4: The two vectors certainly are not perpendicular in the

tv

L3 J

Fig. 2.4 The basis vectors of & are not ‘perpendicular’ (in the Euclidean sense)
when drawn in €, but they are orthogonal with respect to the dot product of
Minkowski spacetime.

picture. Nevertheless, their scalar product is zero. The rule is that two
vectors are orthogonal if they make equal angles with the 45° line
representing the path of a light ray. Thus, a vector tangent to the light
ray is orthogonal to itself. This is just another way in which SR cannot
be ‘visualized’ in terms of notions we have developed in Euclidean
pice.

F-xample. The four-velocity U of a particle is just the time basis vector
oi 1ts MCREF, so from Eq. (2.27) we have

O-0U=-1. (2.28)
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2.6 Applications
Four-velocity and acceleration as derivatives. Suppose a particle
makes an infinitesimal displacement dX, whose components in O are
(dt, dx, dy, dz). The magnitude of this displacement is, by Eq. (2.24), just
—ds* +dx? +dy* +dz%. Comparing this with Eq. (1.1), we see that this is
just the interval, ds*:
ds®=dx-dx. (2.29)
Since the world line is timelike, this is negative. This led us (Eq. (1.9))
to define the proper time by
dr?=—dx-d% (2.30)
Now consider the vector dx/dr, where d7 is the square root of Eq. (2.30)

(Fig. 2.5). This vector is tangent to the world line since it is a multiple
of dx. Its magnitude is

&

Fig. 2.5 The infinitesimal displacement vector dx tangent to a world line.

It is therefore a timelike vector of unit magnitude tangent to the world
line. In an MCREF,

df > (dt, Oa 0’ 0)’
MCRF
dr=d1
so that
&, (1,0,0,0)

d7r MCRF
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or
dx

= (¢, .
ds (€)mrcE

This was the definition of the four-velocity. So we have the useful
expression

¢ U=dx/dr. (2.31)
Moreover, et us examine

dU d%=

a7 dr”

which is some sort of four-acceleration. First we differentiate Eq. (2.24)
and use Eq. (2.26):

Since, in the MCRF, U has only a 0 component, this orthogonality means
that

-

dU

— — (0,a',d’ a).
dT mcre ( )
This vector is defined as the acceleration four-vector a:
d0 .
* i=—  U-da=0. (2.32)
dr

Exer. 19, § 2.9, justifies the name ‘acceleration’.

¥nergy and momentum. Consider a particle whose momentum is p. Then

pp=m*U U=-m (2.33)
But

Fp=—E>+(p" )V +(p*)* +(p’).
Therefore

3

E’=m?+ -):. (rH)~ (2.34)

=

This is the familiar expression for the total energy of a particle.
Suppose an observer @ moves with four-velocity U,,, not necessarily
cqual to the particle’s four-velocity. Then

p" Uobs=ﬁ'éﬁv
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where é; is the basis vector of the frame of the oserver. In that frame
the four-momentum has components

B (Ep', p, ).
Therefore we obtain, from Eq. (2.26),
—p+ Usps = E. (2.35)

This is an important equation. It says that the energy of the particle
relative to the observer, E, can be computed by anyone in any frame by
taking the scalar product p- U.... This is called a ‘frame-invariant’
expression for the energy relative to the observer. It is almost always
helpful in calculations to use such expressions.

2.7 Photons

No four-velocity. Photons move on null lines, so, for a photon
path,

dx-dx =0, (2.36)
Therefore dr is zero and Eq. (2.31) shows that the four-velocity cannot
be defined. Another way of saying the same thing is to note that there is
no frame in which light is at rest (the second postulate of SR), so there
is no MCREF for a photon. Thus, no é, in any frame will be tangent to
a photon’s world line.

Note carefully that it is still possible to find vectors tangent to a
photon’s path (which, being a straight line, has the same tangent
everywhere): dx is one. The problem is finding a tangent of unit magnitude,
since they all have vanishing magnitude.

Four-momentum. The four-momentum of a particle is not a unit vector.
Instead, it is a vector whose components in some frame give the particle
energy and momentum relative to that frame. If a photon carries energy
E in some frame, then in that frame p° = E. If it moves in the x direction,
then p” =p“=0, and in order for the four-momentum to be parallel to
its world line (hence be null) we must have p* = E. This ensures that

p-p=—~E*+E*=0. (2.37)

So we conclude that photons have spatial momentum equal to their energy.
We know from quantum mechanics that a photon has energy

E = hy, (2.38)

where v is its frequency and h is Planck’s constant, h = 6.6256 x 107** Js™".
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This relation and the Lorentz transformation of the four-momentum
immediately give us the Doppler-shift formula for photons. Suppose, for
instance, that in frame @ a photon has frequency v and moves in the x
direction. Then, in @, which has velocity v in the x direction relative to
0, the photon’s energy is

E=E/V1-v)-p v/v(l -1
= hv/V(1-v?)—hvo/V(1 - v?).
Setting this equal to h# gives 7, the frequency in 0:
5/v=(1-0)/V(l - v?)=v[(1-0)/(1 +v)]. (2.39)
This is generalized in Exer. 25, § 2.9.

Zero rest-mass particles. The rest mass of a photon must be zero, since

m’=—p-p=0. (2.40)
Any particle whose four-momentum is null must have rest mass zero,
and conversely. The only two known zero rest-mass particles are the
photon and the neutrino. (Sometimes the ‘graviton’ is added to this list,
since gravitational waves also travel at the speed of light, as we shall see
later. But ‘photon’ and ‘graviton’ are concepts that come from quantum
mechanics, and there is as yet no satisfactory quantized theory of gravity,
o that ‘graviton’ is not really a well-defined notion yet.) The idea that
only particles with zero rest mass can travel at the speed of light is
reinforced by the fact that no particle of finite rest mass can be accelerated
10 the speed of light, since then its energy would be infinite. Put another
way, a particle traveling at the speed of light (in, say, the x direction)
has p'/p°=1, while a particle of rest mass m moving in the x direction
has, from the equation p-p=-m?2 p'/p’=[1-m?/(p"?*]"?, which is
always less than one, no matter how much energy the particle is given.
Although it may seem to get close to the speed of light, there is an
important distinction: the particle with m #0 always has an MCREF, a
| orentz frame in which it is at rest, namely that whose velocity vis p'/p°
rclative to the old frame. A photon has no rest frame.

2.8 Bibliography
We have only scratched the surface of relativistic kinematics and
particle dynamics. These are particularly important in particle physics,
which in wurn provides the most stringent tests of SR. See Muirhead
(1973) or Hagedorn (1963).
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(a)
(b)

7(a)
(b)

8(a)

(b)

Exercises

Given the numbers {A°=5, A' =0, A’=~1, A>=—-6}, {B,=0, B,=-2,
Bz=4, B3=0}, {COO= 1, Cm =0, C02=2, C03=3, C30= —1, C|o=5,
C1=-2,C=-2,C3=0,C=5,Cn=2,Cin=-2,Cy=14, C5 =1,
C32 = "'3, C33 = 0}, find:

(a) A®B,; (b) A%C,g for all B8; (c) AYC,, for all o; (d) AYC,,, for all
p; (e) A®Bg for all o,8; (f) A'B;; (g) A'B, for all j, k.

Identify the free and dummy indices in the following equations and
change them into equivalent expressions with different indices, How
many different equations does each expression represent?

(a) A°B, = 5; (b) A% = A%,4%; (c) T A,C,” = D™;(d) R,, ~3g,.R =
G

py

Prove Eq. (2.5).

Given the vectors A - (5, :—1, 0, l)_.ancl B> U(—g, 1,1, —6), find the
components in O of (a) —6A; (b) 3A+B; (c) —6A +3B.

A collection of vectors {d, b, ¢ d} is said to be linearly independent if
no linear combination of them is zero except the trivial one, 0d +0b +
0¢+0d =0.

Show that the basis vectors in Eq. (1.9) are linearly independent.

Is the following set linearly independent?
{4, b ¢ 5d+3b-2¢).

In the t—x spacetime diagram of O, draw the basis vectors &, and &,.
Draw the corresponding basis vectors of @, who moves with speed 0.6
in the positive x direction relative to 0. Draw the corresponding basis
vectors of €, who moves with speed 0.6 in the positive x direction
relative to €.

Verify Eq. (2.10) for all o, B.
Prove Eq. (2.11) from Eq. (2.9).

Prove that the zero vector (0, 0, 0, 0) has these same components in all
reference frames.

Use (a) to prove that if two vectors have equal components in one
frame, they have equal components in all frames.

Prove, by writing out all the terms, that

3 3 3 /3
£ (Z %)= 15 anane,)
=0

&=0 B=0\a=0
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(a)
(b)
(c)
(d)

(e)
(f)

(g)

13
(a)
(b)

(©)
(d)

(¢)
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Since the order of summation doesn’t matter, we are justified in using
the Einstein summation convention to write simply A"‘,A"E&, which
doesn’t specify the order of summation.

Prove Eq. (2.13) from the equation A“(Aé,,,é',;-—é’a,)=0 b_'y making
specific choices for the components of the arbitrary vector A.

Let A%, be the matrix of the Lorentz transformation from O to 0, given
in Eq. (1.12). Let A be an arbitrary vector with components
(A° A!, A%, A%) in frame O.

Write down the matrix of A*;(—v).

Find A? for all a.

Verify Eq. (2.18) by performing the indicated sum for all values of »
and a.

Write down the Lorentz transformation matrix from & to O, justifying
each entry.

Use (d) to find A® from A%. How is this related to Eq. (2.18)?
Verify, in the same manner as (c), that

Ag(0)AS (—v)=8%;.

Establish that

éc = avaév
and
AP = 6",1A“.

Given A~ (0, -2,3,5), find

the components of A in &, which moves at speed 0.8 relative to @ in
the positive x direction;

the components of A in €, which moves at speed 0.6 relative to € in
the positive x direction;

the magnitude of A from its components in O;

the magnitude of A from its components in 0.

Let 6 move with velocity v relative to @, and let & move with velocity
v’ relative to €.

Show that the Lorentz transformation from € to & is

Ad = AN (D). (2.41)
Show that Eq. (2.41) is just the matrix product of the matrices of the
individual Lorentz transformations.

Let v=0.6¢, v'=0.8¢;. Find A for all 4 and &.

Verify that the transformation found in (c) is indeed a Lorentz transfor-
mation by showing explicitly that A§?=As? for any (At, Ax, Ay, Az).
Compute

AS(DAL(Y)

for v and v’, as given in (c), and show that the result does not equal
that of (c). Interpret this physically.
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(a)
(b)
(c)

15(a)
(b)
(c)

(d)

16

17(a)

(b)

18(a)

(b)

19

(a)

(b)

(©
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The following matrix gives a Lorentz transformation from O to 0:
125 0 0 .75

o 1 0 O
o ¢ 1 0
J5 ¢ 0 1.25

What is the velocity (speed and direction) of G relative to 0?
What is the inverse matrix to the given one?
Find the components in O of a vector A—E (1,2,0,0).

Compute the four-velocity components in O of a particle whose speed
in 0 is v in the positive x direction, by using the Lorentz transformation
from the rest frame of the particle.

Generalize this result to find the four-velocity components when the
particle has arbitrary velocity v, with |v| < 1.

Use your result in (b) to express v in terms of the components {U“}.
Find the three-velocity v of a particle whose four-velocity components
are (2,1, 1, 1).

Derive the Einstein velocity-addition formula by performing a Lorentz
transformation with velocity v on the four-velocity of a particle whose
speed in the original frame was W.

Prove that any timelike vector U for which U°>0 and U- U=-1 is
the four-velocity of some world line.

Use this to prove that for any timelike vector V there is a Lorentz frame
in which V has zero spatial components.

Show that the sum of any two orthogonal spacelike vectors is spacelike.
Show that a timelike vector and a null vector cannot be orthogonal.

A body is said to be uniformly accelerated if its acceleration four-vector
d has constant spatial direction and magnitude, say d-d = «*=0,
Show that this implies that d always has the same components in the
body’s MCRF, and that these components are what one would call
‘acceleration’ in Galilean terms. (This would be the physical situation
for a rocket whose engine always gave the same acceleration.)
Suppose a body is uniformly accelerated with a =1g=10ms 2, the
acceleration of the earth’s gravity. If the body starts from rest, find its
speed after time . (Be sure to use the correct units.) How far has it
traveled in this time? How long does it take to reach v =10.999?

Find the elapsed proper time for the body in (b), as a function of ¢
(Integrate d+ along its world line.) How much proper time has elapsed
by the time its speed is v = 0.999? How much would a person accelerated
as in (b) age on a trip from Earth to the centre of our Galaxy, a distance
of about 2 x 10*° m?
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The world line of a particle is described by the equations

x(t)= at + b sin wt, y(t)=b cos wt,

z2(1)=0, |bw| <1,

in some inertial frame. Describe the motion and compute the com-
ponents of the particle’s four-velocity and four-acceleration.

The world line of a particle is described by the parametric equations
in some Lorentz frame

t(A)=a sinh (i) x(A)=a cosh (i),
a a

where A is the parameter and a is a constant. Describe the motion and
compute the particle’s four-velocity and acceleration components. Show
that A is proper time along the world line and that the acceleration is
uniform. Interpret a.

Find the energy, rest mass, and three-velocity v of a particle whose
four-momentum has the components (4, 1, 1, 0) kg.
The collision of two particles of four-momenta

Pi2(3,-1,0,00kg,  P22(2,1,1,0) kg

results in the destruction of the two particles and the production of
three new ones, two of which have four-momenta

i”3;(1! l,0,0)kg, ﬁ4;(1’_%s090)'

Find the four-momentum, energy, rest mass, and three-velocity of the
third particle produced. Find the CM frame’s three-velocity.

A particle of rest mass m has three-velocity v. Find its energy correct
to terms of order |v|*. At what speed |v| does the absolute value of
0(|v|*) term equal 1 of the kinetic-energy term 3m|v|*?

Prove that conservation of four-momentum forbids a reaction in which
an electron and position annihilate and produce a single photon (y-ray).
Prove that the production of two photons is not forbidden.

Let frame © move with speed v in the x-direction relative to 0. Let a
photon have frequency » in @ and move at an angle 8 with respect to
O’s x axis. Show that its frequency in O is

7/v=(1-vcos 8)/v(l - v?). (2.42)

Even when the motion of the photon is perpendicular to the x axis
(8 = m/2) there is a frequency shift. This is called the transverse Doppler
shift, and arises because of the time dilation. At what angle 8 does the
photon have to move so that there is no doppler shift between 0 and 67
Use Eqgs. (2.35) and (2.38) to calculate Eq. (2.42).
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Calculate the energy that is required to accelerate a particle of rest mass
m # 0 from speed v to speed v +6v (Sv < v), to first order in &v. Show
that it would take an infinite amount of energy to accelerate the particle
to the speed of light.

Two identical bodies of mass 10 kg are at rest at the same temperature.
One of them is heated by the addition of 100 J of heat. Both are then
subjected to the same force. Which accelerates faster, and by how much?

Let A- (5,1, -1,0), B>o(~2,3,1,6), C>¢(2,-2,0,0). Let & be a
frame moving at speed v= 0.6 in the positive x direction relative to O,
with its spatial axes oriented parallel to 0’s.

Find the components of A, B, and € in 6.

Form the dot products A- B, B- €, A- € and C- C using the components
in 0. Verify the frame independence of these numbers.

Classify A', B, and C as timelike, spacelike, or null.

Prove, using the component expressions, Eqs. (2.24) and (2.26), that

The four-velocity of a rocket ship is U > (2, 1,1,1). It encounters a
high-velocity cosmic ray whose momentum is P - (300, 299, 0, 0) x
107?" kg. Compute the energy of the cosmic ray as measured by the
rocket ship’s passengers, using each of the two following methods.
Find the Lorentz transformations from O to the MCRF of the rocket
ship, and use it to transform the components of 2.

Use Eq. (2.35).

Which method is quicker? Why?

A photon of frequency » is reflected without change of frequency from
a mirror, with an angle of incidence 6. Calculate the momentum transfer-
red to the mirror. What momentum would be transferred if the photon
were absorbed rather than reflected?

Let a particle of charge ¢ and rest mass m, initially at rest in the
laboratory, scatter a photon of initial frequency v, This is called Compton
scattering. Suppose the scattered photon comes off at an angle 8 from
the incident direction. Use conservation of four-momentum to deduce
that the photon’s final frequency »; is given by

L1 (1=
—=—+ h(———ms 6). (2.43)
Vf Vi m

Space is filled with cosmic rays (high-energy protons) and the cosmic
microwave background radiation. These can Compton scatter off one
another. Suppose a photon of energy Av =2x107*¢V scatters off a
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proton of energy 10°mp=10'® eV, energies measured in the Sun’s rest
frame. Use Eq. (2.43) in the proton’s initial rest frame to calculate the
maximum final energy the photon can have in the solar rest frame after
the scattering. What energy range is this (X-ray, visible, etc.)?

Show that, if A, B, and € are any vectors and « and B any real numbers,
(aA) - B=a(A B),
A-(BB)=B(A-B),
A(B+C)=A-B+A.C
(A+B)-&=A-C+B-C
Show that the vectors {5} obtained from {&,} by Eq. (2.15) satisfy
is

E&'

=75 forall q, B.



3

Tensor analysis
In special relativity

3.1 The metric tensor ) A

Consider the representation of two vectors A and B on the basis
{é,} of some frame O:

A=A%¢, B=BPé,.
Their scalar product is

A B=(A%E,) (B®&,).
(Note the importance of using different indices a and 8 to distinguish
the first summation from the second.) Following Exer, 34, § 2.9, we can
rewrite this as

A-B=A"BP(E, &),
which, by Eq. (2.28), is
* A-B=A"B®1, (3.1)
This is a frame-invariant way of writing

~-A°B°+A'B'+A’B*+ A’B®.
The numbers 7,, are called ‘components of the metric tensor’. We will
justify this name later. Right now we observe that they essentially give
a ‘rule’ for associating with two vectors 4 and B a single number, which
we call their scalar product. The rule is that the number is the double

sum A”B®7, Such a rule is at the heart of the meaning of ‘tensor’, as
we now discuss.
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3.2 Definition of tensors
We make the following definition of a tensor:

A tensor of type (8) is a function of N
L g vectors into the real numbers, which 1s

linear in each of its N arguments.
Let us see what this definition means. For the moment, we will just accept
the notation (); its justification will come later in this chapter. The rule
for the scalar product, Eq. (3.1), satisfies our definition of a (3) tensor.
It is a rule which takes two vectors, A and B, and produces a single real
number A - B. To say that it is linear in its arguments means what is
proved in Exer. 34, § 2.9. Linearity on the first argument means

(aA)- B=a(A- B),
and (3.2)
(A+B)-C=A-C+B-
while linearity on the second argument means
A-(BB)=B(A" B),
A-(B+C)=A-B+A-C
This definition of linearity is of central importance for tensor algebra,
and the student should study it carefully.
To give concreteness to this notion of the dot product being a tensor,

we introduce a name and notation for it. We let g be the metric tensor
and write, by definition,

g(A By=A-B. (3.3)
Then we regard g{( , ) as a function which can take two arguments,
and which is linear in that

g(ad +BB, C)=ag(A, C)+Bg(B, C), (3.4)

and similarly for the second argument. The value of g on two arguments,
denoted by g(A, B), is their dot product, a real number.

Notice that the definition of a tensor does not mention components
of the vectors. A tensor must be a rule which gives the same real number
independently of the reference frame in which the vectors’ components
are calculated. We showed in the previous chapter that Eq. (3.1) satisfies
this requirement. This enables us to regard a tensor as a function of the
vectors themselves rather than of their components, and this can some-
times be helpful conceptually.

Notice that an ordinary function of position, f(¢, x, y, z), is areal-valued
function of no vectors at all. It is therefore classified as a (J) tensor.
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Aside on the usage of the term ‘function’. The most familiar notion of a
function is expressed in the equation

y =f(x),

where y and x are real numbers. But this can be written more precisely
as: f is a ‘rule’ (called a mapping) which associates a real number
(symbolically called y, above) with another real number, which is the
argument of f (symbolically called x, above). The function itself is not
f(x), since f(x) is y, which is a real number called the ‘value’ of the
function. The furnction itself is f, which we can write as f( ) in order to
show that it has one argument. In algebra this seems like hair-splitting
since we unconsciously think of x and y as two things at once: they are,
on the one hand, specific real numbers and, on the other hand, names
for general and arbitrary real numbers. In tensor calculus we will make
this distinction explicit: A and B are specific vectors, A+ B is a specific
rgal number, and g is the name of the function that associates A - B with
A and B.

Components of a tensor. Just like a vector, a tensor has components. They
are defined as

The components in a frame @ of a tensor of type (5) are the
values of the function when its arguments are the basis vectors
{€.} of the frame O.
Thus we have the notion of components as frame-dependent numbers
(frame-dependent because the basis refers to a specific frame). For the
metric tensor this gives the components as

L 2 g(éa, éﬂ) = é’a ‘ éﬁ = Nag: (3.5)
So the matrix 7,; that we introduced before is to be thought of as an
array of the components of g on the basis. We will have many more

examples of this later. First we study a particularly important class of
tensors.

3.3 The () tensors: one-forms
A tensor of the type () is called a covector, a covariant vector,
or a one-form. Often these names are used interchangeably, even in a
single text-book or reference.

General properties. Let an arbitrary one-form be called j (we adopt the
notation that ~ above a symbol denotes a one-form, just as - above
denotes a vector). Then p, supplied with one vector argument, gives a
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real number: p(A) is a real number. Suppose § is another one-form.
Then we can define

§=p+4q,
. P . q} (3.6a)
r=ap,

to be the one-forms whose values for an argument A are
§(A)= p(A) +§(A),
~( b p(. ) +4( )} (3.6b)
F(A) = ap(A).

With these rules, the set of all one-forms satisfies the axioms for a vector
space, which accounts for their other names. This space is called the
‘dual vector space’ to distinguish it from the space of all vectors like A.
When discussing vectors we relied heavily on components and their
transformations. Let us look at those of p. The components of j are
called p,:

Pa = P(&,). (3.7)
Any component with a single lower index is, by convention, the com-
ponent of a one-form; an upper index denotes the component of a vector.
In terms of components, f(A) is

P(A)=P(AE,)

= Ap(E,),

P(A)=A"p.. (3.8)
The second step follows from the linearity which is the heart of the
definition we gave of a tensor. So the real number p(A) is easily found
to be the sum A’p,+ A'p, + A%p, + A’p,. Notice that all terms have plus
signs: this operation is called contraction of A and p, and is more
fundamental in tensor analysis than the scalar product because it can be
performed between any one-form and vector without reference to other
tensors. We have seen that two vectors cannot make a scalar (their dot
product) without the help cf a third wn.cr, the metric.

The components of § on a basis {éz} are
Pz = p(&3) = p(A°zE,)
=A%p(€)=A°zp,. (3.9)

Comparing this with

ég = A“gé:,,
we see that components of one-forms transform in exactly the same
manner as basis vectors and in the opposite manner to components of

vectors. By ‘opposite’, we mean using the inverse transformation. This
use of the inverse guarantees that A”p, is frame independent for any
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vector A and one-form p. This is such an important observation that we
shall prove it explicitly:

A& & = (A&BAB)(AFGPM), (3'103)
‘—“A”&A&BAB s (3.10b)
=§*;A%p,, (3.10¢)
= Afp,. (3.10d)

(This is the same way in which the vector A“€, is kept frame independent.)
This inverse transformation gives rise to the word ‘dual’ in ‘dual vector
space’. The property of transforming with basis vectors gives rise to the
co in ‘covariant vector’ and its shorter form ‘covector’. Since components
of ordinary vectors transform oppositely to basis vectors (in order to
keep Aé; frame independent), they are often called ‘contravariant’
vectors. Most of these names are old-fashioned; ‘vectors’ and ‘dual
vectors’ or ‘one-forms’ are the modern names. The reason that ‘co’ and
‘contra’ have been abandoned is that they mix up two very different
things: the transformation of a basis is the expression of new vectors in
terms of old ones; the transformation of components is the expression
of the same object in terms of the new basis. It is important for the
student to be sure of these distinctions before proceeding further.

Basis one-forms. Since the set of all one-forms is a vector space, one can
use any set of four linearly independent one-forms as a basis. (As with
any vector space, one-forms are said to be linearly independent if no
nontrivial linear combination equals the zero one-form. The zero one-
form is the one whose value on any vector is zero.) However, in
the previous section we have already used the basis vectors {é,} to
define the components of a one-form. This suggests that we should be
able to use the basis vectors to define an associated one-form basis
{0 a=0,...,3}, which we shall call the basis dual to {&,}, upon which
a one-form has the components defined above. That is, we want a set
{@*} such that

§=paic. (3.11)
(Notice that using araised index on @ ® permits the summation convention
to operate.) The {®“} are four distinct one-forms, just as the {€,} are four
distinct vectors. This equation must imply Eq. (3.8) for any vector A and
one-form p:

B(A)=p.A”.
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But from Eq. (3.11) we get
B(A) = p.a°(A)
= Paa.ja(ABé:e)
= p,AP@°(é5).
(Notice the use of B8 as an index in the second line, in order to distinguish

its summation from the one on a.) Now, this final line can only equal
p. A" for all A® and p, if

. (&) = 6. (3.12)

Comparing with Eq. (3.7), we see that this equation gives the Bth
component of the ath basis one-form. It therefore defines the ath basis
one-form. We can write out these components as

-0
w 3(1’0’0’0)’
-1
'=(0,1,0,0),
-2
@ 3(0,0, 1,0),

~3
&” > (0,0,0, 1.

It is important to understand two points here. One is that Eq. (3.12)
defines the basis {@“} in terms of the basis {€;}. The vector basis induces
a unique and convenient one-form basis. This is not the only possible
one-form basis, but it is so useful to have the relationship, Eq. (3.12),
between the bases that we will always use it. The relationship, Eq. (3.12),
is between the two bases, not between individual pairs, such as @° and
é,. That is, if we change é,, while leaving €,, é,, and €, unchanged, then
in general this induces changes not only in @° but also in &', @, and
@’. The second point to understand is that, although we can describe
both vectors and one-forms by giving a set of four components, their
geometrical significance is very different. The student should not lose
sight of the fact that the components tell only part of the story. The basis
contains the rest of the information. That is, a set of numbers (0, 2, —1,
5) alone does not define anything; to make it into something, one must
say whether these are components on a vector basis or a one-form basis
and, indeed, which of the infinite number of possible bases is being
used.

It remains to determine how {@“} transforms under a change of basis.
That is, each frame has its own unique set {@“}; how are those of two
frames related? The derivation here is analogous to that for the basis
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vectors. It leads to the only equation one can write down with the indices
in their correct positions:

0% = A p0", (3.13)
This is the same as for components of a vector, and opposite that for
components of a one-form.

Picture of a one-form. For vectors we usually imagine an arrow, if we
need a picture. It is helpful to have an image of a one-form as well. First
of all, it is not an arrow. Its picture must reflect the fact that it maps
vectors into real numbers. A vector itself does not automatically map
another vector into a real number. To do this it needs a metric tensor to
define the scalar product. With a different metric, the same two vectors
will produce a different scalar product. So two vectors by themselves
don’t give a number. We need a picture of a one-form which doesn’t
depend on any other tensors having been defined. The one generally
used by mathematicians is shown in Fig. 3.1. The one-form consists of

R

Fig. 3.1 (a) The picture of one-form complementary to that of a vector as an
arrow. (b) The value of a one-form on a given vector is the number of surfaces
the arrow pierces. (¢) The value of a smaller one-form on the same vector is a
smaller number of surfaces. The larger the one-form, the more ‘intense’ the
slicing of space in its picture.

a series of surfaces. The ‘magnitude’ of it is given by the spacing between
the surfaces: the larger the spacing the smaller the magnitude. In this
picture, the number produced when a one-form acts on a vector is the
number of surfaces that the arrow of the vector pierces. So the closer
their spacing, the larger the number (compare (b) and (c¢) in Fig. 3.1). In
a four-dimensional space, the surfaces are three-dimensional. The one-
form doesn’t define a unique direction, since it is not a vector. Rather,
it defines a way of ‘slicing’ the space. In order to justify this picture we
shall look at a particular one-form, the gradient.
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Derivative of a function is a one-form. Consider a scalar field ¢(x) defined
at every event X. The world line of some particle (or person) encounters
a value of ¢ at each event on it (see Fig. 3.2), and this value changes
from event to event. If we label (parametrize) each point on the curve
by the value of proper time 7 along it (i.e. the reading of a clock moving

tll

Fig. 3.2 A world line parametrized by proper time 7, and the values ¢(7) of
the scalar field ¢(t, x, y, z) along it.

on the line), then we can express the coordinates of events on the curve
as functions of 7:

[t=t(r), x = x(7), y = y(7), = z(7)].
The four-velocity has components

- dr dx
U»(;,E;,...).

Since ¢ is a function of ¢, x, y and z, it is implicitly a function of 7 on
the curve:

¢ (1) = ¢ t(7), x(7), y(), 2(7)],

and its rate of change on the curve is
d d d d
do_2¢ dt ¢ dx 2 dy 26 dz

dr &8t dr oxdr dy dr 4z dr

=%U'+%U"+%U’+§2U’. (3.14)
at ax ay 0z

It is clear from this that in the last equation we have devised a means
of producing from the vector U the number d¢/d7 that represents the
rate of change of ¢ on a curve on which U is the tangent. This number
d¢/dr is clearly a linear function of U, so we have defined a one-form.
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By comparison with Eq. (3.8) we see that this one-form has components
(8¢ /at, d¢p/0x, d¢ /3y, d¢/az). This one-form is called the gradient of ¢,
denoted by d¢:

d¢- (ég,a—(b,a—?,a—(b) (3.15)

¢ \dt dx dy o9z

It is clear that the gradient fits our definition of a one-form. We will see
later how it comes about that the gradient is usually introduced in
three-dimensional vector calculus as a vector.

The gradient enables us to justify our picture of a one-form. In Fig.
3.3 we have drawn part of a topographical map, showing contours of
equal elevation. If h is the elevation, then the gradient dh is clearly
largestin an area like A, where the lines are closest together, and smallest

Fig. 3.3 A topographical map illustrates the gradient one-form (local contours
of constant elevation). The change of height along any trip (arrow) is the number
of contours crossed by the arrow.

near B, where the lines are spaced far apart. Moreover, suppose one
wanted to know how much elevation a walk between two points would
involve. On would lay out on the map a line (vector AX) between the
points. Then the number of contours the line crossed would give the
change in elevation. For example, line 1 crosses 13 contours, while 2
crosses 2 contours. Line 3 starts near 2 but goes in a different direction,
winding up only 3 contour higher. But these numbers are just Ah, which
is the contraction of dh with A%: Ah =Y, (3h/dx')Ax’ or the value of dh
on AX (see Eq. (3.8)).

Therefore, a one-form is represented by a series of surfaces (Fig. 3.4),
and its contraction with a vector V is the number of surfaces V crosses.
The closer the surfaces, the larger @. Properly, just as a vector is straight,



3.3 The (°) tensors: one-forms 69

<4

W

Fig. 3.4 The value o(V) is 2.5.

the one-form’s surfaces are straight and parallel. This is because we deal
with one-forms at a point, not over an extended region: ‘tangent’ one-
forms, in the same sense as tangent vectors.

These pictures show why one in general cannot call a gradient a vector.
One would like to identify the vector gradient as that vector pointing
‘up’ the slope, i.e. in such a way that it crosses the greatest number of
contours per unit length. The key phrase is ‘per unit length’. If there is
a metric, a measure of distance in the space, then a vector can be
associated with a gradient. But the metric must intervene here in order
to produce a vector. Geometrically, on its own, the gradient is a one-form.

Let us be sure that Eq. (3.15) is a consistent definition. How do the
components transform? For a one-form we must have

(d)s =AP:(dd)s. (3.16)
But we know how to transform partial derivatives:

¢ _ a¢ ox”

ax%  ax® ax*’

which means

- ax? .
(d¢)s = gf-g(dcb)g- (3.17)

Are Egs. (3.16) and (3.17) consistent? The answer, of course, is yes. The
reason: since

x? = AP x°%,
and since A”; are just constants, then
 J ax?/ax® = AP;. (3.18)
this identity is fundamental. Components of the gradient transform

according to the inverse of the components of vectors. So the gradient
i the ‘archetypal’ one-form.



70 Tensor analysis in special relativity

Notation for derivatives. From now on we shall employ the usual sub-
scripted notation to indicate derivatives:

and, more generally,
d¢
ax”
Note that the index a appears as a superscript in the denominator of
the left-hand side of Eq. (3.19) and as a subscript on the right-hand side.
As we have seen, this placement of indices is consistent with the transfor-

mation properties of the expression.
In particular, we have

=¢.. (3.19)

Xp=8%,
which we can compare with Eq. (3.12) to conclude that

dx®=@". (3.20)
This is a useful result, that the basis one-form is just dx*. We can use it
to write, for any function f

- of

df ==
This looks very much like the physicist’s ‘slol:jpy-calculus’ way of writing
differentials or infinitesimals. The notation d has been chosen partly to
suggest this comparison, but this choice makes it doubly important for
the student to avoid confusion on this point. The object df is a tensor,

not a small increment in f; it can have a small (‘infinitesimal’) value if
it is contracted with a small vector.

dx”.

Normal one-forms. Like the gradient, the concept of a normal vector -
a vector orthogonal to a surface — is one which is more naturally replaced
by that of a normal one-form. For a normal vector to be defined we need
to have a scalar product: the normal vector must be orthogonal to all
vectors tangent to the surface. This can be defined only by using the
metric tensor. But a normal one-form can be defined without reference
to the metric. A one-form is said to be normal to a surface if its value
is zero on every vector tangent to the surface. If the surface is closed
and divides spacetime into an ‘inside’ and ‘outside’, a normal is said to
be an outward normal one-form if it is a normal one-form and its value
on vectors which point outwards from the surface is positive. In Exer.
13, § 3.10, we prove that df is normal to surfaces of constant f.
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3.4 The (3) tensors

These are tensors that have two vector arguments. We have
encountered the metric tensor already, but the simplest of this type is
the product of two one-forms, formed according to the following rule:
if p and g are one-forms, then #® § is the (3) tensor which, when supplied
with vectors A and B as arguments, produces the number p’(/\') . cj(ﬁ),
i.e. just the product of the numbers produced by the () tensors. The
symbol ® is called an ‘outer product sign’ and is a formal notation to
show how the (3) tensor is formed from the one-forms. Notice that ® is
not commutative: p&®4§ and §® j are different tensors. The first gives
the value j(A) §(B), the second the value §(A)5(B).

Components. The most general (5) tensor is not a simple outer product,
but it can always be represented as a sum of such tensors. To see this
we must first consider the components of an arbitrary (3) tensor f:

fup =F(E., ). (3.21)
Since each index can have four values, there are 16 components, and
they can be thought of as being arrayed in a matrix. The 'value of f on
arbitrary vectors is

f(A, B)=1f(A%é,, B°&,)
= A“B?f(E,, &)
= A*BPf, ;. (3.22)
(Again notice that two different dummy indices are used to keep the
different summations distinct.) Can we form a basis for these tensors?
That is, can we define a set of 16 (3) tensors @*# such that, analogous
to Eq. 3.11),
f=fp6°P7 (3.23)
For this to be the case we would have to have
fuv =f(ép.’ év) =f;r5&jaﬂ(éus év)
and this would imply, as before, that
5P(8,, &,)=8°,8°,. (3.24)
But 8%, is (by Eq. (3.12)), the value of @ on €,, and analogously for
5”,. Therefore, @*# is a tensor whose value is just the product of the
values of two basis one-forms, and we therefore conclude
o =3"®a" (3.25)

So the tensors @* ® @” are a basis for all () tensors, and we can write
¢ f=/100"®a" (3.26)
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This is one way in which a general (3) tensor is a sum over simple
outer-product tensors.

Symmetries. A (3) tensor takes two arguments, and their order is important,
as we have seen. The behavior of the value of a tensor under an inter-
change of its arguments is an important property of it. A tensor f is called
symmetric if

f(A, B)=1(B, /i) VA, B. (3.27)
Setting A =¢, and B = &, this implies of its components that
Jop = Spa- (3.28)

This is the same as the condition that the matrix array of the elements
is symmetric. An arbitrary (3) tensor h can define a new symmetric h,,
by the rule

h.,(A, B) =1h(A, B) +3h(B, A). (3.29)
Make sure you understand that h,, satisfies Eq. (3.27) above. For the
components this implies

hisys = W hap + haa). (3.30)
This is such an important mathematical property that a special notation
is used for it:

. Biapy=1{hap + hga)- (3.31)
Therefore the numbers h 4, are the components of the symmetric tensor
formed from h.

Similarly, a tensor f is called antisymmetric if

f(A, By=-f(B, A), VA B, (3.32)
fap = —fpa (3.33)
An antisymmetric () tensor can always be formed as
hea(A, B)=ih(A, B)-ih(B, A),
hiaras =2 hap — hga).
The notation here is to use square brackets on the indices:
L 4 Biap) = 3 hap — hga)- (3.34)
Notice that
= h(aﬁ) + h[aﬁ]. (3.35)
So any (3) tensor can be split uniguely into its symmetric and antisym-
metric parts.
The metric tensor g is symmetric, as can be deduced from Eq. (2.26):

9(A, B)=g(B, A). (3.36)
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3.5 Metric as a mapping of vectors into one-forms

We now introduce what we shall later see is the fundamental
role of the metric in differential geometry, to act as a mapping between
vectors and one-forms. To see how this works, consider g and a single
vector V. Since g requires two vectorial arguments, the expression g( v, )
still lacks one: when another one is supplied, it becomes a number.
Therefore, g(V, ) considered as a function of vectors (which are to fill
in the empty ‘slot’ in it), is a linear function of vectors producing real
numbers: a one-form. We call it V:

gV, y=v(), (3.37)
where blanks inside parentheses are a way of indicating that a vector

argument is to be supplied. Then V is the one-form whose value on a
vector Ais V- A:

V(A)=g(V,A)=V- A (3.38)
Note that since g is symmetric, we also can write
g( ,V)=V( ).
What are the components of V? They are
V,=V(@E)=Vé,=é, V

L V,=n,,V" (3.39)
It is important to notice here that we distinguish the components V* of
V from the components V; of V only by the position of the index: on
a vector it is up; on a one-form, down. Then, from Eq. (3.39), we have
as a special case
Vo= VEngo= Vongo+ Vimo+- -
=V(-1)+0+0+0

=-V° (3.40)
Vi= Vg =Viny+Ving,+- -
=+V', (3.41)

etc. This may be summarized as:
if V-(a,b,c d),
then V> (—a, b, ¢, d). (3.42)
The components of V are obtained from those of V by changing the
sign of the time component. (Since this depended upon the components
N.s i0 situations we encounter later, where the metric has more compli-
cated components, this rule of correspondence between V and V will
ulso be more complicated.)
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The inverse: going from A to A. Does the metric also provide a way of
finding a vector A that is related to a given one-form A? The answer is
yes. Consider Eq. (3.39). It says that { V, } is obtained by multiplying { V*}
by a matrix (7,p). If this matrix has an inverse, then one could use it to
obtain {V?} from {V,}. This inverse exists if and only if (n.s) has
non-vanishing determinant. But since (7,) is a diagonal matrix with
entries (—1, 1, 1, 1), its determinant is simply —1. An inverse does exist,
and we call its components 7*?, Then, given {A;} we can find {A"}:
* A% =q"PA, (3.43)
The use of the inverse guarantees that the two sets of components satisfy
Eq. (3.39): '

Ap = Npa A"
So the mapping provided by g between vectors and one-forms is one-to-
one and invertible.

In particular, with d¢ we can associate a vector a¢, which is the one
usually associated with the gradient. One can see that this vector is
orthogonal to surfaces of constant ¢ as follows: its inner product with
a vector in a surface of constant ¢ is, by this mapping, identical with
the value of the one-form d¢ on that vector. This, in turn, must be zero
since d¢(V) is the rate of change of ¢ along V, which in this case is
zero since V is taken to be in a surface of constant o.

It is important to know what {%°?} is. You can easily verify that

%=1, 7% =0, n¥=8Y, (3.44)
so that (n*?) is identical to (n,5). Thus, to go from a one-form to a vector,
simply change the sign of the time component.

Why distinguish one-forms from vectors? In Euclidean space, in Cartesian
coordinates the metric is just {§;}, so the components of one-forms and
vectors are the same. Therefore no distinction is ever made in elementary
vector algebra. But in SR the components differ (by that one change in
sign). Therefore, whereas the gradient has components

aqba(% % ..),

at’ax’’
the associated vector normal to surfaces of constant ¢ has components
- ag ag¢
dé¢->|—,—,...). 345
¢ ( ot dx ) ( )

Had we simply tried to define the ‘vector gradient’ of a function as the
vector with these components, without first discussing one-forms, the
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reader would have been justified in being more than a little sceptical.
The nonEuclidean metric of SR forces us to be aware of the basic
distinction between one-forms and vectors: it can’t be swept under the rug.

As we remarked earlier, vectors and one-forms are dual to one another.
Such dual spaces are important and are found elsewhere in mathematical
physics. The simplest example is the space of column vectors

a
b,

whose dual space is the space of row vectors (a b - - -). Notice that the
product

p
(a b -+ gl=ap+bg+--- (3.46)

is a real number, so that a row vector can be considered to be a one-form
on column vectors. The operation of finding an element of one space
from one of the other is called the ‘adjoint’ and is 1-1 and invertible.
A less trivial example arises in quantum mechanics. A wave-function
(probability amplitude that is a solution to Schrodinger’s equation) is
a complex scalar field ¢(X), and is drawn from the Hilbert space of all
such functions. This Hilbert space is a vector space, since its elements
(functions) satisfy the axioms of a vector space. What is the dual space
of one-forms? The crucial hint is that the inner product of any two
functions ¢(X) and (%) is not [(X)Y(X)d’x but, rather, is
{ #*(¥)y(X) d’x, the asterisk denoting complex conjugation. The function
$*(X) acts like a one-form whose value on (X) is its integral with it
(analogous to the sum in Eq. (3.8)). The operation of complex conjugation
acts like our metric tensor, transforming a vector ¢(X) (in the Hilbert
space) into a one-form ¢*(%). The fact that ¢*(¥) is also a function in
the Hilbert space is, at this level, a distraction. (It is equivalent to saying
that members of the set (1, —1, 0, 0) can be components of either a vector
or a one-form.) The important point is that in the integral | ¢ *(£)y(%) d*x,
the function ¢*(X) is acting as a one-form, producing a real number
from the vector (X). This dualism is most clearly brought out in the
Dirac ‘bra’ and ‘ket’ notation. Elements of the space of all states of the
system are called | ) (with identifying labels written inside), while the
clements of the dual (adjoint with complex conjugate) space are called
 |. Two ‘vectors’ |1} and |2) don’t form a number, but a vector and a
dual vector |1) and (2| do: (2|1) is the name of this number.
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In such ways the concept of a dual vector space arises very frequently
in advanced mathematical physics.

Magnitudes and scalar products of one-forms. A one-form p is defined to
have the same magnitude as its associated vector p. Thus we write

P2=P"=napp°pP". (3.47)

This would seem to involve finding {p“} from {p,} before using Eq.
(3.47), but we can easily get around this. We use Eq. (3.43) for both p“
and p” in Eq. (3.47):

P = 1as(n** Y0 "p.). (3.48)

(Notice that each independent summation uses a difterent dummy index.)
But since 7,5 and 1P are inverse matrices to each other, the sum on 8
collapses:

ﬂaﬂ"lﬁp =0 Pn- . (349)
Using this in Eq. (3.48) gives
. B> = 1°"P.Pe. (3.50)

Thus, the inverse metric tensor can be used directly to find the magnitude
of p from its components. We can use Eq. (3.44) to write this explicitly
as

P2 ==(po)* + (1)’ +(p2)* +(p5)". (3.51)
This is the same rule, in fact, as Eq. (2.24) for vectors. By its definition,
this is frame invariant. One-forms are timelike, spacelike, or null, as their
associated vectors are.

As with vectors, we can now define an inner product of one-forms.
This is

prg=(p+@’-F-7q1 (3.52)
Its expression in terms of components is, not surprisingly,
P G=—Po9o+Pi1q: P29+ P3q;. (3.53)

Normal vectors and unit normal one-forms. A vector is said to be normal
to a surface if its associated one-form is a normal one-form. Eq. (3.38)
shows that this definition is equivalent to the usual one that the vector
be orthogonal to all tangent vectors. A normal vector or one-form is said
to be a unit normal if its magnitude is 1. (We can’t demand that it be
+1, since timelike vectors will have negative magnitudes. All we can do
is to multiply the vector or form by an overall factor to scale its magnitude
to =1.) Note that null normals cannot be unit normals.
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A three-dimensional surface is said to be timelike, spacelike, or null
according to which of these classes its normal falls into. (Exer. 12, § 3.10,
proves that this definition is self-consistent.) In Exer. 21, §3.10, we
explore the following curious properties normal vectors have on account
of our metric. An outward normal vector is the vector associated with
an outward normal one-form, as defined earlier. This ensures that its
scalar product with any vector which points outwards is positive. If the
surface is spacelike, the outward normal vector points outwards. If the
surface is timelike, however, the outward normal vector points inwards.
And if the surface is null, the outward vector is tangent to the surface!
These peculiarities simply reinforce the view that it is more natural to
regard the normal as a one-form, where the metric doesn’t enter the
definition.

3.6 Finally: (¥ tensors

Vector as a function of one-forms. The dualism discussed above
is in fact complete. Although we defined one-forms as functions of vectors,
we can now see that vectors can perfectly well be regarded as linear
functions that map one-forms into real numbers. Given a vector V, once
we supply a one-form we get a real number:

V(p)=p(V)=p.V*=(5, V). (3.54)
In this way we dethrone vectors from their special position as things
‘acted on’ by tensors, and regard them as tensors themselves, specifically
as linear functions of single one-forms into real numbers. The last notation
on Eq. (3.54) is new, and emphasizes the equal status of the two objects.

() Tensors. Generalizing this, we define:

An (%) tensor is a linear function of M one-forms into the
real numbers.

All our previous discussions of () tensors apply here. A simple (3)
tensor is V& W, which, when supplied with two arguments j and §,
gives the number V(p)W(§)=p(V)§(W)= V*p,W¥q,. So V® W has
components V*W?, A basis for (3) tensors is &, ® é;. The components
of an (¥) tensor are its values when the basis one-form & are its
arguments. Notice that (%) tensors have components all of whose indices

aTe superscripts.

(M) tensors. The final generalization is:

* An () tensor is a linear function of M one-forms and N
vectors into the real numbers.
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For instance, if R is a (}) tensor then it requires a one-form p and a
vector A to give a number R(p; A). It has components R(&° ; ; €g)= R
In general, the components of a (¥) tensor will have M indices up and
N down. In a new frame,

R&g = R(c:)é ; ég)
=R(A%,@"; A"58.)
=A%, A"sR",. (3.55)
So the transformation of components is simple: each index transforms
by bringing in a A whose indices are arranged in the only way permitted
by the summation convention. Some old names that are still in current
use are: upper indices are called ‘contravariant’ (because they transform

contrary to basis vectors) and lower ones ‘covariant’. An (¥) tensor is
said to be ‘M-times contravariant and N-times covariant’.

Circular reasoning? At this point the student might worry that all of
tensor algebra has become circular: one-forms were defined in terms of
vectors, but now we have defined vectors in terms of one-forms. This
‘duality’ is at the heart of the theory, but is not circularity. It means we
can do as physicists do, which is to identify the vectors with displacements
AX and things like it (such as p and 7) and then generate all (%) tensors
by the rules of tensor algebra; these tensors inherit a physical meaning
from the original meaning we gave vectors. But we could equally well
have associated one-forms with some physical objects (gradients, for
example) and recovered the whole algebra from that starting point. The
power of the mathematics is that it doesn’t need (or want) to say what
the original vectors or one-forms are. It simply gives rules for manipulat-
ing them. The association of, say, p with a vector is at the interface
between physics and mathematics: it is how we make a mathematical
model of the physical world. A geometer does the same. He adds to the
notion of these abstract tensor spaces the idea of what a vector in a
curved space is. The modern geometer’s idea of a vector is something
we shall learn about when we come to curved spaces. For now we will
get some practice with tensors in physical situations, where we stick with
our (admittedly imprecise) notion of vectors ‘like’ AX.

3.7 Index ‘raising’ and ‘lowering’
In the same way that the metric maps a vector V into a one-form
V it maps an (17) tensor into an ( ~3)) tensor. Similarly, the inverse maps
an (5) tensor into an (5 ")) tensor. Normally these are given the same
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name, and are distinguished only by the positions of their indices.
Suppose T*?, are the components of a (}) tensor. Then

T, =7, T, (3.56)
are the components of a (;) tensor (obtained by mapping the second
one-form argument of T*°_ into a vector), and

T.5, =T, (3.57)
are the components of another (inequivalent) (;) tensor (mapping on the
first index), while

TP = n¥*TF (3.58)

are the components of a (3) tensor. These operations are, naturally enough,
called index ‘raising’ and ‘lowering’. Whenever we speak of raising or
lowering an index we mean this map generated by the metric. The rule
in SR is simple: when raising or lowering a ‘0’ index, the sign of the
component changes; when raising or lowering a *1’ or ‘2’ or ‘3’ index (in
general, an ‘i’ index) the component is unchanged.

Mixed components of metric. The numbers {7,5} are the components of
the metric, and {n“?} those of its inverse. Sippose we raise an index of
n.s using the inverse. Then we get the ‘mixed’ components of the metric,

%= 1" 7,p. (3.59)
But on the right we have just the matrix product of two matrices that
are the inverse of each other (readers who aren’t sure of this should
verify the following equation by direct calculation), so it is the unit
identity matrix. Since one index is up and one down, it is the Kronecker
delta, written as

L 2 na3‘=‘6“3. (3-60)

By raising the other index we merely obtain an identity, 7°# =%, So
we can regard n*? as the components of the (5) tensor which is mapped
from the (3) tensor g by g~'. So, for g, its ‘contravariant’ components
cqual the elements of the matrix inverse to the matrix of its ‘covariant’
components. It is the only tensor for which this is true.

Metric and nonmetric vector algebras. It is of some interest to ask why
the metricis the one that generates the correspondence between one-forms
and vectors. Why not some other (3) tensor that has an inverse? We’'ll
explore that idea in stages.

First, why a correspondence at all? Suppose we had a ‘nonmetric’
vector algebra, complete with all the dual spaces and (%) tensors. Why
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make a correspondence between one-forms and vectors? The answer is
that sometimes one does and sometimes one doesn’t. Without one, the
inner product of two vectors is undefined, since numbers are produced
only when one-forms act on vectors and vice-versa. In physics, scalar
products are useful, so one needs a metric. But there are some vector
spaces in mathematical physics where metrics are not important. An
example is phase space of classical and quantum mechanics.

Second, why the metric and not another tensor? If a metric weren’t
defined but another symmetric tensor did the mapping, a mathematician
would just call the other tensor the metric. That is, he would define it
as the one generating a mapping. To a mathematician, the metric is an
added bit of structure in the vector algebra. Different spaces in mathe-
matics can have different metric structures. A Riemannian space is
characterized by a metric that gives positive-definite magnitudes of vec-
tors. One like ours, with indefinite sign, is called pseudo-Riemannian.
One can even define a ‘metric’ that is antisymmetric: a two-dimensional
space called spinor space has such a metric, and it turns out to be of
fundamental importance in physics. But its structure is outside the scope
of our lectures. The point here is that we don’t have SR if we just discuss
vectors and tensors. We get SR when we say that we have a metric with
components 7.5 If we assigned other components we might get other
spaces, in particular the curved spacetime of GR.

3.8 Differentiation of tensors
A function f is a (J) tensor, and its gradient df is a (}) tensor.
Differentiation of a function produces a tensor of one higher (covariant)
rank. We shall now see that this applies as well to differentiation of
tensors of any rank.
Consider a (j) tensor T whose components {T°;} are functions of
position. We can write T as

T=T%a" ®E,. (3.61)
Suppose, as we did for functions, that we move along a world line with
parameter 7, proper time. The rate of change of T,

di . T(r+A7)~-T(7)

dr :311—1}0 At ’

(3.62)

is not hard to calculate. Since the basis one-forms and vectors are the
same everywhere (i.e. “(7+A7)= & (7)), it follows that

ar _ (dTaB

dr \ dr

)a"@aa, (3.63)
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where dTg/d7 is the ordinary derivative of the function T4 along the
world line:

dT%/dr=T% U™ (3.64)
Now, the object dT/d7 is a () tensor, since in Eq. (3.62) it is defined to
be just the difference between two such tensors. From Egs. (3.63) and
(3.64) we have, for any vector O,

dT/dr=(T%,6°®é,) U?, (3.65)
from which we can deduce that
VT=T%,0"®a"®8&, (3.66)

is a (3) tensor. This tensor is called the gradient of T.

We use the notation VT rather than dT because the latter notation is
usually reserved for something else. We also have a convenient notation
for Eq. (3.65):

dT/dr=V;T, (3.67)
VoT->{T%, U} (3.68)

This derivation made use of the fact that the basis vectors (and therefore
the basis one-forms) were constant everywhere. We will find that we can’t
assume this in the curved spacetime of GR, and taking this into account
will be our entry point into the theory!

3.9 Bibliography

Our approach to tensor analysis stresses the geometrical nature
of tensors rather than the transformation properties of their components.
Students who wish amplification of some of the points here can consult
the early chapters of Misner et al. (1973) or Schutz (19805b). Most introduc-
tions to tensors for physicists outside relativity confine themselves to
‘Cartesian’ tensors, i.e. to tensor components in three-dimensional Car-
tesian coordinates. See, for example, the chapter in Mathews & Walker
(1965).

A very complete reference for tensor analysis in the older style based
upon coordinate transformations is Schouten (1954). See also Yano
(1955). Books which -develop that point of view for tefisors in relativity
include Adler et al (1975), Landau & Lifshitz (1962), Robertson &
Noonan (1968), and Stephani (1982).

3.10 Exercises

1(a) Given an arbitrary set of numbers {M,5: a=0,...,3; 8=0,...,3}and
two arbitrary sets of vector components {A*, u=0,...,3} and {B*,
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(b)

3(a)

(b)

(a)
(b)

()

(d)

(a)
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v=0,...,3}, show that the two expressions
3 3
MA°BP= Y Y M,,A°B?
a=0B=0
and
3
Yy M,,A°B”

a =0
are not equivalent.
Show that

A®Bfy.s=—-A"B°+A'B'+A’B?+ A’B’.

Prove that the set of all one-forms is a vector space.

Prove, by writing out all the terms, the validity of the following
P(A%E,)= A"P(&.).

Let the components of g be (-1, 1, 2, 9), those of A be (2, 1_., 0, —‘l) and
those of B be (0,2,0,0). Find (i) p(A); (ii) p(B); (iii) p(A —3B); (iv)
P(A)=3p(B).

Given the following vectors in 0
A=(2,1,1,0,8->(1,2,0,0,C—>(0,0,1,1), D> (-3,2,0,0),

show that they are linearly independent;

find the components of j if

p(A)=1, 5(B)=~1,p(C)=—1, (D) =0;

find the value of j(E) for

E —(1,1,0,0);

deten_pine whether the one-forms p, 4, 7, anq § are linearly independent
if §(A)=3(B)=0, §(C)=1, 4(D) = -1, (&) =2, #(B)=#C)= r(D)=
0, §(A)=-1, §(B)=—1, §(C)=§(D)=0.

Justify each step leading from Egs. (3.10a) to (3.10d).

Consider the basis {é,} of a frame € and the basis (A°, A', A2, X%) for
the space of one-forms, where we have

A= (1,1,0,0),
A= (1,-1,0,0),
AZ—(0,0,1,-1),
A —(0,0,1,1).

Note that {AP} is not the basis dual to {é,}.
Show that p # p(é,)A* for arbitrary p.
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(b) Let p—4(1,1,1,1). Find numbers [, such that
p=LA%
These are the components of j on {A%}.

7 Prove Eq. (3.13).
8 Draw the basis one-forms d7 and dx of a frame O.

9 Fig. 3.5 shows curves of equal temperature T (isotherms) of a metal
plate. At the points ? and 2 as shown, estimate the components of the
gradient dT. (Hint: the components are the contractions with the basis
vectors, which can be estimated by counting the number of isotherms
crossed by the vectors.)

Va

o8 J

i
Fig. 3.5 [Isotherms of an irreguiarly heated plate.

10(a) Given a frame @ whose coordinates are {x*}, show that
ax*/axP = 8%.
(b) For any two frames, we have, Eq. (3.18):
oxB/ax® = AP,
Show that (a) and the chain rule imply
AP A%, =8P,
This is the inverse property again.

11  Use the notation d¢/9x™ = ¢ , to re-write Egs. (3.14), (3.15), and (3.18).

12 Let S be the two-dimensional plane x=0 in three-dimensional
Euclidean space. Let 7 ¢ 0 be a normal one-form to S.

(a) Show that if V is a vector which is not tangent to S, then A(V)#0.

(b) Show that if ﬁ(\7')>0, then ﬁ(W)>0 for any W which points toward
the same side of S as V does (i.e. any W whose x component has the
same sign as V©).



84

)
(d)

13

14

15

16(a)

(b)

(©)
(d)

(e)
17(a)

(d)

18(a)

(b)

19(a)

(b)
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Show that any normal to S is a multiple of 7.
Generalize these statements to an arbitrary three-dimensional surface
in four-dimensional spacetime.

Prove, by geometric or algebraic arguments, that df is normal to surfaces
of constant f

Let p—o0(1,1,0, 0)‘and q;»o (—1,0, 1, 0) be two one-forms. Prove, by
trying two vectors A and B as arguments, that p® § # §® p. Then find
the components of p® 4. '

Supply the reasoning leading from Eq. (3.23) to Eq. (3.24).

Prove that h,, defined by

h.(4, B)=3h(A, B) +3h(B, A) (3.69)
is a symmetric tensor.

Prove that h,, defined by

heafA, B)=1h(A, B)—3h(B, A) (3.70)
is an antisymmetric tensor.

Find the components of the symmetric and antisymmetric parts of p&® §
defined in Exer. 14.

Prove that if h is an antisymmetric (3) tensor,

h(A, A)=0

for any vector A.

Find the number of independent components h, and h 4, have.

Suppose that h is a () tensor with the property that, for any two vectors
Aand B

h( ,A)=ah( ,B),

where « is a number which may depend on A and B. Show that there
exist one-forms p and 4 such that

h=p®4q.

Suppose T is a (}) tensor, @ a one-form, § a vector, and T(&; 7) the
value of T on @ and 7. Prove that T( ; ¥) is a vectorand T(®; )isa
one-form, i.e. that a (}) tensor provides a map of vectors to vectors and
one-forms to one-forms.

Find the one-forms mapped by the metric tensor from the vectors
A—p(1,0,-1,0), B—5(0,1,1,0), C—o(-1,0,-1,0),
D —4(0,0,1, 1).
Find the vectors mapped by the inverse of the metric tensor from the
one-form p—¢ (3,0,~1,-1), §—¢(1,-1,1,1), 7—¢(0, =5, —1,0),
§—¢(=2,1,0,0).

Prove that the matrix {n®”} is inverse to {7,g} by performing the matrix
multiplication.
Derive Eq. (3.53).
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(@)

(b)

21(a)

®)

22

2¥a)

(b)
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In Euclidean three-space in Cartesian coordinates, one doesn’t normally
distinguish between vectors and one-forms, because their components
transform identically. Prove this in two steps.

Show that

A& = A&ﬂ AB

and

Ps=A"sP,

are the same transformation if the matrix {A%z} equals the transpose
of its inverse. Such a matrix is said to be orthogonal.

The metric of such a space has components {5, i, j=1,...,3}. Prove
that a transformation from one Cartesian coordinate system to another
must obey

85 = A";A';Bk,

and that this implies {A%;} is an orthogonal matrix. See Exer. 32 for
the analogue of this in SR.

Let a region of the t—x plane be bounded by the lines t =0, t=1, x =0,
x = 1. Find the unit outward normal one-forms and their associated
vectors for each of the boundary lines.

Let another region be bounded by the straight lines joining the events
whose coordinates are (1, 0), (1, 1), and (2, 1). Find an outward normal
for the null boundary and find its associated vector.

Suppose that instead of defining vectors first, we had begun by defining
one-forms, aided by pictures like Fig. 3.4. Then we could have introduced
vectors as linear real-valued functions of one-forms, and defined vector
algebra by the analogues of Eqs. (3.6a) and (3.6b) (i.e. by exchanging
arrows for tildes). Prove that, so defined, vectors form a vector space.
This is another example of the duality between vectors and one-forms.

Prove that the set of all (3) tensors for fixed M, N forms a vector space.
(You must define addition of such tensors and their multiplication by
numbers.)
Prove that a basis for this space is the set
(6, 0,® - - ® d“"Ra*®  -®a'}

vectors N one-forms
(You will have to define the outer product of more than two one-forms.)

Given the components of a (3) tensor M*# as the matrix
0 1 0 0

1 -1 0 2

2 0 o0 1f

1 0 -2 0
find

(i) the components of the symmetric tensor M‘*® and the antisym-
metric tensor M( =8,
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(b)
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(h)

Tensor analysis in special relativity

(ii) the components of M*g;

(iii) the components of M2 ;

(iv) the components of M,

For the (}) tensor whose components are M*g, does it make sense to
speak of its symmetric and antisymmetric parts? If so, define them. If
not, say why.

Raise an index of the metric tensor to prove

n°p=8%.

Show that if A is a (2) tensor and B a (3) tensor then
A®B,g
is frame invariant, i.e. a scalar.

Suppose A is an antisymmetric (3) tensor, B a symmetric (3) tensor, C
an arbitrary (3) tensor, and D an arbitrary (?) tensor. Prove:
AuaBaﬂ =(;
aff —_ B .
A Caﬂ - A(! C[“B]‘
B,;D% = B, D,

Suppose A is an antisymmetric (3) tensor. Show that {Aap), obtained
by lowering indices by using the metric tensor, are components of an
antisymmetric (J) tensor.

Suppose V* = W7 Prove that V, = W,

Deduce Eq. (3.66) from Eq. (3.65).

Prove that tensor differentiation obeys the Leibniz (product) rule:
V(A®RB)=(VA)®B+A®VB.

In some frame O, the vector fields U and D have the components:
U- (1412, 1%,V21,0),
Do (x, 51x, V21, 0),

and the scalar p has the value

p=x2+12~y2.

Find U- U, U- D, D- D. 1s U suitable as a four-velocity field? Is D?
Find the spatial velocity » of a particle whose four-velocity is U, for
arbitrary t. What happens to it in the limits >0, t>0?

Find U, for all a.

Find U® 4 for all a, B.

Show that U,U® 4 =0 for all 8. Show that U°U, 5 =0 for all 8.

Find D® ;.

Find (U°D#?) 4 for all a.

Find U, (U®D?) z and compare with (f) above. Why are the two answers
similar?



@)

31

(a)
(b)

(©)

(d)

32(a)

(©)

33

3.10 Exercises 87

Find p, for all a. Find p* for all a. (Recall that p>* = n*#p ;.) What
are the numbers {p } the components of?

Consider a timelike unit four-vector 0, and the tensor
Po=g+U®U

Show that Py is a projection operator that projects an arbitrary vector
V into one orthogonal to U. That is, show that the vector V, whose
components are

Vi=Po VB =(n"+UUg) VP

is

orthogonal to U,

and

unaffected by P:

Vi =VEP=V1

Show that for an arbitrary nonnull vector g, the tensor that projects
orthogonally to it is

P;=g+—
G- q

How does this fail for null vectors?
Show that P is the metric tensor for vectors perpendicular to U:
Po(V., W)=g(V, W))

=V, -W.

From the definition f,g =f(Z,, &) for the components of a (3) tensor,
prove that the transformation law is

fag = A" A S,

and that the matrix version of this is

(N =)T (N,

where (A) is the matrix with components A*;.

Since our definition of a Lorentz frame led us to deduce that the metric
tensor has components 7,4, this must be true in all Lorentz frames. We
are thus led to a more general definition of a Lorentz transformation
as one whose matrix A"; satisfies

Nag = A":A 57, 3.71)
Prove that the matrix for a boost of velocity v é, satisfies this, so that
this new definition includes our older one.

Suppose (A) and (L) are two matrices which satisfy Eq. (3.71), i.e.
(7)=(A)"(n)XA) and similarly for (L). Prove that (A)}(L) is also the
matrix of a Lorentz transformation.

The result of Exer. 32¢ establishes that Lorentz transformations form
a group, represented by multiplication of their matrices. This is called
the Lorentz group, denoted by L(4) or 0(1, 3).
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Find the matrices of the identity element of the Lorentz group and of
the element inverse to that whose matrix is implicit in Eq. (1.12).
Prove that the determinant of any matrix representing a Lorentz transfor-
mation is £1.

Prove that those elements whose matrices have determinant +1 form a
subgroup, while those with —1 do not.

The three-dimensional orthogonal group O(3) is the analogous group
for the metric of three-dimensional Euclidean space. In Exer. 20b, we
saw that it was represented by the orthogonal matrices. Show that the
orthogonal matrices do form a group, and then show that 0(3) is
(isomorphic to) a subgroup of L(4).

Consider the coordinates u =t —x, v=t +x in Minkowski space.
Define é, to be the vector connecting the events with coordinates {u =1,
v=0,y=0, z=0} and {u=0, v=0, y =0, z=0}, and analogously for
é,. Show that é, =(é,—¢€,)/2, é,= (€, +¢€,)/2, and draw é, and é, in a
spacetime diagram of the t—x plane.

Show that {é,, €, é,, é,} are a basis for vectors in Minkowski space.
Find the components of the metric tensor on this basis.

Show that é, and é, are null and not orthogonal. (They are called a null
basis for the t—x plane.)

Compute the four one-forms du, dv, g(é,, ), 9(é, ) in terms of dt
and dx.
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Perfect fluids
In special relativity

4.1 Fluids

In many interesting situations in astrophysical GR, the source
of the gravitational field can be taken to be a perfect fluid as a first
approximation. In general, a ‘fluid’ is a special kind of continuum. A
continuum is a collection of particles so numerous that the dynamics of
individual particles cannot be followed, leaving only a description of the
collection in terms of ‘average’ quantities: number of particles per unit
volume, density of energy, density of momentum, pressure, temperature,
ctc. The behavior of a lake of water, and the gravitational field it generates,
does not depend upon where any one particuiar water molecule happens
to be: it depends only on the average properties of huge collections of
molecules.

Nevertheless, these properties can vary from point to point in the lake:
the pressure is larger at the bottom than at the top, and the temperature
may vary as well. The atmosphere, another fluid, has a density that varies
with position. This raises the question of how large a collection of particles
lo average over: it must clearly be large enough so that the individual
particles don’t matter, but it must be small enough so that it is relatively
homogeneous: the average velocity, kinetic energy, and interparticle
spacing must be the same everywhere in the collection. Such a collection
is called an ‘element’. This is a somewhat imprecise but useful term for
s large collection of particles that may be regarded as having a single
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value for such quantities as density, average velocity, and temperature.
If such a collection doesn’t exist (e.g. a very rarified gas), then the
continuum approximations breaks down.

The continuum approximation assigns to each element a value of
density, temperature, etc. Since the elements are regarded as ‘small’, this
approximation is expressed mathematically by assigning to each point a
value of density, temperature, etc. So a continuum is defined by various
fields, having values at each point and at each time.

So far, this notion of a continuum embraces rocks as well as gases. A
fluid is a continuum that ‘flows’: this definition is not very precise, and
so the division between solids and fluids is not very well defined. Most
solids will flow under high enough pressure. What makes a substance
rigid? After some thought one should be able to see that rigidity comes
from forces parallel to the interface between two elements. Two adjacent
elements can push and pull on each other, but the continuum won’t be
rigid unless they can also prevent each other from sliding along their
common boundary. A fluid is characterized by the weakness of such
antislipping forces compared to the direct push—pull force, which is
called pressure. A perfect fluid is defined as one in which all antislipping
forces are zero, and the only force between neighboring fluid elements
is pressure. We will soon see how to make this mathematically precise.

4.2 Dust: The number—flux vector N
We will introduce the relativistic description of a fluid with the
simplest one: ‘dust’ is defined to be a collection of particles, all of which
are at rest in some one Lorentz frame. It isn’t very clear how this usage
of the term ‘dust’ evolved from the other meaning as that substance
which is at rest on the windowsill, but it has become a standard usage
in relativity.

The number density n. The simplest question we can ask about these
particles is, how many are there per unit volume? In their rest frame,
this is merely an exercise in counting the particles and dividing by the
volume they occupy. By doing this in many small regions we could come
up with different numbers at different points, since the particles may be
distributed more densely in one area than in another. We define this
number density to be n:

n =number density in the MCRF of the element. 4.1)
Clearly, n may be a function of x', but in the rest frame it will not depend



4.2 Dust: The number—flux vector N 91

on t. (In other frames, the Lorentz transformation may bring in a depen-
dence on 7.)

What is the number density in a frame @ in which the particles are
not at rest? They will all have the same velocity v in €. If we look at the
same particles as we counted up in the rest frame, then there are clearly
the same number of particles, but they do not occupy the same volume.
Suppose they were originally in a rectangular solid of dimension
Ax Ay Az The Lorentz contraction will reduce this to Ax Ay Az\/(l —~v?),
since lengths in the direction of motion contract but lengths perpendicular
do not (Fig. 4.1). Because of this, the number of particles per unit volume

box contains N particles box contains same particles, but now
n=N/{(Ax Ay Az) n = N/(AX Ay AZ)
A -
4 Ar z 74 Az
Ax Ax
Ay Ay
y 7
in MCRF in®
x

X

Fig. 4.1 The Lorentz contraction causes the density of particles to depend upon
the frame in which it is measured.

is [V(1 - v?)]”! times what it was in the rest frame:

n number density in frame in
:?(1 -9 = {which particles have velocity v}' (4.2)
The flux across a surface. When particles move, another question of
interest is, ‘how many’ of them are moving in a certain direction? This
is made precise by the definition of flux: the flux of particles across a
surface is the number crossing a unit area of that surface in a unit time.
This clearly depends on the inertial reference frame (‘area’ and ‘time’
are frame-dependent concepts) and on the orientation of the surface (a
surface parallel to the velocity of the particles won’t be crossed by any
of them). In the rest frame of the dust the flux is zero, since all particles
are at rest. In the frame 0, suppose the particles all move with velocity
v in the X direction, and let us for simplicity consider a surface &
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4
7‘F
vAr
r 1
—_———
i.—’ AAd = Ay Az
o ]
*r—>
X
o—>

Fig. 4.2 Simple illustration of the transformation of flux: if particles move only
in the x-direction, then all those within a distance vAi of the surface & will
cross & in the time Af

perpendicular to x (Fig. 4.2). The rectangular volume outlined by a
dashed line clearly contains all and only those particles that will cross
the area AA of & in the time Af. It has volume v At AA, and contains
(n/J(1-v))v AT AA particles, since in this frame the number density
is n/v(1 — v?). The number crossing per unit time and per unit area is the
flux across surfaces of constant x:

flux)f = "

Ty
Suppose, more generally, that the particles had a y component of velocity
in @ as well. Then the dashed line in Fig. 4.3 encloses all and only those
particles that cross AA in & in the time Af. This is a ‘parallelepiped’,
whose volume is the area of its base times its height. But its height - its

J7T

//
AA = AP Az

N
+

b

—-—| v AT |

N
Fig. 4.3 The general situation for flux: only the x-component of the velocity
carries particles across a surface of constant x.
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extent in the x direction — is just v*Af. Therefore we get

x

nv

(ﬂux)izj'(—l-:v—z). (4.3)

The number—flux four-vector N. Consider the vector N defined by

. N=nU, (4.4)
where U is the four-velocity of the particles. In a frame € in which the
particles have a velocity (v, v”, v°), we have

o3 )
6 \V(1 -0 V(1 -0 V(1 -0 V(i —v?)/)
It follows that

- n no”™ nv’ nv’
N3 (\/(l—vz)’ V(1 =22 V(1 -v?Y V(I —vz))‘ (4-3)

Thus, in any frame, the time component of N is the number density and
the spatial components are the fluxes across surfaces of the various
coordinates. This is a very important conceptual result. In Galilean
physics, number density was a scalar, the same in all frames (no Lorentz
contraction), while flux was quite another thing: a three-vector that was
frame dependent, since the velocities of particles are a frame-dependent
notion. Our relativistic approach has unified these two notions into a
single, frame-independent four-vector. This is progress in our thinking,
of the most fundamental sort: the union of apparently disparate notions
into a single coherent one.

It is worth reemphasizing the sense in which we use the word ‘frame-
independent’. The vector N is a geometrical object whose existence is
independent of any frame; as a tensor, its action on a one-form to give
a number is independent of any frame. Its components do of course
depend on the frame. Since prerelativity physicists regarded the flux as
a three-vector, they had to settle for it as a frame-dependent vector, in
the following sense. As a three-vector it was independent of the orienta-
tion of the spatial axes in the same sense that four-vectors are independent
of all frames; but the flux three-vector is different in frames that move
relative to one another, since the velocity of the particles is different in
different frames. To the old physicists, a flux vector had to be defined
relative to some inertial frame. To a relativist, there is only one four-vector,
and the frame dependence of the older way of looking at things came
from concentrating only on a set of three of the four components of N.
'his unification of the Galilean frame-independent number density and
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frame-dependent flux into a single frame-independent four-vector N is
similar to the unification of ‘energy’ and ‘momentum’ into four-
momentum.
One final note: it is clear that

* N-N=-n’ n=(-N-N)"% (4.6)
Thus, n is a scalar. In the same way that ‘rest mass’ ts a scalar, even
though energy and ‘inertial mass’ are frame dependent, here we have
that n is a scalar, the ‘rest density’, even though number density is frame
dependent. We will always define n to be a scalar number equal to the
number density in the MCRF. We will make similar definitions for
pressure, temperature, and other quantities characteristic of the fluid.
These will be discussed later.

4.3 One-forms and surfaces

Number density as a timelike flux. We can complete the above
discussion of the unity of number density and flux by realizing that
number density can be regarded as a timelike flux. To see this, let us
look at the flux across x surfaces again, this time in a spacetime diagram,
in which we plot only 7 and % (Fig. 4.4). The surface & perpendicular
to X has the world line shown. At any time f it is just one point, since
we are suppressing both § and Z. The world lines of those particles that
go through & in the time Af are also shown. The flux is the number of
world lines that cross & in the interval Af=1. Really, since it is a
two-dimensional surface, its ‘world path’ is three-dimensional, of which
we have drawn only a section. The flux is the number of world lines that

S A

e —— . e — —— — — ——

=iy

particles

Fig. 44 Fig. 4.2 in a spacetime diagram, with the j direction suppressed.
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cross a unit ‘volume’ of this three-surface: by volume we of course mean
a cube of unit side - Ai=1,Ay=1,AZ=1. So we can define a flux as
the number of world lines crossing a unit three-volume. There is no
reason we cannot now define this three-volume to be an ordinary spatial
volume AX=1,Ay=1,AZ=1, taken at some particular time f. This is
shown in Fig. 4.5. Now the flux is the number crossing in the interval
Ax=1 (since y and Z are suppressed). But this is just the number
‘contained’ in the unit volume at the given time: the number density. So
the ‘timelike’ flux is the number density.

1111/ -
|
|
|
.
pamcles | | -
“Tax X

Fig. 45 Number density as a flux across surfaces 7= const.

A one-form defines a surface. The way we described surfaces above was
somewhat clumsy. To push our invariant picture further we need a
somewhat more satisfactory mathematical representation of the surface
that these world lines are crossing. This representation is given by
one-forms. In general, a surface is defined as the solution to some equation

¢(t, x, ¥, z) =const.
The gradient of the function ¢, d¢, is a normal one-form. In some sense,
d¢ defines the surface ¢ = const., since it uniquely determines the direc-
tions to that surface. However, any multiple of d¢ also defines the same
surface, so it is customary to use the unit-normal one-form when the
surface is not nuil:

A=d¢/|del, (4.7)

where

|d¢| is the magnitude of de:

ldo| =|n"Pd..bgl'? (4.8)
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(Do not confuse A with n, the number density in the MCRF: they are
completely different, given, by historical accident, the same letter.)

As in three-dimenstonal vector calculus (e.g. Gauss’ law), one defines
the ‘surface element’ as the unit normal times an area element in the
surface. In this case, a volume element in a three-space whose coordinates
are x°, x?, and x” (for some particular values of a, 8, and v, all distinct)
can be represented by

i dx* dx® dx”, (4.9)
and a unit volume (dx* =dx” =dx” =1) is just A (These dxs are the
infinitesimals that we integrate over, not the gradients.)

The flux across the surface. Recall from Gauss’ law in three dimensions
that the flux across a surface of, say, the electric field is just E - n, the
dot product of E with the unit normal. The situation here is exactly the
same: the flux (of particles) across a surface of constant ¢ is (A, N). To
see this, iet ¢ be a coordinate, say X. Then a surface of constant X has
normal dx, which is a unit normal already since dx - ¢ (0, 1,0,0). Then
(dx, N)= N°(dx), = N*, which is what we have already seen is the flux
across x surfaces. Clearly, had we chosen ¢ =1, then we would have
wound up with Na, the number density, or flux across a surface of
constant t.

This is one of the first concrete physical examples of our definition of
a vector as a function of one-forms into real numbers. Given the vector
N, we can calculate the flux across a surface by finding the unit-normal
one-form for that surface, and contracting it with N. We have, moreover,
expressed everything frame invariantly and in a manner that separates
the property of the system of particles N from the property of the surface
A. All of this will have many parallels in § 4.4 below.

Representation of a frame by a one-form. Before going on to discuss other
properties of fluids, we should mention a useful fact. An inerttal frame,
which up to now has been defined by its four-velocity, can be defined
also by a one-form, namely that associated with its four-velocity g(U, ).
This has components

Ua = 7701,3 U'B
or, in this frame,
U() == l, U,' = (),

This is clearly also equal to —df (since their components are equal). So
we could equally well define a frame by giving dr. This has a nice picture:
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dt is to be pictured as a set of surfaces of constant ¢, the surfaces of
simultaneity. These clearly do define the frame, up to spatial rotations,
which we usually ignore. In fact, in some sense dt is a more natural way
to define the frame than U. For instance, the energy of a particle whose
four-momentum is p is

E =(dt, py=p". (4.10)
There is none of the awkward minus sign that one gets in Eq. (2.35)
E=-p5-U.

44 Dust again: The stress—energy tensor
So far we have only discussed how many dust particles there
are. But they also have energy and momentum, and it will turn out that
their energy and momentum are the source of the gravitational field in
GR. So we must now ask how to represent them in a frame-invariant
manner. We will assume for simplicity that all the dust particles have
the same rest mass m.

Energy density. In the MCREF, the energy of each particle is just m, and
the number per unit volume is n. Therefore the energy per unit volume
is mn. We denote this in general by p:

p = energy density in the MCRF. (4.11)
Thus p is a scalar just as n is (and m is). In our case of dust,
p = nm (dust). (4.12)

In more general fluids, where there is random motion of particles and
hence kinetic energy of motion, even in an average rest frame, Eq. (4.12)
will not be valid.

In the frame € we again have that the number density is n/J (1- vz),
but now the energy of each particle is m/Y(1- v?), since it is moving.
Therefore the energy density is mn/(1 — v’):

P {energy density in a frame in }
2 - -

(4.13)
l—v

which particles have velocity v
This transformation involves two factors of (1—v?)"/?= Aﬁo, because both
volume and energy transform. It is impossible, therefore, to represent
energy density as some component of a vector. It is, in fact, a component
of a (3) tensor. This is most easily seen from the point of view of our
definition of a tensor. To define energy requires a one-form, in order to
select the 0 component of the four-vector of energy and momentum; to
define a density also requires a one-form, since density is a fiux across



98 Perfect fluids in special relativity

a constant-time surface. Similarly, an energy flux also requires two
one-forms: one to define ‘energy’ and the other to define the surface.
One can also speak of momentum density: again a one-form defines
which component of momentum, and another one-form defines density.
By analogy there is also momentum flux: the rate at which momentum
crosses some surface. All these things require two one-forms. So there
is a tensor T, called the stress—energy tensor, which has all these numbers
as values when supplied with the appropriate one-forms as arguments.

Stress—energy tensor. The most convenient definition of the stress—energy
tensor is in terms of its components in some (arbitrary) frame:

2 T(dx® dxP)=T* = { (4.14)

flux of @ momentum across}
a surface of constant x?

(By a momentum we mean, of course, the @ component of four-
momentum: p*={dx* p).) That this is truly a tensor is proved in
Exer. 5, §4.10.

Let us see how this definition fits in with our discussion above. Consider
T?. This is defined as the flux of 0 momentum (energy) across a surface
t = constant. This is just the energy density:

T = energy density. (4.15)
Similarly, T* is the flux of energy across a surface x’ = const:

T® =energy flux across x' surface. (4.16)
Then T is the flux of i momentum across a surface t = const: the density
of i momentum,

T'°= i momentum density. (4.17)
Finally, T? is the j flux of i momentum:

TY =flux of i momentum across j surface. (4.18)

For any particular system, giving the components of T in some frame
defines it completely. For dust, the components of T in the MCREF are
particularly easy. There is no motion of the particles, so all i momenta
are zero and all spatial fluxes are zero. Therefore

(TOO)MCRFz p = mn,

(TOE)MCRF = (TiO)MCRF = (Tij)MCRF =0.
It is easy to see that the tensor p‘®1\7 has exactly these components in
the MCRF, where j = mU is the four-momentum of a particte. Therefore
we have

L 2 Dust: T= JQN = mnURQU = pUR U. (4.19)
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From this we can conclude
T =T(6°, &*)
= pU(6*)U(&*)
=pU°U®. (4.20)

In the frame O, where

- 1 v*

U"(J(l—vz)’ \/(1-—02)"")’
we therefore have

T®=pUU%=p/(1-1?),

T = pUU’ = pv'/(1 - v?),

Ti0 =pU‘_U‘_’=pv"/(l — Y,

TV = pU U7 = pv'v/ /(1 — v?).

(4.21)

These are exactly what one would calculate, from first principles, for
energy density, energy flux, momentum density, and momentum flux
respectively. (We did the calculation for energy density above.) Notice
one important point: T*? = T?%; that is, T is symmetric. This will turn
out to be true in general, not just for dust.

4.5 General fluids
Until now we have dealt with the simplest possible collection of
particles. To generalize this to real fluids, we have to take account of the
facts that (i) besides the bulk motions of the fluid, each particle has some
random velocity; and (ii) there may be various forces between particles
that contribute potential energies to the total.

Definition of macroscopic quantities. The concept of a fluid element was
discussed in § 4.1. For each fluid element, we go to the frame in which
it is at rest (its total spatial momentum is zero). This is its MCRF. This
frame is truly momentarily comoving: since fluid elements can be acceler-
ated, a moment later a different inertial frame will be the MCREF.
Moreover, two different fluid elements may be moving relative to one
another, so that they would not have the same MCRFs. Thus, the MCRF
is specific to a single fluid element, and which frame is the MCRF is a
function of position and time. All scalar quantities associated with a fluid
element in relativity (such as number density, energy density, and tem-
perature) are defined to be their values in the MCRF. Thus we make the
definitions displayed in Table 4.1.
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Table 4.1. Macroscopic quantities for fluids

Symbol Name Definition
U Four-velocity of fluid Four-velocity of MCRF
element
n Number density Number of particles per unit volume in
MCRF
N Flux vector N=nU
p energy density Density of total mass energy (rest mass,
random kinetic, chemical, .. .)
IT Internal energy per H=(p/n)—m=>p=n(m+II)
particle Thus IT is a general name for all energies
other than the rest mass.
Po Rest-mass density Po = mn.

Since m is a constant, this is the ‘energy’
associated with the rest mass only. Thus,

p=po+nll

T Temperature Usual thermodynamic definition in
MCREF (see below).

P Pressure Usual fluid-dynamical notion in MCRF.

More about this later.
S Specific entropy Entropy per particle (see below).

First law of thermodynamics. This law is simply a statement of conservation
of energy. In the MCRF, we imagine that the fluid element is able to
exchange energy with its surroundings in only two ways: by heat conduc-
tion (absorbing an amount of heat AQ) and by work (doing an amount
of work pAV, where V is the three-volume of the element). If we let E
be the total energy of the element, then since AQ is energy gained and
pAYV is energy lost, we can write (assuming small changes)

or AE=4Q-pA V’} (4.22)
AQ=AE +pAYV.
Now, if the element contains a total of N particles, and if this number
doesn’t change (i.e. no creation or destruction of particles), we can write
V=£V-, AV=—§5An. (4.23)
n n
Moreover, we also have (from the definition of p)
E=pV=pN/n,
AE=pAV+VAp.
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These two results imply
N An
AQ=—Ap—-N(p+p)—.
n n
If we write g = Q/ N, which is the heat absorbed per particle, we obtain
+
nAg=Ap— -p—';-EAn. (4.24)

Now suppose that the changes are ‘infinitesimal’. It can be shown in
general that a fluid’s state can be given by two parameters: for instance,
p and T or p and n. Everything else is a function of, say, p and n. That
means that the right-hand side of Eq. (4.24),

dp—(p +p)dn/n,

depends only on p and n. The general theory of first-order differential
equations shows that this always possesses an integrating factor: that is,
there exist two functions A and B, functions only of p and n, such that

dp—(p+p)dn/n=AdB

is an identity for all p and n. It is customary in thermodynamics to define
temperature to be A/n and specific entropy to be B:

2 dp—(p+p)dn/n=nTdS, (4.25)
or, in other words,

Agq=T AS. (4.26)
The heat absorbed by a fluid element is proportional to its increase in
entropy.

We have thus introduced T and S as convenient mathematical defini-
tions. A full treatment would show that T is the thing normally meant
by temperature, and that S is the thing used in the second law of
thermodynamics, which says that the total entropy in any system must
increase. We'll have nothing to say about the second law. Entropy appears
here only because it is an integral of the first law, which is merely
conservation of energy. In particular, we shall use both Egs. (4.25) and
(4.26) later.

The general stress—energy tensor. The definition of T*# in Eq. (4.14) is
perfectly general. Let us in particular look at it in the MCRF, where
there is no bulk flow of the fluid element, and no spatial momentum in
the particles. Then in the MCRF we have

(1) T° =energy density = p.

(2) T% =energy flux. Although there is no motion, energy may be
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transmitted by heat conduction. So T% is basically a heat-conduction
term in the MCRF.

(3) T=momentum density. Again the particles have no momen-
tum, but if heat is being conducted, then the energy will carry momentum.
We’ll argue below that 7%= T

(4) TV =momentum flux. This is an interesting and important term.
The next section gives a thorough discussion of it. It is called the stress.

The spatial components of T, T'. By definition, TV is the flux of i
momentum across the j surface. Consider (Fig. 4.6) two adjacent fluid

A A B

Fig. 4.6 The force F exerted by element A on its neighbor B may be in any
direction depending on properties of the medium and any external forces.

elements, represented as cubes, having the common interface . In
general, they exert forces on each other. Shown in the diagram is the
force F exerted by A on B (B of course exerts an equal and opposite
force on A). Since force equals the rate of change of momentum (by
Newton’s law, which is valid here, since we are in the MCRF where
velocities are zero), A is pouring momentum into B at the rate F per unit
time. Of course, B may or may not acquire a new velocity as a result of
this new momentum it acquires; this depends upon how much momentum
is put into B by its other neighbors. Obviously B’s motion is the resultant
of all the forces. Nevertheless, each force adds momentum to B. There
is therefore a flow of momentum across & from A to B at the rate F. If
& has area s, then the flux of momentum across ¥ is F/ . If ¥ is a
surface of constant x’, then TV for fluid element A is F'/ .

This is a brief illustration of the meaning of TV: it represents forces
between adjacent fluid elements. As mentioned before, these forces need
not be perpendicular to the surfaces between the elements (i.e. viscosity
or other kinds of rigidity give forces parallel to the interface). But if the
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forces are perpendicular to the interfaces, then TV will be zero unless
i =Jj. (Think this through — we’ll use it shortly.)

Symmetry of T*? in MCRF., We now prove that T is a symmetric tensor.
We need only prove that its components are symmetric in one frame;
that implies that for any 7, §, T(7, §) = T(§, ), which implies the symmetry
of its components in any other frame. The easiest frame is the MCRF.

(a) Symmetry of T". Consider Fig. 4.7 in which we have drawn a fluid
element as a cube of side I The force it exerts on a neighbor across
surface (1) (a surface x =const.) is F| = T™I°, where the factor I* gives

3

: O

Fig. 47 A fluid element.

the area of the face. Here, i runs over 1, 2, and 3, since F is not necessarily
perpendicular to the surface. Similarly, the force it exerts on a neighbor
across (2) is F5 = T"I’. (We shall take the limit />0, so bear in mind
that the element is small.) The element also exerts a force on its neighbor
toward the —x direction, which we call F3. Similarly, there is F, on the
face looking in the negative y direction. The forces on the fluid element
are, respectively, — F|, — F3, etc. The first point is that F; =~ — F} in order
that the sum of the forces on the element should vanish when 10
(otherwise the tiny mass obtained as / - 0 would have an infinite acceler-
ation). The next point is to compute torques about the z axis through
the center of the fluid element. (Since forces on the top and bottom of
the cube don’t contribute to this, we haven’t considered them.) The torque
dueto —F, is —(r xF,)* = — xF} = —3IT”*I, where we have approximated
force as acting at the center of the face, where r—(1/2, 0, 0). The torque
due to —F, is the same, —3I° T**. The torque due to —F, is —(rxF,)’ =
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+yF3 =3ITP. Similarly, the torque due to —F, is the same, 5I°T™.
Therefore, the total torque is

r,=P(TY = T™). (4.27)

The moment of inertia of the element about the z axis is proportional

to its mass times /*, or

1= apl,
where a is some numerical constant and p is the density (whether of
total energy or rest mass doesn’t matter in this argument). Therefore the
angular acceleration is

r Txy _ Tyx

0= 1= (4.28)

apl?
Since o is a number and p is independent of the size of the element, as
are T and T, this will go to infinity as /- 0 unless

T =T7".
Thus, since it is obviously not true that fluid elements are whirling around

inside fluids, smaller ones whirling ever faster, we have that the stresses
are always symmetric:

T'=T" (4.29)
Since we made no use of any property of the substance, this is true of
solids as well as fluids. It is true in Newtonian theory as well as in
relativity; in Newtonian theory TY are the components of a three-
dimensional (3) tensor called the stress tensor. It is familiar to any
materials engineer; and it contributes its name to its relativistic generaliz-
ation T.

(b) Equality of momentum density and energy flux. Thus is much
easier to demonstrate. The energy flux is the density of energy times the
speed it flows at. But since energy and mass are the same, this is the
density of mass times the speed it is moving at; in other words, the
density of momentum. Therefore T% = T

Conservation of energy—momentum. Since T represents the energy and
momentum content of the fluid, there must be some way of using it to
express the law of conservation of energy and momentum. In fact it is
reasonably easy. In Fig, 4.8 we see a cubical fluid element, seen only in
cross-section (z direction suppressed). Energy can flow in across all sides.
The rate of flow across face (4) is I*T**(x =0), and across (2) is =1 T**
(x = a); the second term has a minus sign, since T°* represents energy
flowing in the positive x direction, which is out of the volume across
face (2). Similarly, energy flowing in the y direction is PT%(y=0)-
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Yt

.
>

{ X

Fig. 4.8 A section z=const. of a cubical fluid element.

PT%(y=1). The sum of these rates must be the rate of increase in the
energy inside, 8( T°P%)/at (statement of conservation of energy). There-
fore we have

% BT = P[T%%(x = 0)— T (x = [) + T*(y = 0)

—T*(y=D+T(z=0)— T"(z=D]. (4.30)
Dividing by I’ and taking the limit /- 0 gives
9
Do L qoc_ 2 oy 9 qo: 4.31)
ot ax dy dz

[In deriving this we use the definition of the derivative
. T(x=0)-T"(x=1) 9
lim =_——
-0 I ax
Eq. (4.31) can be written as

T+ T, +T¥ +T%.=0

7] (4.32)

or
T, =0. (4.33)
This is the statement of the law of conservation of energy.
Similarly, momentum is conserved. The same mathematics applies,
with the index ‘0’ changed to whatever spatial index corresponds to the

component of momentum whose conservation is being considered. The
general conservation law is, then,

* T* 5 =0. (4.34)
This applies to any material in SR. Notice it is just a four-dimensional

divergence. Its relation to Gauss’ theorem, which gives an integral form
of the conservation law, will be discussed later.
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Conservation of particles. It may also happen that, during any flow of the
fluid, the total number of particles will not change. This conservation
law is derivable in the same way as Eq. (4.34) was. In particular, in Fig.
4.8 the rate of change of the number of particles in a fluid element will
be due only to loss or gain across the boundaries, i.e. to net fluxes out
or in. We can then write that

9 9 9 9
—N’=—— N*— — N’-— N*
at ax ay 3z

or

. N°,=(nU%), =0. (4.35)

We will confine ourselves to discussing only fluids that obey this conserva-
tion law. This is hardly any restriction, since n can, if necessary, always
be taken to be the density of baryons.

‘Baryon’, for those not familiar with high-energy physics, is a general
name applied to the more massive particles in physics. The two com-
monest are the neutron and proton. All others are too unstable to be
important in everyday physics — but when they decay they form protons
and neutrons, thus conserving the total number of baryons without
conserving rest mass or particle identity. Although theoretical physics
suggests that baryons may not always be conserved — for instance,
so-called ‘grand unified theories’ of the strong, weak, and electromagnetic
interactions may predict a finite lifetime for the proton; and collapse to
and subsequent evaporation of a black hole (see Ch. 11) will not conserve
baryon number — no such phenomena have yet been observed and, in
any case, are unlikely to be important in most situations.

4.6 Perfect fluids
Finally, we come to the type of fluid which is our principal
subject of interest. A perfect fluid in relativity is defined as a fluid that has
no viscosity and no heat conduction in the MCRF. It is a generalization
of the ‘ideal gas’ of ordinary thermodynamics. It is, next to dust, the
simplest kind of fluid to deal with. The two restrictions in its definition
enormously simplify the stress—energy tensor, as we now see.

No heat conduction. From the definition of T, one sees that this immedi-
ately implies that, in the MCRF, T% = T = 0. Energy can flow only if
particles flow. Recall that in our discussion of the first law of thermody-
namics we showed that if the number of particles were conserved, then
the specific entropy was related to heat flow by Eq. (4.26). This means
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that in a perfect fluid, if Eq. (4.35) for conservation of particles is obeyed,
then we should also have that S is a constant in time during the flow of
the fluid. We shall see how this comes out of the conservation laws in a
moment.

No viscosity. Viscosity is a force parallel to the interface between particles.
Its absence means that the forces should always be perpendicular to the
interface, i.e. that T? should be zero unless i =j. This means that T
should be a diagonal matrix. Moreover, it must be diagonal in all MCRF
frames, since ‘no viscosity’ is a statement independent of the spatial axes.
The only matrix diagonal in all frames is a multiple of the identity: all
its diagonal terms are equal. Thus, an x surface will have across it only
a force in the x direction, and similarly for y and z; these forces-per-unit-
area are all equal, and are called the pressure, p. So we have TV = p8¥.
From six possible quantities (the number of independent elements in the
3x3 symmetric matrix TY) the zero-viscosity assumption has reduced
the number of functions to one, the pressure.

Form of T. In the MCRF, T has the components we have just deduced:

p 0 0 O
0 p 0O
T8 = 4,
T)=l0 0 » of (4.36)
0 0 0 p
It is not hard to show that in the MCRF
T*? =(p+p)UUP +pn°°. (4.37)

For instance, if « =8 =0, then U’=1, #®°=~1,and T** =(p+p)—p=
p, as in Eq. (4.36). By trying all possible a« and B you can verify that Eq.
(4.37) gives Eq. (4.36). But Eq. (4.37) is a frame-invariant formula in the
sense that it uniquely implies

. T=(p+p)URQRU + pg 1. (4.38)
This is the stress—energy tensor of a perfect fluid.

Aside on the meaning of pressure. A comparison of Eq. (4.38) with Eq.
(4.19) shows that ‘dust’ is the special case of a pressure-free perfect fluid.
This means that a perfect fluid can be pressure free only if its particles
have no random motion at all. Pressure arises in the random velocities
of the particles. Even a gas so dilute as to be virtually collisionless has
pressure. This is because pressure is the flux of momentum; whether this
comes from forces or from particles crossing a boundary is immaterial.
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The conservation laws. Eq. (4.34) gives us
T g =[(p+p) U U* +pn**] 5 =0. (4.39)
This gives us our first real practice with tensor calculus. There are four
equations in Eq. (4.39), one for each a. First, let us also assume
(nUP)5=0 (4.40)
and write the first term in Eq. (4.39) as
+
[(p+p)UUP) 5= [p 2 U“nUf’]

n B

- nU* (fi-’f U“) | (4.41)
n .8

Moreover, n°® is a constant matrix, so n*® , =0. This also implies, by
the way,

U*gU,=0. (4.42)
The proof of Eq. (4.42) is

UU,=-1=(U"U,) =0 (4.43)
or

(U Uy 5 = (USU") gay =2U° s U (4.44)

The last step follows from the symmetry of 7,5 which means that
U® g Uy, = U*U” g 1., Finally, the last expression in Eq. (4.44) con-
verts to

2U° U,

which is zero by Eq. (4.43). This proves Eq. (4.42). We can make use of
Eq. (4.42) in the following way. The original equation now reads, after
use of Eq. (4.41),

+
nU? (E;—’—’ U"’) , +psn°f =0. (4.45)

From the four equations here, we can obtain one particularly useful one.
Multiply by U, and sum on a. This gives the time component of Eg.
(4.45) in the MCRF:

PTDP . .«

nUPU, (—n—— U ) +psn*PU, =0. (4.46)
B

The last term is just

P.BUB’
which we know to be the derivative of p along the world line of the fluid
element, dp/dr. The first term gives zero when the B derivative operates
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on U? (by Eq. 4.42), so we obtain (using U°U, =—1)

+
U® [-—n (p p) +p,5]=0. (4.47)
n /s
A little algebra converts this to
+
_yU# [p’B_PnP,,’B]ﬂ, (4.48)
Written another way,
dp p+pdn
Lt _E_f___o. 4.4
dr n dr (4.49)
This is to be compared with Eq. (4.25). It means
ds
¢ uss,=—=0. (4.50)
dr

Thus, the flow of a particle-conserving perfect fluid conserves specific
entropy. This is called adiabatic. Because entropy is constant in a fluid
element as it flows, we shall not normally need to consider it. Nevertheless,
it is important to remember that the law of conservation of energy in
thermodynamics is embodied in the component of the conservation
equations, Eq. (4.39), parallel to U".

The remaining three components of Eq. (4.39) are derivable in the
following way. We write, again, Eq. (4.45):

nUP (E—+—£ U") +p,ﬂn“5 =0
n B

and go to the MCRF, where U'=0 but U';#0. In the MCREF, the 0
component of this equation is the same as its contraction with U,, which
we have just examined. So we only need the i components:

+ A )
nU® (pnpU')B+p,ﬂn'ﬁ=o. (4.51)

Since U'=0, the B derivative of (p +p)}/n contributes nothing, and we
get

(p +p) Ui,ﬂ UB +p,p’niﬂ =0. (4.52)

Lowering the index i makes this easier to read (and changes nothing).
Since niﬂ = 8,-3 we get

(p+pP)UgUP +p,;=0. (4.53)
Finally, we recall that U, g U® is the definition of the four-acceleration a;:

L 4 (pt+p)a,+p,=0. (4.54)
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Those familiar with nonrelativistic fluid dynamics will recognize this as
the generalization of

pa+Vp=0, (4.55)
where

a=v+(v-V)v. (4.56)

The only difference is the use of (p + p) instead of p. In relativity, (p +p)
plays the role of ‘inertial mass density’, in that, from Eq. (4.54), the larger
(p +p), the harder it is to accelerate the object. Eq. (4.54) is essentially
F= ma, with —p; being the force on a fluid element. That is, p is the
force a fluid element exerts on its neighbor, so —p is the force on the
element. But the neighbor on the opposite side of the element is pushing
the other way, so only if there is a change in p across the fluid element
will there be a net force causing it to accelerate. That is why —Vp is the
force.

4.7 Importance for general relativity
General relativity is a relativistic theory of gravity. We weren’t
able to plunge into it immediately because we lacked a good enough
understanding of tensors, of fluids in SR, and of curved spaces. We have
yet to study curvature (that comes next), but at this point we can look
ahead and discern the vague outlines of the theory we shall study.

The first comment is on the supreme importance of Tin GR. Newton’s
theory has as a source of the field the density p. This was understood to
be the mass density, and so is closest to our p,. But a theory that uses
rest mass only as its source would be peculiar from a relativistic viewpoint,
since rest mass and energy are interconvertible. In fact, one can show
that such a theory would violate some very high-precision experiments
(to be discussed later). So the source of the field should be all energies,
the density of total mass energy T%. But to have as the source of the
field only one component of a tensor would give a noninvariant theory
of gravity: one would need to choose a preferred frame in order to
calculate T*. Therefore Einstein guessed that the source of the field
ought to be T: all stresses and pressures and momenta must also act as
sources. Combining this with his insight into curved spaces led him to GR.

The second comment is about pressure, which plays a more funda-
mental role in GR than in Newtonian theory: first, because it is a source
of the field; and second, because of its appearance in the (p +p) term
in Eq. (4.54). Consider a dense star, whose strong gravitational field
requires a large pressure gradient. How large is measured by the acceler-
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ation the fluid element would have, a, in the absence of pressure. Given
the field, and hence given a, the required pressure gradient is just that
which would cause the opposite acceleration without gravity:

P

p+p
This gives the pressure gradient p .. Since (p +p) is greater than p, the
gradient must be larger in relativity than in Newtonian theory. Moreover,
since all components of T are sources of the gravitational field, this larger
pressure adds to the gravitational field, causing even larger pressures
(compared to Newtonian stars) to be required to hold the star up. For
stars where p« p (see below), this doesn’t make much difference. But
when p becomes comparable to p, one finds that increasing the pressure
is self-defeating: no pressure gradient will hold the star up, and gravita-
tional collapse must occur. This description, of course, glosses over much
detailed calculation, but it shows that even by studying fluids in SR we
can begin to appreciate some of the fundamental changes GR brings to
gravitation.

Let us just remind ourselves of the relative sizes of p and p. We saw
in Exer. 1, § 1.14, that p« p in ordinary situations. In fact, one only gets
p=p for very dense material (neutron star) or material so hot that the
particles move at close to the speed of light (a ‘relativistic’ gas).

4.8 Gauss’ law
Our final topic on fluids is the integral form of the conservation
laws, which are expressed in differential form in Egs. (4.34) and (4.35).
As in three-dimensional vector calculus, the conversion of a volume
integral of a divergence into a surface integral is called Gauss’ law. The
proof of the theorem is exactly the same as in three dimensions, so we
shall not derive it in detail:

. J Ve, dx= ‘_# Ven, &S, (4.57)

where 7 is the unit-normal one-form discussed in § 4.3, and d’S denotes
the three-volume of the three-dimensional hypersurface bounding the
four-dimensional volume of integration. The sense of the normal is that
it is outward pointing, of course, just as in three dimensions. In Fig. 4.9
a simple volume is drawn, in order to illustrate the meaning of Eq. (4.57).
The volume is bounded by four pairs of hypersurfaces, for constant ¢, x,
v and z; only two pairs are shown, since we can only draw two dimensions
casily. The normal on the ¢, surface is d¢. The normal on the ¢, surface
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Fig. 49 The boundary of a region of spacetime.

is —d¢, since ‘outward’ is clearly backwards in time. The normal on x,
is dx, and on x, is —dx. So the surface integral in Eq. (4.57) is

J. VPdxdydz + J‘ (-V%dx dy d:

+J. V*dtdy dz+J’ (~V*)dtdyd:z

+similar terms for the other surfaces in the boundary.
We can rewrite this as

J [Vt~ VO(1)1dx dy dz

+J [V*(xp)— V*(x)]dtdydz + - - - (4.58)

If we let V be N, then N¢ . =0means that the above expression vanishes,
which has the interpretation that change in the number of particles in
the three-volume (first integral) is due to the flux across its boundaries
(second and subsequent terms). If we are talking about energy conserva-
tion we replace N* with T°, and use T""‘,,,=0. Then, obviously, a
similar interpretation of Eq. (4.58) applies. Gauss’ law gives an integral
version of energy conservation.

4.9 Bibliography
Continuum mechanics and conservation laws are treated in most
texts on GR, such as Misner et al. (1973). Students whose background
in thermodynamics or fluid mechanics is weak are referred to Fermi
(1956) and Landau & Lifshitz (1959) respectively. Apart from Exer. 25,
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§ 4.10 below, we do not study much about electromagnetism, but it has
a stress—energy tensor and illustrates conservation laws particularly
clearly. See Landau & Lifshitz (1962) or Jackson (1975). Relativistic fluids
with dissipation present their own difficulties, which reward close study.
See Israel & Stewart (1980).

4.10 Exercises
1 Comment on whether the continuum approximation is likely to apply
to the following physical systems: (a) planetary motions in the solar
system; (b) lava flow from a volcano; (¢) traffic on a major road at rush
hour; (d) traffic at an intersection controlled by stop signs for each
incoming road; (e) plasma dynamics.

2 Flux across a surface of constant x is often loosely called ‘flux in the
x direction’, Use your understanding of vectors and one-forms to argue
that this is an inappropriate way of referring to a flux.

3(a) Describe how the Galilean concept of momentum is frame dependent
in a manner in which the relativistic concept is not.
(b) How is this possible, since the relativistic definition ts nearly the same
as the Galilean one for small velocities? (Define a Galilean four-
momentum vector.)

4 Show that the number density of dust measured by an observer whose
four-velocity is U, is — N - U,,.

§ Complete the proof that Eq. (4.14) defines a tensor by arguing that it
must be linear in both its arguments.

6 Establish Eq. (4.19) from the preceding equations.
7 Derive Eq. (4.21).

% Argue that Eq. (4.25) can be written as an equation among one-forms,
i.e.
dp—(p+p)dn/n=nT 4s,
and similarly for Eq. (4.26). Show that the one-form Agq is not a gradient,
i.. is not dq for any function q.

9 Show that Eq. (4.34), when « is any spatial index, is just Newton's
second law.

10 Take the limit of Eq. (4.35) for |v|« ] to get
an/at+a(nv')/ax' =0.
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Show that the matrix 8" is unchanged when transformed by a rotation
of the spatial axes. '
Show that any matrix which has this property is a multiple of §".

Derive Eq. (4.37) from Eq. (4.36).

Supply the reasoning in Eq. (4.44).

Argue that Eq. (4.46) is the time component of Eq. (4.45) in the MCRF.
Derive Eq. (4.48) from Eq. (4.47).

In the MCRF, U’ =0, Why can’t we assume U'g=0?

We have defined a* = U* ,U®. Go to the nonrelativistic limit (small
velocity) and show that

a'=9'+(v-V)v'=Dov'/Dy,

where the operator D/Dr is the usual ‘total’ or ‘advective’ time deriva-
tive of fluid dynamics.

Sharpen the discussion at the end of § 4.6 by showing that —Vp is
actually the net force per unit volume on the fluid element in the MCRF.

Show that Eq. (4.58) can be used to prove Gauss’ law, Eq. (4.57).

Show that, if particles are not conserved but are generated locally at a
rate £ particles per unit volume per unit time in the MCRF, then the
conservation law, Eq. (4.35), becomes

N?,=¢

Generalize (a) to show that if the energy and momentum of a body are
not conserved (e.g. because it interacts with other systems), then there
is a nonzero relativistic force four-vector F® defined by

T8 ;= F°.

Interpret the components of F* in the MCRF.

In an inertial frame € calculate the components of the stress—energy
tensors of the following systems:

A group of particles all moving with the same velocity v = Be,, as seen
in 0. Let the rest-mass density of these particles be p,, as measured in
their comoving frame. Assume a sufficiently high density of particles
to enable treating them as a continuum.

A ring of N similar particies of mass m rotating counter-clockwise in
the x—y plane about the origin of 0, at a radius a from this point, with
an angular velocity w. The ring is a torus of circular cross-section of
radius 8a « g, within which the particles are uniformly distributed with
a high enough density for the continuum approximation to apply. Do
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(a)
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(c)
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not include the stress—energy of whatever forces keep them in orbit.
(Part of the calculation will relate p, of part (a) to N, a, w, and da.)
Two such rings of particles, one rotating clockwise and the other
counter-clockwise, at the same radius a. The particles do not collide or
interact in any way.

Many physical systems may be idealized as collections of noncolliding
particles (for example, black-body radiation, rarified plasmas, galaxies
and globular clusters). By assuming that such a system has a random
distribution of velocities at every point, with no bias in any direction
in the MCREF, prove that the stress—energy tensor is that of a perfect
fluid. If all particles have the same speed v and mass m, express p and
p as functions of m, v and n. Show that a photon gas has p =1p.

Use the identity T** , =0 to prove the following results for a bounded
system (i.e. a system for which T*" =0 outside a bounded region of
space).

d

B—J' T°* d’x =0 (conservation of energy and momentum).
t

B - . ..
FJ’ TOx'x' d’x =2 J TY d’x (tensor virial theorem).

2
a_z J T®(x'x,)? d®x = 4 J T'x'x; d*x +8 J TVxx, d’x.
at

Astronomical observations of the brightness of objects are measurements
of the flux of radiation T° from the object at Earth. This problem
calculates how that flux depends on the relative velocity of the object
and Earth.
Show that, in the rest frame O of a star of constant luminosity L (total
energy radiated per second), the stress—energy tensor of the radiation
from the star at the event (1, x, 0, 0) has components T = T% = 7%=
T* = L/(4wx"). The star sits at the origin.
Let X be the null vector which separates the events of emission and
reception of the radiation. Show that )?—n»(x, x,0,0) for radiation
observed at the event (x, x, 0, 0). Show that the stress—energy tensor of
(a) has the frame-invariant form

L X®X

4w (0, X)*’
where U, is the star’s four-velocity, U.- +1,0,0, 0).
Let the Earth-bound observer @, traveling with speed v away from the
star in the x direction, measure the same radiation, again with the star
on the X axis. Let ‘)? - (R, R,0,0)and find R as a function of x. Express
T°" in terms of R. Explain why R and T depend as they do on w.



116

25

(a)

(b)

(c)

(d)

(¢)

Perfect fluids in special relativity

Electromagnetism in SR. (This exercise is suitable only for students who
have already encountered Maxwell’s equations in some form.) Max-
well’s equations for the electric and magnetic fields in vacuum, E and
B, in three-vector notation are

d
VXB——E=4n/J,
at

¢
VXE+—B=0, (4.59)

V-E=47p,
V:-B=0,

in units where u,=g,=c=1. (Here p is the density of electric charge
and J the current density.)

An antisymmetric (§) tensor F can be defined on spacetime by the
equations F* = E' (i=1,2,3), F¥ = B", F** = BY, F* = B". Find from
this definition all other components F*” in this frame and write them
down in a matrix.

A rotation by an angle 6 about the z axis is one kind of Lorentz
transformation, with the matrix

1 0 0 0

0 cosf —sin® O

0 sind cosé Of

0 0 0 |

Show that the new components of F,

FoP = A" AP F*,

define new electric and magnetic three-vector components (by the rule
given in (a)) that are just the same as the components of the old E and
B in the rotated three-space. (This shows that a spatial rotation of F
makes a spatial rotation of E and B.)

Define the current four-vector J by J® = p, J' =(J), and show that two
of Maxwell’s equations are just

AP, =

F*Y =4, (4.60)
Show that the other two of Maxwell’s equations are
Fp,l'.t\ +FW\‘,u, +FAy,_y 20' (4.61)

Note that there are only four independent equations here. That is,
choose one index value, say 0. Then the three other values (1, 2, 3) can
be assigned to u, v, A in any order, producing the same equation (up
to an overall sign) each time. Try it and see: it follows from antisymmetry
of F,,.

We have now expressed Maxwell's equations in tensor form. Show that
conservation of charge, J*, =0 (recall the similar Eq. (4.35) for the
number—flux vector N), is implied by Eq. (4.60) above. (Hint: use
antisymmetry of F,.)
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The charge density in any frame is J°. Therefore the total charge in
spacetime is Q = [ J° dx dy dz, where the integral extends over an entire
hypersurface = const. Defining dr=#, a unit normal for this hyper-
surface, show that

Q= J J%n, dx dydz (4.62)

Use Gauss’ law and Eq. (4.60) to show that the total charge enclosed
within any closed two-surface & in the hypersurface ¢t =const. can be
determined by doing an integral over ¥ itself:

Q=§ F%n, d5f=fJE E-nd%
&F &

where n is the unit normal to & in the hypersurface (nor the same as
fi in part (f) above).

Perform a Lorentz transformation on F** to a frame € moving with
velocity v in the x direction relative to the frame used in (a) above. In
this frame define a three-vector E with components E‘= F°' and
similarly for B in analogy with (a). In this way discover how E and B
behave under a Lorentz transformation: they get mixed together! Thus,
E and B themselves are not Lorentz invariant, but are merely components
of F, called the Faraday tensor, which is the invariant description of
electromagnetic fields in relativity. If you think carefully, you will see
that on physical grounds they cannot be invariant. In particular, the
magnetic field is created by moving charges; but a charge moving in
one frame may be at rest in another, so a magnetic field which exists
in one frame may not exist in another. What is the same in all frames
is the Faraday tensor: only its components get transformed.
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Preface to curvature

5.1 On the relation of gravitation to curvature

Until now we have discussed only SR. In SR, forces have played
a background role, and we have never introduced gravitation explicitly
as a possible force. One ingredient of SR is the existence of inertial
frames that fill all of spacetime: all of spacetime can be described by a
single frame, all of whose coordinate points are always at rest relative
to the origin, and all of whose clocks run at the same rate relative to the
origin’s clock. From the fundamental postulates we were led to the idea
of the interval As?, which gives an invariant geometrical meaning to
certain physical statements. For example, a timelike interval between two
events is the time elapsed on a clock which passes through the two events;
a spacelike interval is the length of a rod that joins two events in a frame
in which they are simultaneous. The mathematical function that calculates
the interval is the metric, and so the metric of SR is defined physically
by lengths of rods and readings of clocks. This is the power of SR and
one reason for the elegance and compactness of tensor notatiori in it (for
instance the replacement of ‘number density’ and ‘flux’ by N). On a
piece of paper on which one had plotted all the events and world lines
of interest in some coordinate system, it would always be possible to
define any metric by just giving its components g,z as some arbitrarily
chosen set of functions of the coordinates. But this arbitrary metric would
be useless in doing physical calculations. The usefulness of 7,5 is its
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close relation to experiment, and our derivation of it drew heavily on
the experiments.

This closeness to experiment is, of course, a test. Since 7,z makes
certain predictions about rods and clocks, one can ask for their verifica-
tion. In particular, is it possible to construct a frame in which the clocks
all run at the same rate? This is a crucial question, and we shall show
that in a nonuniform gravitational field the answer, experimentally, is
no. In this sense, gravitational fields are incompatible with global SR:
the ability to construct a global inertial frame. We shall see that in small
regions of spacetime - regions small enough that nonuniformities of the
gravitational forces are too small to measure — one can always construct
a ‘local’ SR frame. In this sense, we shall have to build local SR into a
more general theory. The first step is the proof that clocks don’t all run
at the same rate in a gravitational field.

The gravitational redshift experiment. Let us first imagine performing an

idealized experiment, first suggested by Einstein. (i) Let a tower of height
h be constructed on the surface of Earth, as in Fig. 5.1. Begin with a

m
[ ? ¥
l
!
!
!
|
!

!
|

X

Fig. 5.1 A mass m is dropped from a tower of height h. The total mass at the
bottom is converted into energy and returned to the top as a photon. Perpetual
motion will be performed unless the photon loses as much energy in climbing
as the mass gained in falling. Light is therefore redshifted as it climbs in a
gravitational field.

particle of rest mass m at the top of the tower. (ii) The particle is dropped
and falls freely with acceleration g. It reaches the ground with velocity
v =(2gh)"/?, so its total energy E, as measured by an experimenter on
the ground, is m +3muv’ +0(v*) = m + mgh +0(v*). (iii) The experimenter
on the ground has some magical method of changing all this energy into
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a single photon of the same energy, which he directs upwards. (Such a
process does not violate conservation laws, since Earth absorbs the
photon’s momentum but not its energy, just as it does for a bouncing
rubber ball. The student sceptical of ‘magic’ should show how the
argument proceeds if only a fraction £ of the energy is converted into a
photon.) (iv) Upon its arrival at the top of the tower with energy E’, the
photon is again magically changed into a particle of rest mass m'=E’.
It must be that m’= m; otherwise, perpetual motion could result by the
gain in energy obtained by operating such an experiment. So we are led
by our abhorrence of the injustice of perpetual motion to predict that
E’'=m or, for the photon,
E' hv' m

* == =1-gh +0(v"). 5.1
E - hw mamghio@y) | SO -

We predict that a photon climbing in Earth’s gravitational field will lose
energy (not surprisingly) and will consequently be redshifted.

Although our thought experiment is too idealized to be practical, it is
possible to measure the redshift predicted by Eq. (5.1) directly. This was
first done by Pound & Rebka (1960) and improved by Pound & Snider
(1965). The experiment used the Mossbauer effect to obtain great pre-
cision in the measurement of the difference »' - v produced in a photon
climbing a distance h =22.5m. Eq. (5.1) was verified to approximately
1% precision. A detailed description of the experiment may be found in
Misner et al. (1973).

This experimental verification is comforting from the point of view of
energy conservation. But it is the death-blow to our chances of finding
a simple, special-relativistic theory of gravity, as we shall now show.

Nonexistence of a Lorentz frame at rest on Earth. If SR is to be valid in
a gravitational field, it is a natural first guess to assume that the ‘laboratory’
frame at rest on Earth is a Lorentz frame. The following argument, due
originally to Schild (1967), easily shows this assumption to be false. In
Fig. 5.2 we draw a spacetime diagram in this hypothetical frame, in which
the one spatial dimension plotted is the vertical one. Consider light as
a wave, and look at two successive ‘crests’ of the wave as they move
upward in the Pound—Rebka~Snider experiment. The top and bottom of
the tower have vertical world lines in this diagram, since they are at rest.
Light is shown moving on a wiggly line, and it is purposely drawn curved
in some arbitrary way. This is to allow for the possibility that gravity
may act on light in an unknown way, deflecting it from a null path. But
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4

Ny

bottom top

Fig. 5.2 In a time-independent gravitational field, two successive ‘crests’ of an
electromagnetic wave must travel identical paths. Because of the redshift (Eq.
(5.1)) the time between them at the top is larger than at the bottom. An observer
at the top therefore ‘sees’ a clock at the bottom running slowly.

no matter how light is affected’ by gravity the effect must be the same on
both wave crests, since the gravitational field does not change from one
time to another. Therefore the two crests’ paths are congruent, and we
conclude from the hypothetical Minkowski geometry that At,,, = Atpoiom.
On the other hand, the time between two crests is simply the reciprocal
of the measured frequency A¢t=1/» Since the Pound-Rebka-Snider
experiment establishes that vyoqom = Viop, W€ know that At,, > Atporom-
The conclusion from Minkowski geometry is wrong, and the reference
frame at rest on Earth is not a Lorentz frame.

Is this the end, then, of SR? Not quite. We have shown that a particular
frame is not inertial, We have not shown that there are no inertial frames.
In fact there are certain frames which are inertial in a restricted sense,

and in the next paragraph we shall use another physical argument to
find them.

The principle of equivalence. One important property of an inertial frame
is that a particle at rest in it stays at rest if no forces act on it. In order
to use this, we have to have an idea of what a force is. Ordinarily, gravity
is regarded as a force, but gravity is distinguished from all other forces
in a remarkable way: all bodies given the same initial velocity follow
the same trajectory in a gravitational field, regardless of their internal
composition. With all other forces, some bodies are affected and others
are not: electromagnetism affects charged particles but not neutral ones,
arid the trajectory of a charged particle depends on the ratio of its charge
to its mass, which is not the same for all particles. Similarly, the other
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two basic forces in physics — the so-called ‘strong’ and ‘weak’ interac-
tions — affect different particles differently. With all these forces, it would
always be possible to define experimentally the trajectory of a particle
unaffected by the force, i.e. a particle that remained at rest in an inertial
frame. But, with gravity, this does not work. Attempting to define an
inertial frame at rest on Earth, then, is vacuous, since no free particle
(not even a photon) could possibly be a physical ‘marker’ for it.

But there is a frame in which particles do keep a uniform velocity.
This is a frame which falls freely in the gravitational field. Since this
frame accelerates at the same rate as free particles do (at least the
low-velocity particles to which Newtonian gravitational physics applies),
it follows that all such particles will maintain a uniform velocity relative
to this frame. This frame is at least a candidate for an inertial frame. In
the next section we will show that photons are not redshifted in this
frame, which makes it an even better candidate. Einstein built GR by
taking the hypothesis that these frames are inertial.

The argument we have just made, that freely falling frames are inertial,
will perhaps be more familiar to the student if it is turned around.
Consider, in empty space free of gravity, a uniformly accelerating rocket
ship. From the point of view of an observer inside, it appears that there
is a gravitational field in the rocket: objects dropped accelerate toward
the rear of the ship, all with the same acceleration, independent of their
internal composition.' Moreover, an object held stationary relative to
the ship has ‘weight’ equal to the force required to keep it accelerating
with the ship. Just as in ‘real’ gravity, this force is proportional to the
mass of the object. A true inertial frame is one which falls freely toward
the rear of the ship, at the same acceleration as particles. From this it
can be seen that uniform gravitational fields are equivalent to frames
that accelerate uniformly relative to inertial frames. This is the principle
of equivalence between gravity and acceleration, and is a cornerstone of
Einstein’s theory. In more modern terminology, what we have described
is called the weak equivalence principle, ‘weak’ because it refers only to
gravity. We shall later use the strong equivalence principle, which says
that one can discover how all the other forces of nature behave in a
gravitational field by postulating that their laws in a freely falling inertial
frame are identical to their laws in SR, i.e. when there are no gravitational
fields.

1 This has been tested experimentally to extremely high precision in the so-called
Ebtvos experiment. See Dicke (1964).
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Before we return to the proof that freely falling frames are inertial,
even for photons, we must make two important observations. The first
is that our arguments are valid only locally — since the gravitational field
of Earth is not uniform, particles some distance away do not remain at
uniform velocity in a particular freely falling frame. We shall discuss
this in some detail below. The second point is that there are of course
an infinity of freely falling frames at any point. They differ in their
velocities and in the orientation of their spatial axes, but they all accelerate
relative to Earth at the same rate.

The redshift experiment again. Let us now take a different point of view
on the Pound-Rebka-Snider experiment. Let us view it in a freely falling
frame, which we have seen has at least some of the characteristics of an
inertial frame. Let us take the particular frame that is at rest when the
photon begins its upward journey ‘and falls freely after that. Since the
photon rises a distance A, it takes time At = h to arrive at the top. In this
time, the frame has acquired velocity gh downward relative to the
experimental apparatus. So the photon’s frequency relative to the freely
falling frame can be obtained by the redshift formula

v(freely falling) ~ 1+gh
v'(apparatus at top) (1 —g?h?)

=1+gh +0(v*. (5.2)

From Eq. (5.1) we see that if we neglect terms of higher order (as we did
to derive Eq. (5.1)), then we get ¥(photon emitted at bottom) = »(in freely
falling frame when photon arrives at top). So there is no redshift in a
freely falling frame. This gives us a sound basis for postulating that the
freely falling frame is an inertial frame.

Local inertial frames. The above discussion makes one suggest that the
gravitational redshift experiment really does not render SR and gravity
incompatible. Perhaps one simply has to realize that the frame at rest
on Earth is not inertial and the freely falling one —in which there is no
redshift and so Fig. 5.2 leads to no contradiction —is the true inertial
frame. Unfortunately this doesn’t completely save SR, for the simple
reason that the freely falling frames on different sides of Earth fall in
different directions: there is no single global frame which is everywhere
freely falling in Earth’s gravitational field and which is still rigid, in that
the distances between its coordinate points are constant in time. It is still
impossible to construct a global inertial frame, and so the most we can
salvage is a local inertial frame, which we now describe.
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Consider a freely falling frame in Earth’s gravitational field. An inertial
frame in SR fills all of spacetime, but this freely falling frame would not
be inertial if it were extended too far horizontally, because then it would
not be falling vertically. In Fig. 5.3 the frame is freely falling at B, but

-

Fig. 5.3 A ngid frame cannot tall freely in the Earth’s field and still remain rigid.

at A and C is not moving on the trajectory of a test particle. Moreover,
since the acceleration of gravity changes with height, the frame cannot
remain inertial if extended over too large a vertical distance; if it were
falling with particles at one height, it would not be at another. Finally,
the frame can have only a limited extent in time as well, since, as it falls,
both the above limitations become more severe due to the frame’s
approaching closer to Earth. All of these limitations are due to nonuni-
formities in the gravitational field. Insofar as nonuniformities can be
neglected, the freely falling frame can be regarded as inertial. Any
gravitational field can be regarded as uniform over a small enough region
of space and time, and so one can always set up local inertial frames.
They are analogous to the MCRFs of fluids: in this case the frame is
inertial in only a small region for a small time. How small depends on
(a) the strength of the nonuniformities of the gravitational field, and (b)
the sensitivity of whatever experiment is being used to detect noninertial
properties of the frame. Since any nonuniformity is, in principle, detect-
able, a frame can only be regarded mathematically as igertial in a
vanishingly small region. But for current technology, the freely falling
frames near the surface of Earth can be regarded as inertial to a high
accuracy. We will be more quantitative in a later chapter. For now, we
just emphasize the mathematical notion that any theory of gravity must
admit local inertial frames: frames that, at a point, are inertial frames of
SR.
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Tidal forces. Nonuniformities in gravitational fields are called tidal forces,
since they are the ones that raise tides. (If Earth were in a uniform
gravitational field, it would fall freely and have no tides. Tides bulge due
to the difference of the Moon’s and Sun’s gravitational fields across the
diameter of Earth.) We have seen that these tidal forces prevent the
construction of global inertial frames. It is therefore these forces that are
regarded as the fundamental manifestation of gravity in GR,

The role of curvature. The world lines of free particles have been our
probe of the possibility of constructing inertial frames. In SR, two such
world lines which begin parallel to each other remain parallel, no matter
how far they are extended. This is exactly the property that straight lines
have in Euclidean geometry. It is natural, therefore, to discuss the
geometry of spacetime as defined by the world lines of free particles. In
these terms, Minkowski space is a flat space, because it obeys Euclid’s
parallelism axiom. It is not a Euclidean space, however, since its metric
is different: photons travel on straight world lines of zero proper length.
So SR has a flat, non-Euclidean geometry.

Now, in a nonuniform gravitational field, the world lines of two nearby
particles which begin parallel do not generally remain parallel. Gravita-
tional spacetime is therefore not flat. In Euclidean geometry, when one
drops the parallelism axiom, one gets a curved space, For example, the
surface of a sphere is curved. Locally straight lines on a sphere extend
to great circles, and two great circles always intersect. Nevertheless,
sufficiently near to any point, one can pretend that the geometry is flat:
the map of a town can be represented on a flat sheet of paper without
significant distortion, while a similar attempt for the whole globe fails
completely. The sphere is thus locally flat. This is true for all so-called
Riemannian® spaces: they all are locally fat, but the locally straight lines
(called geodesics) do not usually remain parallel.

Einstein’s important advance was to see the similarity between Reiman-
nian spaces and gravitational physics. He identified the trajectories of
freely falling particles with the geodesics of a curved geometry: they are
locally straight since spacetime admits local inertial frames in which
those trajectories are straight lines, but globally they do not remain
parallel.

We shall follow Einstein and look for a theory of gravity which uses
a curved spacetime to represent the effects of gravity on particles’ trajec-
tories. To do this we shall clearly have to study the mathematics of

2 B.Riemann (1826-66) was the first to publish a detailed study of the consequences
of dropping Euciid's parallelism axiom.
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curvature. The simplest introduction is actually to study curvilinear
coordinate systems in a flat space, where our intuition is soundest. We
shall see that this will develop nearly all the mathematical concepts we
need, and the step to a curved space will be simple. So for the rest of
this chapter we will study the Euclidean plane: no more SR (for the time
being!) and no more indefinite inner products. What we are after in this
chapter is parallelism, not metrics. This approach has the added bonus
of giving a more sensible derivation to such often-mysterious formulae
as the expression for V2 in polar coordinates!

5.2 Tensor algebra in polar coordinates
Consider the Euclidean plane. The usual coordinates are x and
y. Sometimes polar coordinates {r, 8} are convenient:

— 2, _
r=(x*+y%) X = cos 0,} (5.3)

0=arctan£, y=rsin 8.
Small increments Ar and A@ are produced by Ax and Ay according to

x y .
Ar=;Ax+; Ay =cos 8§ Ax+sin 8 Ay,
y x | 1 5.4
Ad= —?Ax+-,~3 Ay = —-;sin 0 Ax +; cos 6 Ay,

which are valid to first order.
It is also possible to use other coordinate systems. Let us denote a
general coordinate system by ¢ and 7:

f"—'f(’@.)’)s A£=a—§Ax+i§Ay,

(5.5)
n=n(x,y), An*—ﬂx+—A

In order for (£ 7) to be good coordlnates, it is necessary that any two
distinct points (x,, ¥,) and (x,, y,) be assigned different pairs (£, n;) and
(&, m2), by Eq. (5.5). For instance, the definitions ¢ = x, n = 1 would not
give good coordinates, since the distinct points (x=1,y=2) and (x=
1, y =3) both have (£ =1, n =1). Mathematically, this implies that if
A¢=An=0inEq. (5.5), then the points must be the same, or Ax = Ay =0.
This will be true if the determinant of Eq. (5.5) is nonzero,

o&/o a¢&/a

det( £/0x ¢/ y)?‘-O
dn/ax an/dy

This determinant is called the Jacobian of the coordinate transformation,

(5.6)
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Eq. (5.5). If the Jacobian vanishes at a point, the transformation is said
to be singular there.

Vectors and one-forms. The old way of defining a vector 1s to say that it
transforms under an arbitrary coordinate transformation in the way that
the displacement transforms. That is, a vector Ar can be represented”’ as
a displacement (Ax, Ay), or in polar coordinates (Ar, A@), or in general
(A¢, Am). Thenitis clear that for small (Ax, Ay) we have (from Eq. (5.5))

AE\ [9E 8¢\ /Ax

ox 0
= Y . (5.7)
o om
An ox dy/\Ay
By defining the matrix of transformation
. 0€/0x  0&/0
am/ox dn/dy

we can write the transformation for an arbitrary V in the same manner
as in SR
V=AYV, (5.9)

where unprimed indices refer to (x, y) and primed to (£, n), and where
indices can only take the values 1 and 2. A vector can be defined as
something whose components transform according to Eq. (5.9). There is
a more sophisticated and natural way, however. This is the modern way,
which we now introduce.

Consider a scalar field ¢. Given coordinates (£, ») it is always possible
to form the derivatives 3¢ /3¢ and d¢/dn. We define the one-form d¢ to
be the geometrical object whose components are

de > (36/9 a¢/9m) (5.10)

in the (£, n) coordinate sysiem. This is a general definition of an infinity
of one-forms, each formed from a different scalar field. The transforma-
tion of components is automatic from the chain rule for partial deriva-
tives:

08 _ox0¢ 3y

& 9Eox dEay’ -1

3 We shall denote Euclidean vectors by arrows, and we shall use Greek letters for
indices (numbered | and 2) to denote the fact that the sum is over all possible
(i.e. both) values.
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and similarly for 4¢/8%. This can be written as

(aqs/ag):(ax/ag ay/a.g) (aqs/ax) 5.12)
d¢/an ax/dm dy/dm/ \dd/ay

Then the transformation matrix is

o ~_[0x/0E dy[/aE
(A "')'(ax/an ay/an)' (5-13)

Thus, in the modern view we first define one-forms. This is more natural
than the old way, in which a single vector (Ax, Ay) was defined and
others were obtained by analogy. Here a whole class of one-forms is
defined in terms of derivatives, and the transformation properties of
one-forms follow automatically.

Now a vector is defined as a linear function of one-forms into real
numbers. The implications of this will be explored in the next paragraph.
First we just note that all this is the same as we had in SR, so that vectors
do in fact obey the transformation law, Eq. (5.9). It is of interest to see
explicitly that (A*5) and (A® B')T are inverses to each other. (We need
the transpose (A“’E,)T here. This came out in SR but wasn’t used because
the transpose of the Lorentz transformation equaled the original matrix,
which was symmetric. In general, (A%4) is not symmetric.) The product
of the matrices is

(ag/ax 6§/6y) (ax/ag ax/an)
an/dx an/dy/ \ay/oé dy/on

agax agdy Eox g dy

_ dxdE 0y dE odxadmn Jdyan (5.14)
omox anay onax amoy | |
oxdé OdydE odxan dydn

By the chain rule this matrix is

9E/0E  9E[am\ _(1 0
(an/ag an/a-n)_(o 1)’ (5.15)

where the equality follows from the definition of a partial derivative.

Curves and vectors. The usual notion of a curve is of a connected series
of points in the plane. This we shall call a path, and reserve the word
curve for a parametrized path. That is, we shall follow modern mathemati-
cal terminology and define a curve as a mapping of an interval of the
real line into a path in the plane. What this means is that a curve is a
path with a real number associated with each point on the path. This
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number is called the parameter s. Each point has coordinates which may
then be expressed as a function of s:

* Curve: {£=f(s5), n=g(s), a< s< b} (5.16)
defines a curve in the plane. If we were to change the parameter (but

not the points) to s'=s'(s), which is a function of the old s, then we
would have

{£=f(s),n=4g'(s), a’ss'<b}, (5.17)
where ' and g’ are new functions, and where a’ = s'(a), b’ = s'(b). This
is, mathematically, a new curve, even though its image (the points of the
plane that it passes through) is the same. So there are an infinite number
of curves having the same path.

The derivative of ascalar field ¢ along the curve is d¢/ds. This depends
on s, so by changing the parameter, one changes the derivative. One can
write this as

dg/ds=(d¢, V), (5.18)
where V is the vector whose components are (d&¢/ds, dn/ds). This vector
depends only on the curve, while d¢ depends only on ¢. Therefore V

is a vector characteristic of the curve, called the tangent vector, (It clearly
lies tangent to curve: see Fig. 5.4.) So a vector may be regarded as a

Fig. 5.4 A curve, its parametrization, and its tangent vector.

thing which produces d¢/ds, given ¢. This leads to the most modern
view, that the tangent vector to the curve should be called d/ds. Some
relativity texts occasionally use this notation. For our purposes, however,
we shall just let V be the tangent vector whose components are
(d¢/ds, dn/ds). Notice that a path in the plane has, at any point, an
infinity of tangents, all of them parallel but differing in length. These are
to be regarded as vectors tangent to different curves, curves that have
different parameters at that point. A curve has a unique tangent, since
the path and parameter are given. Moreover, even curves that have
identical tangents at a point may not be identical elsewhere. From the
Taylor expansion £(s+1)=~£(s)+d&/ds, we see that V(s) stretches
approximately from s to s +1 along the curve.
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Now, it is clear that under a coordinate transformation s does not
change (its definition had nothing to do with coordinates) but the com-
ponents of V will, since by the chain rule

(df/ds)z(ag/ax ag/ay) (dx/ds) .1
dn/ds/  \an/ax an/ay/ \dy/ds) ¢-19)

This is the same transformation law as we had for vectors earlier, Eq. (5.7).

To sum up, the modern view is that a vector is a tangent to some curve,
and is the function that gives d¢/ds when it takes d¢ as an argument.
Having said this, we are now in a position to do polar coordinates more
thoroughly.

Polar coordinate basis one-forms and vectors. The bases of the coordinates
are clearly

ea' = ABa'eB;

or
€ =A%é +AE (5.20)
ox ., dy.
=—&, +—X e,
ar ar
=cos 0 é, +sin 0 €, (5.21)

and, similarly,
. 0x_ a9y,

ey = + e
00 * 00 7

=—rsinfé +rcosbé,. (5.22)
Notice in this that we have used, among others,
ox
A =—. (5.23)
ar
Similarly, to transform the other way we would need
0
ATy=— (5.24)
dx

The transformation matrices are exceedingly simple: just keeping track
of which index is up and which is down gives the right derivative to use.

The basis one-forms are, analogously, :
00 - 90 -

dg=—dx+—d
ax X oy ¥

1 - 1 -
== sin @ dx +; cos @ dy. (5.25)
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(Notice the similarity to ordinary calculus, Eq. (5.4).) Similarly, we find

dr=cos 9 dx +sin 8 dy. (5.26)
We can draw pictures of the bases at various points (Fig. 5.5). Drawing
the basis vectors is no problem. Drawing the basis one-forms is most
easily done by drawing surfaces of constant r and 8 for dr and d6. These
surfaces have different orientations in different places.

—
'e’a ~
- S
€0 w, ~ 30

Fig. 5.5 Basis vectors and one-forms for polar coordinates.

There is a point of great importance to note here: the bases change
from point to point. For the vectors, the basis vectors at A in Fig. 5.5
are not parallel to those at C. This is because they point in the direction
of increasing coordinate, which changes from point to point. Moreover,
the lengths of the bases are not constant. For example, from Eq. (5.22)
we find

|€5)° = = é,- &, = r* sin” 0 + r* cos® = r?, (5.27a)
so that & increases in magnitude as one gets further from the origin.
The reason is that the basis vector &, having components (0, 1) with
respect to r and 6, has essentially a @ displacement of one unit, i.e. one
radian. It must be longer to do this at large radii than at small. So we
do not have a unit basis. It is easy to verify that

&, =1, [dr| =1, |do|=r"". (5.27b)
Again, |d8| gets larger near r = 0 because a given vector can span a larger
range of 6 near the origin than farther away.

Metric tensor. The dot products above were all calculated by knowing
the metric in Cartesian coordinates Xx, y:

66, =¢é,¢ =1, é,-¢é,=0;
or, put in tensor notation,

g(é,, €g) = 8, in Cartesian coordinates. (5.28)
What are the components of g in polar coordinates? Simply

Bap =Q€a, Eg)=¢E, Ep (5.29)
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or, by Eq. (5.27),

g.=1,  Zop=r", (5.302)
and, from Egs. (5.21) and (5.22),
8 =0. (5.30b)
So we can write the components of g as
1 0
(8ap) potar = ( 0 rz), (5.31)

A convenient way of displaying the components of g and at the same
time showing the coordinates is the line element, which is the magnitude
of an arbitrary ‘infinitesimal’ displacement d/:

IS dl-d7=ds*=|dr& +do &/
=dr+r*de> (5.32)

Do not confuse dr and dé here with the basis one-forms dr and d6. The
things in this equation are components of d7 in polar coordinates, and
‘d’ simply means ‘infinitesimal A’.

There is another way of deriving Eq. (5.32) which is instructive. Recall
Eq. (3.26) in which a general (}) tensor is written as a sum over basis
(3) tensors dx*®dx”?. For the metric this is

g=g.; dx*®@dx? =dr®dr+r’ do®4d0.
Although this has a superficial resemblance to Eq. (5.32), it is different:
it is an operator which, when supplied with the vector dI, whose com-
ponents are dr and d 8, gives Eq. (5.32). Unfortunately, the two expressions
resemble each other rather too closely because of the confusing way
notation has evolved in this subject. Most texts and research papers still
use the ‘old-fashioned’ form in Eq. (5.32) for displaying the components
of the metric, and we follow the same practice.

The metric has an inverse:

1 0\ /1 o
(0 r2) E(O r—z)- (5.33)

So we have g"=1, g”® =0, g° =1/r% This enables us to make the
mapping between one-forms and vectors. For instance, if ¢ is a scalar
field and d¢ is its gradient, then the vector d¢ has components

(do)* =g*" 4, (5.34)
or
(do) =g%ds=8"d.+8 b,
=ad¢/ar; (5.35a)
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de)’ =5"¢. +8".,
9¢

o
So, while (¢ ,, ¢ ) are components of a one-form, the vector gradient
has components (¢ ,, ¢ o/r°). Even though we are in Euclidean space,
vectors generally have different components from their associated one-
forms. Cartesian coordinates are the only coordinates in which the
components are the same.

1
-

(5.35b)

QL

5.3 Tensor calculus in polar coordinates

The fact that the basis vectors of polar coordinates are not
constant everywhere, leads to some problems when one tries to differenti-
ate vectors. For instance, consider the simple vector €,, which is a constant
vector field, the same at any point. In polar coordinates it has components
é.>(A",, A% )= (cos 8, —r'sin 8). These are clearly not constant, even
though é, is. The reason is that they are components on a nonconstant
basis. If we were to differentiate them with respect to, say, 6, we would
most certainly not get d€,/90, which must be identically zero. So, from
this example, one sees that differentiating the components of a vector
does not necessarily give the derivative of the vector. One must also
differentiate the nonconstant basis vectors. This is the key to the under-
standing of curved coordinates and, indeed, of curved spaces. We shall
now make these ideas systematic.

Derivatives of basis vectors. Since €, and é, are constant vector fields, we
easily find that

a - a - - -

— e, =—(cos fé, +sinfe,)=0, (5.36a)
ar ar :

a - a G - + . 0 -

—e =—(cos 8é +sin 8¢

Y Y (co sin 8 e,)

1
= —sin 8 €, +cos 0 &, =— é&. (5.36b)

~

These have a simple geometrical picture, shown in Fig. 5.6. At two nearby
points, A and B, €, must point directly away from the origin, and so in
slightly different directions. The derivative of €, with respect to @ is just
the difference between €, at A and B divided by A#6. The difference in
this case is clearly a vector parallel to &, which then makes Eq. (5.36b)
reasonable.
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&
y

o/

Fig. 5.6 Change in é, when 8 changes by A#.

Similarly,
d . o .
(—9;e,,=;(-—r sin 0 &, +rcos 0¢,)
= —sin 0 &, +cos 0 ¢, =~} &y, (5.37a)
—é=rcos@é,=rsinfé,=—ré,. (5.37b)

el

The student is encouraged to draw a picture similar to Fig. 5.6 to explain
these formulas.

Derivatives of general vectors. Let us go back to the derivative of €,. Since

é.=cos fe, —~l; sin 0 &, (5.38)
we have
a . 9 . a .
Py é, =£(cos 6) é, +cos Gga(e,)
g (1 . . 1. Ja
Y (; sin 3) € —~sin 053 (&) - (539

. p s |
=-sin 0 &, +cos 6 (— ea)
’ r

1 1
——cos 0 é; ——sin B(—ré,). (5.40)
r r
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To get this we used Egs. (5.36) and (5.37). Simplifying gives
)

50 e, =0, (5.41)

just as one should have. Now,in Eq. (5.39) the first and third terms come
from differentiating the components of &, on the polar coordinate basis;
the other two terms are the derivatives of the polar basis vectors them-
selves, and are necessary for cancelling out the derivatives of the com-
ponents.

A general vector V has components (V’, V°) on the polar basis. Its
derivative, by analogy with Eq. (5.39), is

v a
—=—(V'é+V’%e
ar art o)

av" . 9é, av® €

= AV —4— G, + V'
ar or  dr aor
and similarly for aV/a6. Written in index notation, this becomes

avV_ a8 .. ave_ _ 9é,
—=— )=—2é&, +V*—
ar or ar or

(Here a runs of course over r and 6.)

This shows explicitly that the derivative of V is more than just the
derivative of its components V°. Now, since r is just one coordinate, we
can generalize the above equation to.

oV _ave
axP  axP

where, now, x? can be either r or 8 for 8 =1 or 2.

o 9€a
ax?’

+V (5.42)

The Christoffel symbols. The final term in Eq. (5.42) is obviously of great
importance. Since 3€,/dx” is itself a vector, it can be written as a linear
combination of the basis vectors; we introduce the symbol I'* .4 to denote
the coefficients in this combination:

dé,

ax?
The interpretation of I'%,; is that it is the uth component of 8é,/0x”. It
needs three indices: one (a) gives the basis vector being differentiated;
the second (B) gives the coordinate with respect to which it is being
differentiated; and the third (x) denotes the component of the resulting
derivative vector. These things, I'“,z, are so useful that they have been
given a name: the Christoffel symbols. The question of whether or not
they are components of tensors we postpone until much later.

=T*,;é,. (5.43)
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We have of course already calculated them for polar coordinates. From
Eqs. (5.36) and (5.37) we find

-

de,
(1) Sf-:o:-;r",,:o for all 4, ]
r
de, | . |
(2) -—e—=-eﬂz>rrrﬂ=0a P9r9=_9
00 r r
88, 1. ' , 1 > (5.49
(3) ‘—':_89:}1-‘ 9r=0, F 9r=—s
or r r
aéﬂ - r %]
(4) SB':“rer:}F ' L F 99:0.

In the definition, Eq. (5.43), all indices must refer to the same coordinate
system. Thus, although we computed the derivatives of €, and é, by using
the constancy of é, and é,, the Cartesian bases do not in the end make
any appearance in Eq. (5.44). The Christoffel symbols’ importance is that
they enable one to express these derivatives without using any other
coordinates than polar.

The covariant derivative. Using the definition of the Christoffel symbols,
Eq. (5.43), the derivative in Eq. (5.42) becomes

av _ave ape
=gl T VT, (5.45)

In the last term there are two sums, on @ and u. Relabeling the dummy
indices will help here: we change u to a and « to u and get
6V _ave
ax®  oxP
The reason for the relabeling was that, now, €, can be factored out of
both terms:

. +V*T® & (5.46)

av  fave L\

SF= (axﬁ + V*I #ﬂ) e,. (5.47)
So the vector field 3V /6x® has components

aV/axP + VHT* . (5.48)

Recall our original notation for the partial derivative, dV*/ax? = V* g.
We keep this notation and define a new symbol:

¢ Vo=V g+ V*I® 5. (5.49)
Then, with this shorthand semicolon notation, we have
. aV/oxP=Vo,é,, (5.50)

a very compact way of writing Eq. (5.47).
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Now 9 V/ax? is a vector field if we regard 8 as a given fixed number.
But there are two values that 8 can have, and so we can also regard
dV/ax* as being associated with a (}) tensor field which maps the vector
ég into the vector 3V /ax®, as in Exer. 17, § 3.10. This tensor field is called
the covariant derivative of V, denoted, naturally enough, as V V. Then its
components are

(VV)o=(VaV)*= Vo . (5.51)

On a Cartesian basis the components are just V* 5. On the curvilinear
basis, however, the derivatives of the basis vectors must be taken into
account, and we get that V° 5 are the components of VV in whatever
coordinate system the Christoffel symbols in Eq. (5.49) refer to. The
significance of this statement should not be underrated, as it is the
foundation of all our later work. There is a single (}) tensor called V V.
In Cartesian coordinates its components are 3 V*/ax®?. In general coordin-
ates {x*} its components are called V* 4 and can be obtained in ¢ither
of two equivalent ways: (i) compute them directly in {x*} using Eq.
(5.49) and a knowledge of what the I'*', .45 are in these coordinates; or
(ii) obtain them by the usual tensor transformation laws from Cartesian
to {x*}.

What is the covariant derivative of a scalar? The covariant derivative
differs from the partial derivative with respect to the coordinates only
because the basis vectors change. But a scalar does not depend on the
basis vectors, so its covariant derivative is the same as its partial derivative,
which is its gradient:

Vf=08f/x>; Vf=4df. (5.52)

Divergence and Laplacian. Before doing any more theory, let us link this
up with things we have seen before. In Cartesian coordinates the diver-
gence of a vector V* is V° ,. This is the scalar obtained by contracting
V® g on its two indices. Since contraction is a frame-invariant operation,
the divergence of V can be calculated in other coordinates {x*} also by
contracting the components of VV on their two indices. This results in
a scalar with the value V* . It is important to realize that this is the
same number as V“ , in Cartesian coordinates:

Ve, =VE . (5.53)

where unprimed indices refer to Cartesian coordinates and primed to
the arbitrary system.
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For polar coordinates (dropping primes for convenience here)
ove
ax®
Now, from Eq. (5.44) we can calculate

Va;ﬂ = +Fay.a V#‘

1
¢
I1ara = I“r" +F ré =;s

(5.54)
[ =T"6,+T % =0.
Therefore we have
r e
V"‘.a -=a_‘./_+ﬂ. +l V',
’ or a0 r
14 0
=~—(rV)+— V- .
rar(rv) BBV (3.55)

This may be a familiar formula to the student. What is probably more
familiar is the Laplacian, which is the divergence of the gradient. But
we only have the divergence of vectors, and the gradient is a one-form.
Therefore we must first convert the one-form to a vector. Thus, given a
scalar ¢, we have the vector gradient (see Eq. (5.52) and the last part of
§ 5.2 above) with components (¢ ,, ¢ 5/ r*). Using these as the components
of the vector in the divergence formula, Eq. (5.55) gives
2, 1A 3\ 1

V-V¢=V ¢—;5;(r-(_;-) +-r—25'0—2 (5.56)
This is the Laplacian in plane polar coordinates, It is, of course, identically
equal to

2 2

Vi =%xif+%9;. (5.57)
Derivatives of one-forms and tensors of higher types. Since a scalar ¢
depends on no basis vectors, its derivative d¢ is the same as its covariant
derivative V¢. We shall almost always use the symbol V¢. To compute
the derivative of a one-form (which as for a vector won’t be simply the
derivatives of its components), we use the property that a one-form and
a vector give a scalar. Thus, if j is a one-form and V is an arbitrary
vector, then for fixed B, Vgp is also a one-form, VBV is a vector, and
(p, VY= ¢ isascalar. In any (arbitrary) coordinate system this scalar is just

¢=p. V"~ (5.58)
Therefore V¢ is, by the product rule for derivatives,
op ov®
=h o =—2 V© _— .59
Veb=dp=55 VP (5.59)



5.3 Tensor calculus in polar coordinates 139

But we can use Eq. (5.49) to replace 8 V*/ax? in favor of V*®.g, which

are the components of VoV

d

Vo =a£; Ve 4P, Vo = P VFT . (5.60)
Rearranging terms, and relabeling dummy indices in the term that con-
tains the Christoffel symbol, gives

vﬂ¢=(§—i’%—p#r“aﬂ)v'*+pava;ﬂ. (5.61)
Now, every term in this equation except the one in parentheses is known
to be the component of a tensor, for an arbitrary vector field V. Therefore,
since multiplication and addition of components always gives new
tensors, it must be true that the term in parentheses is also the component
of a tensor. This is, of course, the covariant derivative of p:

. (Vﬁﬁ)aE(Vﬁ)aBEPa:B=pa,ﬂ—py.ruaﬂ' (5'62)
Then Eq. (5.61) reads
L 2 Va(pa V) =Ppa. gV +paV* 5. (5.63)

Thus covariant differentiation obeys the same sort of product rule as Eq.
(5.59). It must do this, since in Cartesian coordinates V 1is just partial
differentiation of components, so Eq. (5.63) reduces to Eq. (5.59).

Let us compare the two formulae we have:

Ve =V g+ VEI® g, (5.49)
pa:ﬁ =pa,ﬁ —pp.ruaﬁ' (562)

There are certain similarities and certain differences. If one remembers
that the derivative index B is the last one on I', then the other indices
are the only ones they can be without raising and lowering with the
metric. The only thing to watch is the sign difference. It may help to
remember that I'®,; was related to derivatives of the basis vectors, for
then it is reasonable that —I'*,5 be related to derivatives of the basis
one-forms. The change in sign means that the basis one-forms change
‘oppositely’ to basis vectors, which makes sense when one realizes that
the contraction (@, é) = 8% is a constant whose derivative must be zero.

The same procedure that led to Eq. (5.62) would lead to the following:

* VT, =T = Tl %= Tul %5 (5.64)
& VAR =AM AT+ ART (5.65)
L 2 VgBuyz Bu,,'ﬁ'i‘BapruaB—BuuFapﬁ. (5.66)

Inspect these closely: they are very systematic. Simply throw in one T’
term for each index; a raised index is treated like a vector and a lowered
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one like a one-form. The geometrical meaning of Eq. (5.64) is that Vo7,
is a component of the (3) tensor VT, where T is a (3) tensor. Similarly, in
Eq.(5.65), Aisa(3)tensor and VAis a (}) tensor with components V g A*".

5.4 Christoffel symbols and the metric

The formalism developed above has not used any properties of
the metric tensor to derive covariant derivatives. But the metric must be
involved somehow, because it can convert a vector into a one-form, and
so it must have something to say about the relationship between their
derivatives. In particular, in Cartesian coordinates the components of
the one-form and its related vector are equal, and since V is just differenti-
ation of components, the components of the covariant derivatives of the
one-form and vector must be equal. This means that if V is an arbitrary
vector and V=g (V, ) is its related one-form, then in Cartesian coor-
dinates

VaV=g(V;V, ). (5.67)
But Eq. (5.67) is a tensor equation, so it must be valid in all coordinates.
We conclude that

Va B = gay.Vu;,B, (5'68)

which is the component representation of Eq. (5.67).
If the above argument in words wasn'’t satisfactory, let us go through
it again in equations. Let unprimed indices a, 8, ¥, ... denote Cartesian

coordinates and primed indices o', 8', ¥',... denote arbitrary co-
ordinates.
We begin with the statement
Va' = ga'p.' V#’a (5'69)

valid in any coordinate system. But in Cartesian coordinates
Eop = Oups V,=V"
Now, also in Cartesian coordinates, the Christoffel symbols vanish, so
Vog=Vap and Vg =V"g
Therefore we conclude
Vg =V
in Cartesian coordinates only. To convert this into an equation valid in
all coordinate systems, we note that in Cartesian coordinates
Va:ﬁ = &an VM:.B’
so that again in Cartesian coordinates we have
Va B~ Bap V“;ﬁ'
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But now this equation is a tensor equation, so its validity in one coordinate
system implies its validity in all. This is just Eq. (5.68) again:

Va':ﬁ' = ga’u'vﬂ’:ﬁ" (5'70)

This result has far-reaching implications. If we take the 8’ covariant
derivative of Eq. (5.69) we find

— ' un'
Vu':ﬁ'—ga'u':ﬁ'v +ga’,u'v B

Comparison of this with Eq. (5.70) shows (since V is an arbitrary vector)
that we must have

* arn:p =0 (5.71)

in all coordinate systems. This is a consequence of Eq. (5.67). In Cartesian
coordinates

Boan:B = Bapnp = 8“#‘3 =0
is a trivial identity. However, in other coordinates it is not obvious, so

we shall work it out as a check on the consistency of our formalism.
Using Eq. (5.64) gives (now unprimed indices are general)

Bap:pn = gaﬁ,,u_rva,u.gvﬁ _r”ﬂugav- (572)
In polar coordinates let us work out a few examples. Leta =r,8=r,u=r:
Brr=8rmr— r l"rrgw- -T l"rrgru-
Since g,., =0 and I'*,, =0 for all », this is trivially zero. Not so trivial is
a=68=6u=r:
Zoo:r =™ Boo,r— r Vargue —I'"6 86.-
With gee =1r%, I'%, =1/r and T'",, = 0, this becomes

Boo:r ™ ("2),r_"l-(r2)_1 (r2) =0.
r r

So it works, almost magically. But it is important to realize that it is not
magic: it follows directly from the facts that g,s, =0 in Cartesian
coordinates and that g,s., are the components of the same tensor Vg
in arbitrary coordinates.

Perhaps it is useful to pause here to get some perspective on what we
have just done. We introduced covariant differentiation in arbitrary
coordinates by using our understanding of parallelism in Euclidean space.
We then showed that the metric of Euclidean space is covariantly con-
stant: Eq. (5.71). When we go on to curved (Riemannian) spaces we will
have to discuss parallelism much more carefully, but Eq. (5.71) will still
be true, and therefore so will all its consequences, such as those we now
g0 on to describe.
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Calculating the Christoffel symbols from the metric. The vanishing of Eq.
(5.72) leads to an extremely important result. One sees that Eq. (5.72)
can be used to determine g,g, in terms of I'*,,. It turns out that the
reverse is also true, that I'*,; can be expressed in terms of g,z ,. This
gives an easy way to derive the Christoffel symbols. To show this we first
prove a result of some importance in its own right: in any coordinate
system I'* s =T"*5,. To prove this symmetry consider an arbitrary scalar
field ¢. Its first derivative V¢ is a one-form with components ¢ 5. Its
second covariant derivative VV¢ has components ¢ 5., and is a )
tensor. In Cartesian coordinates these components are

and we see that they are symmetric in « and B, since partial derivatives
commute. But if a tensor is symmetric in one basis it is symmetric in all
bases. Therefore

¢,B:a=¢,azﬂ (573)
in any basis. Using the definition, Eq. (5.62) gives

¢,ﬂ,a - ¢.prﬁﬁa = ¢,u,[3 - ¢,p.r“aﬁ
in any coordinate system. But again we have

Goap=9¢pa
in any coordinates, which leaves

F“aﬁd’,# = r“ﬂu ¢,#
for arbitrary ¢. This proves the assertion
* I'*,s=T*g, in any coordinate system. (5.74)

We use this to invert Eq. (5.72) by some advanced index gymnastics.

We write three versions of Eq. (5.72) with different permutations of
indices:

guB,,u. = Fyaugvﬂ +rpﬂp.gam

8o =T g8 +T " up8ers

—gﬁy.,ot = _F pﬂa gvy, - Fp,uagﬁp'

We add these up and group terms, using the symmetry of @, gg, = g.5:

8aput 8ap.s — &pua
= (Fvau - Fua”)g,,ﬂ +(I Va‘g - I-”’.B,,,)g,_,,“L +(F"B“ + Fvuﬂ)ga,,.

In this equation the first two terms on the right vanish by the symmetry,
Eq. (5.74), of I', and we get

gﬂﬁ‘p + gu,u,ﬁ - gﬂ“"\a = 2gﬂyr VB’-'* *
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We are almost there. Dividing by 2, multiplying by g*” (with summation
implied on «) and using

878, =87,
gives
* %gay(gaﬁ,# +gau,ﬂ_gﬂu,a)=ryﬁﬂ' (575)
This is the expression of the Christoffel symbols in terms of the partial
derivatives of the components of g. In polar coordinates, for example,

rero = %gae(gar,ﬂ +gaﬂ,r - grﬂ,a)-
Since g =0 and g% =r"? we have

1
rers=‘2”'"§(gor,s + 800, Ero0) /

1 1 1
=3280 =05 (r’), = -
This is the same value for I'?,,, as we derived earlier. This method of
computing I'“g, is so useful that it is well worth committing Eq. (5.75)

to memory. It will be exactly the same in curved spaces.

5.5 The tensorial nature of I'*,

Since &, is a vector, V&, is a (]) tensor whose components are
I'*.5. Here « is fixed and u and B are the component indices: changing
a changes the tensor Vé,, while changing u or 8 changes only the
component under discussion. So it is possible to regard 4 and B8 as
component indices and a as a label giving the particular tensor referred
to. There is one such tensor for each basis vector €,. However, this is
not terribly useful, since under a change of coordinates the basis changes
and the important quantities in the new system are the new tensors Vép.
which are obtained from the old ones Vé, in a complicated way: they
are different tensors, not just different components of the same tensor.
Sothe set I'*,5 in one frame is not obtained by a simple tensor transforma-
tion from the set I‘“'a-ﬁ' of another frame. The easiest example of this is
Cartesian coordinates, where ['“g, =0, while they are not zero in other
frames. So in many books it is said that I'“,; are not components of
tensors. As we have seen, this is not strictly true: I'*,; are the (u,B8)
components of a set of tensors Vé,. But there is no single tensor whose
components are I'*,, so expressions like '*,; V* are not components
of a single tensor, either. The combination

VP, +V*T?,,

is a component of a single tensor V V.
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5.6 Noncoordinate bases

In this whole discussion we have generally assumed that the
non-Cartesian basis vectors were generated by a coordinate transforma-
tion from (x, y) to some (& n). However, as we shall show below, not
every field of basis vectors can be obtained in this way, and we shall
have to look carefully at our results to see which need modification (few
actually do). We will almost never use non-coordinate bases in our work
in this course, but one frequently encounters them in the standard
references on curved coordinates in flat space, so we should pause to
take a brief look at them now.

Polar coordinate basis. The basis vectors for our polar coordinate system
were defined by

ér=AP &,
where primed indices refer to polar coordinates and unprimed to Car-
tesian. Moreover, we had

AR, =axP/ax™,
where we regard the Cartesian coordinates {x”?} as functions of the polar
coordinates {x“}. We found that

€y €g=g,p # B.p,

i.e. that these basis vectors are not unit vectors.

Polar unit basis. Often it is convenient to work with unit vectors. A simple
set of unit vectors derived from the polar coordinate basis is:

I

é:=é, e5=; éo, (5.76)
with a corresponding unit one-form basis

o'=dr, ~ @%=rde, (5.77)
The student should verify that

(5.78)

so these constitute orthonormal bases for the vectors and one-forms. Our
notation, which is fairly standard, is to use a ‘caret’ or ‘hat’, *, above an
index to denote an orthornormal basis. Now, the question arises, do
there exist coordinates (£, n) such that

ér=é=—¢é+—¢ (5.79a)
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and
MFRCFY: (5.79b)

If so, then {é;, é;} are the basis for the coordinates (£ 1) and so can be
called a coordinate basis; if such (£ n) can be shown not to exist then
these vectors are a noncoordinate basis. The question is actually more
easily answered if we look at the basis one-form. Thus, we seek (& 7)

such that /
.- € - A€ .
a3'=d§r-—§dx+—dy, ;
x ay

(5.80)

(Eé:an ax Elx+ El

Since we know @' and @&° in terms of dr and d6 we have, from Egs.
(5.25) and (5.26),
@ =dr=cos 8 dx +sin ¢ dy, }
@’=rd8=—sin 8 dx +cos 6 dy.
(The orthonormality of @’ and &° are obvious here.) Thus if (£ ) exist
we have

(5.81)

d
D sing, D-cose. (5.82)

By looking at the mixed partial derivatives we deduce
d dn dsiné 9 on dcosb

ayax  ay ey ox | C5
which implies

) . a

;)_; (—sin 8) = x (cos 8) (5.84)

or

i(__r;___) i(ﬂ__xb_)_o
ay \/(x +y) 0x \/(x +y) '

This is certainly not true. Therefore ¢ and n do not exist: we have a
noncoordinate basis. (If this manner of proof is surprising, try it on dr
and d6 themselves.)

In textbooks that deal with vector calculus in curvilinear coordinates,
almost all use the unit orthonormal basis rather than the coordinate basis.
Thus, for polar coordinates, if a vector has components in the coordinate
basis PC,

V—s(a,b)={V"}, (5.85)
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then it has components in the orthonormal basis PO
\7? (a, rby={ V4}. (5.86)

So if, for example, the books calculate the divergence of the vector, they
obtain, instead of our Eq. (5.85),

19 .18 5
V- V=——(rVH)+-—Vv° 5.87
rar(r ) roé ( )

The difference between Eqgs. (5.55) and (5.87) is purely a matter of the
basis for V.

General remarks on noncoordinate bases. The principal differences
between coordinate and noncoordinate bases arise from the following.
Consider an arbitrary scalar field ¢ and the number d¢(é,), where é,
is a basis vector of some arbitrary basis. We have used the notation

de(E.)=¢ . (5.88)
Now, if é, is a member of a coordinate basis, then d¢(é,) =3¢ /dx* and
we have, as defined in an earlier chapter,

d
¢, = 5:% :coordinate basis. (5.89)

But if no coordinates exist for {€,}, then Eq. (5.89) must fail. For example,
if we let Eq. (5.88) define ¢ ;, then we have
136

¢‘§=; 0" (5.90)

In general, we get
dd
axP
for any coordinate system {x?} and noncoordinate basis {€;}. It is thus
convenient to coniinue with the notation, Eq. (5.88), and to make the
rule that ¢ , =d88/dx* only in a coordinate basis.

The Christoffel symbols may be defined just as before

Vid=6:=A":Vad =A% (5.91)

Vséa=T"%s5é,, (5.92)
but now
a
Vi=A%; 5.

where {x°} is any coordinate system and {€3} any basis (coordinate or
not). Now, however, one cannot prove that I'*;5=I"5;, since that proof
used ¢ ;5= ¢ 5.4, which was truein a coordinate basis (partial derivatives
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commute) but is not true otherwise. Hence, also, Eq. (5.75) for I'* 5 in
terms of g, ., applies only coordinate systems. More general expressions
are worked out in Exer. 20, § 5.9.

What is the general reason for the nonexistence of coordinates for a
basis? If {&“} is a coordinate one-form basis, then its relation to another
one {dx°} is

. - ax
~ & [ B B
@ =A% dx =P dx”. (5.94)

The key point is that A%, which is generally a function of position, must
actually be the partial derivative 8x%/3x® everywhere. Thus we have
. 9°x*® 8’ x® & .

ax” A% = ax” oxP  axP ax”  axP Ay (3.95)
These ‘integrability conditions’ must be satisfied by all the elements A,
in order for @ to be a coordinate basis. Clearly, one can always choose
a transformation matrix for which this fails, thereby generating a noncoor-
dinate basis.

Noncoordinate bases in this book. We shall not have occasion to use such
bases very often. Mainly, it is important to understand that they exist,
that not every basis is derivable from a coordinate system. The algebra
of coordinate bases is simpler in almost every respect. One may ask why
the standard treatments of curvilinear coordinates in vector calculus,
then, stick to orthonormal bases. The reason is that in such a basis in
Euclidean space the metric has components 3,4, so the form of the dot
product and the equality of vector and one-form components carry over
directly from Cartesian coordinates (which have the only orthonormal
coordinate basis!). In order to gain the simplicity of coordinate bases
for vector and tensor calculus, one has to spend time learning the
difference between vectors and one-forms!

5.7 Looking ahead

The work we have done in this chapter has developed almost
all the notation and concepts we will need in our study of curved spaces
and spacetimes. It is particularly important that the student understands
§§ 5.2-5.4 because the mathematics of curvature will be developed by
analogy with the development here. What we have to add to all this is
a discussion of parallelism, of how to measure the extent to which the
Euclidean parallelism axiom fails. This measure is the famous Riemann
tensor.
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5.9 Exercises
1 Repeat the argument that led to Eq. (5.1) under more realistic assump-
tions: suppose a fraction ¢ of the kinetic energy of the mass at the
bottom can be converted into a photon and sent back up, the remaining
energy staying at ground level in a useful form. Devise a perpetual
motion engine if Eq. (1.1) is violated.

2 Explain why a uniform external gravitational field would raise no tides
on Earth.

3(a) Show that the coordinate transformation (x, y)->(& n) with £ = x and
n =1 violates Eq. (5.6).
(b) Are the following coordinate transformations good ones? Compute the
Jacobian and list any points at which the transformations fail.
(i) £=(*+y%)"?, n=arctan (y/x);
(i) é=Inx,n=y;

(ili) £=arctan (y/x), n=(x*+y?) V2

4 A curve is defined by {x=f(A), y=g(A), 0<A=<1}. Show that the
tangent vector (dx/dA, dy/dA) does actually lie tangent to the curve.

5 Sketch the following curves. Which have the same paths? Find also
their tangent vectors where the parameter equals zero.
(@) x=sinA,y=cos A; (b) x=cos (2mt?), y=sin(2mt’+m); (c) x=
ssy=s+4;(d) x=5", y=—(s-2)0s+2); (e} x=p,y=1.

6 Justify the pictures in Fig, 5.5.

7 Calculate all elements of the transformation matrices A"”,g and A", for
the transformation from Cartesian (x, y)-the unprimed indices-to
polar (r, 8) - the primed indices.

8(a) (Uses the result of Exer. 7.) Let f=x*+y?+2xy, and in Cartesian
coordinates V - (x?+3y, y>+3x), W (1, |). Compute f as a function
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of r and 6, and find the components of V and W on the polar basis
expressing them as functions of r and #.

Find the components of df in Cartesian coordinates and obtain them
in polars (i) by direct calculation in polars, and (ii) by transforming
components from Cartesian.

(1) Use the metric tensor in polar coordinates to find the polar com-
ponents of the one-forms ¥ and W associated with V and W, (ii) Obtain
the polar components of V and W by transformation of their Cartesian
components.

3

Draw a diagram similar to Fig. 5.6 to explain Eq. (5.37).
Prove that VV, defined in Eq. (5.51), is a (}) tensor.

(Uses the result of Exer. 7 and 8.) For the vector field V whose Cartesian
components are (x*+3y, y° +3x), compute: (a) V= in Cartesian; (b)
the transformation A*',A®,.V* ; to polars; (c) the components V* .
directly in polars using the Christoffel symbols, Eq. (5.44), in Eq. (5.49);
(d) the divergence V“ , using your results in (a); (e) the divergence
V“';u, using your results in either (b) or (c); (f) the divergence V"';#.
using Eq. (5.55) directly.

For the one-form field § whose Cartesian components are (x*+3y, y* +
3x), compute: (a) p, 5 in Cartesian; (b) the transformation A“,L,Aﬁ,apa,ﬁ
to polars; (c} the components p,,..,. directly in polars using the Chris-
toffel symbols, Eq. {(5.44), in Eq. (5.62).

For those who have done both Exer. 11 and Exer. 12, show in polars
that g0 V™ =P, e

For the tensor whose polar components are (A” =r’ A™ =r sin 8,
A% =r cos 8, A® =tan #), compute Eq. (5.65) in polars for all possible
indices.

For the vector whose polar components are (V' =1, V?=0), compute
in polars all components of the second covariant derivative V* , ,.
(Hint: to find the second derivative, treat the first derivative V¢, as
any (}) tensor: Eq. (5.66).)

Fill in all the missing steps leading from Eq. (5.74) to Eq. {(5.75).

Discover how each expression V7 _, and V*T?, separately transforms
under a change of coordinates (for ['*,,, begin with Eq. (5.43)). Show
that neither is the standard tensor law, but that their sum does obey

the standard law.

Verify Eq. (5.78).
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Verify that the calculation from Eq. (5.81) to (5.84), when repeated for
dr and d6, shows them to be a coordinate basis.

For a noncoordinate basis {€,}, define \Z €,-V; e, =c",, é anduse
this in place of Eq. 5.74 to generalize Eq. (5.75).

Consider the x—t plane of an inertial observer in SR. A certain uniformly
accelerated observer wishes to set up an orthonormal coordinate system.
By Exer. 21, § 2.9, his world line is

f(A)=asinh A, x(A)=acosh A, (5.96)
where a is a constant and aA is his proper time (clock time on his wrist
watch).

Show that the spacelike line described by Eq. (5.96) with a as the
variable parameter and A fixed is orthogonal to his world line where
they intersect. Changing A in Eq. (5.96) then generates a family of such
lines.

Show that Eq. (5.96) defines a transformation from coordinates (1, x)
to coordinates (A, a) which form an orthogonal coordinate system. Draw
these coordinates and show that they cover only one half of the original
t—x plane. Show that the coordinates are bad on the lines |x|=|t|, so
they really cover two disjoint quadrants.

Find the metric tensor and all the Christoffel symbols in this coordinate
system. This observer will do a perfectly good job provided that he
always uses Christoffel symbols appropriately and sticks to events in
his quadrant. In this sense, SR admits accelerated observers. The right-
hand quadrant in these coordinates is sometimes calied Rindler space,
and the boundary lines x = =t bear some resemblance to the black-hole
horizons we will study later.

Show that if UV, V# = W then UV, V, = W,



6

Curved manifolds

6.1 Differentiable manifolds and tensors

The mathematical concept of a curved space begins (but does
not end) with the idea of a manifold. A manifold is essentially a continuous
space which looks locally like Euclidean space. To the concept of a
manifold is added the idea of curvature itself. The introduction of
curvature into a manifold will be the subject of subsequent sections. First
we study the idea of a manifold, which one can regard as just a fancy
word for ‘space’.

Manifolds. The surface of a sphere is a manifold. So is any m-dimensional
‘hyperplane’ in an n-dimensional Euclidean space (m=n). More
abstractly, the set of all rigid rotations of Cartesian coordinates in
three-dimensional Euclidean space will be shown below to be a manifold.
Basically, a manifold is any set that can be continuously parametrized.
The number of independent parameters is the dimension of the manifold,
and the parameters themselves are the coordinates of the manifold.
Consider the examples just mentioned. The surface of a sphere is ‘para-
metrized’ by two coordinates @ and ¢. The m-dimensional ‘hyperplane’
has m Cartesian coordinates, and the set of all rotations can be para-
metrized by the three ‘Euler angles’, which in effect give the direction of
the axis of rotation (two parameters for this) and the amount of rotation
(one parameter). So the set of rotations is a manifold: each point is a
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particular rotation, and the coordinates are the three parameters. It is a
three-dimensional manifold. Mathematically, the association of points
with the values of their parameters can be thought of as a mapping of
points of a manifold into points of the Euclidean space of the correct
dimension. This is the meaning of the fact that a manifold looks locally
like Euclidean space: it is ‘smooth’ and has a certain number of
dimensions. It must be stressed that the large-scale topology of a manifold
may be very different from Euclidean space: the surface of a torus is not
Euclidean, even topologically. But locally the correspondence is good:
a small patch of the surface of a torus can be mapped 1-1 into the plane
tangent to it. This is the way to think of a manifold: it is a space with
coordinates, that locally looks Euclidean but that globally can warp,
bend, and do almost anything (as long as it stays continuous).

Differential structure. We shall really only consider ‘differentiable mani-
folds’. These are spaces that are continuous and differentiable. Roughly,
this means it is possible to define a scalar field ¢ at each point of the
manifold and be sure that it can be differentiated everywhere. The surface
of a sphere is differentiable everywhere. That of a cone is differentiable
except at its apex. Nearly all manifolds of use in physics are differentiable
almost everywhere. The curved spacetimes of GR certainly are. The
assumption of differentiability immediately means that we can define
one-forms and vectors. That is, in a certain coordinate system on the
manifold, the members of the set {¢ ,} are the components of the
one-form a¢; and any set of the form {a¢ , + by .}, where a and b are
functions, is also a one-form field. Similarly, every curve (with param-
eter, say, A) has a tangent vector V defined as the linear function
that takes the one-form d¢ into the derivative of ¢ along the curve,
de/dA:

(dg, V)= V(dg)=Vyd=de/dA. (6.1)
Any linear combination of vectors is also a vector. Using the vectors and
one-forms so defined, we can build up the whole set of tensors of type
(X, just as we did in SR. Since we have not yet picked out any (3) tensor
to serve as the metric, there is not yet any correspondence between forms
and vectors. Everything else, however, is exactly as we had in SR and
in polar coordinates. All of this comes only from differentiability, so the
set of all tensors is said to be part of the ‘differential structure’ of the
manifold. We will not have much occasion to use that term.
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Review. It is useful here to review the fundamentals of tensor algebra.
We can summarize the following rules.
(1) A tensor field defines a tensor at every point.
(2) Vectors and one-forms are linear operators on each other, pro-
ducing real numbers. The linearity means:
(B, aV +bW)=a(p, V) +b(p, W),
(ap+bq, Vy=a(p, V) +b(q, V),
where a and b are any scalar fields.
(3) Tensors are similarly linear operators on one-forms and vectors,
producing real numbers.
(4) If two tensors of the same type have equal components in a
given basis, they have equal components in all bases and are
said to be identical (or equal, or the same). In particular, if a
tensor’s components are all zero in one basis they are zero in
all, and the tensor is said to be zero.
(5) A number of manipulations of components of tensor fields are
called ‘permissible tensor operations’ because they produce com-
ponents of new tensors:

®

(i)

(iii)

(iv)

v)

Multiplication by a scalar field produces components of a
new tensor of the same type.

Addition of components of two tensors of the same type
gives components of a new tensor of the same type. (In
particular, only tensors of the same type can be equal.)
Multiplication of components of two tensors of arbitrary
type gives components of a new tensor of the sum of the
types, the outer product of the two tensors.

Covariant differentiation (to be discussed later) of the com-
ponents of a tensor of type (1) gives components of a tensor
of type (a11)-

Contraction on a pair of indices of the components of a
tensor of type (4y) produces components of a tensor of type
(m-1)- (Contraction is only defined between an upper and
lower index.)

(6) If an equation is formed using components of tensors combined
only by the permissible tensor operations, and if the equation is
true in one basis, then it is true in any other. This is a very useful
result. It comes from the fact that the equation (from (5) above)
is simply an equality between components of two tensors of the
same type, which (from (4)) is then true in any system.



154 Curved manifolds

6.2 Riemannian manifolds

So far we have not introduced a metric onto the manifold. Indeed,
on certain manifolds a metric would be unnecessary or inconvenient for
whichever problem is being considered. But in our case the metric is
absolutely fundamental, since it will carry the information about the
rates at which clocks run and the distances between points, just as it
does in SR. A differentiable manifold on which a symmetric (3) tensor
field g has been singled out to act as the metric at each point is called
a Riemannian manifold. (Strictly speaking, only if the metric is positive-
definite — that is, g(V, V)>0 for all V#0 — is it called Riemannian;
indefinite metrics, like SR and GR, are called pseudo-Riemannian. This
is a distinction that we won’t bother to make.) It is important to under-
stand that in picking out a metric we ‘add’ structure to the manifold; we
shall see that the metric completely defines the curvature of the manifold.
Thus, by our choosing one metric g the manifold gets a certain curvature
(perhaps that of a sphere), while a different g’ would give it a different
curvature (perhaps an ellipsoid of revolution). The differentiable mani-
fold itself is ‘primitive’: an amorphous collection of points, arranged
locally like the points of Euclidean space, but not having any distance
relation or shape specified. Giving the metric g gives it a specific shape,
as we shall see. From now on we shall study Riemannian manifolds, on
which a metric g is assumed to be defined at every point.

(For completeness we should remark that it is in fact possible to define
the notion of curvature on a manifold without introducing a metric
(so-called ‘affine’ manifolds). Some texts actually approach the subject
this way. But since the metric is essential in GR, we shall simply study
those manifolds whose curvature is defined by a metric.)

The metric and local flatness. The metric, of course, provides a mapping
between vectors and one-forms at every point. Thus, given a vector field
V(2) (which notation means that V depends on the position #, where
@ is any point), there is a unique one-form field V(?)=g(V(®), ). The
components of g are called g.5; the components of the inverse matrix
are called g**, The metric permits raising and lowering of indices in the
same way as in SR, which means

Va = gﬂB VB.

In general, {g,z} will be complicated functions of position, so it will not
be true that there would be a simple relation between, say, V, and V°
in an arbitrary coordinate system.
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Since we wish to study general curved manifolds, we have to allow
any coordinate system. In SR we only studied Lorentz (inertial) frames
because they were simple. But because gravity prevents such frames from
being global, we shall have to allow all coordinates, and hence all
coordinate transformations, that are nonsingular. (Nonsingular means,
as in § 5.2, that the matrix of the transformation, A® ; = 3x%/4x*®, has an
inverse.) Now, the matrix (g,z) is a symmetric matrix by definition. It is
a well-known theorem of matrix algebra (see Exer. 3, §6.9) that a
transformation matrix can always be found that will make any symmetric
matrix into a diagonal matrix with each entry on the main diagonal either
+1, —1, or zero. The number of +1 entries equals the number of positive
eigenvalues of (g.g), while the number of —1 entries is the number of
negative eigenvalues. So if we choose g originally to have three positive
eigenvalues and one negative, then we can always find a A ; to make
the metric components become
-1 0 00

01 0 0
0 010
0 0 0 1

From now on we will use 7,5 to denote only the matrix in Eq. (6.2),
which is of course the metric of SR.

There are two remarks that must be made here. The first is that Eq.
(6.2) relied on choosing g to have the appropriately signed eigenvalues.
The sum of the diagonal elements in Eq. (6.2) is called the signature of
the metric. For SR and GR it is +2. Thus, the fact that we have previously
deduced from physical arguments that one can always construct a local
inertial frame at any event, finds its mathematical representation in Eq.
(6.2), that the metric can be transformed into 7,z at that point. This in
turn implies that the metric has to have signature +2 if it is to describe
a spacetime with gravity.

The second remark is that the matrix A® 5 that produces Eq. (6.2) at
every point may not be a coordinate transformation. That is, the set
{@* = A 5 dx®} may not be a coordinate basis. By our earlier discussion
of noncoordinate bases, it would be a coordinate transformation only if
Eq. (5.95) holds:

A" s A",
vy ax?

(8a8) = = (Nap). (6.2)

ox

In a general gravitational field this will be impossible, because other-
wise it would imply the existence of coordinates for which Eq. (6.2) is
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true everywhere: a global Lorentz frame. However, having found a basis
at a particular point 2 for which Eq. (6.2) is true, it is possible to find
coordinates such that, in the neighborhood of #, Eq. (6.2) is ‘nearly’
true. This is embodied in the following theorem, whose (rather long)
proof is at the end of this section. Choose any point # of the manifold.
A coordinate system {x“} can be found whose originis at ? and in which:

8ap(X*) = Tap +O[(x*)’]. (6.3)
That is, the metric near & is approximately that of SR, differences being
of second order in the coordinates. From now on we shall refer to such
coordinate systems as ‘local Lorentz frames’ or ‘local inertial frames’.
Eg. (6.3) can be rephrased in a somewhat more precise way as:

L ] gep(P)=1nas forallea,B; (6.4)
L 2 axiygaﬂ(g’)= 0 foralle, B, vy; (6.5)
but

2
* Wgag(@) #0

for at least some values of a, B, v, and u if the manifold is not exactly
flat.

The existence of local Lorentz frames is merely the statement that any
curved space has a flat space ‘tangent’ to it at any point. Recall that
straight lines in flat spacetime are the world lines of free particles; the
absence of first-derivative terms (Eq. (6.5)) in the metric of a curved
spacetime will mean that free particles are moving on lines that are locally
straight in this coordinate system. This makes such coordinates very
useful for us, since the equations of physics will be nearly as simple in
them as in flat spacetime, and if constructed by the rules of § 6.1 will be
valid in any coordinate system. The proof of this theorem is at the end
of this section, and is worth studying.

Lengths and volumes. The metric of course gives a way to define lengths
of curves. Let dX be a small vector displacement on some curve. Then
dx has squared length ds’=g,; dx* dx”. (Recall that we call this the
line element of the metric.) If we take the absolute value of this and take
its square root, we get a measure of length: dI=|g,; dx* dx”|"/?. Then
integrating it gives

1=J |gap dx dxP|'/? (6.6)
along

curve
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o B
dx®dx’ g0, 6.7)

'\I
- j v 1576 7dx da
where A is the parameter of the curve (whose endpoints are A, and A)).

But since the tangent vector V has components V* =dx®/dA, we finally
have:

'\l

* 1=I |V V|2 dA (6.8)
A

as the length of the arbitrary curve.

The computation of volumes is very important for integration in
spacetime. Here, we mean by ‘volume’ the four-dimensional volume
element we used for integrations in Gauss’ law in § 4.4. Let us go to a
local Lorentz frame, where we know that a small four-dimensional region
has four-volume dx° dx' dx® dx?, where {x*} are the coordinates which
at this point give the nearly Lorentz metric, Eq. (6.3). In any other
coordinate system {x*} it is a well-known result of the calculus of several
variables that:

a(x?, x', x2, x*)

dx’dx' dx’dx’ =—5""F—5—
a(x?, x"', x*, x%)

dx” dx' dx? dx?, (6.9)

where the factor 8( )/d( ) is the Jacobian of the transformation from
{x*} to {x“}, as defined in § 5.2:

ax%/ax® ax%ax"

a(x?, x', x?, x° :
( . )=det ax'/ax®

a(x%, x", x*, x*)

_ det (A%)). (6.10)

This would be a rather tedious way to calculate the Jacobian, but there
is an easier way using the metric. In matrix terminology, the transforma-
tion of the metric components is

(8)=(A)(m)A), (6.11)

where (g) is the matrix of g,z (1) of 7. etc.,, and where ‘T’ denotes
transpose. It follows that the determinants satisfy

det (g) =det (A) det (n) det (A 7). (6.12)
But for any matrix
det (A)=det (AT), (6.13)

and we can easily see from Eq. (6.2) that

det (g) = —1. (6.14)
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Therefore we get

det (g) = —[det (AT (6.15)
Now we introduce the notation

g= det (ga'ﬁ')’ (616)
which enables us to conclude from Eq. (6.15) that

det (A%;) =(—g)""" (6.17)
Thus, from Eq. (6.9) we get
® dx®dx’ dx* dx* =[{—det (g, 5)]""* dx¥ dx" dx? dx*

=(—g)"?dx¥ dx" dx?* dx*. (6.18)

This is a very useful result. It is also conceptually an important result
because it is the first example of a kind of argument we will frequently
employ, an argument that uses locally flat coordinates to generalize our
flat-space concepts to analogous ones in curved space. In this case we
began with dx® dx' dx” dx’ =d*x in a locally flat coordinate system. We
argue that this volume element at ? must be the volume physically
measured by rods and clocks, since the space is the same as Minkowski
space in this small region. We then find that the value of this expression
in arbitrary coordinates {x*} is Eq. (6.18), (—g)'/* d*x’, which is thus the
expression for the true volume in a curved space at any point in any
coordinates.

It should not be surprising that the metric comes into it, of course,
since the metric measures lengths. One only need remember that in any
coordinates the square root of the negative of the determinant of (g,5)
is the thing to multiply by d*x to get the true, or proper, volume element.

Perhaps it would be helpful to quote an example from three dimensions.
Here proper volume is (g)'/? since the metric is positive-definite (Eq.
(6.14) would have a + sign). In spherical coordinates the line element is
dPP=dr*+r*d6* +r*sin” 6 d¢?, so the metric is

1 0 0
(g)=|0 r? 0 | (6.19)
0 0 r’sin’@
Its determinant is r*sin’ 6, so (g)'"* d’x’ is
r’sin 8drd6 d¢, (6.20)
which we know is the correct volume ¢lement in these coordinates.

Proof of the local-flatness theorem. Let {x*} be an arbitrary given coordi-
nate system and {x*} the one which is desired: it reduces to the inertial
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system at a certain fixed point ?. (A point in this four-dimensional
manifold is, of course, an event.) Then there is some relation

x® = x*(x"), (6.21)

A%, =ax"/ax*, (6.22)
Expanding A ;. in a Taylor series about # (whose coordinates are x&)
gives

a -y o ’ ! aAa :
A (X)=A" A (P)+ (X7 — x3)—F
ox
, , , , azAa ,
1 ¥ Y A A ol
+3(xY = xI W x" — x5 )=+ - -
" =xd) (= x) o
. . 0"
=A% e +{x¥ - xJ)——
;LIQP ( O)axyax# gza
, , , , aJxﬂ
+3{x” = xx —x) ) ——————= + -, (6.23
S e v gy I (6.23)
Expanding the metric in the same way gives
- - , 98a
gaﬁ(x )= gaB’E’P +(x'y _xg)__g
ax P
d’g
1 ¥’ ¥ A’ A’ af3
+3(x7 —xI (x* — x5 )= 6.24
2( 0 )( o) )axA ax-y > ( )
We put these into the transformation,
8o =ALAR, 8as, (6.25)

to obtain
g (X') = Aau'lgﬂ\ﬁp'bgaﬁ'gp
+(x7'“Xg')[/\-au'b/\ﬁu'l@gaﬁ,yb
+A°%,|o8aple ¥ x?/ax” dx"|s
+ AP |98aple X% /3x" x> 5]
+3(x” = x3)(x* = x5+ -] (6.26)

Now, we do not know the transformation, Eq. (6.21), but we can define
it by its Taylor expansion. Let us count the number of free variables we
have for this purpose. The matrix A”, |, has 16 numbers, all of which
are freely specifiable. The array {3°x%/ax” 8x*|s} has 4x10=40 free
numbers (not 4 x4 x4, since it is symmetric in ¥’ and u’'). The array
{*x%/ax* ax” 8x*|»} has 4 X20 = 80 free variables, since symmetry on
all rearrangements of A’, ¥ and w' gives only 20 independent arrange-
ments (the general expression for three indices is n(n + 1)(n +2)/3!, where
n is the number of values each index can take, four in our case). On the
other hand, g.s|», €.5.,|» and g.s,./|» are all given initially. They have,
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respectively, 10, 10 X4 = 40, and 10X 10 =100 independent numbers for
a fully general metric. The first question is, can we satisfy Eq. (6.4},

gl = Nuw? (6.27)
This can be written as
np.’v' = Aau'lg’ABV'|9’gaBl?- (628)

These are ten equations, and to satisfy them we have 16 free values in
A“,|» They can indeed, therefore, be satisfied, leaving six elements of
A®,|» unspecified. These six correspond to the six degrees of freedom in
the Lorentz transformations that preserve the form of the metric 75,
That is, one can boost by a velocity v (three free parameters) or rotate
by an angle 6 around a direction defined by two other angles. These
total six degrees of freedom in A“, |5 that leave the local inertial frame
inertial.

The next question is, can we choose the 40 free numbers dA“ ./ 3x” s
in Eq. (6.26) in such a way as to satisfy the 40 equations, Eq. (6.5),

Bap e =07 (6.29)
Since 40 equals 40, the answer is yes, just barely. Given the matrix A® .,
there is one and only one way to arrange the coordinates near ? such
that A%, ,|s has the right values to make g,4 ,]s =0. So there is no
extra freedom other than that with which to make local Lorentz transfor-
mations.

The final question s, can we make this work at higher order? Can we
find 80 numbers A%, ., |» which can make the 100 numbers g, g .\ lo =
0? The answer, since 80 < 100, is no. There are, in the general metric, 20
‘degrees of freedom’ among the second derivatives g.g x| (100 —80=
20): in general, at least 20 of these components will not vanish.

Therefore we see that a general metric is characterized at any point 2
not so much by its value at ? (which can always be made to be 7,4),
nor by its first derivatives there (which can be made zero), but by the 20
second derivatives there which cannot be made to vanish. These 20
numbers will be seen to be components of a tensor which represents the
curvature; this we shall show later. In a flat space, of course, all 20
vanish. In a general space they do not.

6.3 Covariant differentiation
We now look at the subject of differentiation. By definition, the
derivative of a vector field involves the difference between vectors at two
different points (in the limit as the points come together). In a curved
space the notion of the difference between vectors at different points
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must be handled with care, since in between the points the space is
curved and the idea of vectors at the two points, pointing in the ‘same’
direction, is fuzzy. However, the local flatness of the Riemannian mani-
fold helps us out. We only need to compare vectors in the limit as they
get infinitesimally close together, and we know that we can construct a
coordinate system at any point which is as close to being flat as we would
like in this same limit. So in a small region the manifold looks flat, and
it is then natural to say that the derivative of a vector whose components
are constant in this coordinate system is zero at that point. That is, we
say that the derivatives of the basis vectors of the locally inertial coordi-
nate system are zero at .

Let us emphasize that this is a definition of the covariant derivative.
For us, its justification is in the physics: the local inertial frame is a frame
in which everything is locally like SR, and in SR the derivatives of these
basis vectors are zero. This definition immediately leads to the fact that
in these coordinates at this point, the covariant derivative of a vector
has components given by the partial derivatives of the components (that
is, the Christoffel symbols vanish):

Vo= V% at ?in this frame. (6.30)
This is of course also true for any other tensor, including the metric:

8ap.y = Bapy=0 atP.
(The second equality is just Eq. (6.5).) Now, the equation g,z., =0 is
true in one frame (the locally inertial one), and is a valid tensor equation;
therefore it is true in any basis:

L 2 g.5., =0 inany basis. (6.31)

This is a very important result, and comes directly from our definition
of the covariant derivative. Recalling § 5.4, we see that if we have
I'*,g=T"%g,, then Eq. (6.31) leads to Eq. (5.75) for any metric:

L T, =32 (8sp0 + 8orp — Burp)- (6.32)

It is left to Exer. 5, § 6.9, to demonstrate, by repeating the flat-space
argument now in the locally inertial frame, that I'*4, is indeed symmetric
in any coordinate system, so that Eq. (6.32) is correct in any coordinates.
We assumed at the start that at 2 in a locally inertial frame, I'*,, =0.
But, importantly, the derivatives of I'*,, at # in this frame are not all
zero generally, since they involve g,4.,. This means that even though
coordinates can be found in which I'®,, =0 at a point, these symbols do
not generally vanish elsewhere. This differs from flat space, where a
coordinate system exists in which I'*,, =0 everywhere. So we can see
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that at any given point, the difference between a general manifold and
a flat one manifests itself in the derivatives of the Christoffel symbols.

Eq. (6.32) means that, given g,s, one can calculate I'“,,, everywhere.
One can therefore calculate all covariant derivatives, given g. To review
the formulas:

. Ve o= Vo 4T VA, (6.33)
. @a B = @a“g _F“QB@#’ (6.34)
. Tf, =T 4T, T +T# T (6.35)

Divergence formula. Quite often one deals with the divergence of vectors.
Given an arbitrary vector field V°, its divergence is defined by Eq. (5.52),

Vo=V +T°, VX (6.36)
This formula involves a sum in the Christoffel symbol, which, from Eq.
(6.32), is

I =38" (8su.a T+ Boan ~ Buass)

=38 (8pua — Buap) +38 " Lap (6.37)

This has had its terms rearranged to simplify it: notice that the term in
parentheses is antisymmetric in a and $, while it is contracted on a and
B with g*?, which is symmetric. The first term therefore vanishes and
we find

T®,.=38""80p.,.. (6.38)
Since (g>#) is the inverse matrix of (g,g), it can be shown (see Exer. 7,
§ 6.9) that the derivative of the determinant g of the matrix (g,5) is

L g,.~ ggaﬁgﬁa,u. (6.39)
Using this in Eq. (6.38), one finds
. I*.e=W-g)./vV-¢ (6.40)
Then we can write the divergence, Eq. (6.36), as
1
Ve, =V +—V*(V-2). 6.41

: . \/‘“8 ( g). ( )

or
l
¢ V=YgV (6.42)
v-g

This is a very much easier formula to use than Eq. (6.36). It is also
important for Gauss’ law, where we integrate the divergence over a
volume (using, of course, the proper volume element):

j Ve g d*x= J (V-gV*)., d*x. (6.43)
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Since the final term involves simple partial derivatives, the mathematics
of Gauss’ law applies to it, just as in SR (§ 4.8):

(V-gV®),d* =§ Ven,J/—g d*S. (6.44)
This means
* Ve Vg d4x=3€ Vin,v—g d’s. (6.45)

So Gauss’ law does apply on a curved manifold, in the form given by
Eq. (6.45). One needs to integrate the divergence over proper volume
and to use the proper surface element, n,~'—g d*S, in the surface integral.

6.4 Parallel-transport, geodesics and curvature

Until now, we have used the local-flatness theorem to develop
as much mathematics on curved manifolds as possible without consider-
ing the curvature explicitly. Indeed, we have yet to give a precise mathe-
matical definition of curvature. It is important to distinguish two different
kinds of curvature: intrinsic and extrinsic. Consider, for example, a
cylinder. Since a cylinder is round in one direction, one thinks of it as
curved. This is its extrinsic curvature: the curvature it has in relation to
the flat three-dimensional space it is part of. On the other hand, a cylinder
can be made by rolling a flat piece of paper without tearing or crumpling
it, so the intrinsic geometry is that of the original paper: it is flat. This
means that the distance in the surface of the cylinder between any two
points is the same as it was in the original paper; parallel lines remain
parallel when continued; in fact, all of Euclid’s axioms hold for the
surface of a cylinder. A two-dimensional ‘ant’ confined to that surface
would decide it was flat; only its global topology is funny, in that going
in a certain direction in a straight line brings him back to where he
started. The intrinsic geometry of an n-dimensional manifold considers
only the relationships between its points on paths that remain in the
manifold (for the cylinder, in the two-dimensional surface). The extrinsic
curvature of the cylinder comes from considering it as a surface in a
space of higher dimension, and asking about the curvature of lines that
stay in the surface compared with ‘straight’ lines that go off it. So extrinsic
curvature relies on the notion of a higher-dimensional space. In this
book, when we talk about the curvature of spacetime, we talk about its
intrinsic curvature, since it is clear that all world lines are confined to
remain in spacetime. Whether or not there is a higher-dimensional flat
space in which our four-dimensional space is a mere surface is of no
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interest here, since we apparently can’t enter it. The only thing of interest
to us is the intrinsic geometry of spacetime.

The cylinder, as we have just seen, is intrinsically flat; a sphere, on
the other hand, has an intrinsically curved surface. To see this, consider
Fig. 6.1, in which two neighboring lines begin at A and B perpendicular
to the equator, and hence are parallel. When continued as locally straight
lines they follow the arc of great circles, and the two lines meet at the
pole P. Parallel lines, when continued, do not remain parallel, so the
space is not flat.

Fig. 6.1 A spherical triangle APB.
A

A

\Jc

Fig. 6.2 A “triangle’ made of curved lines in flat space.

There is an even more striking illustration of the curvature of the
sphere. Consider, first, flat space. In Fig. 6.2 a closed path in flat space
is drawn, and, starting at A, at each point a vector is drawn parallel to
the one at the previous point. This construction is carried around the
loop from A to B to C and back to A. The vector finally drawn at A is,
of course, parallel to the original one. A completely different thing
happens on a sphere! Consider the path shown in Fig. 6.3. Remember,
we are drawing the vector as it is seen to a two-dimensional ant on the
sphere, so it must always be tangent to the sphere. Aside from that, each
vector is drawn as parallel as possible to the previous one. In this loop,
A and C are on the equator 90° apart, and B is at the pole. Each arc is
the arc of a great circle, and each is 90° long. At A we choose the vector
parallel to the equator. Each new vector is therefore drawn perpendicular
to the arc AB. When we get to B, the vectors are tangent to BC. So, going
from B to C, we keep drawing tangents to BC. These are perpendicular
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Fig. 6.3 Parallel transport around a spherical triangie.

to the equator of C, and so, from C to A the new vectors remain
perpendicular to the equator. Thus the vector field has rotated 90° in this
construction! Despite the fact that each vector is drawn parallel to its
neighbor, the closed loop has caused a discrepancy. Since this doesn’t
happen in flat space, it must be an effect of the sphere’s curvature.

This result has radical implications: on a curved manifold it simply
isn’t possible to define globally parallel vector fields. One can still define
local parallelism, for instance how to move a vector from one point to
another, keeping it parallel and of the same length. But the result of such
‘parallel transport’ from point A to point B depends on the path taken.
One therefore cannot assert that a vector at A is or is not parallel to (or
the same as) a certain vector at B.

Parallel-transport. The construction we have just made on the sphere is
called parallel-transport. If a vector field V is defined at every point of
a curve, as in Fig. 6.4, and if the vectors V at infinitesimally close points
of the curve are parallel and of equal length, then V is said to be
parallel-transported along the curve. It is easy to write down an equation
for this. If U = dx/dA is the tangent to the curve (A being the parameter
along it; U is not necessarily normalized), then in a locally inertial

i 7

v

Fig. 6.4 Paraliel transport of V along U.
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coordinate system at a point ? the components of V must be constant
along the curve at 2:

dve
=0 at?. 4
T a (6.46)
This can be written as:
dve
an = U"*’V“’,,,3 = U"V"‘:B =0 at®. (6.47)

The first equality is the definition of the derivative of a function (in this
case V%) along the curve; the second equality comes from the fact that
I'“,,=0 at 2 in these coordinates. But the third equality is a frame-
invariant expression and holds in any basis, so it can be taken as a
frame-invariant definition of the parallel-transport of V along U :

d - .
* UPVS =0<=>a V=VzV=0. (6.48)
The last step uses the notation for the derivative along U introduced in

Eq. (3.67).

Geodesics. The most important curves in flat space are straight lines. One
of Euclid’s axioms is that two straight lines that are initially parallel
remain parallel when extended. What does he mean by ‘extended’? He
doesn’t mean ‘continued in such a way that the distance between them
remains constant’, because even then they could both bend. What he
means is that each line keeps going in the direction it has been going in.
More precisely, the tangent to the curve at one point is parallel to the
tangent at the previous point. In fact, a straight line in Euclidean space
is the only curve that parallel-transports its own tangent vector! In a
curved space, we can also draw lines that are ‘as nearly straight as
possible’ by demanding parallel-transport of the tangent vector. These
are called geodesics:

* {U is tangent to a geodesic} <>V ;U = 0. (6.49)

(Note that in a locally inertial system these lines are straight.) In com-
ponent notation:

UPU*.,= UPU® ; +T° ,U*UP =0. (6.50)
Now, if we let A be the parameter of the curve, then U® =dx*/dA and
UPa/ax® =d/dA:

d [dx* dx* dx?
. — +I%,g————=0. :
dA(dA) “B da da 0 (6.51)

Since the Christoffel symbols I'?,,; are known functions of the coordinates
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{x*}, this is a nonlinear (quasi-linear), second-order differential equation
for x“(A). It has a unique solution when initial conditions at A = A, are
given: x5 =x%(Ao) and Ug =(dx®/dA),,. So, by giving an initial position
(x¢) and an initial direction (Ug ), one gets a unique geodesic.

Recall that if we change parameter we change, mathematically speak-
ing, the curve (though not the points it passes through). Now, if A is a
parameter of a geodesic (so that Eq. (6.51) is satisfied), and if we define
a new parameter

¢ =aA +b, (6.52)

where a and b are constants (not depending on position on the curve),
then ¢ is also a parameter in which Eq. (6.51) is satisfied:

d*x* __ dx*dx®
—dzz—+r “B-d:;f)_ —d";b"=0.

Generally speaking, only linear transformations of A like Eq. (6.52) will

give new parameters in which the geodesic equation is satisfied. A

parameter like A and ¢ above is called an affine parameter. A curve

having the same path as a geodesic but parametrized by a nonaffine

parameter is, strictly speaking, not a geodesic curve.

A geodesic is also a curve of extremal length: between any two points,
its length is unchanged to first order in small changes in the curve. The
student is urged to prove this by using Eq. (6.7), finding the Euler-
Lagrange equations for it to be an extremal for fixed A, and A, and
showing that these reduce to Eq. (6.51) when Eq. (6.32) is used. This is
a very instructive exercise. One can also show that proper distance along
the geodesic is itself an affine parameter. (See Exer. 13-15, § 6.9.)

6.5 The curvature tensor
At last we are in a position to give a mathematical description
of the intrinsic curvature of a manifold. We go back to the curious
example of the parallel-transport of a vector around a closed loop, and
take it as our definition of curvature. Let us imagine in our manifold a
very small closed loop (Fig. 6.5) whose four sides are the coordinate

x*=b+5b
Fig. 6.5 Small section of a coordinate grid.
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lines x' =a, x'=a+8a, x>=b, and x>= b +8b. A vector V defined at A
is parallel-transported to B. From the parallel-transport law V V=0we
conclude

ave®
P -, v (6.53)
So at B the vector has components
a a ? ava 1
Vi(B)=V*(A)+| —7dx
A OX
=V*(A) —J . re, v+ dx', (6.54)
x“=b

where the notation ‘x* = b’ under the integral denotes the path AB. Similar
transport from B to C to D gives

Ve(C)= v“(3)~j re,,V* dx? (6.55)

x'=a+8a
Ve(D)= Ve(C) +J e, v*dx'. (6.56)
x?=b+8b
The integral in the last equation has a different sign because the
direction of transport from C to D is in the negative x' direction.
Similarly, the completion of the loop gives
V(Apna) = V(D) +J I, V* dx”, (6.57)

The net change in V*(A) is a vector §V*°, found by adding Egs. (6.54)-
(6.57):

Ve = V¥ Agna) — V¥ (Ainitiar)

=j re,., v+ dxz—[ re,,v+dx?
x'=a x'=a+éa

+[ I"’{M,V“L dx'—-J re,,ve dx'. (6.58)
x?=b+8b op

Notice that these would cancel in pairs if I'*,, and V* were constants
on the loop, as they would be in flat space. But in curved space they are
not, and we get to lowest order

b+8b 3
V" = _L aag(rauzv*‘) dx®

a+ba
+I 8b—5(I",, V) dx' (6.59)

a

ad d
~ 8a Sb[-(-a;-,(I““qu“)-i-a—f(I‘““.V“)]. (6.60)
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This involves derivatives of Christoffel symbols and of V. The derivatives
V¢ can be eliminated using Eq. (6.53) and its equivalent with 1 replaced
by 2. Then Eq. (6.60) becomes

Ve =8a bl ,— T, +T%. ", ~T*, ", ]V~ (6.61)

(To obtain this, one needs to relabel dummy indices in the terms quadratic
in I's.) Notice that this turns out to be just a number times V¥, summed
on u. Now, the indices | and 2 appear because the path was chosen to
go along those coordinates. It is antisymmetric in | and 2 because the
change 6V® would have to have the opposite sign if one went around
the loop in the opposite direction (that is, interchanging the roles of 1
and 2). If one used general coordinate lines x° and x*, one would find
6V® = change in V® due to transport, first da €,, then &b é,,
then— 8a é,, and finally — éb €,

=6aéb[I' o, T re +I"°‘,,AI"”£“, I alve  (6.62)
Now, 6V depends on 8a &b, the coordinate ‘area’ of the loop. So it is
clear that if the length of the loop in one direction is doubled, 6V* is
doubled. This means that 8V* depends linearly on Saé, and 8bé,.
Moreover, it certainly also depends linearly in Eq. (6.62) on V* itself
and on @, which is the basis one-form that gives 6 V" from the vector
8V. Hence we have the following result: if we define
L 4 R, =T%, ,~ T+, T, T, ', (6.63)
then R%g,, must be components of the (3) tensor which, when supplied
with arguments &%, V, da é,, 8bé,, gives 6V, the component of the
change in V on parallel-transport around a loop given by 8a é, and &b é,.
This tensor is called the Riemann curvature tensor R.'

It is useful to look at the components of R in a locally inertial frame
at a point . We have I'°,, =0 at 2 but from Eq. (6.32)

Fay.y,cr = %gaﬁ(gﬁu,vcr +g,6u,,u,a' - gpw,ﬁcr)- (664)
Since second derivatives of g,z don’t vanish, we get at &

a _ 1, aoc
R Buv — 28 (gch,v,u. + 8ov.pu ~ 8Bv,on

— BeBur 8o, 8v + gB“,cru)- (6'65)
Using the symmetry of g.,5 and the fact that
gaB,p,u = gaﬂ,wu (666)
because partial derivatives always commute, we find
R“ﬁuv = %gaa(gov.ﬁu - gau..Bv + gﬁu.av - ng,ou ) (667)

| As with other definitions we have earlier introduced, there is no universal
agreement about the overall sign of the Riemann tensor, or even on the placement
of its indices. Always check the conventions of whatever book you read.
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If we lower the index a we get (in this coordinate system at P)

RaBuv = gm\R‘\Bpu = %(gav,ﬁu - 3«:,;,,;3» + gﬂu,av - ng,ap,)' (6'68)
In this form it is easy to verify the following identities:
* RaBy.V - _Rﬂay.v = _Raﬂv,u. = Ruvaﬂs (6'69)
L R.g. +Roug, + Rypp =0. (6.70)

Thus, R,z,, is antisymmetric on the first pair and on the second pair of
indices, and symmetric on exchange of the two pairs. Since Egs. (6.69)
and (6.70) are valid tensor equations true in one coordinate system, they
are true in all bases. (Note that an equation like Eq. (6.67) is not a valid
tensor equation, since it involves partial derivatives, not covariant ones.
Therefore itis true only in the coordinate system in which it was derived.)

It can be shown (Exer. 18, § 6.9) that the various identities, Egs. (6.69)
and (6.70), reduce the number of independent components of R,g,,, (and
hence of R%g,,) to 20, in four dimensions. This is, not coincidentally, the
same number of independent g,,,, that we found at the end of §6.2
could not be made to vanish by a coordinate transformation. Thus R%,,
characterizes the curvature in a tensorial way.

A flat manifold is one which has a global definition of parallelism: a
vector can be moved around parallel to itself on an arbitrary curve and
will return to its starting point unchanged. This clearly means that

* R%,,, = 0 flat manifold. (6.71)

(Try showing that this is true in polar coordinates for the Euclidean plane.)

An important use of the curvature tensor comes when we examine the
consequences of taking two covariant derivatives of a vector field V. We
found in § 6.3 that first derivatives were like flat-space ones, since we
could find coordinates in which the metric was flat to first order. But
second derivatives are a different story:

V. VgV =V, (V")
= ( V“:ﬁ),a +F“a’& VU‘.B - Fdﬂﬂ V“ o (672)

In locally inertial coordinates at 2, all the I's are zero, but their partial
derivatives are not. Therefore we have at &

VauVgV¥= V¥ o +TH 5. V" (6.73)

in these coordinates only. Consider the same formula with a and 8
exchanged:

VeV V¥ =V# +TH V" (6.74)

If we subtract these we get the commutator of the covariant derivative

perators V, and Vg, written in the same notation as we would employ



6.5 The curvature tensor 171

in quantum mechanics:
[Va, V] V¥ =V V¥V =V, V, V-

=T ga-T"ag) V" {(6.75)
The terms involving the second derivatives of V* drop out here, since
Ve = V¥ g (6.76)

(Let us pause to recall that V* , is the partial derivative of the component
V¥, so by the laws of partial differentiation the partial derivatives must
commute. On the other hand, V,V* is a component of the tensor VV,
and V,V,V* is a component of VV V: there is no reason (from differential
calculus) why it must be symmetric on a and 8. We have proved it
generally is not.) Now, in this frame (where I'”,; = 0), we can compare
Eq. (6.75) with Eq. (6.63) and see that at ?
¢ [Va Va]V¥ = R* s V" (6.77)
Since this is a valid tensor equation, it is true in any coordinate system.
The Riemann tensor gives the commutator of covariant derivatives. This
means that in curved spaces, one must be careful to know the order in
which covariant derivatives are taken: they do not commute. This can
be extended to tensors of higher rank. For example, a (}) tensor has
[V, ValF*, = R*, s F°,+R" g F",. (6.78)
That is, each index gets a Riemann tensor on it, and each one comes in
with a + sign. (They must all have the same sign because raising and
lowering indices with g is unaffected by V,, since Vg=20.)

Eq. (6.77) is closely related to our original derivation of the Riemann
tensor from parallel-transport around loops, because the parallel-trans-
port problem can be thought of as computing, first the change of V in
one direction, and then in another, followed by subtracting changes in
the reverse order: this is what commuting covariant derivatives also does.

Geodesic deviation. We have often mentioned that in a curved space,
parallel lines when extended do not remain parallel. This can now be
formulated mathematically in terms of the Riemann tensor. Consider
two geodesics (with tangents V and V') that begin parallel and near each
other, as in Fig. 6.6, at points A and A’. Let the affine parameter on the

Ak B' =
A > V
AN 8

A

Fig. 6.6. A connecting vector £ between two geodesics connects points of the
same parameter value,
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geodesics be called A. We define a ‘connecting vector’ £ which ‘reaches’
from one geodesic to another, connecting points at equal intervals in A
(i.e. Ato A, Bto B’, etc.). For simplicity, let us adopt a locally inertial
coordinate system at A, in which the coordinate x° points along the
geodesics. Thus at A we have V® = §§. The equation of the geodesic at
Als

dea

da?
since all Christoffel symbols vanish at A. The Christoffel symbols do not
vanish at A’, so the equation of the geodesic V' at A’ is

=0, (6.79)

A

d?x=

dA?

+T (A" =0, (6.80)

A

where again at A’ we have arranged the coordinates so that V* = ;.
But, since A and A’ are separated by £ we have

[%g(A’) = Iwoo,pfﬁ, (6.81)
the right:hand side being evaluated at A. With Eq. (6.80) this gives

d’x® W

axt| = T Tt (6.82)

Now, the difference x“(A, geodesic V) —x*(A, geodesic V) is just the
component ¢° of the vector £ Therefore, at A, we have

d’¢”  d’x° d*x”
da? da?|, da?
This then gives how the components of £ change. But since the coordin-
ates are to some extent arbitrary, we want to have, not merely the second

derivative of the component ¢, but the full second covariant derivative
VvVyE We can use Eq. (6.48) to obtain

VyvVvE* =V (VyE7)

d
= (V) +T%0(V ). (6.84)

=‘—I‘a00,ﬁ Eﬁ. (683)

A

Now, using I', =0 at A, we have

« dfd . ..

2

d
za';"ifa +T %o 0" (6.85)

at A. (We have also used ¢# ;= 0 at A, which is the condition that curves
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begin parallel.) So we get
Vy Vs = (Iw[ao,o_Imoo,;s)gl3
= R%qp¢? =R%, s V*V"¢", (6.86)
where the second equality follows from Eq. (6.63). The final expression
is frame invariant, so we have, in any basis,

! VyVyE5 =R, V¥V S (6.87)

Geodesics in flat space maintain their separation; those in curved spaces
don’t. This is called the equation of geodesic deviation and shows
mathematically that the tidal forces of a graviational field (which cause
trajectories of neighboring particles to diverge) can be represented by
curvature of a spacetime in which particles follow geodesics.

6.6 Bianchi identities; Ricci and Einstein tensors
Let us return to Eq. (6.63) for the Riemann tensor’s components.
If we differentiate it with respect to x* (just the partial derivative) and
evaluate the result in locally inertial coordinates, we find

Rdﬂuw\ = %(gav‘ﬁw\ ~ Bapn.Bra + 8au.ava 7 8Br.apA ) (6.88)

From this equation, the symmetry g.s =gs. and the fact that partial
derivatives commute, one can show that

Ruguvr + Raprp, ¥ Rogon,, =0. (6.89)

Since in our coordinates ',z =0 at this point, this equation is equivalent
to

* Ropuva Y Rogrpw +Ropin . =0. (6.90)

But this is a tensor equation, valid in any system. It is called the Bianchi
identities, and will be very important for our work.

The Ricci tensor. Before pursuing the consequences of the Bianchi iden-
tities, we shall need to define the Ricci tensor R,4:

L RGB = R* = RB“' (6.91)

It is the contraction of R*,,; on the first and third indices. Other contrac-
tions would in principle also be possible: on the first and second, the
first and fourth, etc. But because R,g,,, is antisymmetric on « and 8 and
on u and v, all these contractions either vanish identically or reduce to
tR,p. Therefore the Ricci tensor is essentially the only contraction of
the Riemann tensor. Note that Eq. (6.69) implies it is a symmetric tensor
(Exer. 25, §6.9).

auf
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Similarly, the Ricci scalar is defined as

¢ R=g"R,, =g""g**R (6.92)

auBr

The Einstein tensor. Let us apply the Ricci contraction to the Bianchi
identities, Eq. (6.90):

ga“[RaBuV:A + RaBA,u:v + Ran\ :u] =0

or
Rﬁp:,\ +(_RBA;V)+R“[BW\;“=O' (6-93)

To derive this result one needs two facts. First, by Eq. (6.31) we have
guﬁ 7 = 0;

since g** is a function only of g4 it follows that
g, =0. (6.94)

Therefore g** and gg, can be taken in and out of covariant derivatives
at will: index-raising and -lowering commutes with covariant differenti-
ation. The second fact is that

ga“RaB»\u:v = _ga“Raﬁw\ w _RBA %) (6'95)
accounting for the second term in Eq. (6.93). Eq. (6.93) is called the
contracted Bianchi identities. A more useful equation is obtained by
contracting again on the indices 8 and v:

gﬂv[Rﬁv;A - R,BA v + R“ﬂul\ '.,u] = 0

or

R,—R*, , +(=R*, . )=0. (6.96)
Again the antisymmetry of R has been used to get the correct sign in the
last term. Note that since R is a scalar, R., = R, in all coordinates. Now,
Eq. (6.96) can be written in the form

(2R*,~8*,R)., =0. (6.97)
These are the twice-contracted Bianchi identities, often simply also called
the Bianchi identities. If we define the symmetric tensor

¢ G*® = R*? —3g*PR = G*°, (6.98)
then we see that Eq. (6.97) is equivalent to
L 4 G**.5=0. (6.99)

The tensor G*® is constructed only from the Riemann tensor and the
metric, and is automatically divergence free as an identity. It is called
the Einstein tensor, since its importance for gravity was first understood
by Einstein. (In fact we shall see that the Einstein field equations for GR
are

G = 8T
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(where T2 is the stress—energy tensor). The Bianchi identities then imply
TdB B = 05

which is the equation of local conservation of energy and momentum.

But this is looking a bit far ahkead.)

6.7 Curvature in perspective
The mathematical machinery for dealing with curvature is formi-
dable. There are many important equations in this chapter, but few of
them need to be memorized. It is far more important to understand their
derivation and particularly their geometrical interpretation. This interpre-
tation is something we will build up over the next few chapters, but the
material already in hand should give the student some idea of what the
mathematics means. Let us review the important features of curved
spaces.
(1) We work on Riemannian manifolds, which are smooth spaces
with a metric defined on them.
(2) The metric has signature +2, and there always exists a coordinate
system in which, at a single point, one can have

8aB = Nap»
8apy =0=2T%; =0.

(3) The element of proper volume is
jg'l/Z d4x,
where g is the determinant of the matrix of components g,z.

(4) The covariant derivative is simply the ordinary derivative in
locally inertial coordinates. Because of curvature (I'“g, , #0)
these derivatives do not commute.

(5) The definition of parallel-transportisthat the covariant derivative
along the curve is zero. A geodesic parallel-transports its own
tangent vector. Its affine parameter can be taken to be the proper
distance itself.

(6) The Riemann tensor is the characterization of the curvature.
Only if it vanishes identically is the manifold flat. It has 20
independent components (in four dimensions), and satisfies the
Bianchi identities, which are differential equations. The Riemann
tensor in a general coordinate system depends on g, and its
first and second partial derivatives. The Ricci tensor, Ricci scalar,
and Einstein tensor are contractions of the Riemann tensor. In
particular, the Einstein tensor is symmetric and of second rank,
so it has ten independent components. They satisfy the four
differential identities, Eq. (6.99).
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Exercises

Decide if the following sets are manifolds and say why. If there are
exceptional points at which the sets are not manifolds, give them:
phase space of Hamiltonian mechanics, the space of the canonical
coordinates and momenta p; and q';

the interior of a circie of unit radius in two-dimensional Euclidean space;
the set of permutations of n objects;

the subset of Euclidean space of two dimensions (coordinates x and y)
which is a solution to xy (x*+y*—1)=0.

Of the manifolds in Exer. 1, on which is it customary to use a metric,
and what is that metric? On which would a metric not normally be
defined, and why?

It is well known that for any symmetric matrix A (with real entries),
there exists a matrix H for which the matrix H* A H is a diagonal
matrix whose entries are the eigenvalues of A.

Show that there is a matrix R such that R" H' A HR is the same matrix
as H' A H except with the eigenvalues rearranged in ascending ordes
along the main diagonal from top to bottom.

Show that there exists a third matrix N such that N'"RT H' AHRN
is a diagonal matrix whose entries on the diagonal are —1, 0, or +1.
Showthat if A has aninverse, none of the diagonal elements in (b) is zero.
Show from (a)—(c) that there exists a transformation matrix A which
produces Eq. (6.2).

Prove the following results used in the proof of the 1ocal flatness theorem
in §6.2:

The number of independent values of a2x*/ax” ax*|, is 40.

The corresponding number for @*x*/ax* ax” ax*|, is 80.

The corresponding number for g,g yu-lo is 100.
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ProvethatI'*, 5 =I'*g, in any coordinate system in a curved Riemannian
space.

Use this to prove that Eq. (6.32) can be derived in the same manner as
in flat space.

Prove that the first term in Eq. (6.37) vanishes.

Give the definition of the determinant of a matriX A in terms of cofactors
of elements.

Differentiate the determinant of an arbitrary 2 X2 matrix and show that
it satisfies Eq. (6.39).

Generalize Eq. (6.39) (by induction or otherwise) to arbitrary n X n
matrices.

Fill in the missing algebra leading to Egs. (6.40) and (6.42).

Show that Eq. (6.42) ieads to Eq. (5.55). Derive the divergence formula
for the metric in Eq. (6.19),

A ‘straight line’ on a sphere is a great circle, and it is well known that
the sum of the interior angles of any triangie on a sphere whose sides
are arcs of great circles exceeds 180°. Show that the amount by which
a vector is rotated by parallel transport around such a triangle (as in
Fig. 6.3) equals the excess of the sum of the angles over 180°.

In this exercise we will determine the condition that a vector fieid V
can be considered to be giobally paraliei on a manifold. More precisely,
what guarantees that we can find a vector field V satisfying the equation
(VV)o =V =V g +T%, g V¥ =0?

A necessary condition, called the integrability condition for this equation,
foilows from the commuting of partial derivatives. Show that V* 5, =
Ve s implies

(Tp, T ) V=T g%, — T, T*,5) V.

By relabeling indices, work this into the form

(P =T g+ T T —T %57, ) V¥ =0.

This turns out to be sufficient, as well.

Prove that Eq. (6.52) defines a new affine parameter.

Show that if A and B are parallel-transported along a curve, then
g(A', B)= A B is constant on the curve.

Conciude from this that if a geodesic is spacelike (or timelike or null)
somewhere, it is spacelike (or timelike or null) everywhere.
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19

20

21

22

23

25(a)
(b)
26

27

Curved manifolds

The proper distance along a curve whose tangent is V is given by Eq.
(6.8). Show that if the curve is a geodesic, then proper length is an
affine parameter. (Use the result of Exer. 13.)

Use Exer. 13 and 14 1o prove that the proper length of geodesic between
two points is unchanged to first order by smail changes in the curve
that do not change its endpoints.

Derive Eqgs. (6.59) and (6.60) from Eq. (6.58).
Fill in the algebra needed to justify Eq. (6.61).

Prove that Eq. (6.5) implies g*® ,,(P)=0.
Use this to establish Eq. (6.64).
Fill in the steps needed to establish Eq. (6.68).

Derive Eqgs. (6.69) and (6.70) from Eq. (6.68).

Show that Eq. (6.69) reduces the number of independent components
of R,p,, from 4 X4xX4x4=256 to 6x7/2=2]. (Hint: treat pairs of
indices. Calculate how many independent choices of pairs there are for
the first and the second pairs on R,g,,,.)

Show that Eq. (6.70) imposes only one further relation independent of
Eq. (6.69) on the components, reducing the total of independent ones
to 20.

Prove that R%g,,, = 0 for polar coordinates in the Euclidean plane. Use
Eq. (5.44) or equivalent results.

Fill in the algebra necessary to establish Eq. (6.73).

Consider the sentences following Eq. (6.78). Why does the argument in
parentheses not apply to the signs in

Va;B= Va,p +Fa“3V“ and V“'-B= a,B—F“a.BVp.?
Fill in the algebra necessary to establish Egs. (6.84), (6.85), and (6.86).

Prove Eq. (6.88). (Be careful: one cannot simply differentiate Eq. (6.67)
since it is valid only at P, not in the neighborhood of P)

Establish Eq. (6.89) from Eq. (6.88).

Prove that the Ricci tensor is the only independent contraction of R®
all others are multiples of it.
Show that the Ricci tensor is symmetric.

Buv:

Use Exer. 17(a) to prove Eq. (6.94).

Fill in the algebra necessary to establish Egs. (6.95), (6.97) and (6.99).
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Derive Eq. (6.19) by using the usual coordinate transformation from
Cartesian to spherical polars.

Deduce from Eq. (6.19) that the metric of the surface of a sphere of
radius r has components (gge = 1, 8ss = 7 sin® 8, gee = 0) in the usual
spherical coordinates.

Find the components g*® for the sphere.

In polar coordinates, calculate the Riemann curvature tensor of the
sphere of unit radius, whose metric is given in Exer. 28. (Note that in
two dimensions there is only one independent component, by the same
arguments as in Exer. 18(b). So calculate Ry46, and obtain all other
components in terms of it.)

Calculate the Riemann curvature tensor of the cylinder. (Since the
cylinder is flat, this should vanish. Use whatever coordinates you like,
and make sure you write down the metric properly!)

Show that covariant differentiation obeys the usual product rule, e.g.
(VPWa,), = V2 W, + VW, . (Hint: use a locally inertial
frame.)

A four-dimensional manifold has coordinates (u, v, w, p} in which the
metric has components g, = g... = g, = |, all other independent com-
ponents vanishing.

Show that the manifold is flat and the signature is +2.

The result in (a) implies the manifold must be Minkowski spacetime.
Find a coordinate transformation to the usual coordinates (¢, x, y, z).
(You may find it a useful hint to calculate é,- €, and é,- é,.)

A ‘three-sphere’ is the three-dimensional surface in four-dimensional
Euclidean space (coordinates x, y, z, w), given by the equation x* +y* +
2z +w?=r?, where r is the radius of the sphere.

Define new coordinates (r, 8, ¢, x) by the equations w=rcosy, z=
rsin y cos 8, x=rsin y sin 8 cos ¢, y =rsin y sin 8 sin ¢. Show that
(6, @, x) are coordinates for the sphere. These generalize the familiar
polar coordinates.

Show that the metric of the three-sphere of radius r has components
in these coordinates g,, =r’, gy =r"sin’x, 844 = r’sin’ y sin’ 6, all
other components vanishing. (Use the same method as in Exer. 28.)

Establish the following identities for a general metric tensor in a general
coordinate system. You may find Egs. (6.39) and (6.40) useful.
r*,.=40nlg),;

g T, = —(g°V-g) a/vV-g;

for an antisymmetric tensor F**, F**, = (V—gF**) ,/vV—-g;

£2°°8s, ., = —g°? 84, (hint: what is g°%gg, ?);

g o =—T*5,8°" —T"g,g** (hint: use Eq. (6.31)).
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Compute 20 independent components of R,g,., for a manifold wth line
element ds’ = —¢’® dt* +e”* dr’ +r’(d6* +sin” 8 d¢?), where @ and A
are arbitrary functions of the coordinate r alone. (First, identify the
coordinates and the components g,5; then compute g** and the Chris-
toffel symbols. Then decide on the indices of the 20 components of
R,p,. you wish to calculate, and compute them. Remember that one
can deduce the remaining 236 components from those 20.)

A four-dimensional manifold has coordinates (¢, x, y, z) and line element
ds’=—-(14+2¢)dt* +(1 —2¢)dx* +dy* +dz?),

where |¢(1, x, y, z)| € | everywhere. At any point P with coordinates (t,,
X0, Yo» 20), find a coordinate transformation to a locally inertial coordi-

nate system, to first order in ¢. At what rate does such a frame accelerate
with respect to the original coordinates, again to first order in ¢?

‘Proper volume’ of a two-dimensional manifold is usually called ‘proper
area’. Using the metric in Exer. 28, integrate Eq. (6.18) to find the proper
area of a sphere of radius r.

Do the analogous calculation for the three-sphere of Exer. 33.

Integrate Eq. (6.8) to find the length of a circle of constant coordinate
0 on a sphere of radius r.

For any two vector fields U and V, their Lie bracket is defined to be
the vector field [ U, V] with components

[0, VI =UBV V> - VAV, U". (6.100)
Show that

[0, Vi=-V, U],

[0, VI* = UP av=/axP - VP gU*"/ax".

This is one tensor field in which partial derivatives need not be accom-
panied by Cl_}rigtoﬁel symbois! . .

Show that [ U, V] is a derivative operator on V along U, i.e. show that
for any scalar f,

[0, fV1=f10, V]1+ V(U- vf). (6.101)
This is sometimes called the Lie derivative with respect to U and denoted
by

[0, V]=£V, U-Vf=£5f (6.102)
Then Eq. (6.101) would be written in the more conventional form of
the Leibnitz rule for the derivative operator £

£o(fV)=fE5V +VEgS (6.103)
The result of (a) shows that this derivative operator may be defined

without a connection or metric, and is therefore very fundamental. See
Schutz (1980b6) for an introduction.
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(c) Calculate the components of the Lie derivative of a one-form field @
from the knowledge that, for any vector field V, @(V) is a scalar like f
above, and from the definition that £;@ is a2 one-form field:
£5[0(M)]=(£50) (V) +a(£5V).

This is the analogue of Eq. (6.103).
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Physics in a curved spacetime

7.1 The transition from differential geometry to gravity

The essence of a physical theory expressed in mathematical form
is the identification of the mathematical concepts with certain physically
measurable quantities. This must be our first concern when we look at
the relation of the concepts of geometry we have developed to the effects
of gravity in the physical world. We have already discussed this to some
extent. In particular, we have assumed that spacetime is a differentiable
manifold, and we have shown that there do not exist global inertial
frames in the presence of nonuniform gravitational fields. Behind these
statements are the two identifications:

€ (1) Spacetime (the set of all events) is a four-dimensional manifold
with a metric.

€ (i1) The metric is measurable by rods and clocks. The distance along
a rod between two nearby points is |dX- dx|'/? and the time
measured by a clock that experiences two events closely separ-
ated in time is |—dx - dx|"/>

So there do not generally exist coordinates in which dxX-dxX=
- (dx°)’ +(dx")? +(dx®)? +(dx’)* everywhere. On the other hand, we have
also argued that such frames do exist locally. This clearly suggests a
curved manifold, in which coordinates can be found which make the dot
product at a particular point look like it does in a Minkowski spacetime,
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Therefore we make a further requirement:

¢ (111) The metric of spacetime can be put in the Lorentz form 7,4
at any particular event by an appropriate choice of coordinates.

Having chosen this way of representing spacetime, we must do two more
things to get a complete theory. First, we must specify how physical
objects (particles, electric fields, fluids) behave in a curved spacetime
and, second, we need to say how the curvature is generated or determined
by the objects in the spacetime.

Let us consider Newtonian gravity as an example of a physical theory.
For Newton, spacetime consisted of three-dimensional Euclidean space,
repeated endlessly in time. (Mathematically, this is called R® X R.) There
was no metric on spacetime as a whole manifold, but the Euclidean space
had its usual metric and time was measured by a universal clock. Thus,
‘distance’ had meaning only at a fixed point in R® (when it meant ‘time
elapsed’) or at a fixed time (when it meant ‘distance between objects’).
There was no invariant measure of the length of a general curve that
changed position and time as it went along. Newton gave a law for the
behavior of objects in spacetime: F = ma, where F = — mV ¢ for a given
gravitational field ¢. And he also gave a law determining how ¢ is
generated: V¢ = 47rGp. These two laws are the ones we must now find
analogues for in our relativistic point of view on spacetime. The second
one will be dealt with in the next chapter. In this chapter, we ask only
how a given metric affects bodies in spacetime.

We have already discussed this for the simple case of particle motion.
Since we know that the ‘acceleration’ of a particle in a gravitational field
is independent of its mass, we can go to a freely falling frame in which
nearby particles have no acceleration. This is what we have identified as
a locally inertial frame. Since freely falling particles have no acceleration
in that frame, they follow straight lines, at least locally. But straight lines
in a local inertial frame are, of course, the definition of geodesics in the
full curved manifold. So we have our first postulate on the way particles
are affected by the metric:

® (1v) Freely falling particles move on timelike geodesics of the
spacetime.

By ‘freely falling’ we mean particles unaffected by other forces, such as
electric fields, etc. All other known forces in physics are distinguished
from gravity by the fact that there are particles unaffected by them.
Postulate (1v) is a very strong prediction, capable of experimental test.
But it refers only to particles. How are, say, electromagnetic fields and
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fluids affected by a nonflat metric? We need a generalization of (1v)
which is called the strong equivalence principle:

€ (1v') Any physical law which can be expressed in tensor notation in
SR has exactly the same form in a locally inertial frame of a
curved spacetime.

This principle is often called the ‘comma-goes-to-semicolon rule’, because
if a law contains derivatives in its special-relativistic form (‘commas’),
then it has these same derivatives in the local inertial frame. To convert
the law into an expression valid in any coordinate frame, one simply
makes the derivatives covariant (‘semicolons’). It is an extremely simple
way to generalize the physical laws. In particular, it forbids ‘curvature
coupling’: it is conceivable that the correct form of, say, Maxwell's
equations in a curved spacetime would involve the Riemann tensor
somehow, which would vanish in SR. Postulate (1v') would not put any
Riemann-tensor terms into the equations.

As an example of (1v'), we discuss fluid dynamics, which will be our
main interest in this course. The law of conservation of particles in SR
was expressed as

(nU™), =0, (7.1)

where n was the density of particles in the momentarily comoving
reference frame (MCRF), and where U® was the four-velocity of a fluid
element. In a curved spacetime, one can find a locally inertial frame
comoving momentarily with the fluid element and define n in exactly
the same way. Similarly one can define U to be the time basis vector of
that frame, just as in SR. Then, in the locally inertial frame, conservation
of particles is exactly Eq. (7.1). But this, because the Christoffel symbols
are zero, is equivalent to

(nU%)., = 0. (7.2)
This is valid in all frames and so serves as the generalization of the law

to a curved spacetime, according to the strong equivalence principle,

Notice that, in principle, the correct equation in a curved spacetime might
be

(nU®)., =R, (7.3)
where R is the Ricci scalar defined in Eq. (6.92). This would also reduce
to Eq. (7.1) in SR, since in a flat spacetime the Riemann tensor vanishes.
The strong equivalence principle asserts that we should generalize Eq.
(7.1) in the simplest possible manner, that is Eq. (7.2). It is of course a
matter for experiment, or astronomical observation, to decide whether
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Eq. (7.2) or Eq. (7.3) is correct. In this book we shall simply make the
assumption that is nearly universally made, that the strong equivalence
principle is correct. There is no observational evidence to the contrary.
Similarly, the law of conservation of entropy in SR was

Uuss,=0. (7.4)
Since there are no Christoffel symbols in the covariant derivative of a
scalar like S, this law is unchanged in a curved spacetime. Finally,
conservation of four-momentum was

T ,=0. (7.5)
The generalization is

T* ., =0, (7.6)
with the definition

™ =(p+p)U*U" +pg*’, (7.7)

exactly as before. (Notice that g*” replaces n*” in Eq. (7.7), since we
need the metric in a general coordinate system.)

7.2 Physics in slightly curved spacetimes

To see the implications of (1v') for the motion of a particle or
fluid, one must know the metric on the manifold. Since we have not yet
studied the way a metric is generated, we will at this stage have to be
content with assuming a form for the metric which we shall derive later.
It turns out that for weak gravitational fields (where, in Newtonian
language, the gravitational potential energy of a particle is much less
than its rest-mass energy) the ordinary Newtonian potential ¢ completely
determines the metric, which has the form

* ds’=—(1+2¢)dr* +(1 —2¢) (dx*+dy* +dz?). (7.8)

(The sign of ¢ is chosen negative, so that, far from a source of mass M,
¢ =— GM/r.) Now, the condition above that the field be weak means
the |[m@| <« m, so that {¢|« 1. The metric, Eq. (7.8), is really only correct
to first order in ¢, so we shall work to this order from now on.

Let us compute the motion of a freely falling particle. Let us denote
its four-momentum by p. For all except massless particles, this is mU,
where U =dx/dr. Now, by (1v), the particle’s path is a geodesic, and we
know that proper time is an affine parameter on such a path. Therefore
U must satisfy the geodesic equation,

voU=o. (1.9)

For convenience later, however, we note that any constant times proper
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time is an affine parameter, in particular 7/ m. Then dX/d(7/m) is also
a vector satisfying the geodesic equation. This vector is just mdx/dr = p.
So we can also write the equation of motion of the particle as

V,;5=0. (7.10)

This equation can also be used for photons, which have a well-defined
P but no U since m=0.

If the particle has a nonrelativistic velocity in the coordinates of Eq.
(7.8), we can find an approximate form for Eq. (7.10). First let us consider
the 0 component of the equation,

pp°. +T°%.p°p? =0. (7.11)
Because the particle has a nonrelativistic velocity we have p°®»p'.
Moreover, p“d, = mU®d, =m d/d7, so Eq. (7.11) is approximately

d
ma—'p0+r000( p0)2=0. (7.]2)
T
We need to compute I'%gp:
rooo=%goa(gao,o+guo,o_goo.a)- (7.13)

Now because [g.,] is diagonal, [g**] is also diagonal and its elements
are the reciprocals of those of [g.s). Therefore g°* is nonzero only when
a =0, so Eq. (7.13) becomes

1 1

o _1.00 ——
[Po=13g 80,0 2_(]+2¢)( 29‘5),0

= ¢o+0(¢°). (7.14)
To lowest order in the velocity of the particle and in ¢, we can replace
(p°)? in the second term of Eq. (7.12) by m’, obtaining
d dd

—p'=—-m—. 15
dr ma'r (7.13)

Since p° is the energy of the particle in this frame, this means the energy
is conserved unless the gravitational field depends on time. This result
is true also in Newtonian theory. Here, however, we must note that p°
is the energy of the particle with respect to this frame only.

The spatial components of the geodesic equation give the counterpart
of the Newtonian F = ma. They are

papi,a +Finﬁpap3=0’ (7'l6)
or to, lowest order in the velocity,

dp' .
md—‘”+r'oo(p°)2=o. (7.17)
T
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Again we have neglected p' compared to p° in the I' summation. Con-
sistent with this we can again put (p%)* = m? to a first approximation and
get

-d£r= —mI'y,. (7.18)

dr
We calculate the Christoffel symbol:

o= 328" (8a0,0+ 8a0,0~ 8o0.a)- (7.19)
Now, since [g*?] is diagonal, we can write

g =(1-2¢)"'86" (7.20)
and get

I-".oo=%(1 _2¢)—18ij(28j0,0"800,j), (7.21)

where we have changed « to j because 8 is zero. Now we notice that
go=0 and so we get

I‘iooz“%goo,jsij’*"o(d’z) (7.22)
=—3(—2¢) 8" (7.23)

With this the equation of motion, Eq. (7.17), becomes
dp'/dr=—m¢ 8" (7.24)

This is the vsual equation in Newtonian theory, since the force of a
gravitational field is —-mV¢.

Both the energy-conservation equation and the equation of motion
were derived as approximations based on two things: the metric was
nearly the Minkowski metric (|¢|« 1), and the particle’s velocity was
nonrelativistic (p° > p’). These two limits are just the circumstances under
which Newtonian gravity is verified, so it is reassuring — indeed, essential
- that we have recovered the Newtonian equations. However, there is
no magic here. It almost had to work, given that we know that particles
fall on straight lines in freely falling frames.

One can do the same sort of calculation to verify that the Newtonian
equations hold for other systems in the appropriate limit. For instance,
the student has an opportunity to do this for the perfect fluid in Exer.
5, § 7.6. Note that the condition that the fluid be nonrelativistic means
not only that its velocity is small but also that the random velocities of
its particles be nonrelativistic, which means p < p.

This correspondence of our relativistic point of view with the older,
Newtonian theory in the appropriate limit is very important. Any new
theory must make the same predictions as the old theory in the regime
in which the old theory was known to be correct. The equivalence
principle plus the form of the metric, Eq. (7.8), does this.
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7.3 Curved intuition
Although in the appropriate limit our curved-spacetime picture
of gravity predicts the same things as Newtonian theory predicts, it is
very different from Newton’s theory in concept. One must therefore work
gradually toward an understanding of its new point of view.

The first difference is the absence of a preferred frame. In Newtonian
physics and in SR, inertial frames are preferred. Since ‘velocity’ cannot
be measured locally but ‘acceleration’ can be, both theories single out
special classes of coordinate systems for spacetime in which particles
which have no physical acceleration (i.e. d U/dr = 0) also have no coordi-
nate acceleration (d°x'/d¢* = 0). In our new picture, there is no coordinate
system which is inertial everywhere, i.e. in which d’x’/dt*= 0 for every
particle for which d U/dr = 0. Therefore we have to allow all coordinates
on an equal footing. By using the Christoffel symbols we correct coordi-
nate-dependent quantities like d°x'/dt” to obtain coordinate-independent
quantities like dU/d'r. Therefore, one need not, and in fact one should
not, develop coordinate-dependent ways of thinking.

A second difference concerns energy and momentum. In Newtonian
physics, SR, and our geometrical gravity theory, each particle has a
definite energy and momentum, whose values depend on the frame they
are evaluated in. In the latter two theories, energy and momentum are
components of a single four-vector p. In SR, the total four-momentum
of a system is the sum of the four-momenta of all the particles, ¥, pu).
But in a curved spacetime, one cannot add up vectors that are defined
at different points, because one does not know how: two vectors can
only be said to be parallel if they are compared at the same point, and
the value of a vector at a point to which it has been parallel-transported
depends on the curve along which it was moved. So there is no invariant
way of adding up all the ps, and so if a system has definable four-
momentum, it is not just the simple thing it was in SR.

It turns out that for any system whose spatial extent is bounded (i.e.
an isolated system), a total energy and momentum can be defined, in a
manner which we will discuss later. One way to see that the total mass
energy of a system should not be the sum of the energies of the particles
is that this neglects what in Newtonian language is called its gravitational
self-energy, a negative quantity which is the work one gains by assembling
the system from isolated particles at infinity. This energy, if it is to be
included, cannot be assigned to any particular particle but resides in the
geometry itself. The notion of gravitational potential energy, however,
is itself not well defined in the new picture: it must in some sense represent
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the difference between the sum of the energies of the particles and the
total mass of the system, but since the sum of the energies of the particles
is not well defined, neither is the gravitational potential energy. Only the
fotal energy—momentum of a system is, in general, definable, in addition
to the four-momentum of individual particles.

74 Conserved quantities
The previous discussion of energy may make one wonder what

one can say about conserved quantities associated with a particle or
system. For a particle, one must realize that gravity, in the old viewpoint,
is a ‘force’, so that a particle’s kinetic energy and momentum need not
be conserved under its action. In our new viewpoint, then, one cannot
expect to find a coordinate system in which the components of p are
constants along the trajectory of a particle. There is one notable exception
to this, and it is important enough to look at in detail.

The geodesic equation can be written for the ‘lowered” components of
p as follows:

papB:a = 0, (725)
or
papB,a - ryﬁapap'y =0,
or
d
ffz Fyﬁapap‘y' (7.26)

Now, the right-hand side turns out to be simple:
Fyaﬁpapy = %gyy(gvﬁ,a +gua,ﬁ _gaﬁ,.v)papy
= %(gvﬂ,a +gva,;3 - gaB,V)gyypypa
= %(gyﬁ,a +gua,,3 - gaB,V)pypa' (7‘27)
The product p”p® is symmetric on » and a, while the first and third terms
inside parentheses are, together, antisymmetric on v and a. Therefore
they cancel, leaving only the middle term:
T75aP Py =380a sl P (7.28)
The geodesic equation can thus, in complete generality, be written
dp v a
* m——"L=1g,. .p"p°". (7.29)
dr

We therefore have the following important resuit: if all the components
8.. are independent of x® for some fixed index B, then pg is a constant
along any particle’s trajectory.
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For instance, suppose we have a stationary gravitational field. Then a
coordinate system can be found in which the metric components are time
independent, and in that system p, is conserved. Therefore p, (or, really,
—po) is usually called the ‘energy’ of the particle, without qualifying it
with ‘in this frame’. Notice that coordinates can also be found in which
the same metric has time-dependent components: any time-dependent
coordinate transformation from the ‘nice’ system will do this. In fact,
most freely falling locally inertial systems are like this, since a freely
falling particle sees a gravitational field that varies with its position, and
therefore with tine in its coordinate system. The frame in which the
mewric components are stationary is special, and is the usual ‘laboratory
frame’ on Earth. Therefore p, in this frame is related to the usual energy
defined in the lab, and includes the particle’s gravitational potential
energy, as we shall now show. Consider the equation

-

Frp=—m"=g.pp°
== (1+2¢)(p°)* +(1-2¢)[(p™)* +(p*) +(p*)’),  (7.30)
where we have used the metric, Eq. (7.8). This can be solved to give
(p")=[m>+(1-26)(p"))(1 +2¢)", (7.31)
where, for shorthand, we denote by p> the sum (p*)*+(p*)* +(p*)>
Keeping within the approximation¢ « 1, | p| « m, we can simplify this to
(p°)=m*(1-2¢ +p*/m’)

or

p’=m(l~¢ +p°/2m?). (7.32)
Now we lower the index and get

Po= 8oaP" = goop" = —(1+26)p°, (7.33)
* —po=m(l+¢ +p*/2m*)=m+mae +p*/2m. (7.34)

The first term is the rest mass of the particle. The second and third are
the Newtonian pieces of its energy: gravitational potential energy and
kinetic energy. This means that the constancy of p, along a particle’s
trajectory generalizes the Newtonian concept of a conserved energy.

Notice that a general gravitational field will not be stationary in any
frame,' so no conserved energy can be defined.

1 [Itis easy to see that there is generally no coordinate system which makes a given
metric time independent. The metric has ten independent components (same as
a 4 x4 symmetric matrix), while a change of coordinates enables one to introduce
only four degrees of freedom to change the components (these are the four
functions x%(x*)). It is a special metric indeed if all ten components can be
made time independent this way.
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In a similar manner, if a metric is axially symmetric, then coordinates
can be found in which g,z is independent of the angle ¢ around the
axis. Then p, will be conserved. This is the particle’s angular momentum.
In the nonrelativistic limit we have

Po = ZuuP” = guum d¢r/dt = mg,, 0, (7.35)

where () is the angular velocity of the particle. Now, for a nearly flat
metric we have

B =8, E,=1 (7.36)
in cylindrical coordinates (7, ¢, z) so that the conserved quantity is
p, = mriQ}. (7.37)

This is the usual Newtonian definition of angular momentum.

So much for conservation laws of particle motion. Similar consider-
ations apply to fluids, since they are just large collections of particles.
But the situation with regard to the total mass and momentum of a
self-gravitating system is more complicated. It turns out that an isolated
system’s mass and momentum are conserved, but we must postpone any
discussion of this until we see how they are defined.

7.5 Bibliography
The question of how curvature and physics fit together is dis-
cussed in more detail by Buchdahl (1981) and Geroch (1978). Conserved
quantities are discussed in detail in any of the advanced texts, in Trautman
(1962), and in Goldberg (1980). The material in this chapter is preparation
for one of the most active research areas in GR, the theory of quantum
fieldsin a fixed curved spacetime. See Davies (1980) and Gibbons (1979).

7.6 Exercises

1 If Eq. (7.3) were the correct generalization of Eq. (7.1) to a curved
spacetime, how wovld you interpret it?

2 To first order in ¢, compute g*? for Eq. {7.8).

3 Calculate all the Christoffel symbols for the metric given by Eq. (7.8),
to first order in ¢. Assume ¢ is a general function of ¢, x, y, and z.

4 Verify that the results, Eqs. (7.15) and (7.24), depended only on go,: the
form of g, doesn’t affect them, as long as it is 1 +0(¢).

S5(a) For a perfect fluid, verify that the spatial components of Eq. (7.6) in
the Newtonian limit reduce to

v, +(v- VYv+Vp/p+Ved=0 (7.38)
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for the metric, Eq. (7.8). This is known as Euler’s equation for nonrela-
tivistic fluid flow in a gravitational field.

Examine the time-component of Eq. (7.6) under the same assumptions,
and interpret each term.

Eq. (7.38) implies that a static fluid (v=0) in a static Newtonian
gravitational field obeys the equation of hydrostatic equilibrium:
Vp+pVeé=0. (7.39)
A metric tensor is said to be static if there exist coordinates in which
é, is timelike, g;,=0, and g,5,=0. Deduce from Eq. (7.6) that a static
fluid (U' =0, p, =0, etc.) obeys the relativistic equation of hydrostatic
equilibrium:

p.i+(p +p)zIn(—ge)]; =0. (7.40)
This suggests that, at least for static situations, there is a close relation
between gq and —exp (2¢), where ¢ is the Newtonian potential for a
similar physical situation. Show that Eq. (7.8) and Exer. 4 are consistent
with this.

Deduce Eq. (7.25) from Eq. (7.10).

Consider the following four different metrics, as given by their line
elements:

() ds*=~dr* +dx*+dy’ +dz?;
(i) ds’=—(1-2M/ryde* +(1-2M/r)"" dr’ + 7 (d6 +sin’ 8 do°),
where M is a constant;

A—a’sin’ @ 2Mrsin’ 6
(iii) ds?=- ———"dP-2a =" " d1 do
p p

2 242 2 i 2 2
rr+a‘) —a‘Asin“ 9
+( ) > s:nZBdqiwzﬁdo—drzﬁ—,;:a2 de?,
p A
where M and a are constants and we have introduced the short-
hand notation A= r’*=2Mr+a’, p° =r’ +a’ cos’ #;

dr?

1 — kr?

where k 1s a constant and R(t) is an arbitrary function of t alone.

(iv) ds2=—dt2+R2(t)[ +r°(d6* +sin? 9d¢2)],

The first one should be familiar by now. We shall encounter the other
three in later chapters. Their names are, respectively, the Schwarzschild,
Kerr, and Robertson—Walker metrics.

For each metric find as many conserved components p, of a freely
falting particle’s four momentum as possible.

Use the result of Exer. 28, § 6.9 to put (i) in the form

(i') ds’=—dr* +dr’ +r’(d#* +sin’ 6 do?).
From this, argue that (ii) and (iv) are spherically symmetric. Does this
increase the number of conserved components p,?
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It can be shown that for (i) and (ii)—(iv), a geodesic which begins with
8=x/2 and p®=0 - i.e. one which begins tangent to the equatorial
plane — always has 8 = /2 and p® = 0. For cases (i"), (ii) and (iii), use
the equation p- p=m? to solve for p” in terms of m, other conserved
quantities, and known functions of position.

For (iv), spherical symmetry implies that if a geodesic begins with
p®=p® =0, these remain zero. Use this to show from Eq. (7.29) that
when k =0, p, is a conserved quantity.

Suppose that in some coordinate system the components of the metric
8.z are independent of some coordinate x*.

Show that the conservation taw T”,., =0 for any stress—energy tensor
becomes

7o, (eT", =0 (7.41)

Suppose that in these coordinates T°? # 0 only in some bounded region
of each spacelike hypersurface x° = const. Show that Eq. (7.41) implies

J i TV,‘\/—g n, d*x
X =const.

is independent of x°, if n, is the unit normal to the hypersurface. This
is the generalization to continua of the conservation law stated after
Eq. (7.29).

Consider flat Minkowski space in a globatl inertial frame with spherical
polar coordinates (1, r, 8, ¢). Show from (b) that

J=I T°,r’sin @ dr d6 do (7.42)
i =const.

isindependent of 1. This is the total angular momentum of the system.
Express the integral in (c) in terms of the components of T on the
Cartesian basis (t, x, y, z), showing that

J= J (xT*°—yT*%dx dy dz (7.43)

This is the continuum version of the nonrelativistic expression (r Xp),
for a particte’s angular momentum about the z axis.

Find the components of the Riemann tensor R,g4,, for the metric, Eq.
(7.8), to first order in ¢.

Show that the equation of geodesic deviation, Eq. (6.87), implies (to
lowest order in ¢ and velocities)

d*¢ .

Fr R e (7.44)
Interpret this equation when the geodesics are world lines of freely
falling particles which begin from rest at nearby points in a Newtonian
gravitational field.



194

10(a)

(b)
(©)

(4
()

Physics in a curved spacetime

Show that if a vector field £ satisfies Killing’s equation,

Vs +Vgt, =0, (7.45)
then along a geodesic, p“£, = const. This is a coordinate-invariant way
of characterizing the conservation law we deduced from Eq. (7.29). One
only has to know whether a metric admits Killing fields.

Find ten Killing fields of Minkowski spacetime.

Show that if £ and 7 are Killing fields, then so is aE+Bﬁ for constant
a and 8.

Show that Lorentz transformations of the fields in (b) simply produce
linear combinations as in (c).

If you did Exer. 7, use the results of Exer. 7a to find Killing vectors of
metrics (1i)(iv).
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The Einstein field equations

8.1 Purpose and justification of the field equations
Having decided upon a description of gravity and its action on
matter that is based on the idea of a curved manifold with a metric, we
must now complete the theory by postulating a law which shows how
the sources of the gravitational field determine the metric. The Newtonian
analogue is

V24 = 47Gp, (8.1)

where p is the density of mass. Its solution for a point particle of mass
m is (see Exer. 1, § 8.6).

G
= 8.2)
r

which is dimensionless in units where ¢ = 1. The source of the gravita-
tional field in Newton’s theory is the mass density. In our relativistic
theory of gravity the source must be related to this, but it must be a
relativistically meaningful concept, which ‘mass’ alone is not. An obvious
relativistic generalization is the total energy, including rest mass. In the
MCREF of a fluid element, we have denoted the density of total energy
by p in Ch. 4. So we might be tempted to use this p as the source of the
relativistic gravitational field. This would not be very satisfactory,
however, because p is the energy density as measured by only one
observer, the MCRF. Other observers measure the energy density to be
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the component T in their own reference frames. If we were to use p
as the source of the field, we would be saying that one class of observers
is preferred above all others, namely those for whom p is the energy
density. This point of view is at variance with the approach we adopted
in the previous chapter, where we stressed that one must allow all
coordinate systems on an equal footing. So we shall reject p as the source
and instead insist that the generalization of Newton’s mass density should
be T°. But again, if T°® alone were the source, one would have to specify
a frame in which T% was evaluated. An invariant theory can avoid
introducing preferred coordinate systems by using the whole of the
stress—energy tensor T as the source of the gravitational field. The gen-
eralization of Eq. (8.1) to relativity would then have the form

O(g) = kT, (8.3)

where k is a constant (as yet undetermined) and O is a differential
operator on the metric tensor g, which we have already decided is the
generalization of ¢. There will thus be 16 differential equations (one for
each component of Eq. (8.3)) in place of the single one, Eq. (8.1).

By analogy with Eq. (8.1), we should look for a second-order differential
operator O that produces a tensor of rank (3), since in Eq. (8.3) it is
equated to the (3) tensor T. In other words, { O“#} must be the components
of a (3) tensor and must be combinations of 8 uvros 8uvars and g,,. It is
clear from Ch. 6 that the Ricci tensor R*# satisfies these conditions, In
fact, any tensor of the form

O°?=R*® + ug*®R + Ag*® (8.4)

satisfies these conditions, if w and A are constants. To determine w we
use a property of 7°# which we have not yet used, namely that the strong
equivalence principle demands local conservation of energy and momen-
tum (Eq. (7.6)):

T 5 =0.
This equation must be true for any metric tensor. Then Eq. (8.3) implies
that

0, =0, (8.5)
which again must be true for any metric tensor. Since g**,, =0, we now
find, from Eq. (8.4),

(R®+ug®’R).z=0. (8.6)

By comparing this with Eq. (6.98), we see that we must have u = —3 if
Eq. (8.6) is to be an identity for arbitrary g.g. So we are led by this chain
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of argument to the equation

G® +Ag™? =kT*# 8.7
with undetermined constants A and k. In index-free form this is
G+Ag=kT. (8.8)

These are called the field equations of GR, or Einstein’s field equations.
In summary, we have been led to Eq. (8.7) by asking for equations
that (i) resemble but generalize Eq. (8.1); (ii} introduce no preferred
coordinate system; and (iii) guarantee local conservation of energy-—
momentum for any metric tensor. Eq. (8.7) is not the only equation which
satisfies (i)—(iii). Many alternatives have been proposed, beginning even
before Einstein arrived at equations like Eq. (8.7). In recent years, when
technology has made it possible to test Einstein’s equations fairly pre-
cisely, even in the weak gravity of the solar system, many new alternative
theories have been proposed. Some have even been designed to agree
with Einstein’s predictions at the precision of foreseeable solar-system
experiments, differing only for much stronger fields. GR’s competitors
are, however, invariably more complicated than Einstein’s equations
themselves, and on simply aesthetic grounds are unlikely to attract much
attention from physicists unless Einstein’s equations are eventually found
to conflict with some experiment. A number of the competing theories
and the experimental tests which have been used to eliminate them in
recent years are discussed in Misner et al. (1973) and Will (1981). (We
will study two classical tests in Ch. 11.) Einstein’s equations have stood
up well to these tests, so we will not discuss any alternative theories in
this book. In this we are in the good company of the distinguished
physicist S. Chandrasekhar (1980):
The element of controversy and doubt, that have continued to
shroud the general theory of relativity to this day, derives pre-
cisely from this fact, namely that in the formulation of his theory
Einstein incorporates aesthetic criteria; and every critic feels that
he is entitled to his own differing aesthetic and philosophic
criteria. Let me simpy say that I do not share these doubts; and
I shall leave it at that.

As remarked above, it is customary to refer to Eq. (8.7) as Einstein’s
cquations, a custom which we follow in this book, but it might be fairer
to call them the Einstein—Hilbert equations, because the mathematician
. Hilbert derived them independently of Einstein in the same year (see
Mehra 1974). Hilbert was motivated by Einstein’s own physical argu-
ments, which were known to him, but his mathematical approach to
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deriving the equations was far more elegant than Einstein’s (or than ours
above). It was Einstein, however, who motivated the endeavor and
Einstein who deduced the solar-system implications of the new theory —
the perihelion precession of Mercury and the deflection of light by the
Sun — that led to the theory’s acceptance, so it is Einstein whose name
remains attached to the theory in the minds of physicists and the public
alike.

Geometrized units. We have not yet said anything about the constant k
in Eq. (8.7), which plays the same role as 47G in Eq. (8.1). Before
discussing it below we will establish a more convenient set of units,
namely those in which G = 1. Just as in SR we found it convenient to
choose units in which the fundamental constant ¢ was set to unity, so
in studies of gravity it is more natural to work in units where G has the
value unity. A convenient conversion factor from SI units to these
geometrized units (where c=G=1) 1s
1=G/c*=7.425%10 2 mkg™". (8.9)
We shall use this to eliminate kg as a unit, measuring mass in meters.
We list in Table 8.1 the values of certain useful constants in SI and
geometrized units. Exer. 2, § 8.6, should help the student to become
accustomed to these units.
An illustration of the fundamental nature of geometrized units in
gravitational problems is provided by the uncertainties in the two values
given for Mg. Earth’s mass is measured by examining satellite orbits and

Table 8.1. Comparison of SI and geometrized values of funda-
mental constants

Constant SI value Geometrized value
¢ 2.998 x 10* ms™' 1

G 6.673x10" " m*kg's7? 1

h 1.055x10"* kgm?s™! 2.612x107°m?
m, 9.110x 107" kg 6.764x 107 m

m, 1.673 x10”% kg 1242 x10"** m
M, 1.989 x10°° kg 1.477x10° m

Mg 5.973x10* kg 4435x1073m

L, 3.90x 10 kgm?s~> 1.07 x107%¢

Notes: The symbols m, and m, stand respectively for the rest masses
of the electron and proton; Mg and Mg denote, respectively, the masses
of the Sun and Earth; and L¢ is the Sun’s luminosity (the SI unit is
equivalent to joules per second).
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using Kepler’'s laws. This measures the Newtonian potential, which
involves the product GM, ¢’ times the geometrized value of the mass.
With the advent of satellite tracking by laser ranging (Lerch 1978), this
number can be measured very accurately. Moreover, the speed of light
¢ is known to great accuracy. Thus, the geometrized value of My is
known to an accuracy of five parts in 10°. The value of G, however, is
measured in laboratory experiments, where the weakness of gravity
introduces large uncertainty. The conversion factor G/c’ is uncertain by
five parts in 10%, so that is also the accuracy of the SI value of M.
Similarly, the Sun’s geometrized mass is known very accurately by precise
radar tracking of the planets; the uncertainty is only one part in 10
Again, its mass in kilograms is far more uncertain.

8.2 Einstein’s equations

In component notation, Einstein’s equations, Eq. (8.7), take the
form

G*? =87T"~. (8.10)
These are a specialization of Eq. (8.7), with A = 0 and k = 8 7. The constant
A is called the cosmological constant, and was originally not present in
Einstein’s equations; he inserted it many years later in order to obtain
static cosmological solutions — solutions for the large-scale behavior of
the universe — that he felt at the time were desirable. Observations of the
expansion of the universe subsequently made him reject the term and
regret he had ever invented it. We shall return to the discussion of A in
the chapter on cosmology, but until then we shall set A =0. The justi-
fication for doing this, and the possible danger of it, are discussed in
I-xer. 18, § 8.6.

The value of k = 87 is obtained by demanding that Einstein’s equations
predict the correct behavior of planets in the solar system. This is the
Newtonian limit, in which we must demand that the predictions of GR
agree with those of Newton’s theory when the latter are well tested by
observation. We saw in the last chapter that the Newtonian motions are
produced when the metric has the form Eq. (7.8). One of our tasks in
this chapter is to show that Einstein’s equations, Eq. (8.10), do indeed
have Eq. (7.8) as a solution when we assume that gravity is weak (see
I.xer. 3, § 8.6). We could, of course, keep k arbitrary until then, adjusting
its value to whatever is required to obtain the solution, Eq. (7.8). It is
more convenient, however, for our subsequent use of the equations of
this chapter if we simply set k to 8+ at the outset and verify that this
value is correct.
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Eq. (8.10) should be regarded as a system of ten coupled differential
equations (not 16, since T°? and G*® are symmetric). They are to be
solved for the ten components g,; when the source T* is given. The
equations are nonlinear, but they have a well-posed initial-value struc-
ture — that is, they determine future values of g,z from given initial data.
However, one point must be made: since {g,z} are the components of a
tensor in some coordinate system, a change in coordinates induces a
change in them. In particular, there are four coordinates, so there are
four arbitrary functional degrees of freedom among the ten g,,. It should
be impossible, therefore, to determine all ten g,z from any initial data,
since the coordinates to the future of the initial moment can be changed
arbitrarily. In fact, Einstein’s equations have exactly this property: the
Bianchi identities:

G* ;=0 (8.11)
mean that there are four differential identities (one for each value of a
above) among the ten G*?. These ten, then, are not independent, and
the ten Einstein equations are really only six independent differential
equations for the six functions among the ten g.; that characterize the
geometry independently of the coordinates.

The exact mathematical representation of these six functions is a
difficult subject, which we will not have much to say about, since we will
rarely be solving the initial-value problem in GR. There now exists a
well-defined approach to the problem of separating the coordinate free-
dom in g,s from the true geometric and dynamical freedom. This is
described in more advanced texts, for instance Misner et al. (1973), or
Hawking & Ellis (1973). See also Choquet-Bruhat & York (1980). It will
suffice here simply to note that there are really only six equations for six
quantities among the g.;, and that Einstein’s equations permit complete
freedom in choosing the coordinate system.

8.3 Einstein’s equations for weak gravitational fields
Nearly Lorentz coordinate systems. Since the absence of gravity
leaves spacetime flat, a weak gravitational field is one in which spacetime
is ‘nearly’ flat. This is defined as a manifold on which coordinates exist
in which the metric has components

* 8ap = Nap T+ hap, (8.12)
where

Ihagl< 1, (8.13)
everywhere in spacetime. Such coordinates are called nearly Lorentz
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coordinates. It is important to say ‘there exist coordinates’ rather than
‘for all coordinates’, since one can find coordinates even in Minkowski
space in which g.; is not close to the simple diagonal (-1, +1, +1, +1)
form of n,z. On the other hand, if one coordinate system exists in which
Eq. (8.12) and (8.13) are true, then there are many such coordinate
systems. Two fundamental types of coordinate transformations that take
one nearly Lorentz coordinate system into another will be discussed
below: background Lorentz transformations and gauge transformations.

But why should we specialize to nearly Lorentz coordinates at all?
Haven’t we just said that Einstein’s equations allow complete coordinate
freedom, so shouldn’t their physical predictions be the same in any
coordinates? Of course the answer is yes, the physical predictions will
be the same. On the other hand, the amount of work we would have to
do to arrive at the physical predictions could be enormous in a poorly
chosen coordinate system. (For example, try to solve Newton’s equation
of motion for a particle free of all forces in spherical polar coordinates,
or try to solve Poisson’s equation in a coordinate system in which it does
not separate!) Perhaps even more serious is the possibility that in a crazy
coordinate system we may not have sufficient creativity and insight into
the physics to know what calculations to make in order to arrive at
interesting physical predictions. Therefore it is extremely important that
the first step in the solution of any problem in GR must be an attempt
to construct coordinates which will make the calculation simplest. Pre-
cisely because Einstein’s equations have complete coordinate freedom,
we should use this freedom intelligently. The construction of helpful
coordinate systems is an art, and it is often rather difficult. In the present
problem, however, it should be clear that 7,, is the simplest form for
the flat-space metric, so that Egs. (8.12) and (8.13) give the simplest and
most natural ‘nearly flat’ metric components.

Background Lorentz transformations. The matrix of a Lorentz transforma-
tion in SR is

y =-vy 0 0
: .’ 0 0 -
W=7 o b y=a= (8.14)
0 0 0 1

(for a boost of velocity v in the x direction). For weak gravitational fields
we define a ‘background Lorentz transformation’ to be one which has
the form

x®=A%pxP, (8.15)
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in which A®; is identical to a Lorentz transformation in SR, whose matrix
elements are constant everywhere. Of course, we are not in SR, so this
is only one class of transformations out of all possible ones. But it has
a particularly nice feature, which we discover by transforming the metric
tensor:

Bai=A"sA 58, = A*sA" 5, + A A 5h,, (8.16)
But the Lorentz transformation is designed so that

AN 5N, = Nag, (8.17)
sO we get

8si=Masthas (8.18)
with
¢ hss=A"sA"sh,,. (8.19)

We see that, under a background Lorentz transformation, h,,, transforms
as if it were a tensor in SR all by itself? It is, of course, not a tensor, but
just a piece of g,s But this restricted transformation property leads to
a convenient fiction: we can think of a slightly curved spacetime as a
JSlat spacetime with a ‘tensor’ h,, defined on it. Then all physical fields -
like R, ..z — will be defined in terms of h,,,, and they will ‘look like’ fields
on a flat background spacetime. It is important to bear in mind, however,
that spacetime is really curved, that this fiction results from considering
only one type of coordinate transformation. We shall find this fiction to
be useful, however, in our calculations below.

Gauge transformations. There is another very important kind of coordin-
ate change which leaves Eqgs. (8.12) and (8.13) unchanged: a very small
change in coordinates, of the form

X% =X +E7(xP),

generated by a ‘vector’ £°, whose components are functions of position.
If we demand that £ be small in the sense that |£” 4|« 1, then we have

Aa'B =Zzp =8% +£%, (8.20)

Ap=8%—E% 5 +0(|€° g*). (8.21)
One can easily verify that, to first order in small quantities,

8o'p = Nap t hap — &ap ~ g (8.22)

where we define
fa = naﬁgﬁ' (8.23)
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This means that the effect of the coordinate change is to re-define h,g:
’ haB > haB - gtx,B - §3,a' (8'24)

If all [¢” 5| are small, then the new h,g is still small, and we are still in
an acceptable coordinate system. This change is called a gauge transfor-
mation, which is a term used because of strong analogies between Eq.
(8.24) and gauge transformations of electromagnetism. This analogy is
explored in Exer. 11, §8.6. The coordinate freedom of Einstein’s
equations means that we are free to choose an arbitrary (small) ‘vector’
£% in Eq. (8.24). We will use this freedom below to simplify our equations
enormously.

A word about the role of indices like a’ and B8’ in Egs. (8.21) and
(8.22) may be helpful here, as beginning students are often uncertain on
this point. A prime or bar on an index is an indication that it refers to
a particular coordinate system, e.g. that g, .5 is a component of g in the
{x*} coordinates. But the index still takes the same values (0, 1,2, 3).
On the right-hand side of Eq. (8.22) there are no primes because all
quantities are defined in the unprimed system. Thus, if @ = 8 =0 we read
Eq. (8.22) as: ‘The 0-0 component of g in the primed coordinate system
is a function whose value at any point is the value of the 0—0 component
of n plus the value of the 0-0 ‘component’ of h,s; in the unprimed
coordinates at that point minus twice the derivative of the function
£, —defined by Eq. (8.23) — with respect to the unprimed coordinate x°
there.” Eq. (8.22) may look strange because — unlike, say, Eq. (8.15) - its
indices do not ‘match up’. But that is acceptable, since Eq. (8.22) is not
what we have called a valid tensor equation. It expresses the relation
between components of a tensor in two specific coordinates; it is not
intended to be a general coordinate-invariant expression.

Riemann tensor. Using Eq. (8.12) it is easy to show that, to first order in
h

MY

* R(XB’.‘.V = %(haV,B,u. +hﬂ,u,av - ho:,u.,ﬁy - hBV,a,u )' (8‘25)

As demonstrated in Exer. 5, § 8.6, these components are independent of
the gauge, unaffected by Eq. (8.24). The reason for this is that a coordinate
transformation transforms the components of R into linear combinations
of one another. A small coordinate transformation — a gauge transforma-
tion - changes the components by a small amount; but since they are
already small, this change is of second order, and so the first-order
cxpression, Eq. (8.25), remains unchanged.
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Weak-field Einstein equations. We shall now consistently adopt the point
of view mentioned earlier, the fiction that h,, is a tensor on a ‘background’
Minkowski spacetime, i.e. a tensor in SR. Then all our equations will be
expected to be valid tensor equations when interpreted in SR, but not
necessarily valid under more general coordinate transformations. Gauge
transformations will be allowed, of course, but we will not regard them
as coordinate transformations. Rather, they define equivalence classes
among all symmetric tensors h,z: any two related by Eq. (8.24) for some
£, will produce equivalent physical effects. Consistent with this point of
view we can define index-raised quantities

h*g=n""h,g, (8.26)

h* = n"Ph*g, (8.27)
the trace

h=h"_, (8.28)
and a ‘tensor’ called the ‘trace reverse’ of h,,

h®P = pf —inPp, (8.29)
It has this name because

h=h",=—-h (8.30)
Moreover, one can show that the inverse of Eq. (8.29) is the same:

h*P = hoP —LyPp (8.31)

With these definitions it is not difficult to show, beginning with Eq.
(8.25), that the Einstein tensor is

GﬂB == %[f;aﬁ.u'“ + naﬁﬁu"’w - Fﬂu.ﬁlu
~hg, " +0(h%,)]. (8.32)
(Recall that for any function f,
“ =)
It is clear that Eq. (8.32) would simplify considerably if we could require
* h* , =0, (8.33)

These are four equations, and since we have four free gauge functions
£%, we might expect to be able to find a gauge in which Eq. (8.33) is true.
We shall show that this expectation is correct: it is always possible to
choose a gauge to satisfy Eq. (8.33). Thus, we refer to it as a gauge
condition and, specifically, as the Lorentz gauge condition. If we have
an h,, satisfying this, we say we are working in the Lorentz gauge. The
gauge has this name, again by analogy with electromagnetism (see Exer.
11, § 8.6). Other names one encounters in the literature for the same
gauge include the harmonic gauge and the de Donder gauge.
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That this gauge exists can be shown as follows. Suppose we have some
arbitrary A% for which A'®'¥*” , # 0. Then under a gauge change Eq.
(8.24), one can show (Exer. 12, § 8.6) that h,, changes to

Ei:}:w) = F‘-Sfl-l'd) - fp,u - gv,u. + nuuga,a (834)
Then the divergence is
pinewinry  _ plolduy §u,v . (8.35)

If we want a gauge in which A""*** =0 then £* is determined by the
equation

Ogx =g, =hC'Y (8.36)
where the symbol [ is used for the four-dimensional Laplacian:
62
O =1 ==~ 249 )t ®37)

This operator is also called the D’ Alembertian or wave operator, and is
sometimes denoted by A. The equation

COf=g (8.38)
is the three-dimensional inhomogeneous wave equation, and it always
has a solution for any (sufficiently well-behaved) g (see Choquet—Bruhat
et al., 1977), so there always exists some ¢“ which will transform from
an arbitrary h,, to the Lorentz gauge. In fact, this £ is not unique, since
any vector n* satisfying the homogeneous wave equation

On* =0 (8.39)
can be added to ¢* and the result will still obey
O(g+n*) =A%, (8.40)

and so will still give a Lorentz gauge. Thus, the Lorentz gauge is really
a class of gauges.
In this gauge, Eq. (8.32) becomes (see Exer. 10, § 8.6)

G*® = —iOh*8 (8.41)
Then the weak-field Einstein equations are
* OAr*" =—167 T+ (8.42)

These are called the field equations of ‘linearized theory’, since they result
from keeping terms linear in h,g.

8.4 Newtonian gravitational fields
Newtonian limit. Newtonian gravity is known to be valid when
gravitational fields are too weak to produce velocities near the speed of
light: |¢|« 1, |v]« 1. In such situations, GR must make the same predic-
tions as Newtonian gravity. The fact that velocities are small means that
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the components T? obey the inequalities | 7% »{T%| » | TY|. Because of
Eq. (8.42), these inequalities transfer to h,s: % » |h"]>|hY|. Thus, the
dominant ‘Newtonian’ field comes from the equation

Oh% = -16mp, (8.43)
where we use the fact that 7% = p +0(pv?). For fields that change only
because the sources move with velocity v, we have that 3/t is of the
same order as v d/3x, so that

O =V2+0(v*V?). (8.44)
Thus, our equation is

VIR = —16mp. (8.45)
Comparing this with the Newtonian equation, Eq. (8.1),

Vip=4amp
(with G =1), we see that we must identify

R =—-4¢. (8.46)
Since all other components of #*® are negligible at this order, we have

h=h",=-h",=h", (8.47)
and this implies

h®=-2¢, (8.48)

h=h"”=h"=-2¢, (8.49)
or

ds’=—-(1+2¢)dt* +(1 —2¢)dx* +dy* +dz?). (8.50)

This is identical to the metric given in Eq. (7.8). We saw there that this
metric gives the correct Newtonian laws of motion, so the demonstration
here that it follows from Einstein’s equations completes the proof that
Newtonian gravity is a limiting case of GR. (Incidentally it confirms that
the constant 87 in Einstein’s equations is the correct one.)

The far field of stationary relativistic sources. For any source of the full
Einstein equations which is confined within a limited region of space (a
‘localized’ source), one can always go far enough away from it that its
gravitational field becomes weak enough that linearized theory applies
in that region. One might be tempted, then, to carry the discussion we
have just gone through over to this case and say that Eq. (8.50) describes
the far field of the source, with ¢ the Newtonian potential. This method
would be wrong, for two related reasons. First, the derivation of Eq.
(8.50) assumed that gravity was weak everywhere, including inside the
source, because a crucial step was the identification of Eq. (8.45) with
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Eq. (8.1) inside the source. In the present discussion we wish to make
no assumptions about the weakness of gravity in the source. The second
reason the method would be wrong is that we do not know how to define
the Newtonian potential ¢ of a highly relativistic source anyway, so Eq.
(8.50) would not make sense.

So we shall work from the linearized field equations directly. Since at
first we assume the source of the field T"" is stationary (i.e. independent
of time), we can assume that far away from it h,,, is independent of time.
(Later we will relax this assumption.) Then Eq. (8.42) becomes

VZh*¥ =0, 8.5
far from the source. This has the solution
h* = A*" [ r +0(r ), (8.52)

where A*" is constant. In addition, we must demand that the gauge
condition, Eq (8.33), be satisfied:

0=h*,=h* ,=—A%n;/r? +0(r%), (8.53)
where the sum on » collapses to a sum on the spatial index j because
h** is time independent, and where n; is the unit radial normal,

nj = xJ/ r. (8.54)
The consequence of Eq. (8.53) for all x' is
A% =0, (8.55)

for all . and j. This means that only h® survives or, in other words, that,
far from the source

|A%) > [AY], |B*| > kY. (8.56)
These conditions guarantee that the gravitational field does indeed behave
like a Newtonian field out there, so we can reverse the identification that
led to Eq. (8.46) and define the ‘Newtonian potential’ for the far field of
any stationary source to be

(¢)relativis(ic far field — _%(”;00)(“ field- (8'57)
With this identification, Eq. (8.50) now does make sense for our prob-
lem, and it describes the far field of our source. Now, far from a
Newtonian source the potential is

(¢)Newtonian far field — —M/l’ +0(r—2)’ (858)
where M is the mass of the source (with G =1). Thus, if in Eq. (8.52)
we rename the constant A% to be 4 M, the identification, Eq. (8.57), says
that

(@) retativistic far fieta = —M /1. (8.59)
Any small body, for example a planet, that falls freely in the relativistic
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source’s gravitational field but stays far away from it will follow the
geodesics of the metric, Eq. (8.49), with ¢ given by Eq. (8.59). In Ch. 7
we saw that these geodesics obey Kepler’s laws for the gravitational field
of a body of mass M. We therefore define this constant M to be the total
mass of the relativistic source.

Notice that this definition is not an integral over the source: we do
not add up the masses of its constituent particles. Instead, we simply
measure its mass — ‘weigh it’ — by the orbits it produces in test bodies far
away. This definition enables us to write Eq. (8.50) in its form far from
any stationary source:

ds’=-[1-2M/r+0(r~3)]ds
+[1+2M/r +0(r ))(dx* +dy* +dz?). (8.60)

The assumption that the source was stationary was necessary to reduce
the wave equation, Eq. (8.42), to Laplace’s equation, Eq. (8.51). A source
which changes with time can emit gravitational waves, and these, as we
shall see in the next chapter, travel out from it at the speed of light and
do not obey the inequalities, Eq. (8.56), so they cannot be regarded as
Newtonian fields. Nevertheless, there are situations in which the defini-
tion of the mass we have just given may be used with confidence: the
waves may be very weak, so that the stationary part of h°® dominates
the wave part; or the source may have been stationary in the distant past,
so that one can choose r large enough that any waves have not yet had
time to reach that large an r. The definition of the mass of a time-
dependent source is discussed in greater detail in more-advanced texts,
such as Weinberg (1972) or Misner et al. (1973).

8.5 Bibliography
There are a wide variety of ways to ‘derive’ (really, to justify)
Einstein’s field equations, and a selection of them may be found in the
texts listed below. The weak-field or linearized equations are useful for
many investigations where the full equations are too difficult to solve.
We shall use them frequently in subsequent chapters, and most texts
discuss them. Qur extraction of the Newtonian limit is very heuristic,
but there are more rigorous approaches which reveal the geometric nature
of Newton’s equations (Misner et al. 1973, Cartan 1923) and the
asymptotic nature of the limit (Futamase & Schutz 1983).
It seems appropriate here to list a sampling of widely available
textbooks on GR. They differ in the background and sophistication they
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assume of the reader. There are those which expect little—Foster &
Nightingale (1979), Buchdahl (1981), Rindler (1969), Frankel (1979),
Bowler (1976), Clarke (1979); those which might be classed as first-year
graduate texts—Adler et al. (1975), Anderson (1967), Burke (1980), McVit-
tie (1965), parts of Misner et al. (1973), Mgller (1972), Robertson &
Noonan (1968), Stephani (1982), and Weinberg (1972); and those which
make heavy demands of the student—Fock (1964), Hawking & Ellis (1973),
Landau & Lifshitz (1962), much of Misner et al. (1973), Papapetrou
(1974), Sachs & Wu (1977), Synge (1960), and Thirring (1978). The
material in the present text ought, in most cases, to be sufficient
preparation for supplementary reading in even the most advanced
texts.

Solving problems is an essential ingredient of learning a theory, and
the book of problems by Lightman et al. (1975), is an excellent supplement
to those in this book.

The centenary of Einstein’s birth in 1979 saw the appearance of two
comprehensive collections of articles surveying research in most aspects
of GR, one edited by Hawking & Israel (1979) and the other by Held
(19804,b). The student may find many of their articles helpful in supple-
menting later chapters, and several of them will be referred to explicitly
i later bibliographies.

We shall discuss various strong-field metrics in later chapters, but few
of them will be time dependent. For discussions of how to formulate
and solve Einstein’s equations as an initial-value system, see Misner et
al. (1973), Fischer & Marsden (1979), Choquet-Bruhat & York (1980),
and Isenberg & Nester (1980).

The measurement of the mass and angular momentum of a source by
looking at its distant gravitational field is discussed in Misner et al. (1973),
Weinberg (1972), Ashtekar (1980), and Winicour (1980).

8.6 [Exercises
1 Show that Eq. (8.2) is a solution of Eq. (8.1) by the following method.
Assume the point particle to be at the origin, r =0, and to produce a
spherically symmetric field. Then use Gauss’ law on a sphere of radius
r to conclude

“&“; = Gm/rz.

Deduce Eq. (8.2) from this. (Consider the behavior at infinity.)
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The Einstein field equations

Derive the following useful conversion factors from the SI values of G
and c;

G/c?=7425x10" 2 mkg™' =1,
/G=3.629%x102Js'=1.
Derive the values in geometrized units of the constants in Table 8.1
from their given values in SI units.
Express the following quantities in geometrized units:

(i) a density (typical of neutron stars) p = 10" kg m™*;

(ii) a pressure (also typical of neutron stars) p=10¥kgs*m™';
(iii) the acceleration of gravity on Earth’s surface g =9.80 m s™2;
(iv) the luminosity of a supernova L=10* Js7",
Three dimensioned constants in nature are regarded as fundamental:
¢, G,and k. With ¢ = G = 1, h has units m?, so #'/? defines a fundamental
unit of length, called the Planck length. From Table 8.1, we calculate
#'/2=1.616 x 107> m. Since this number involves the fundamental con-
stants of relativity, gravitation, and quantum theory, many physicists
feel that this length will play an important role in quantum gravity.
Express this length in terms of the SI values of ¢, G, and A. Similarly,
use the conversion factors to calculate the Planck mass and Planck time,
fundamental numbers formed from ¢, G, and A that have the units of
mass and time respectively, Compare these fundamental numbers with
characteristic masses, lengths, and timescales that are known from
elementary particle theory.

Calculate in geometrized units:

the Newtonian potential ¢ of the Sun at the Sun’s surface, radius
6.960x 10°m;

the Newtonian potential ¢ of the Sun at the radius of Earth’s orbit,
r=1AU=1.496 x10"' m:

the Newtonian potential ¢ of Earth at its surface, radius = 6.371 X 10°m;
the velocity of Earth in its orbit around the Sun.

You should have found that your answer to (b) was larger than to (c).
Why, then, do we on Earth feel Earth’s gravitational pull much more
than the Sun’s?

Show that a circular orbit around a body of mass M has an orbital
velocity, in Newtonian theory, of v2= —¢, where ¢ is the Newtonian
potential.

Let A be an n X n matrix whose entries are all very small, |A;;|« 1/n,
and let I be the unit matrix. Show that

(I+A) '=I-A+A -A+A*—+- -

by proving that (i) the series on the right-hand side converges absolutely
for each of the n® entries, and (ii) (I + A) times the right-hand side
equals L

Use (a) to establish Eq. (8.21) from Eq. (8.20).
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Show that if h,p = £, 3 + &5 ., then Eq. (8.25) vanishes.
Argue from this that Eq. (8.25) is gauge invariant.
Relate this to Exer. 10, § 7.6.

Weak-field theory assumes g,,, = 1,, +h,,, with |h,, [« 1. Similarly, g~
must be close to "%, say g“* =n*" +6g"". Show from Exer. 4a that
5g** = —h** +0(h?). Thus, n**n"Ph,p is not the deviation of g*” from
flatness.

Prove that h*, = —h“,.
Prove Eq. (8.31).

Derive Eq. (8.32) in the following manner.

Show that R%,,, = 9n*"R,a,., +0(hip).

From this calculate R,z to first order in h,,,.

Show that g,zR = 10" R,., +0(his).

From this conclude that

Gap = Rap _%"JGBR’

i.e. that the linearized G, is the trace reverse of the linearized R,g, in

the sense of Eq. (8.29).
Use this to simplify somewhat the calculation of Eq. (8.32).

Show from Eq. (8.32) that Gy, and G, do not contain second time
derivatives of any A, Thus only the six equations, G, = 87T, are true
dynamical equations. Relate this to the discussion at the end of § 8.2.
The equations Gy, = 87T, are called constraint equations because they
are relations among the initial data for the other six equations, which
prevent one choosing all these data freely.

Eq. (8.42) contains second time derivatives even when u or v is zero.

Does this contradict (a)? Why?
Use the Lorentz gauge condition, Eq. (8.33), to simplify (i, to Eq. (8.41).

When one writes Maxwell's equations in special-relativistic form, one
identifies the scalar potential ¢ and three-vector potential A; (signs
defined by E, = —¢, — A;o) as components of a one-form A,=—¢, A,
(one-form) = A; (three-vector). A gauge transformation is the replace-
ment ¢ —»> ¢ —df/dt, A, > A, +f,. This leaves the electric and magnetic
fields unchanged. The Lorentz gauge is a gauge in which d¢ /9t +V,A' =
0. Write both the gauge transformation and the Lorentz gauge condition
in four-tensor notation. Draw the analogy with similar equations in
linearized gravity.

Prove Eq. (8.34).
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The Einstein field equations

The inequalities | T°| »|T%|»|T"| for a Newtonian system are illus-
trated in Exer. 2c and 3d-e. Devise physical arguments to justify them
in general.

From Eq. (8.46) and the inequalities among the components h, g4, derive
Egs. (8.47)—(8.50).

We have argued that we should use convenient coordinates to solve the
weak-field problem (or any other!), but that any physical results should
be expressible in coordinate-free language. From this point of view our
demonstration of the Newtonian limit is as yet incomplete, since in
Ch. 7 we merely showed that the metric Eq. (7.50), led to Newton’s law
dp/dt=-mV ¢.

But surely this is a coordinate-dependent equation, involving coordinate
time and position. It is certainly not a valid four-dimensional tensor
equation. Fill in this gap in our reasoning by showing that one can
make physical measurements to verify that the relativistic predictions
match the Newtonian ones. (For example, what is the relation between
the proper time one orbit takes and its proper circumference?)

Re-do the derivation of the Newtonian limit by replacing 87 in Eq.
(8.10) by k and following through the changes this makes in subsequent
equations. Verify that one recovers Eq. (8.50) only if k = 8.

A small planet orbits a static neutron star in a circular orbit whose
proper circumference is 6 X 10'' m. The orbital period takes 200 days
of the planet’s proper time. Estimate the mass M of the star.

Five satellites are placed into circular orbits around a static black hole.
The proper circumferences and proper periods of their orbits are given
in the table below. Use the method of (a) to estimate the hole’s mass.
Explain the trend of the results you get for the satellites.

Proper
circumference 2.5%10°m 63x10°m 63x10°'m 3.1x10°m 6.3x10°m
Proper period 84x107s 0.055s 2.1s 23s 2.1x10°s

Consider the field equations with cosmological constant, Eq. (8.7), with
A arbitrary and k = 8.

Find the Newtonian limit and show that one recovers the motion of
the planets only if |A| is very small. Given that the radius of Pluto’s
orbit is 5.9x10'*m, set an upper bound on |A| from solar-system
measurements.

By bringing A over to the right-hand side of Eq. (8.7), one can regard
—Ag""/8w as the stress—energy tensor of ‘empty space’. Given that the
observed mass of the region of the universe near our Galaxy would
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have a density of about 107?" kg m™ if it were uniformly distributed,

do you think that a value of |A| near the limit you established in (a)
could have observable consequences for cosmology?

In this exercise we shall compute the first correction to the Newtonian
solution caused by a source that rotates. In Newtonian gravity, the
angular momentum of the source does not affect the field: two sources
with the same p(x') but different angular momenta have the same field.
Not so in relativity, since all components of T*” generate the field.
Suppose a spherical body of uniform density p and radius R rotates
rigidly about the x* axis with constant angular velocity Q. Write down
the components T°" in a Lorentz frame at rest with respect to the center
of mass of the body, assuming p, (! and R are independent of time.
For each component, work to lowest nonvanishing order in QR

The general solution to the equation V?f = g, which vanishes at infinity,
is the generalization of Eq. (8.2),

__ 80

which reduces to Eq. (8.2) when g is nonzero in a very small region.
Use this to solve Eq. (8.42) for #°° and 2% for the source described in
(a). Obtain the solutions only outside the body, and only to lowest
nonvanishing order in r~', where r is the distance from the body’s
center. Express the result for % in terms of the body’s angular momen-
tum. Find the metric tensor within this approXximation, and transform
it to spherical coordinates.

Because the metric is independent of ¢ and the azimuthal angle ¢,
particles orbiting this body will have p, and p, constant along their
trajectories (see § 7.4). Consider a particle of nonzero rest mass in a
circular orbit of radius r in the equatorial plane. To lowest order,
calculate the difference between its orbital period in the positive sense
(i.e., rotating in the sense of the central body’s rotation) and in the
negative sense. (Define the period to be the coordinate time taken for
one orbit of A¢ =27.)

From this devise an experiment to measure the angular momentum J
of the central body. We take the central body to be the Sun (M =2 X
10*%kg, R=7%10°m, Q=3x10"°s"") and the orbiting particle Earth
(r=1.5x10""m). What would be the difference in the year between
positive and negative orbits?
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Gravitational radiation

9.1 The propagation of gravitational waves

It may happen that in a region of spacetime the gravitational
field is weak but not stationary. This can happen far from a fully
relativistic source undergoing rapid changes that took place long enough
ago for the disturbances produced by the changes to reach the distant
region under consideration. We shall study this problem by using the
weak-field equations developed in the last chapter. The Einstein equations
Eq. (8.42), in vacuum (T*" =0) are

3? _
(_I{sz) h*f =0, 9.1

In this chapter we will not neglect 3°/3t>. Eq. (9.1) is called the three-
dimensional wave equation. We shall show that it has a solution of the
form

h*? = A°P exp (ik,x%), (9.2)

where {k,} are the constant components of some one-form and {A?}
the constant components of some tensor. Eq. (9.1) can be written
as

TI“”EO‘B.#V = ()’ (93)
and, from Eq. (9.2), we have
R = kP, (9.4)
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Therefore Eq. (9.3) becomes

" h*f = 0"k kh"® =0,
This can vanish only if

n*’k.k,=k’k,=0. (9.5)
So Egq. (9.2) gives a solution to Eq. (9.1) if k, is a null one-form or,
equivalently, if the associated four-vector k“ is null, i.e. tangent to the
world line of a photon. (Recall that we raise and lower indices with the
flat-space metric tensor n**, so k* is a Minkowski null vector.) Eq. (9.2)
describes a wavelike solution. The value of A*# is constant on a hyper-
surface on which k,_x“ is constant:

k,x® = kot + k- x =const., (9.6)
where k refers to {k'}. It is conventional to refer to k° as w, which is
called the frequency of the wave:

k- (w, k) 9.7)
is the time—space decomposition of k. Imagine a photon moving in the
direction of the null vector k. It travels on a curve

x*(Ay=k*A +1*, (9.8)
where A is a parameter and /* is a constant vector (the photon’s position
at A =0). From Egs. (9.8) and (9.5) we find

k,x*(A)=k,I* = const. (9.9)
Comparing this with Eq. (9.6), we see that the photon travels with the
gravitational wave, staying forever at the same phase. We express this
by saying that the wave itself travels at the speed of light, and k is its
direction of travel. The nullity of k implies

w’=|k|?, (9.10)
which is referred to as the dispersion relation for the wave. Readers
familiar with wave theory will immediately see from Eq. (9.10) that the
wave’s phase velocity is 1, as is its group velocity.

The Einstein equations only assume the simple form, Eq. (9.1), if we
impose the gauge condition

EaB'B___O, (9.11)
whose consequences we must therefore consider. From Eq. (9.4) we find
APkg =0, (9.12)

which is a restriction on A®®: it must be orthogonal to k.

The solution A®? exp (ik,p) is called a plane wave. (Of course, in
physical applications, one uses only the real part of this expression,
allowing A°? to be complex.) By the theorems of Fourier analysis, any
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solution of Egs. (9.1) and (9.11)is a superposition of plane wave solutions.
(See Exer. 3, §9.6.)

The transverse—traceless gauge. We so far have only one constraint, Eq.
(9.12), on the amplitude A°?, but we can use our gauge freedom to restrict
it further. Recall from Eq. (8.38) that we can change the gauge while
remaining within the Lorentz class of gauges using any vector solving

62
—_——— -+-V2 a s 0_ 9.1
( PYE! ) £ (9.13)
Let us choose a solution
&, = B, exp (1k,x*), (9.14)

where B, is a constant and k* is the same null vector as for our wave
solution. This produces a change in h**, given by Eq. (8.24),

h(NEW) (OLD) _ § 5 gp (9]5)
and a consequent change in h,g, given by Eq. (8.34),
h(NEW) h(OLD) fa,B - §B,a + 170:[35"",;1.° (916)

Using Eq. (9.14) and dividing out the exponential factor common to all
terms gives

A‘NEW’ A‘O"D’ iB,ks —iBgk, +in.aB"k,. 9.17)
In Exer. 5, § 9.6 it is shown that B, can be chosen to impose two further

restrictions on AY3"™):

A%, =0 {(9.18)
and

A.UP =0, (9.19)

where U is some fixed four-velocity, i.e. any constant timelike unit vector
we wish to choose. Eqgs. (9.12), (9.18), and (9.19) together are called the
transverse—traceless (TT) gauge conditions. (The word ‘traceless’ refers
to Eq. (9.18); ‘transverse’ will be explained below.) We have now used
up all our gauge freedom, so any remaining independent components of
A,s must be physically important. Notice, by the way, that the trace
condition, Eq. (9.18), implies (see Eq. (8.29))
hag = hag, (9.20)
Let us go to a Lorentz frame for the background Minkowski spacetime
(i.e. make a background Lorentz transformation), in which the vector U
upon which we have based the TT gauge is the time basis vector U? = 8%,
Then Eq. (9.19) implies A,,=0 for all a. In this frame, let us orient our
spatial coordinate axes so that the wave is travelling in the z direction,
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k-(w,0,0, w). Then, with Eq. (9.19), Eq. (9.12) implies A, =0 for all
. (This is the origin of the adjective ‘transverse’ for the gauge: A,, is
‘across’ the direction of propagation é..) These two restrictions mean that
only A,,, A,,, and A,, = A, are nonzero. Moreover, the trace condition,
Eq. (9.18), implies A,, = — A,,. In matrix form, we therefore have in this
specially chosen frame

0 o0 0 0

0 A A, 0
AT = xx w , 9.21
AD= o 4 —a o (9.21)

0 0 0 0

There are only two independent constants, Ay; and AL . What is their
physical significance?

The effect of waves on free particles. As we remarked earlier, any wave is
a superposition of plane waves; if the wave travels in the z direction we
can put all the plane waves in the form of Eq. (9.21), so that any wave
has only the two independent components h;, and h) . Consider a
situation in which a particle initially in a wave-free region of spacetime
encounters a gravitational wave. Choose a background Lorentz frame in
which the particle is initially at rest, and choose the TT gauge referred
to this frame (i.e. the four-velocity U“ in Eq. (9.19) is the initial four-
velocity of the particle). A free particle obeys the geodesic equation, Eq.
(7.9),

d

—~—U*+I*, U*U" =0, 9.22

dr H 0 ( )
Since the particle is initially at rest, the initial value of its acceleration is

(d Ua/d”')o =—-T"%0=~ %TI&B(;‘BO,O + hop,o - hOO.B)- (9.23)

But by Eq. (9.21), hjg vanishes, so initially the acceleration vanishes.
This means the particle will still be at rest a moment later, and then, by
the same argument, the acceleration will still be zero a moment later.
The result is that the particle remains at rest forever, regardless of the
wave! However, being ‘at rest’ simply means remaining at constant
coordinate position, so we should not be too hasty in its interpretation.
All we have discovered is that by choosing the TT gauge — which means
making a particular adjustment in the ‘wiggles’ of our coordinates — we
have found a coordinate system that stays attached to individual particles.
T'his in itself has no invariant geometrical meaning.

To get a better measure of the effect of the wave, let us consider two
nearby particles, one at the origin and another at x =¢, y =z =0, both
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beginning at rest. Both then remain at these coordinate positions, and
the proper distance between them is

A!Ef ds? 2= j 8o dx® dx?|'72

~[l +3hi (x =0)]e. (9.24)
Now, since hl, is not generally zero, the proper distance (as opposed to
the coordinate distance) does change with time. This is an illustration
of the difference between computing a coordinate-dependent number
(the position of a particle) and a coordinate-independent number (the
proper distance between two particles). The effect of the wave is unam-
biguously seen in the coordinate-independent number.

Another approach to the same question involves the equation of
geodesic deviation, Eq. (6.87). Between the two particles set up the
connecting vector £°. It obeys the equation

d2

3.7 £ =R", s UrU"ER, (9.25)
where U =dz/dr is the four-velocity of the two particles. In these
coordinates the components of U are needed only to lowest (i.e. flat-
space) order, since any corrections to U” that depend on h,, will give
terms second order in h,,, in the above equation (because R”, 4 is already
first order in h,,). Therefore U-(1,0,0,0) and, initially, £ (0, ¢, 0, 0).
Then, to first order in h,,, Eq. (9.25) reduces to

d? 3

d 26 =_2 é'a = ERaOOx=_€Ra0x0. (9.26)
Now, it is a simple matter to use Eq. (8.25) to show that, in the TT gauge,

R0:0= Ryoxo=— l Hoo,

RyOx() = RyOxO 2 hxy 00y (9'27)

RyOyO = RyOyO 2h 300 T “0x0s

and all other independent components vanish. This means that two
particles initially separated in the x direction have a separation vector
which obeys

9 d
8t2§ “SaT hls, ngzéea—ti xy s (9.28a)

which is clearly consistent with Eq. (9.24), Similarly, two particles initially
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separated by ¢ in the y direction obey

9 8’ 3*

aa & = hy = e s hi,

62 x 1 82 TT

PYE £ =3¢ PYE: hxy . (9.28b)

Polarization of gravitational waves. These equations help us describe the
polarization of the wave. Consider a ring of particles initially at rest in
the x—y plane, as in Fig. 9.1(a). Suppose a wave has h #0, hL] =0.
Then the particles will be moved (in terms of proper distance relative to
the one in the center) in the way shown in Fig. 9.1(b), first in (say), then

L N
r- -
t=t, w!/=t
¥ : »
l x
t=t, o t=t,
]
@) &) ()

Fig. 9.1 (a) A circle of free particles before a wave travelling in the z direction
reaches them. (b) Distortions of the circle produced by a wave with the *+°
polarization. The two pictures represent the same wave at phases separated by
180°. Particles are positioned according to their proper distances from one
another. (c) As (b) for the ‘X’ polarization.

out, as the wave oscillates and h1] changes sign. If, instead, the wave
had h, #0 but h[J=h, =0, then the picture would distort as in Fig.
9.1(c). Since h)] and h}; are independent, (b) and (¢) provide a pictorial
representation for two different linear polarizations. Notice that the two
states are simply rotated 45° relative to one another. This constrasts with
the two polarization states of an electromagnetic wave, which are 90° to
cach other. As Exer. 15, § 9.6, shows, this pattern of polarization is due
to the fact that gravity is represented by the second-rank symmetric tensor
h,.. (By contrast, electromagnetism is represented by the vector potential
A* of Exer. 11, §8.6.)

An exact plane wave. Although all waves that we can expect to detect on
I'arth are so weak that linearized theory ought to describe them very
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accurately, it is interesting to see if the linear plane wave coresponds to
some exact solution of the nonlinear equations that has similar properties.
We shall briefly derive such a solution.
Suppose the wave is to travel in the z direction. By analogy with Eq.

(9.2) we might hope to find a solution that depends only on

ust-z
This suggests using u as a coordinate, as we did in Exer. 34, § 3.10 (with
x replaced by z). In flat space it is natural, then, to define a complementary
null coordinate

v=1+z
so that the line element of flat spacetime becomes

ds’=-du dv +dx* +dy*
Now, we have seen that the linear wave affects only proper distances
perpendicular to its motion, i.e. in the x—y coordinate plane. So let us
look for a nonlinear generalization of this, i.e. for a solution with the
metric

ds’=—du dv +f(u)dx* +g*(u) dy?,
where f and g are functions to be determined by Einstein’s equations.

It is a straightforward calculation to discover that the only nonvanishing
Christofel symbols and Riemann tensor components are

w=f1f, TI.=§lg

vax=2f/_f; Fvyy=2g/g,

Riu=~fIf, Ruu=-§ls
and others obtainable by symmetries. Here, dots denote derivatives with
respect to u. The only vacuum field equation then becomes

flf+é/g=0. (9.29)
We can therefore prescribe an arbitrary function g(uw) and solve this
equation for f(u). This is the same freedom as we had in the linear case,
where Eq. (9.2) can be multiplied by an arbitrary f(k,) and integrated
over k, to give the Fourier representation of an arbitrary function of
(z—1t). In fact, if g is nearly 1,

g=1+e(u),
so we are near the linear case, then Eq. (9.29) has a solution

f=1-¢g(a).
This is just the linear wave in Eq. (9.21), with plane polarization with
h., =0, i.e. the polarization shown in Fig. 9.1(b). Moreover, it is easy to
see that the geodesic equation implies, in the nonlinear case, that a
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particle initially at rest on our coordinates remains at rest. We have,
therefore, a simple nonlinear solution corresponding to our approximate
linear one.

9.2 The detection of gravitational waves

General considerations. The great progress that astronomy has
made since about 1960 is due largely to the fact that technology has
permitted astronomers to begin to observe in many different parts of the
electromagnetic spectrum. Because they were restricted to observing
visible light, the astronomers of the 1940s could have had no inkling of
such diverse and exciting phenomena as giant radio galaxies, quasars,
pulsars, compact X-ray binaries, molecular-line masers in dense clouds,
and the cosmic microwave background radiation. As technology has
progressed, each new wavelength region has revealed unexpected and
important information. There are still regions of the electromagnetic
spectrum that are largely unexplored, but there is another spectrum which
is as yet completely untouched: the gravitational wave spectrum. As we
shall see in § 9.3 below, nearly all astrophysical phenomena emit gravita-
tional waves, and the most violent ones (which are of course among the
most interesting ones!) give off radiation in copious amounts. In some
situations, gravitational radiation carries information that no electromag-
netic radiation can give us. For example, gravitational waves come to us
direct from the heart of supernova explosions; the electromagnetic radi-
ation from the same region is scattered countless times by the dense
material surrounding the explosion, taking days to eventually make its
way out, and in the process losing most of the detailed information it
might carry about the explosion. We can also expect long-wavelength
gravitational waves to tell us about the formation of very large black
holes, should they exist in the centers of quasars and active galaxies.
Beyond this, we can be virtually certain the gravitational-wave spectrum
has surprises for us, clues to phenomena we never suspected. It is not
surprising, therefore, that considerable effort is now being devoted to

the development of sufficiently sensitive gravitational-wave antennas.
We have already encountered one type of ‘antenna’ in Exer. 9, § 9.6:
by monitoring electromagnetic signals traveling between two freely falling
particles, one can detect the passage of a wave. In principle, one could
do this by putting several spacecraft carrying accurate atomic clocks in
orbit about the Sun, and having them continually exchanging signals
among one another. A less expensive alternative is precise tracking of
existing interplanetary space probes, but this is less sensitive (see Hellings



222 Gravitational radiation

1983). In the laboratory, one can use the same principle to monitor the
changes in separation between two heavy masses, suspended from sup-
ports that isolate the masses from outside vibrations. This approach is
being actively pursued in a number of laboratories, generally using lasers
for the electromagnetic radiation and interferometers to monitor changes
in the separation of the masses. These and other devices are described
in some detail in Smarr (1979a) and Bertotti (1974, 1977).

The technical difficulties involved in the detection of gravitational
radiation are enormous, because the amplitudes of the metric perturba-
tions h,, that can be expected from distant sources are so small (see
§ 9.3 below). To get some feeling for what is involved, we shall look at
the oldest type of detector, the resonant oscillator pioneered by J. Weber
(1961). A deeper discussion of detection theory may be found in Misner
et al. (1973).

A resonant detector. Let us consider the following idealized detector,
depicted in Fig. 9.2. Two point particles, each of mass m, are connected

x5 (1)

o [N

Fig.9.2 A spring with two identical masses as a detector of gravitational waves.

by a massless spring with spring constant k, damping constant v, and
unstretched length I,. The system lies on the x axis of our TT coordinate
system, with the masses at coordinate positions x, and x,. In flat space-
time, the masses would obey the equations

mx, oo = — k(x; — X3 + o) — v(x, — X3) o (9-30)
and

mMx200=—k(x,— x, —I))— v(x;— %)) 0. (9.31)
If we define

E=x—x,— I, wa=2k/m, y=v/m, (9.32)
then we can combine Eqgs. (9.30) and (9.31) to give

Eoot2VEo T wiE =0, (9.33)

the usual damped harmonic-oscillator equation.
What is the situation as a gravitational wave passes? We shall analyze
the problem in three steps.
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(1) A free particle remains at rest in the TT coordinates. This means
that a local inertial frame at rest at, say, x,, before the wave arrives
remains at rest there after the wave hits. Let its coordinates be {x*}.
Suppose that the only motions in the system are those produced by the
wave, i.e. that & = 0(lg|h,,|)< l,. Then the masses’ velocities will be small
as well, and Newton’s equations for the masses will apply in the local
inertial frame:

mx’yo = F7, (9.34)
where {F’} are the components of any nongravitational forces on the
masses. Because {x} can differ from our TT coordinates {x*} only by
terms of order h,,, and because x,, x,,, and x, oo are all of order h
we can use the TT coordinates in Eq. (9.34) with negligible error:

mxlo=F’ +0(|h,,[%). (9.35)

(2) The only nongravitational force on each mass is that due to the
spring. Since all the motions are slow, the spring will exert a force
proportional to its instantaneous proper extension, as measured using
the metric. If the proper length of the spring is /, and if the gravitational
wave travels in the z direction, then

EX0)

wy

I(t)= [1+h (D] dt, (9.36)
X1
and Eq. (9.35) for)our system gives
mx, g0=—k{lhb—=D—wv(lo—1),, (9.37)
mx; 00 = — k(I —lo) — v(I— o) . (9.38)
(3) Let us define wy and y as before, and
E=1-1, (9.39)
=X Xy “10"”%"3:("2""‘1)+0(|huv|2)— (9.40)
This can be solved to give
Xy =%y = lo+&—3hilo +0( b0, (9-41)
If we use this in the difference between Eqs. (9.38) and (9.37), we obtain
* Eoo +27E 0+ woé = 5loh o0, (9.42)

correct to first order in hy,. This is the fundamental equation governing
the response of the detector to the gravitational wave. It has the simple
form of a forced, damped harmonic oscillator. The generalization of this
to waves incident from other directions is dealt with in Exer. 20, § 9.6,
and an alternative derivation using the equation of geodesic deviation
may be found in Exer. 21, § 9.6.
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One might use a detector of this sort as a resonant detector for sources
of gravitational radiation of a fixed frequency (e.g. pulsars or close binary
stars). (It can also be used to detect bursts — short wave packets of
radiation — but we will not discuss those.) Suppose that

hii = A cos 0, (9.43)
then the steady solution for £ is

&= Rcos (2t + ), (9.44)
with

R =11,0°A/[(wo — Q) +40Q7297]"/?, (9.45)

tan ¢ =2yQ/(wj — Q). (9.46)

(Of course, the general initial-value solution for ¢ will also contain
transients, which damp away on a timescale 1/y.} The energy of oscilla-
tion of the detector is, to lowest order in k1!,

E =3m(x, )’ +3m(x;,)° +3kE. (9-47)
For a detector which was at rest before the wave arrived, we have
X 0= —X0=—£&o/2 (see Exer. 22, § 9.6), so that

E =im[(£0)" +w3é’] (9.48)
=imR[Q7 sin® (Ot + ) +wl cos® (At + ¢)]. (9.49)

The mean value of this is its average over one period, 27/():
(E)=3mR*(wg + Q7). (9.50)

We shall always use angle brackets ( ) to denote time averages.

If we wish to detect a specific source whose frequency (2 is known,
then we should adjust w, to equal ) for maximum response (resonance),
as we see from Eq. (9.45). In this case the amplitude of the response will
be

Rresonant = %IOA(Q/ Y) (951)
and the energy of vibration is
Eresonant =élaml(2)ﬂzA2(Q/ ‘y)z' (9'52)

The ratio /vy is related to what is usually called the quality factor Q
of an oscillator, where 1/Q is defined as the average fraction of the
energy of the undriven oscillator, which it loses (to friction) in one radian
of oscillation (see Exer. 24, § 9.6):

Q=wy/2Y. (9.53)
In the resonant case we have
E resonam = 16mI5 Q2 A’ Q% (9.54)

What numbers are realistic for laboratory detectors? Most such detec-
tors are massive cylindrical bars, in which the ‘spring’ is the elasticity of
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the bar when it is stretched along its axis. When waves hit the bar
broadside, they excite its longitudinal modes of vibration. The first
detectors, built by J. Weber of the University of Maryland in the 1960s,
were aluminum bars of mass 1.4 x10° kg, length l,=1.5m, resonant
frequency wo = 10* 57!, and Q about 10°. This means that a strong resonant
gravitational wave of A=10""" (see § 9.3 below) will excite the bar to
an energy of the order of 1072°J. The resonant amplitude given by Eq.
(9.51) is only about 107'° m, roughly the diameter of an atomic nucleus!
Many realistic gravitational waves will have amplitudes many orders of
magnitude smaller than this, and will last for much too short a time to
bring the bar to its full resonant amplitude.

Clearly, the detection of such small levels of excitation will be ham-
pered by random ‘noise’ in the oscillator. For example, thermal noise in
any oscillator induces random vibrations with a mean energy of kT,
where T is the absolute temperature and k is Boltzmann’s constant,

k=1.38x10"2J/K.

In our example, this will be comparable to the energy of excitation if T
is room temperature (~300 K). Other sources of noise, such as vibrations
from passing vehicles and everyday seismic disturbances, could be con-
siderably larger than this, so the apparatus has to be very carefully
isolated.

We have confined our discussion to on-resonance detection of a con-
tinuous wave, in the case when there are no motions in the detector,
other than those produced by the wave. If the wave comes in as a burst
with a wide range of frequencies, or if the excitation amplitude is well
below noise levels, then rather different considerations apply. These are
discussed in the references quoted earlier.

As of 1983, no gravitational waves have yet unambiguously been
detected. This is not surprising because detector sensitivities are still
smaller than required for most theoretical predictions of the gravitational
wave flux incident on Earth. The main problem is, of course, noise, and
various methods are being employed to overcome the problem: the growth
of very large single crystals for use as high-Q detectors; the cooling of
the massive aluminum bars to liquid-helium temperatures; the develop-
ment of very stable high-power lasers for the laser-interferometer detec-
tors; and the design of electronics which can detect excitations of the
bars when there are only a few quanta in the excitation, without changing
the number of quanta (i.e. when the excitation energy equals a few times
hw,). These all stretch the limits of modern technology, with the result
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that many of the advances made by the builders of these antennae have
much wider technological applications. Astronomers, meanwhile, wait
and hope that these advances will also soon achieve their main purpose!

9.3 The generation of gravitational waves

Simple estimates. It is easy to see that the amplitude of any
gravitational waves incident on Earth should be small. A ‘strong’ gravita-
tional wave would have h,, = 0(1), and we should expect amplitudes like
this only near the source, where the Newtonian potential would be of
order 1. For a source of mass M, this would be at distances of order M
from it. As with all radiation fields, the amplitude of the gravitational
waves falls off as r~' far from the source. (Readers who are not familiar
with solutions of the wave equation will find demonstrations of this in
the next sections.) So if Earth is a distance R from a source of mass M,
the largest amplitude waves we should expect are of order M/R. For
the formation of a I0Mg black hole in a supernova explosion in a nearby
galaxy 10” m away, this is about 107'7. This is in fact an upper limit in
this case, and less-violent events will lead to very much smaller ampli-
tudes.

An approximate calculation of wave generation. Our object is to solve Eq.
(8.42):

&2 _
( —5;3+v2) h,, =-167T,,. (9.55)

We will find the exact solution in a later section. Here we will make
some simplifying — but realistic ~ assumptions. We assume that the
time-dependent part of T,, is in sinusoidal oscillation with frequency
(1, i.e. that it is the real part of

T,.=S,.(x") e, (9.56)

and that the region of space in which S, # 0 is small compared with
27 /Q), the wavelength of a gravitational wave of frequency (2. The first
assumption is not much of a restriction, since a general time dependence
can be reduced to a sum over sinusoidal motions by Fourier analysis.
Besides, many interesting astrophysical sources are roughly periodic:
pulsating stars, pulsars, binary systems. The second assumption is called
the slow-motion assumption, since it implies that the typical velocity
inside the source region, which is {) times the size of that region, should
be much less than 1. All but the most powerful sources of gravitational
waves probably satisfy this condition.
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Let us look for a solution for &, of the form
h,, =B, (x")e ™, (9-57)
(In the end we must take the real part of this for our answer.) Putting
this and Eq. (9.56) into Eq. (9.55) gives
(V*+Q%)B,,=-167S,,,. (9.58)
It is important to bear in mind as we proceed that the indices on h,, in
Eq. (9.55) play almost no role. We shall regard each component ﬁ“,, as
simply a function on Minkowski space, satisfying the wave equation. All
our steps would be the same if we were solving the scalar equation
(—8%/at* +V)f = g, until we come to Eq. (9.66).

Outside the source (i.e. where S,, =0) we want a solution B,, of Eq.
(9.58), which represents outgoing radiation far away; and of all such
possible solutions we want the one which dominates in the slow-motion
limit. Let us define r to be the spherical polar radial coordinate whose
origin is chosen inside the source. We show in Exer. 26, § 9.6, that the
solution we seek is the simplest of all the solutions of Eq. (9.58) outside
the source,

Awe iar  Zw
B, =2 4 eIl (9.59)
H r r

where A, and Z,, are constants. The term in e ! represents a wave
traveling toward the origin r = 0 (called an ingoing wave), while the other
term is outgoing (see Exer. 25, § 9.6). We want waves emitted by the
source, so we choose Z,, =0.

Our problem is to determine A,,, in terms of the source. Here we make
our approximation that the source is nonzero only inside a sphere of
radius e« 27/Q. Let us integrate Eq. (9.58) over the interior of this
sphere. One term we get is

JQZBu, d’x <Q?B,,|maxdme’/3, (9.60)

where |B,,|max is the maximum value B,, takes inside the source. We
will see that this term is negligible. The other term from integrating the
left-hand side of Eq. (9.58) is

J V:B,, d’x =§ n-VB,, dS, (9.61)

by Gauss' theorem. But the surface integral is outside the source, where
B, is given by Eq. (9.59), which is spherically symmetric:

§ n-VB,, dS= 47e’ (di B“,,) =-~47A,,, (9.62)
r r=e¢
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again with the approximation £ « 27 /(). Finally, we define the integral
of the right-hand side of Eq. (9.58) to be

Jo = J S, d’x. (9.63)
Combining these results in the limit £ > 0 gives

A,=4],,, (9.64)

h, =4J,, ¢e"""/r. (9.65)

These are the expressions for the gravitational waves generated by the
source, neglecting terms of order r> and any r~' terms that are higher
order in ().

It is possible to simplify these considerably. Here we begin to use the

fact that {Huv} are components of a single tensor, not the unrelated
functions we have solved for in Eq. (9.65). From Eq. (9.63) we learn

J,e = J T, d’x, (9.66)
which has as one consequence:

—iQJH0 e = I T+, d’x. (9.67)
Now, from the conservation law for T*”,

T ,=0, (9.68)
we conclude that

T ==T*, (9.69)

and hence that

iJ#% e = J ™, &’x =§ T**n, dS, (9.70)

the last step being the application of Gauss’ theorem to any volume
completely containing the source. This means that T*” =0 on the surface
bounding this volume, so that the right-hand side of Eq. (9.70) vanishes.
This means that if 1 # 0 we have
=0 A*°=0. (9.71)
The expression for J; can also be rewritten in an instructive way, by
using the result of Exer. 23, § 4.10.
2
% I T®x!x™ dx =2 J T &x. (9.72)
For a source in slow motion, we have seen in Ch. 7 that T%° = p, the
Newtonian mass density. It follows that the integral on the left-hand
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side of Eq. (9.72) is what is often referred to as the quadrupole moment
tensor of the mass distribution,

I'm= I T%x'x™ d*x (9.73a)
= Dim i (9.73b)

(Conventions for defining the quadrupole moment vary from one text to
another. We follow Misner et al. (1973).) In terms of this we have
By = —2Q°Dy '™ " . (9.74)

It is important to remember that Eq. (9.74) is an approximation which
neglects not merely all terms of order r~ but also r™' terms that are not
dominant in the slow-motion approximation. In particular, f{jk'k is of
higher order, and this guarantees that the gauge condition A**, =0 is
satisfied by Egs. (9.74) and (9.71) at the lowest order in r~' and Q.
Because of Eq. (9.74), this approximation is often called the quadrupole
approximation for gravitational radiation.

As for the plane waves we studied earlier, we have here the freedom
to make a further restriction of the gauge. The obvious choice is to try
to find a TT gauge, transverse to the direction of motion of the wave
(the radial direction), whose unit vector is n’ = x’/r. Exer. 29, § 9.6, shows
that this is possible, so that in the TT gauge we have the simplest form
of the wave. If we choose our axes so that at the point where we measure

the wave it is traveling in the z direction, then we can supplement Eq.
(9.71) by

hIT =0, 9.75)

il =—h=-0(f,—1,) Vr, (9.76)

hil=—20%, ¢, (9.77)
where

Fio= L, —38,1] (9.78)

is called the trace-free or reduced quadrupole moment tensor.

Examples. Let us consider the waves emitted by a simple oscillator like
the one we used as a detector in § 9.2. If both masses oscillate with
angular frequency w and amplitude A about mean equilibrium positions
a distance l,, apart, then, by Exer. 27, § 9.6, the quadrupole tensor has
only one nonzero component,
Lo = m{(x,)* +(x2)*]
=[(—-3lp— A cos wt)’ +(Gl, + A cos wt)?]
= const. + mA? cos 2wt +2ml,A cos wt. (9.79)
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Recall that only the sinusoidal part of I, should be used in the formulae
developed in the previous paragraph. In this case there are two such
pieces, with frequencies w and 2w. Since the wave equation, Eq. (9.55)
is linear, we shall treat each term separately and simply add the results
later. The wtermin I, is the real part of 2mlyA exp (—iwt). The trace-free
guadrupole tensor has components

Fo=lo =3} =3 =imlA e}

bo=f.=—3l,=-imbAe ™,
all off-diagonal components vanishing. If we consider the radiation
traveling in the z direction, we get, from Egs. (9.75)~9.77),

hy =—h}[ =-2mw’l,Ae“" r, hyi =0. (9.81)
The radiation is linearly polarized, with an orientation such that the
ellipse in Fig. 9.1 is aligned with the line joining the two masses. The
same is true for the radiation going in the y direction, by symmetry. But
for the radiation traveling in the x direction (i.e. along the line joining
the masses), we need to make the substitutions z—>x, x>y, y-> z in Egs.
(9.76)—(9.77), and we find

hit=0. (9.82)
There is no radiation in the x direction. In Exer. 33, § 9.6, we will fill in
this radiation pattern by calculating the amount of radiation and its
polarization in arbitrary directions.

A similar calculation for the 2w piece of I, gives the same radiation

pattern, replacing Eq. (9.81) by

AT = hT = —4mw?A?e? 0y, hIT =0, (9.83)

The total radiation field is the real part of the sum of Egs. (9.81) and
(9.83), e.g.
Al =-[2mw’l,A cos w(r—t) +4mw’A® cos 2w(r—t)]/r. (9.84)

Let us estimate the radiation from a laboratory-sized generator of this
type. If we take m=10kg=7x10"m, l,=1m, A=10"*m, and w =
10°s7'=3x10"*m™’, then the 2w contribution is negligible and we find
that the amplitude is about 107**/r, where r is measured in meters. This
shows that laboratory generators are unlikely to produce useful gravita-
tional waves in the near future!

A more interesting example of a gravitational wave source is a binary
star system. Strictly speaking, our derivation applies only to sources
whose motions result from nongravitational forces (this is the content of
Eq. (9.68)), but our final result, Egs. (9.75)—(9.78), makes use only of the
motions produced, not of the forces. It is perhaps not so surprising, then,

(9.80)
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that one can show that Egs. (9.75)—(9.78) are a good first approximation
for systems dominated by Newtonian gravitational forces. (See bibliogra-
phy for references.) Let us suppose, then, that we have two stars of mass
m, idealized as points in circular orbit about one another, separated a
distance [, (i.e. moving on a circle of radius }/,). Their orbit equation

(gravitational force = ‘centrifugal force’) is

2
m

K“—'majz (%)ﬁw=(2m/’3)”2, (9.85)
where w is the angular velocity of the orbit. Then, with an appropriate
choice of coordinates, the masses move on the curves
xi(t)y=3%lpcos wt,  y,(t)=13l,sin wt,}
x(t) = —x,(1), ya(t) = —yi(1),
where the subscripts 1 and 2 refer to the respective stars. These equations
give

(9.86)

L, %mlg cos 2wt +const.,
I, = —4ml} cos 2wt +const., (9.87)
I,

The reduced quadrupole tensor is, in complex notation and omitting
time-independent terms,

fo=—F,=iml} e_Zi“",}
£, =4iml; e 5
All the radiation comes out with frequency ) = 2w. The radiation along
the z direction (perpendicular to the plane of the orbit) is, by Egs.
(9.75)—(9.77),
b = —hy,, = = 2mljw® ¥ ™"/ r,}
h,, = 21mlow2 gl y,
This is circularly polarized radiation (see Exer. 14, § 9.6). The radiation

in the plane of the orbit, say in the x direction, is found in the same
manner used to derive Eq. (9.82). This gives
hyf=—hlT=imliw? ¥/, (9.90)
all others vanishing. This shows linear polarization aligned with the
orbital plane. The antenna pattern and polarization are examined in
greater detail in Exer. 35, § 9.6, and the calculation is generalized to
unequal masses in elliptical orbits in Exer. 36.
The amplitude of the radiation is of order mljw?/r, which, by Eq.
(9.85), is ~(mw)*>m/r. One particularly important system is the one
containing the pulsar PSR 1913 + 16; this apparently consists of two very

%ml% sin 2ewt.

H

(9.88)

(9.89)
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compact stars orbiting each other closely. The orbital period, inferred
from the Doppler shift of the pulsar’s period, is 7h 45 min 7 s (27907 s,
or 8.3721 x 10" m), and both stars have masses approximately equal to
1.4 Mg (2.07 km) (Taylor & Weisberg 1982). If the system is 5 kpc=
1.5 x 10'” m away, then its radiation will have the approximate amplitude
1072° at Earth. We will calculate the effect of this radiation on the binary
orbit itself later in this chapter. In Ch. 10 we will discuss the dynamics
of the system, including how the masses are measured.

Order-of-magnitude estimates. Although our simple approach does not
enable us to write down solutions for h,, generated by more complicated,
nonperiodic motions, we can use Eq. (9.74) to obtain some order-of-
magnitude estimates. Since Dy, is of order MR?, for a system of mass
M and size R, the radiation will have amplitude about M(QR)*/r=
v’ (M/r), where v is a typical internal velocity in the source. This applies
directly to Eq. (9.90); note that in Eq. (9.84) the first term uses, instead
of R?, the product /A of the two characteristic lengths in the problem.
If we are dealing with, say, a collapsing mass moving under its own
gravitational forces, then by the virial theorem v’>~ ¢,, the typical
Newtonian potential in the source, while M/r~ ¢,, the Newtonian
potential of the source at the observer’s distance r. Then we get the simple
estimate

* h~ ¢od,. (9.91)

So the wave amplitude is always less than, or of the order of, the
Newtonian potential ¢,. Why then can we detect h but not ¢, itself;
why can we hope to find waves from a supernova in a distant galaxy,
without being able to detect its presence gravitationally before the
explosion? The answer lies in the forces involved. The Newtonian tidal
gravitational force on a detector of size I, at a distance r is about ¢,/ r’,
while the wave force is hlyw?® (see Eq. (9.42)). The wave force is thus a
factor ¢o(wr)® ~ (¢or/ R)? larger than the Newtonian force. For a relativis-
tic system (o~ 0.1) of size | AU (~10'' m), observed by a detector a
distance 10** m away, this factor is 10°2. This estimate, incidentally, gives
the largest distance r at which we may still approximate the gravitational
field of a dynamical system as Newtonian (i.e. neglecting wave effects):
r= R/ o, where R is the size of the system.

The estimate in Eq. (9.91) is really an optimistic upper limit, because
it assumed that all the mass motions contributed to Dy. In realistic
situations this could be a serious overestimate because of the following
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fundamental fact: spherically symmetric motions do not radiate. The
rigorous proof of this is discussed in Ch. 10, but in Exer. 37, §9.6, we
derive it from linearized theory, Eq. (9.92) below. It also seems to follow
from Eq. (9.73a): if T™ is spherically symmetric, then 1™ is proportional
to 8" and '™ vanishes. But this argument has to be treated with care,
since Eq. (9.73a) is part of an approximation designed to give only the
dominant radiation. One would have to show that spherically symmetric
motions would not contribute to terms of higher order in the approxima-
tion if they were present. This is in fact true, and it is interesting to ask
what eliminates them. The answer is Eq. (9.68): conservation of energy
eliminates ‘monopole’ radiation in linearized theory, just as conservation
of charge eliminates monopole radiation in electromagnetism.

The danger of using Eq. (9.73a) too glibly is illustrated by Exer. 28e,
§9.6: four equal masses at the corners of a rotating square give no
time-dependent I™ and hence no radiation in this approximation. But
they would contribute radiation at the next higher order of approximation,
octupole radiation.

Exact solution of the wave equation. Readers who have studied the wave
equation, Eq. (9.55), will know that its outgoing-wave solution for
arbitrary T, is given by the retarded integral

h(t,x")=4 J Lll=Ry)

9-92
R y’ ( )
1! | :l. Ji|’

where the integral is over the past light cone of the event (¢, x') at which

h,, is evaluated. We let the origin be inside the source and we suppose
that the field point x' is far away,

Ix[=r>|y =y, (9.93)
and that time derivatives of T,, are small. Then, inside the integral, Eq.
(9.92), the dominant contribution comes from replacing R by r:

_ ) 4 .
h”y(t,x')z:I T.(t—ry")dy (9.94)

This is the generalization of Eq. (9.65). Now, by virtue of the conservation
laws

™ ,=0, (9.68)
we have

J- T, d’y = const,, (9.95)
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i.e. the total energy and momentum are conserved. It follows that
the 1/r part of hy, is time independent, so it will not contribute to any
wave field. This generalizes Eq. (9.71). Then, using Eq. (9.72), we get
the generalization of Eq. (9.74):

— 2
hi(t, x") = M Ly oot —1). (9.96)
As before, we can adopt the TT gauge to get

_ i
hl'f = ; [Ixx,OO(t —r)- fyy.OO(t -],

. 2
hy == 00t — ). (9.97)

9.4 The energy carried away by gravitational waves
Preview. We have seen that gravitational waves can put energy
into things they pass through. This is how detectors work. It stands to
reason, then, that they also carry energy away from their sources. This
is a very important aspect of gravitational wave theory because, as we
shall see, there are some circumstances in which the effects of this loss
of energy on a source can be observed, even when the gravitational waves
themselves cannot be detected. There are a number of different methods
of deriving the formula for this energy loss (see Misner et al. 1973) and,
indeed, some of the mathematical questions raised by these derivations
have not yet been settled (Ehlers et al. 1976; Schutz 1980a; Futamase
1983). Our approach here will make the maximum use of what we already
know about the waves.
In our discussion of the harmonic oscillator as a detector of waves in
§ 9.2, we implicitly assumed that the detector was a kind of ‘test body’,
whose influence on the gravitational wave field is negligible. But this is,
strictly speaking, inconsistent. If the detector extracts energy from the
waves, then surely the waves must be weaker after passing through the
detector. That is, ‘downstream’ of the detector they should have slightly
lower amplitude than ‘upstream’. It is easy to see how this comes about
once we realize that in § 9.2 we ignored the fact that the oscillator, once
set in motion by the waves, will radiate waves itself. We have solved this
in § 9.3 and found, in Eq. (9.79), that waves of two frequencies will be
emitted. Consider the emitted waves with frequency (), the same as the
incident wave. The part which is emitted exactly downstream has the
same frequency as the incident wave, so the total downstream wave field
has an amplitude which is the sum of the two. We will see below that
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the two interfere destructively, producing a net decrease in the down-
stream amplitude (see Fig. 9.3). (In other directions, there is no net
interference: the waves simply pass through each other.) By assuming
that this amplitude change signals a change in the energy actually carried
by the waves, and by equating this energy change to the energy extracted
from the waves by the detector, we shall arrive at a simple expression
for the energy carried by the waves as a function of their amplitude. We
will then be able to calculate the energy lost by bodies which radiate
arbitrarily, since we know from § 9.3 what waves they produce.

'\ radiated wave /'

N /
AN /
N /7
—_—p
—_— é> —_—— destructive interference
incident
——_—b ____-+
wave
A —
—_———
——
upstream 7\ downstream
/ AN
/ AN
/
| 4 \I

Fig. 9.3 When the detector of Fig. 9.2 is excited by a wave, it re-radiates some
waves itself,

The energy flux of a gravitational wave, What we are after is the energy
flux, the energy carried by a wave across a surface per unit area per unit
time. It is more convenient, therefore, to consider not just one oscillator
but an array of them filling the plane z=0. We suppose they are very
close together, so we may regard them as a nearly continuous distribution
of oscillators, o oscillators per unit area (Fig. 9.4). If the incident wave
is, in the TT gauge,
hIT = Acos Q(z—1),

i TT __ i TT
hyy == hxx s

(9.98)

all other components vanishing, then in §9.2 we have seen that each
oscillator responds with a steady oscillation (after transients have died
out) of the form

£ = R cos ({1t +¢), (9.99)
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o oscillators per unit area

—_—

incident wave

Fig. 9.4 The situation when detectors of Fig. 9.3 are arranged in a plane at a
density of o per unit area.

where R and ¢ are given by Egs. (9.45) and (9.46) respectively. This
motion is steady because the energy dissipated by friction in the oscillators
is compensated by the work done on the spring by the tidal gravitational
forces of the wave. It follows that the wave supplies an energy to each
oscillator equal to
dE/dt= v (d¢/dt) = my (d¢/dt). (9.100)
Averaging this over one period of oscillation, 27/Q), in order to get a
steady energy loss, gives (angle brackets denote the average)
2w/}
(dE/dt)=2—7-r176 L myQ°R? sin® (0t + ¢) dt
=imyQ*R>. (9.101)
This is the energy supplied to each oscillator per unit time. With o
oscillators per unit area, the net energy flux F of the wave must decrease
on passing through the z =0 plane by
8F=—1omyQ’R’. (9.102)
We calculate the change in the amplitude downstream independently
of the calculation that led to Eq. (9.102). Each oscillator has a quadrupole
tensor given by Eq. (9.79), with wt replaced by Qt+¢ and A replaced
by R/2.(Each mass moves an amplitude A, one-half of the total stretching
of the spring R) Since in our case R is tiny compared to Io(R = 0(h 11 o)),
the 2} term in Eq. (9.79) is negligible compared to the () term. So each
oscillator has

I..=mlyR cos (Ot + ¢). (9.103)
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By Eq. (9.74), each oscillator produces a wave amplitude

8hy = —2Q0°ml,R cos [Q(r—t)— ¢)/r (9.104)
at any point a distance r away. (We call it 8h,, to indicate that it is small
compared to the incident wave.) It is a simple matter to get the total
radiated field by adding up the contributions due to all the oscillators.
In Fig. 9.5, consider a point P a distance z downstream from the plane

g2

F4
Fig. 9.5 Geometry for calculating the field at P due to an oscillator at O.

of oscillators. Set up polar coordinates (@, ¢) in the plane, centered at
Q beneath P. A typical oscillator O at a distance @ from Q contributes
a field, Eq. (9.104), at P, with r=(@>+z%)"/?. Since the number of such
oscillators between @ and @ +d@ is 2wod do, the total oscillator-
produced field at P is

A = - 2mQ*,R2 J.

0

0 e -~
o do

acos[Qr—1)— gb]—r—-:

But we may change the integration variable to r,
o do=rdr,

obtaining

<o

Sh™ = _2mQ*I,R2 J acos[Qr—t)—¢]dr. (9.105)

If o were constant, this would be trivial to integrate, but its value would
be undefined at r=o00. Physically, we should expect that the distant
oscillators play no real role, so we adopt the device of assuming that o
is proportional to exp (—er) and allowing £ to tend to zero after the
integration. The result is

8™ = 4momQ R sin [QUz - 1) — ¢ ). (9.106)
So the plane of oscillators sends out a net plane wave. To compare this
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to the incident wave we must put Eq. (9.106) in the same TT gauge (recall
that Eq. (9.74) is not in the TT gauge), with the result (Exer. 39, § 9.6)
Shil=—8h,  =2momQLR sin [Q(z-1)- ). (9.107)
If we now add this to the incident wave, Eq. (9.98), we get the net
result, to first order in R,

Rot= T+ R

=(A—2momQUR sin ¢) cos [Q(z - 1) — ¢), (9.108)
where
2 l
tan ¢ = ﬂ':-‘-l—‘ﬁ cos ¢. (9.109)

Apart from a small phase shift y, the net effect is a reduction in the
amplitude A by

8A = —2mamQ 1R sin ¢. (9.110)

This reduction must be responsible for the decrease in flux F down-
stream. Dividing Eq. (9.102) by Eq. (9.110) and using Egs. (9.45) and
(9.46) to eliminate R and ¢ gives the remarkably simple result

—=—0%A. (9.111)

This is our key result. It says that a change 6A in the amplitude A of a
wave of frequency ) changes its flux F (averaged over one period) by
an amount depending only on (2, A, and 8A. The oscillators helped us
to derive this result from conservation of energy, but they have dropped
out completely! Eq. (9.111) is a property of the wave itself. We can
‘integrate’ Eq. (9.111) to get the total flux of a wave of frequency () and
amplitude A:

|
F=———32 0242 (9.112)
ao

Since the average of the square of the wave, Eq. (9.98), is
((hed ) =3A7
(again, angle brackets denote an average over one period), and since

there are only two nonvanishing components of h .., we can also write
Eq. (9.112) as

1 o
* F=§;Qz(hﬂh”’”). (9.113)

This form is invariant under background Lorentz transformations, but
not under gauge changes. Since one polarization can be transformed into
another by a background Lorentz transformation (a rotation), Eq. (9.113)
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applies to all polarizations and hence to arbitrary plane waves of
frequency (). In fact, since it gives an energy rate per unit area, it applies
to any wavefront, either plane waves or the spherical expanding ones of
§9.3: one can always look at a small enough area that the curvature of
the wavefront is not noticeable. The generalization to arbitrary waves
(no single frequency) is in Exer. 40, § 9.6.

The reader who remembers the discussion of energy in § 7.3 may object
that this whole derivation is suspect because of the difficulty of defining
energy in GR. Indeed, we have not proved that energy is conserved, that
the energy put into the oscillators must equal the decrease in flux; we
have simply assumed this in order to derive the flux. Our proof may be
turned around, however, to argue that the flux we have constructed is
the only acceptable definition of energy for the waves, since our calcula-
tion shows it is conserved when added to other energies, to lowest order
in h,,. The qualification ‘to lowest order’ is important, since it is precisely
because we are almost in flat spacetime that, at lowest order, we can
construct conserved quantities. At higher order, away from linearized
theory, local energy cannot be so easily defined, because the time depen-
dence of the true metric becomes important. These questions are among
the most fundamental in relativity, and are discussed in detail in any of
the advanced texts. Qur equations should be used only in linearized
theory.

Energy lost by a radiating system. Consider a general isolated system,
radiating according to Eqgs. (9.73)—(9.78). By integrating Eq. (9.113) over
a sphere surrounding the system, we can calculate its net energy loss
rate. For example, at a distance r along the z axis, Eq. (9.113) is

QG

F= 2(F — §,)* +8F7). 9.114
Ty (2= £,) +8F°) ©.114)
Use of the identity

F=f,.+f,+£.=0 (9.115)

(which follows from Eq. (9.78)) gives, after some algebra,

Q° y .

F = 2,1V -4, + 1), 116
]67"2( 87 —-4f 8 +£,,) (9.116)

Now, the index z appears here only because it is the direction from the
center of the coordinates, where the radiation comes from. It is the only
part of F which depends on the location on the sphere of radius r about
the source, since all the components of #; depend on time but not position.
Therefore we can generalize Eq. (9.116) to arbitrary locations on the
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sphere by using the unit vector normal to the sphere,

n=x'/r. (9.117)
We get for F
QS _ o
Fers QB —4n/n Gl +n'wn'n't 1), (9.118)

The total luminosity of the source is the integral of this over the sphere
of radius r. In Exer. 42, § 9.6 we prove the following integrals

I n'n*sin 0 do d¢ =4T”af“, (9.119)

J n'n’n“n' sin 6 d6 d¢ =‘:—°57(5”6"’ + 88" +8187%), (9.120)

It then follows that the luminosity L of a source of gravitational waves
is

j Frisin 0 d6 d¢ =Q°QFF 31, 1Y

+(BE+F L+ L)), (9.121)
2 L=10%F,;#"). (9.122)
The generalization to cases where f; has a more general time dependence
is
L= FY, (9.123)
where dots denote time derivatives.

It must be stressed that Eqgs. (9.112) and (9.123) are acccurate only for
weak gravitational fields and slow velocities. They can at best give only
order-of-magnitude results for highly relativistic sources of gravitational
waves. But in the spirit of our derivation and discussion of the order-of-
magnitude estimate of h; in Eq. (9.61), we can still learn something about
strong sources from Eq. (9.112). Since I is of order MR?, Eq. (9.112)
tells us that L~ M>R*Q°~ (M/R)*(RQ)®~ ¢3v°. The luminosity is a
very sensitive function of the velocity. The largest velocities one should
expect are of the order of the velocity of free fall, v> ~ ¢,, so we shouid
expect

L=<(¢,)’. (9.124)
Since ¢o=<1, the luminosity in geometrized units should never substan-
tially exceed one. In ordinary units this is

L<1=c’/G=36x10"W. (9.125)

We can understand why this particular luminosity is an upper limit
by the following simple argument. The radiation field inside a source of
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size R and luminosity L has energy density =L/R? (because |T%|~
|0'| T® = T = T®), which is the flux across its surface. The total energy
in radiation is therefore = LR. The Newtonian potential of the radiation
alone is therefore = L. We shall see in the next chapter that anything
whose Newtonian potential substantially exceeds 1 must form a black
hole: its gravitational field will be so strong that no radiation will escape
at all. Therefore L ~ 1 is the largest luminosity any source can have. This
argument applies equally well to all forms of radiation, electromagnetic
as well as gravitational. Quasars, which are the most luminous class of
object known, have a (geometrized) luminosity <107,

An example: the binary pulsar. In § 9.3 we calculated f; for a binary
system consisting of two stars of equal mass M in circular orbits a distance
l, apart. If we use the real part of Eq. (9.88) in Eq. (9.123), we get

L=3M2135. (9.126)
In terms of m and w, this is
32
L= Mw 10/3 ) M 10/3- 9.]27
m( ) 4.0 (Mw) ( )

This expression illustrates two things: first, that L is dimensionless in
geometrized units and, second, that it is almost always easier to compute
in geometrized units, and then convert back at the end. The conversion

1S
CS
L (SI units) = G L (geometrized)

=3.63x10°Js™' x L (geometrized). (9.128)

So for the binary pulsar system described in § 9.3, if its orbit were circular,
we would have w =27/P=7.5049x10""" m™" and

L=171x10"% (9.129)

in geometrized units. We can, of course, convert this to watts, but a more

meaningful procedure is to compare this with the Newtonian energy of
the system, which is (defining the orbital radius r =3l),

Mz
E =iMw’r +iMw’r ——
2r
M M*
=——(w2r3—%M)=——
r 4r
= 4 YIN53,2 . _0.40 M 30?3 (9.130)

=—1.11 %107 m. (9.131)



242 Gravitational radiation

The physical question is, how long does it take to change this? Put
differently, the energy radiated in waves must change the orbit by decreas-
ing its energy, which makes | E| larger and hence w larger and the period
smaller. What change in the period do we expect in, say, one year?
From Eq. (9.130), by taking logarithms and differentiating, we get

1dE 21 de 21dP

Edi 3wdi  3Par (4.132)
Since dE/dt is just —L, we can solve for dP/dr:
dP/dt=(3PL)/(2E) =~ 15 PM~' (M) (9.133)

=-2.0x10"",

which is dimensionless in any system of units. It can be reexpressed in
seconds per year:

dP/dt=-6.0x10"°syr . (9.134)
This estimate needs to be revised to allow for the eccentricity of the orbit,
which is considerable: e =0.617. The correct formula is derived in Exer.
46, § 9.6. The result is that the true rate of energy loss is some 12 times
our estimate, Eq. (9.129). This is such a large factor because the stars’
maximum angular velocity (when they are closest) is larger than the mean
value we have used for (), and since L depends on the angular velocity
to a high power, a small change in the angular velocity accounts for this
rather large factor of 12. So the relativistic prediction is:

dP/dt=-2.4x10"", (9.135)
=-72%10%syr™", (9.136)

The observed value as of 1982 is (Taylor & Weisberg 1982, Boriakoft et
al. 1982)

dP/dt=-(2.30x0.22) x 107", (9.137)

9.5 Bibliography

Joseph Weber’s early thinking about detectors is in Weber (1961).
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disturbing the quantity being measured, even when the bar is excited
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only at the one- or two-quantum (phonon) level. See Thorne et al. (1979)
and Caves et al. (1980).

A full discussion of the wave equation is beyond our scope here, but
is amply treated in many texts on electromagnetism, such as Jackson
(1975). A simplified discussion of gravitational waves is in Schutz (1984).

Generation of radiation in the full nonlinear theory is very much more
difficult to analyze than in the linearized theory. See Smarr (19794a) and
Deruelle & Piran (1983) for a discussion of the difficulties that exist and
attempts at their solution. These problems affect derivations of the energy
emitted and of the reaction in the source. For weakly self-gravitating
sources, there is general agreement on the answers but not on the validity
of various derivations {see Thorne 1980a,b and Walker & Will 1980).
For estimates of waves from strong sources, see Ostriker (1979).

The interaction of gravitational waves with matter has been well studied
for detector theory, but less is known about astrophysical situations. See
Grishchuck & Polnarev (1980).

9.6 Exercises

1 A function f(s) has derivative f'(s)=df/ds. Prove that af(k,x*)/ax" =
k.f(k,x*). Use this to prove Eq. (9.4) and the one following it.

2 Show that the real and imaginary parts of Eq. (9.2) at a fixed spatial
position {x'} oscillate sinusoidally in time with frequency o = k°.

3 Let A™’(1,x') be any solution of Eq. (9.1), which has the property
fdx* |A**|>< oo, for the integral over any particular x* holding other
coordinates fixed. Define the Fourier transform of A*?(t, x') as

H*®(w, k') = I R (1, x*) exp (iwt —ikx') dt d*x.

Show, by transforming Eq. (9.1), that H*®(w, k') is zero except for
those values of w and k' that satisfy Eq. (9.10). By applying the inverse
transform, write h°?(t, x') as a superposition of plane waves.

4 Derive Egs. (9.16) and (9.17).

5(a) Show that AFF™), given by Eq. (9.17), satisfies the gauge condition
A"Pkg =0 if A'Q™ does.

(b) Use Eq. (9.18) for AS3*™ to constrain B*,

(c) Show that Eq. (9.19) for AUZ*™’ imposes only three constraints on B*,
not the four that one might expect from the fact that the free index a
can take any values from 0 to 3. Do this by showing that the particular
linear combination k" (A,zU*?) vanishes for any B*.
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Using (b) and (c), solve for B* as a function of k*, A'G™™, and U*.
These determine B*: there is no further gauge freedom.

Show that it is possible to choose £® in Eq. (9.15) to make any super-
position of plane waves satisfy Egs. (9.18) and (9.19), so that these are
generally applicable to gravitational waves of any sort.

Show that one cannot achieve Egs. (9.18) and (9.19) for a static solution,
i.¢. one for which w = 0.

Fill in all the algebra implicit in the paragraph leading to Eq. (9.21).

Give a more rigorous proof that egs. (9.22) and (9.23) imply that a free
particle initially at rest in the TT gauge remains at rest.

Does the free particle of the discussion following Eq. (9.23) feel any
acceleration? For example, if the particle is a bowl of soup (whose
diameter is much less than a wavelength), does the soup slosh about in
the bowl as the wave passes?

Does the free particte of the discussion following Eq. (9.23) see any
acceleration? To answer this, consider the two particles whose relative
proper distance is calculated in Eq. (9.24). Let the one at the origin
send a beam of light towards the other, and let it be reflected by the
other and received back at the origin. Calculate the amount of proper
time elapsed at the origin between the emission and reception of the
light (you may assume that the particles’ separation is much less than
a wavelength). By monitoring changes in this time, the particie at the
origin can ‘see’ the relative acceleration of the two particles.

We have seen that

h,,=Asinw(t—x), all other h,, =0,

with A and w constants, |A|« 1, is a solution to Egs. (9.1) and (9.11).
For this metric tensor, compute all the components of R,z,, and show
that some are not zero, so that the spacetime is not flat.

Another metric is given by

h,, = Asin w(t — x), h,=2B(x-1),

hy=—B(x—1t), all other h,,=0.

Show that this also satisfies the field equations and the gauge conditions.
For the metric in (b) compute R,g,,,. Show that it is the same as in (a).
From (¢) we conclude that the geometries are identical, and that the

difference in the metrics is due to a small coordinate change. Find a &+
such that

h_u.v(part a) - h_u.v(part b) == fu.v - fv,y.‘

Derive Eq. (9.27).
Solve Eqs. (9.28a) and (9.28b) for the motion of the test particles in the
polarization rings shown in Fig. 9.1.
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Do calculations analogous to those leading to Egs. (9.28) and (9.29) to
show that the separation of particles in the z direction (the direction
of travel of the wave) is unaffected.

One kind of background Lorentz transformation is a simple 45° rotation
of the x and y axes in the x—y plane. Show that under such a rotation

from (x, y)to (x', y"), we have hL\. = hLi, h. = — h... This is consistent
with Fig. 9.1.
A wave is said to be circularly polarized in the x—y planeif h, =—hll

and hf‘T ==+ih!] Show that for such a wave, the ellipse in Fig. 9.1
rotates without changing shape.

A wave is said to be elliptically polarized with principal axes x and v
if h] =xiah};, where a is some real number, and h}; = —hL. Show
that if hg= ah®l, where @ is a complex number (the general case for
a plane wave), new axes x' and y’ can be found for which the wave is
elliptically polarized with principal axes x" and y'. Show that circular
and linear polarization are special cases of elliptical.

Two plane waves with TT amplitudes, A** and B**, are said to have
orthogonal polarizations if (A*")*B,,, =0, where (A*")* is the complex
conjugate of A*”. Show thatif A*” and B*" are orthogonal polarizations,
a 45° rotation of B*" makes it proportional to A*".

Find the transformation from the coordinates (¢, x, y, z) of Egs. (9.30)—
(9.33) to the local inertial frame of Eq. (9.34). Use this to verify Eq.(9.35).

Prove Eq. (9.36).

Use the sum of Egs. (9.37) and (9.38) to show that the center of mass
of the spring remains at rest as the wave passes.

Derive Eq. (9.41) from Eq. (9.40), and then prove Eq. (9.42).

Generalize Eq. (9.42) to the case of a plane wave with arbitrary elliptical
polarization (Exer. 14) traveling in an arbitrary direction relative to the
separation of the masses.

Consider the equation of geodesic deviation, Eq. (6.87), from the point
of view of the geodesic at the center of mass of the detector of Eq.
(9.42). Show that the vector ¢ as we have defined it in Eq. (9.39)is twice
the connecting vector from the center of mass to one of the masses, as
defined in Eq. (6.83). Show that the tidal force as measured by the
center of mass leads directly to Eq. (9.42).

Derive Egs. (9.45) and (9.46), and derive the general solution of Eq.
(9.42) for arbitrary initial data at =0, given Eq. (9.43).
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Prove Eq. (9.50).
Derive Eq. (9.53) from the given definition of Q.

Reconstruct Eu,, as in Eq. (9.57), using Eq. (9.59), and show that surfaces
of constant phase of the wave move outwards for the A,, term and
inwards for Z_,.

Fill in the missing algebra in Eqs. (9.60)(9.62).

Eq. (9.58) in the vacuum region outside the source — i.e., where §,,, =0
— can be solved by separation of variables. Assume a solution for E“,
has the form ), A:f,', (1 Y,.(9, d))/~/r, where Y, is the spherical har-
monic.
Show that fi(r) satisfies the equation
1\2
Ty +[92— ey ]f,=0.
r r
Show that the most general spherically symmetric solution is given by
Eq. (9.59).
Substitute the variable s =(}r to show that f, satisfies the equation
2
szfi—f'+s9£‘+[s2—(l+%)2]f,=0. (9.138)
ds® ds
This is known as Bessel’s equation, whose solutions are called Bessel
functions of order ! +3. Their properties are explored in most text-books
on mathematical physics.
Show, by substitution into Eq. (9.138), that the function f,/\/s is a linear
combination of what are called the spherical Bessel and spherical
Neumann functions

1. d\'/si
j,<s)=<-l)’s'(;5-;) (%—s) (9.139)

I
n,(s)=(—1)”'s’(§a‘1s) (%“) (9.140)

Use Eqgs. (9.139) and (9.140) to show that for s » I, the dominant behavior
of j, and n, is

. | I

J,(s)~;sm (s—— ?), (9.141)

n,(s)~—1cos (s— lir) (9.142)
s 2

Similarly, show that for s « I the dominant behavior is

) ~s'/@i+nn, (9.143)

n(s)~—21- 11 s™, (9.144)

where we use the standard double factorial notation

(m)!!'=m(m—-2)(m—4)--- 31 (9.145)

for odd m.
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Show from (e) that the outgoing-wave vacuum solution of eq. (9.58) for
any fixed / and m is

(";u-V)hn = Ai:’:,h([l)(ﬂr) e_inlyhn(ea ¢)a (9146)
where h{"’(Q1r)is called the spherical Hankel function of the first kind,
A (Qr) = ji(Qr) +in(Qr). (9.147)

Repeat the calculation of Egs. (9.60)-(9.65), only this time multiply Eq.
(9.58) by ji(rQ) Y%, (6, ¢) before performing the integrals. Show that
the left-hand side of Eq. (9.58) becomes, when so integrated, exactly

‘ d d
£2 (JI(QE) a—.r B“,,(E)" B#,,(E) EJ!(QE))s

and that when Qe « [ this becomes (with the help of Egs. (9.146) and
(9.143)—(9.144) above, since we assume r=¢ is outside the source)
simply iA[". /). Similarly, show that the right-hand side of Eq. (9.58)
integrates to —167Q'| T,.r'Y% (6, 6)d’x/(21+1)!! in the same
approximation,

Show, then, that the solution is Eq. (9.146), with

Al = 16miQ/* I /(21 + Y, (9.148)
where
Jim =I T, r'Y%.(6,¢)dx (9.149)

Let I =0 and deduce Eq. (9.64) and (9.65).

Show that if J!7, # 0 for some /, then the terms neglected in Eq. (9.148)
because of the approximation Qe<« 1, are of the same order as the
dominant terms in Eq. (9.148) for / +1. In particular, this means that if
J..#0 in Eq. (9.63) any attempt to get a more accurate answer than
Eq. (9.65) must take into account not only the terms for />0 but also
neglected terms in the derivation of Eq. (9.65), such as Eq. (9.60).

Re-write Eq. (9.73a) for a set of N discrete point particles, whose masses
are {ma,, A=1,..., N} and whose positions are {x 4,}.

Calculate the quadrupole tensor I, and its traceless counterpart {; (Eq.
(9.78)) for the following mass distributions.

A spherical star whose density is p(r, t). Take the origin of the coordin-
ates in Eq. (9.73) to be the center of the star.

The star in (a), but with the origin of the coordinates at an arbitrary point.
An ellipsoid of uniform density p and semiaxes of length a, b, c oriented
along the x, y, and z axes respectively. Take the origin to be at the center
of the ellipsoid.

The ellipsoid in (c), but rotating about the z axis with angular velocity
w.

Four masses m located respectively at the points (g,0,0),(0, a,0),
(-a,0,0),(0,—a,0).

The masses as in (e), but all moving counter-clockwise about the z axis
on a circle of radius a with angular velocity w.
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Two masses m connected by a massless spring, each oscillating on the
x axis with angular frequency w and amplitude A about mean equilib-
rium positions a distance l, apart, keeping their center of mass fixed.
Unequal masses m and M connected by a spring of spring constant k
and equilibrium length I, oscillating (with their center of mass fixed)
at the natural frequency of the system, with amplitude 2A (this is the
total stretching of the spring). Their separation is along the x axis.

This exercise develops the TT gauge for spherical waves.

In orderto transform Eq. (9.74) to the TT gauge, use a gauge transforma-
tion generated by a vector ¢* = B”(x*) e/ where B” is a slowly
varying function of x*. Find the general transformation law to order t /r.
Demand that the new h,,, satisfy three conditions to order 1/r: h,,, =0,
h“,=0, and h,n’ =0, where n/=x’/r is the unit vector in the radial
direction. Show that it is possible to find functions B® which accomplish
such a transformation and which satisfy (¢ =0 to order 1/r.

Show that Eqs. (9.75)-(9.78) hold in the TT gauge.

Let n/ be a unit vector in three-dimensional Euclidean space. Show
that P/, = 8/, — n'n, is the projection tensor orthogonal to n’, i.e. show
that for any vector V’ (i) P/,V* is orthogonal to n’, and (ii) P/, P*, V' =
P/ VR

Show that the TT gauge hj' of Egs. (9.75)-(9.77) is related to the
original h,; of Eq. (9.74) by

hgiT=Pk.‘P’jhkl—%Pij(PHhu), (9.150)
where n’ points in the z direction.

Show that I, is trace free, i.e. £} =0.

For the systems described in Exer. 28, calculate the transverse-traceless
quadrupole radiation field, Eqgs. (9.76)—(9.77) or (9.150), along the x, y,
and z axes. In Egs. (9.76)-(9.77) be sure to change the indices appropri-
ately when doing the calculation on the x and y axes, as in the discussion
leading to Eq. (9.82).

Use Eq. (9.150) or a rotation of the axes in Egs. (9.76)—(9.77) to calculate
the amplitude and orientation of the polarization ellipse of the radiation
from the simple oscillator, Eq. (9.79), traveling at an angle 8 to the x axis,

The « and 2w terms in Eq. (9.84) are qualitatively different, in that the
2w term depends only on the amplitude of oscillator A, while the w
term depends on both A and the separation of the masses [, Why
should [, be involved — the masses don’t move over that distance? The
answer is that stresses are transmitted over that distance by the spring,
and stresses cause the radiation. To see this, do an analogous calculation
for a similar system, in which stresses are not passed over large distances.
Consider a system consisting of two pairs of masses. Each pair has one
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particle of mass m and another of mass M >» m. The masses within each
pair are connected by a short spring whose natural frequency is w. The
pairs’ centers of mass are at rest relative to one another. The springs
oscillate with equal amplitude in such a way that each mass m oscillates
sinusoidally with amplitude A, and the centers of oscillation of the
masses are separated by /, > A. The masses oscillate out of phase. Use
the calculation of Exer. 28h to show that the radiation field of the system
is Eq. (9.84) without the w term. The difference between this system
and that in Eq. (9.84) may be thought to be the origin of the stresses
to maintain the motion of the masses m.

Do the same as Exer. 9.33 for the binary system, Egs. (9.89)—9.90), but
instead of finding the orientation of the linear polarization, find the
orientation of the ellipse of elliptical polarization.

Let two spherical stars of mass m and M be in elliptical orbit about
one another in the x-y plane. Let the orbit be characterized by its total
energy E and its angular momentum L.

Use Newtontan gravity to calculate the equation of the orbits of both
masses about their center of mass. Express the orbital period P, minimum
separation a, and eccentricity e as functions of E and L.

Calculate £;; for this system.

Calculate from Eq. (9.97) the TT radiation field along the x and z axes.
Show that your result reduces to Egs. (9.89)-(9.90) when m= M and
the orbits are circular.

Show from Eq. (9.92) that spherically symmetric motions produce no
gravitational radiation.

Derive Eq. (9.106) from Eq. (9.105) in the manner suggested inthe text.

Derive Eq. (9.107).

Derive Egs. (9.108) and (9.109) by superposing Egs. (9.98) and (9.107)
and assuming R is small.

Derive Eq. (9.111) in the indicated manner.

Show that if we define an averaged stress—energy tensor for the waves
Tap=<hil AT o> /32 (9.151)

ura

(where « > denotes an average over both one period of oscillation
in time and one wavelength of distance in all spatial directions), then
the flux F of Egs. (9.113) is the component T°7 for that wave. A more
detailed argument shows that Eq. (9.151) can in fact be regarded as the
stress—energy tensor of any wave packet, provided the averages are
defined suitably. This is called the Isaacson stress—energy tensor. See

Misner et al. (1973) for details.

Derive Eq. (9.116) from Eq. (9.114).
Justify Eq. (9.118) from Eq. (9.116).
Derive Eq. (9.118) from Eq. (9.113) using Exer. 30b.
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Consider the integral in Eq. (9.119). We shall do it by the following
method. (i) Argue on grounds of symmetry that | n'n* sin 8 dé d¢ must
be proportional to 8’%. (ii) Evaluate the constant of proportionality by
explicitly doing the case j=k=1z.

Follow the same method for Eq. (9.120). In (i) argue that the integral
can depend only on 87, and show that the given tensor is the only one
constructed only from 8" which has the symmetry of being unchanged
when the values of any two of its indices are exchanged.

Derive Egs. (9.121) and (9.122), remembering Eq. (9.115) and the fact
that f; is symmetric.

Recall that the angular momentum of a particle is p,. It follows that
the angular momentum flux of a continuous system across a surface
x' =const. is T;4 Use this and Exer. 40 to show that the total z com-
ponent of angular momentum radiated by a source of gravitational
waves (which is the integral over a sphere of large radius of T,, in Eq.
(9.151)) is

Fr==3(L0) = L.1). (9.152)
Show that if EH depends on t and ¢ only as cos ({0t — m¢), then the
ratio of the total energy radiated to the total angular momentum radiated

is &/ m,
Calculate Eq. (9.126).

For the arbitrary binary system of Exer. 36:
Show that the average energy loss rate over one orbit is

32 ui(m+M)>: 73 37
(dE/dt)=——5‘"-;3*(l_—e2)."/"2~ +£ ez+'9“‘“6” et (9153)
and from the result of Exer. 44a
32 ui(m+ M)y 72 7
(dL/dl):—?:%z(T':z)T 1 +§ 62 5 (9.]54)
where u = mM /(m + M) is the reduced mass;
Show that
64 u(m +M)2( 73 , 37 4)
da/dty= - —F——(1+=e?+=— N
afdt == i —ey2\' "2 ¢ 56 ) (3-193)
304 u(m + M)’e 121
(de/dt) =— _]; W +§62 e? R (9.]56)
1927 w(m+M)y*"? 73 37
(dP/dty=— s @y 1+27 e2+-9?’ e*); (9.157)

Verify Eq. (9.135). (Do parts (b) and (¢) even if you can’t do (a).) These
were originally derived by Peters (1964).
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Spherical solutions for stars

10.1 Coordinates for spherically symmetric spacetimes
For our first study of strong gravitational fields in GR we will
consider spherically symmetric systems. They are reasonably simple, yet
physically very important, since very many objects of importance in
astrophysics appear to be nearly spherical. We begin by choosing the
coordinate system to reflect the assumed symmetry.

Flat space in spherical coordinates. By defining the usual coordinates
(r, 6, ¢), the line element of Minkowski space can be written

ds?=~dr* +dr* +r*(d6* +sin® 0 d¢?). (10.1)
Each surface of constant r and t is a sphere or, more precisely, a
two-sphere, a two-dimensional spherical surface. Distances along curves
confined to such a sphere are given by the above equation withdt =dr=0:

di = r’(d6* +sin® 6 d¢?) = r* dQ?, (10.2)
which defines the symbol dQ2*>. We note that such a sphere has circumfer-
ence 27rr and area 4#r’, i.e. 27 times the square root of the coefficient
of d0? and 47 times the coefficient of dQ? respectively. Conversely, any
two-surface whose line element is Eq. (10.2) with r* independent of 6
and ¢ has the intrinsic geometry of a two-sphere.

Two-spheres in a curved spacetime. The statement that a spacetime is
spherically symmetric can now be made more precise: it implies that
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every point of spacetime is on a two-surface which is a two-sphere, i.e.
whose line element is

dP=f(r, 1)(d6* +sin® 8 d¢?), (10.3)
where f(r’,t) is an unknown function of the two other coordinates of
our manifold ' and 1. The area of each sphere is 47f(r', t). We define
the radial coordinate r of our spherical geometry such that f(r’, )= r’.
This represents a coordinate transformation from (r', t) to (7, t). Then
any surface r = const., { = const. is a two-sphere of area 47r* and circum-
ference 2#r. This coordinate r is called the ‘curvature coordinate’ or
‘area coordinate’ because it defines the radius of curvature and area of
the spheres. There is no a priori relation between r and the proper distance
from the center of the sphere to its surface. This r is defined only by the
properties of the spheres themselves. Since their ‘centers’ (at r =0 in flat
space) are not points on the spheres themselves, the statement that a
spacetime is spherically symmetric does not require even that there be a
point at the center. A simple counter-example of a two-space in which
there are circles but no point at the center of them is in Fig. 10.1. The

Fig. 10.1 Two plane sheets connected by a circular throat: there is circular
(axial} symmetry, but the center of any circle is not in the two-space.

space consists of two sheets which are joined by a ‘throat’. The whole
thing is symmetric about an axis along the middle of the throat, but the
points on this axis — which are the ‘centers’ of the circles —are not part
of the two-dimensional surface illustrated. Yet if ¢ is an angle about the
axis, the line element on each circle is just ’d¢?>, where r is a constant
labeling each circle. This r is the same sort of coordinate that we use in
our spherically symmetric spacetime.

Meshing the two-spheres into a three-space for t = const. Consider the
spheres at r and r+dr. Each has a coordinate system (6, ¢), but up to
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now we have not required any relation between them. That is, one could
conceive of having the pole for the sphere at r in one orientation, while
that for r +dr was in another. The sensible thing is to say that a line of
6 = const., ¢ = const. is orthogonal to the two-spheres. Such a line has,
by definition, a tangent é,. Since the vectors & and é, lie in the spheres,
we require &, & = é,- €, = 0. This means g, = g,, = 0. (Recall Egs. (3.3)
and (3.21).) This is a definition of the coordinates, allowed by spherical
symmetry. We thus have restricted the metric to the form

ds2= Boo dtz +2g0,. dr dt +2g09 dB dt
+2g0, d¢p dt +g,, dr’ +r7dQ2. (10.4)

Spherically symmetric spacetime, Since not only the spaces ¢t =const. are
spherically symmetric, but also the whole spacetime, we must have that
a line r=const., 8 =const.,, ¢ = const. is also orthogonal to the two-
spheres. Otherwise there would be a preferred direction in space. This
means that &, is orthogonalto &, and é,, or g, = g, = 0. So now we have

ds*=—goo dt’ +2g,, dr dt +g,, dr’ +r* dQ>. (10.5)

This is the general metric of a spherically symmetric spacetime, where
g0, or, and g,, are functions of r and ¢ We have .used our coordinate
freedom to reduce it to the simplest possible form.

10.2 Static spherically symmetric spacetimes
The metric. Clearly, the simplest physical situation we can
describe is a quiescent star or black hole — a static system. We define a
static spacetime to be one in which we can find a time coordinate ¢ with
two properties: (i) all metric components are independent of ¢, and (ii)
the geometry is unchanged by time reversal, t > —1. The second condition
means that a film made of the situation looks the same when run
backwards. This is not logically implied by (i), as the example of a rotating
star makes clear: time reversal changes the sense of rotation, but the
metric components will be constant in time. (A spacetime with property
(1) but not necessarily (i) is said to be stationary.)
Condition (ii) has the following implication. The coordinate transfor-
mation (1, r, 6, ) > (—1,1, 6, ¢) has A% =~1, A',=5';, and we find
Boo ™ (Aoﬁ)zgoo: Zoo,
gs: = A°5A 780, = ~gor, (10.6)
grw=(A":)g, =g..
Since the geometry must be unchanged (i.e. since g5 = g.p), we must
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have g,, = 0. Thus, the metric of a static, spherically symmetric spacetime
is

ds’=—-e* d* +e?* dri*+r dQ?, (10.7)
where we have introduced ®(r) and A(r) in place of the two unknowns
goo(r) and g,.(r). This replacement is acceptable provided g, <0 and
g > 0 everywhere. We shall see below that these conditions do hold
inside stars, but they break down for black holes. When we study black
holes in the next chapter we shall have to look carefully again at our
coordinate system.

If we are interested in stars, which are bounded systems, we are entitled
to demand that, far from the star, spacetime is flat. This means that we
can impose the following boundary conditions (or asymptotic regularity
conditions) on Einstein’s equations:

lim ®(r)=lim A(r)=0. (10.8)

r—oo r—-oo

Physical interpretation of metric terms. Since we have constructed our
coordinates to reflect the physical symmetries of the spacetime, the metric
components have useful physical significance. The proper radial distance
from any radius r, to another radius r, is

I|Z=J Cet dr, (10.9)

since the curve is one on which dt =d# = d¢ =0. More important is the
significance of gqo. Since the metric is independent of t, we know from
Ch. 7 that any particle following a geodesic has constant momentum
component p,, which we can define to be the constant —E:

po=—E. (10.10)
But a local inertial observer at rest (momentarily) at any radius r of the
spacetime measures a different energy. His four-velocity must have U'=
dx'/dr =0 (since he is momentarily at rest), and the condition U- U=1
implies U®=e~®. The energy he measures is

E*=-U-p=e¢"E, (10.11)
We therefore have found that a particle whose geodesic is characterized
by the constant E has energy e ®E relative to a locally inertial observer
at rest in the spacetime. Since e ®=1 far away, we see that E is the
energy a distant observer would measure if the particle gets far away.
We call it the energy at infinity. Since e ® > | everywhere else (this will
be clear later), we see that the particle has larger energy relative to inertial
observers that it passes elsewhere. This extra energy is just the kinetic
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energy it gains by falling in a gravitational field. The energy is studied
in more detail in Exer. 3, § 10.9.

This is particularly significant for photons. Consider a photon emitted
at radius r; and received very far away. If its frequency in the local
inertial frame is v, (which would be determined by the process emitting
it; e.g. a spectral line), then its local energy is hv., (h being Planck’s
constant) and its conserved constant E is hv,, exp[®(r))]. When it
reaches the distant observer it is measured to have energy E, and hence
frequency E/h=v, = V., exp [P(r))]. The redshift of the photon,
defined by

z= =—m_ (10.12)

is therefore

* z=e P00, (10.13)
This important equation attaches physical significance to ¢®. (Compare
this calculation with the one in Ch. 2))

The Einstein tensor. One can show that for the metric given by Eq. (10.7),
the Einstein tensor has components

1 d _
Goo=7e2¢a;[r(l—e ™), (10.14)
1 2A -2A 2 ’
G,,=—?e (1—e )+;¢', (10.15)
Goo = r* e N[ " +(D)V + D'/ r—P'A' —A'/r], (10.16)
Gy =5in’ 0Ges. (10.17)

where ®'= d®/dr, etc. All other components vanish.

10.3 Static perfect flui¢ Einstein equations
Stress—energy tensor. We are interested in static stars, in which
the fluid has no motion. The only nonzero compenent of U is therefore
U°. What is more, the normalization condition

U-U=~1 (10.18)
implies, as we have seen before,

Ul=e?, Uy=—e?. (10.19)
Then T has components given by Eq. (4.31):

Too=p €%, (10.20)

T, =p e, (10.21)
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Too=rp, (10.22)
Ty =sin’ 8 Typ. (10.23)
All other components vanish.

Equation of state. The stress—energy tensor involves both p and p, but
these may be related by an equation of state. For a simple fluid in local
thermodynamic equilibrium there always exists a relation of the form

p=p(p. S), (10.24)
which gives the pressure in terms of the energy density and specific
entropy. One often deals with situations in which the entropy can be
considered to be a constant (in particular, negligibly small), so that one
has a relation

p=p(p). (10.25)

These relations will of course have different functional forms for different
fluids. We will suppose that some such relation always exists.

Equations of motion. The conservation laws are (Eq. (7.6))
T 5=0. (10.26)
These are four equations, one for each value of the free index «. Because

of the symmetries, only one of these does not vanish identically: the one
for which a =r. It implies

. (p+p)—= ——. (10.27)

This is the equation which tells us what pressure gradient is needed to
keep the fluid static in the gravitational field, whose effect depends on
dd/dr.

Einstein equations. The (0, 0) component of Einstein’s equations can be
found from Egs. (10.14) and (10.20). It is convenient at this point to
replace A(r) with a different unknown function m(r) defined as

2 m(ry=3r(l —e "), (10.28
or
1
’ = 2A=________'
gr=€ “2m() (10.29)

1
r

Then the (0, 0) equation implies
dm(r)

*
dr

=4mr’p. (10.30)
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This has the same form as the Newtonian equation which calls m(r) the
mass inside the sphere of radius r. Therefore in relativity we call m(r)
the mass function, but it cannot be interpreted as the mass energy inside
r since total energy is not localizable in GR. We shall explore the
Newtonian analogy in § 10.5 below.

The (r, r) equation, from Eqgs. (10.15)and (10.21), can be castinthe form

d®  m(r)+4nrp
dr ~ r[r=2m(n]

If one has an equation of state of the form Eqg. (10.25) then Eqgs. (10.25),
(10.27), (10.30) and (10.31) are four equations for the four unknowns @,
m, p, p. If the more general equation of state, Eq. (10.24), is needed, then
S is a completely arbitrary function. There is no additional information
contributed by the (6, 6) and (¢, ¢) Einstein equation, because (i) it is
clear from Eqgs. (10.16), (10.17), (10.22) and (10.23) that the two equations
are essentially the same, and (ii) the Bianchi identities ensure that this
equation is a consequence of Egs. (10.26), (10.30) and (10.31).

. (10.31)

10.4 The exterior geometry
Schwarzschild metric. In the region outside the star we have
p=p=0, and we get the two equations

dm

o, 10.32

i ( )

do m

—_——=—, 10.33

dr r(r—-2m) ( )
These have the solutions

m(r)= M =const., (10.34)

2M
e =1-" (10.35)

or
where the requirement that ® - 0 as r - oo has been applied. We therefore

see that the exterior metric has the following form, called the
Schwarzschild metric:

2 2
* ds’= ~(1 —%’) dr? + d;M+r2 d0’. (10.36)
l__..

r

For large r this becomes

2 2
ds’= —(r —TM) dr? +(1 +%4) dr’+r1dQ2. (10.37)
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One can find coordinates (x, y, z) such that this becomes

2 2
dslg_(l—%a) dt2+(l+—£—4)(dx2+dy2+dzz), (10.38)

where R=(x*+y*+2%)"% We see that this is the far-field metric of a
star of total mass M (see Eq. (8.60)). This justifies the definition, Eq.
(10.28), and the choice of the symbol M.

Generality of the metric. A more general treatment, as in Misner et al.
(1973), establishes Birkhof’s theorem, that the Schwarzschild solution,
Eq. (10.36), is the only spherically symmetric, asymptotically flat solution
to Einstein’s vacuum field equations, even if we drop our initial assump-
tions that the metric is static, i.e. if we start with Eq. (10.5). This means
that even a radially pulsating or collapsing star will have a static exterior
metric of constant mass M. One conclusion one can draw from this is
that there are no gravitational waves from pulsating spherical systems.
(This has an analogy in electromagnetism: there is no ‘monopole’ elec-
tromagnetic radiation either.) We found this result from linearized theory
in Exer. 37, § 9.6.

10.5 The interior structure of the star
Inside the star, we have p #0, p # 0, and so we can divide Eq.
(10.27) by (p +p) and use it to eliminate ® from Eq. (10.31). The result
is called the Oppenheimer-Volkov (O-V) equation:

+ +47r
. dp_ _(p+p)(m +47rp) (10.39)
dr r(r—2m)
Combined with Eq. (10.30) for dm/dr and an equation of state of the
form of Eq. (10.25), this gives three equations for m, p, and p. We have
reduced ® to a subsidiary position; it can be found from Eq. (10.27)

once the others have been solved.

General rules for integrating the equations. Since there are two first-order
differential equations, Eqs. (10.30) and (10.39), they require two constants
of integration, one being m(r =0) and the other p(r=0). We now argue
that m(r=0)=0. A tiny sphere of radius r = ¢ has circumference 2e,
and proper radius |g..|'/’¢ (from the line element). Thus a small circle
about r=0 has ratio of circumference to radius of 2#|g,|”"/%. But if
spacetime is locally flat at r = 0, as it must be at any point of the manifold,
then a small circle about r =0 must have ratio of circumference to radius
of 2. Therefore g, (r=0)=1, and so as r goes to zero, m(r) must also
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go to zero, in fact faster than r. The other constant of integration,
p(r=0)= p_or, equivalently, p., from the equation of state, simply defines
the stellar model. For a given equation of state p=p(p), the set of all
spherically symmetric static stellar models forms a one-parameter sequence,
the parameter being the central density. This result follows only from the
standard uniqueness theorems for first-order ordinary differential
equations.

Once m(r), p(r) and p(r) are known, the surface of the star is defined
as the place where p=0. (Notice that, by Eq. (10.39), the pressure
decreases monotonically outwards from the center.) The reason p=0
marks the surface is that p must be continuous everywhere, for otherwise
there would be an infinite pressure gradient and infinite forces on fluid
elements. Since p =0 in the vacuum outside the star, the surface must
also have p = 0. Therefore one stops integrating the interior solution there
and requires that the exterior metric should be the Schwarzschild metric.
Let the radius of the surface be R, Then in order to have a smooth
geometry the metric functions must be continuous at r = R. Inside the
star we have

-1
grrz(l _Z’M)

r

and outside we have

2 ~1
grr"—‘(l__hé) .
r

Continuity clearly defines the constant M to be

M = m(R). (10.40)
Thus the total mass of the star as determined by distant orbits is found
to be the integral

R
* M=I 47r°p dr, (10.41)
(]

just as in Newtonian theory. This analogy is rather deceptive, however,
since the integral is over the volume element 47r* dr, which is not the
element of proper volume. Proper volume in the hypersurface ¢ = const.
is given by

i—gl*d’x=e®"r*sin 0 dr d6 d¢, (10.42)
which, after doing the (6, ¢) integration, is just 4zr’ e®** dr. Thus M is
not in any sense just the sum of all the proper energies of the fluid
elements. The difference between the proper and coordinate volume
elements is where the ‘gravitational potential energy’ contribution to the
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total mass is placed in these coordinates. We need not look in more
detail at this; it only illustrates the care one must take in applying
Newtonian interpretations to relativistic equations.

Having obtained M, this determines g,, outside the star, and hence
goo at its surface:

2
goo(r=R)= —(1—72{). (10.43)

This serves as the integration constant for the final differential equation,
the one which determines & inside the star: Eq. (10.27). We thereby
obtain the complete solution.

Notice that solving for the structure of the star is the first place where
we have actually assumed that the point r = 0 is contained in the space-
time. We had earlier argued that it need not be, and the discussion before
the interior solution made no such assumptions. We make the assumption
here because we want to talk about ‘ordinary’ stars, which we feel must
have the same global topology as Euclidean space, differing from it only
by being curved here and there. However, the exterior Schwarzschild
solution is independent of assumptions about r =0, and when we discuss
black holes we shall see how different r=0 can be.

Notice also that for our ordinary stars we always have 2m(r) <r. This
is certainly true near r =0, since we have seen that we need m(r)/r->0
at r = 0. If it ever happened that near some radius r, we had r—2m(r) =g,
with ¢ small and decreasing with r, then by the O-V equation, Eq.
(10.39), the pressure gradient would be of order 1/¢ and negative. This
would cause the pressure to drop so rapidly from any finite value that
it would pass through zero before ¢ reached zero. But as soon as p
vanishes we have reached the surface of the star. Outside that point, m
is constant and r increases. So nowhere in the spacetime of an ordinary
star can m(r) reach 3r.

The structure of Newtonian stars. Before looking for solutions, we shall
briefly look at the Newtonian limit of these equations. In Newtonian
situations we have p < p, so we also have 4 7’ p « m. Moreover, the metric
must be nearly flat, so in Eq. (10.29) we require m « r. These inequalities

simplify Eq. (10.39) to
dp pm
. P il 10.44
dr r ( )

This is exactly the same as the equation of hydrostatic equilibrium for
Newtonian stars (see Chandrasekhar 1939), a fact which should not
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surprise us in view of our earlier interpretation of m and of the trivial
fact that the Newtonian limit of p is just the mass density. Comparing
Eq. (10.44) with its progenitor, Eq. (10.39), shows that all the relativistic
corrections tend to steepen the pressure gradient relative to the Newtonian
one. In other words, for a fluid to remain static it must have stronger
internal forces in GR than in Newtonian gravity. This can be interpreted
loosely as indicating a stronger field. An extreme instance of this is
gravitational collapse: a field so strong that the fluid’s pressure cannot
resist it. We shall discuss this more fully in § 10.7 below.

10.6 Exact interior solutions
In Newtonian theory, Egs. (10.30) and (10.44) are very hard to
solve analytically for a given equation of state. Their relativistic counter-
parts are worse.! We shall discuss two interesting exact solutions to the
relativistic equations, one due to Schwarzschild and a much more recent
one by Buchdahl (1981).

The Schwarzschild constant-density interior solution. To simplify the task
of solving Egs. (10.30) and (10.39), we make the assumption

p = const. (10.45)

This replaces the question of state. There is no physical justification for
it, of course. In fact, the speed of sound, which is proportional to
(dp/dp)'/?, is infinite! Nevertheless, the interiors of dense neutron stars
are of nearly uniform density, so this solution has some interest for us
in addition to its pedagogic value as an example of the method one uses
to solve the system.

We can integrate Eq. (10.30) immediately:

m(r)=4mpr’/3, r<R, (10.46)
where R is the star’s as yet undetermined radius. Qutside R the density

vanishes, so m(r) is constant. By demanding continuity of g,, we find
that m(r) must be continuous at R. This implies

m(ry=4mpR>/3=M, r=R, (10.47)
where we denote this constant by M, the Schwarzschild mass.

I If one does not restrict the equation of state, then Eqs. (10.44) and (10.39) are
easier to solve. For example, one can arbitrarily assume a function m(r), deduce
p(r) from it via Eq. (10.30), and hope to be able to solve Egs. (10.44) or (10.39)
for p. The result, two functions p(r) and p(r), implies an ‘equation of state’
p = p(p) by eliminating r. This is unlikely to be physically realistic, so most exact
solutions obtained in this way do not interest the astrophysicist.
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We can now solve the O-V equation, Eq. (10.39):

dp_ _a P *P)p +3p)
dr ? 1-8mrip/3 °
This is easily integrated from an arbitrary central pressure p. to give

(10.48)

+ + 172

p¥3p_p 3”‘(1-22) . (10.49)

p+p  ptp. r
From this it follows that

3

R’ =S [1=(p+ p)/p + 3p.)] (10.50)
or

pe=pl1-(1-2M/R)"})/[3(1-2M/R)'*~1]. (10.51)

Replacing p. in Eq. (10.49) by this gives
~IMr/RHY/2 (] — 1/2

p=p3((11 —221\;//121;'/)2—(1(—121\241:{2’//:3))"2' (10.52)
Notice that Eq. (10.51) implies p.» o as M/R->4/9. We will see later
that this is a very general limit on M/ R, even for more realistic stars.

We complete the uniform-density case by solving for & from Eq.

(10.27). Here we know the value of @ at R, since it is implied by continuity
of goo:

8oo(R)= —(1-2M/R). (10.53)
Therefore we find

exp(®) =31 -2M/R)'"*-3(1-2Mr*/R>"*  r=<R. (10.54)
Note that ® and m are monotonically increasing functions of r, while p
decreases monotonically.

Buchdahl’s interior solution. Buchdahl (1981) found a solution for the
equation of state

p=12(p,p)'* - 5p, (10.55)

where p, is an arbitrary constant. While this equation has no particular
physical basis, it does have two nice properties: (i) it can be made causal
everywhere in the star by demanding that the local sound speed (dp/dp)'/?
be less than one; and (ii) for small p it reduces to

p=12(p,p)'"?, (10.56)
which, in the Newtonian theory of stellar structure, is called an n=1
polytrope. The n=1 polytrope is one of the few exactly solvable
Newtonian systems (see Exer. 14, § 10.9), so Buchdahl’s solution may be
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regarded as its relativistic generalization. The causality requirement
demands

P<Psx» P <TpPy (10.57)

Like most exact solutions® this one is difficult to deduce from the

standard form of the equations. In this case, one requires a different

radial coordinate r'. This is defined, in terms of the usual r, implicitly

by Eq. (10.59) below, which involves a second arbitrary constant 8, and
the function’

w_ ., Sin Ar' , 288mp,
u(ry=8 VI A‘= 28" (10.58)
Then we write
1-8+u(r
rry=r 1';—2;‘3(2 (10.59)

Rather than demonstrate how to obtain the solution (see Buchdahl 1981),
we shall content ourselves simply to write it down. In terms of the metric
functions defined in Eq. (10.7) we have, for Ar'< =,

exp(2P)=(1-28)1-B-u)(1-B+u)", (10.60)
exp (2A)=(1-28)1-B+u)(1—-B—u)"'(1~B +B cos Ar') 2,
(10.61)
p(r)= A*(1-28)u’[8#(1 - B +u)’]"!, (10.62)
p(r)=2A°(1-2B8)u(l — B —3w)[8=(1 - B +u)*]™", (10.63)

where u = u(r’). The surface p=0 is where u=0, i.e. at r'=nw/A=R".
At this place we have
exp (2®)=exp (-2A)=1-28, (10.64)
R=r(R)=w(1-8)1-28)""A"". (10.65)
Therefore B is the value of M/R on the surface, which in the light of
Eq. (10.13) is related to the surface redshift of the star by

z,=(1-28)""*-1. (10.66)
Clearly the nonrelativistic limit of this sequence of models is the limit
B - 0. The mass of the star is given by
M = = I - . .
(1-2B)A |288p,(1—-2B) A1-p) (10.67)

2 An exact solution is one which can be written in terms of simple functions of
the coordinates, such as potynomials and trigonometric functions. Finding such
solutions is an art which requires the successful combination of useful coordin-
ates, simple geometry, good intuition, and in most cases luck. See Kramer et al.
(1981) for a recent review of the subject.

3 Buchdahl uses different notation for his parameters.
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Since B alone determines how relativistic the star is, the constant p,
(or A) simply gives an overall dimensional scaling to the problem. It can
be given any desired value by an appropriate choice of the unit for
distance. It is B, therefore, whose variation produces nontrivial changes
in the structure of the model. The lower limit on 8 is, as we remarked
above, zero. The upper limit comes from the causality requirement,
Eq.(10.57), and the observation that Egs. (10.62) and (10.63) imply

p/p=3u(1-B-3u)", (10.68)
whose maximum value is at the center, r=0:

pe/ pe=B(2-5B8)7". (10.69)
Demanding that this be less than 3 gives

0<B < (10.70)

This range spans a spectrum of physically reasonable models from the
Newtonian (8 =0) to the very relativistic (surface redshift 0.22).

10.7 Realistic stars and gravitational collapse

Buchdahl’s theorem. We have seen in the previous section that
there are no uniform-density stars with radii smaller than (9/4) M, because
to support them in a static configuration requires pressures larger than
infinite! This is in fact true of any stellar model, and is known as
Buchdahl’s theorem (Buchdahl 1959). Suppose one constructs a star of
radius R=9M/4, and then gives it a (spherically symmetric) inward
push. It has no choice but to collapse inwards: it cannot reach a static
state again. But during its collapse, the metric outside it is just the
Schwarzschild metric. What it leaves, then, is the vacuum Schwarzschild
geometry outside. This is the metric of a black hole, and we will study
it in detail later. First we look at some causes of gravitational collapse.

Stellar evolution. Any realistic appraisal of the chances of forming a black
hole must begin with an understanding of the way stars evolve. We give
a brief summary here. See, for example, Clayton (1968).

An ordinary star like our Sun derives its luminosity from nuclear
reactions, mainly the conversion of hydrogen to helium. Because a star
is always radiating energy, it needs the nuclear reactions to replace that
energy in order to remain static. When the original supply of hydrogen
is converted to helium, this energy source turns off, and the inner region
(core) of the star begins to shrink as it gradually radiates energy away.
This shrinking compresses and heats the core, until the temperatures are
high enough to ignite another reaction which converts helium into carbon
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and oxygen, releasing more energy. In order to cope with this new energy
the outer layers of the star actually expand, and the star becomes a sort
of ‘core-halo’ structure, called a red giant. Eventually the helium is
exhausted, and the star may then go through phases of turning carbon
into silicon, and silicon into iron, Eventually, every star must run out of
energy, since iron is the most stable of all nuclei - any reaction converting
iron into something else absorbs energy rather than releasing it. The
precise time when this happens and the subsequent evolution of the star
depend mainly on three things: the star’s mass, angular momentum, and
magnetic field.

First consider slowly rotating stars, for which rotation is an insignificant
factor in their structure. A star of the Sun’s mass will find itself evolving
smoothly to a state in which it is called a white dwarf. This is a star
whose pressure comes not from thermal effects but from quantum
mechanical ones, which we discuss later. The point about relatively
low-mass stars like our Sun is that they don’t have strong enough
gravitational fields to overwhelm these quantum effects or to cause rapid
contraction earlier on in their history. A higher-mass star will also evolve
smoothly through the hydrogen-burning phase (which is called the ‘main-
sequence’ phase of its life), but what happens after that is not completely
understood. Massive stars are known to have strong stellar winds which
can cause the loss of considerable fractions of their mass during the
main-sequence stage. Stars in close binary systems may also pass con-
siderable mass to their companions as they evolve off the main sequence.
If a star loses enough mass, its subsequent evolution may be quiet, like
that expected for our Sun. But it seems that not all stars follow this route.
At some point in the nuclear cycle, one of two things may happen: either
the star experiences a run-away nuclear explosion (stars up to mass
8—-10 Mp) or the core of the star becomes hydrodynamically unstable and
collapses to a compact object (a neutron star or black hole), releasing
the gravitational binding energy of that object (affects stars above
10 Mz ?). In either case, the result is believed to be what we observe as
supernova explosions.

This picture can be substantially altered by rotation and magnetic
fields, but we have very little understanding yet of how. Rotation may
induce currents that change the main-sequence evolution by mixing inner
and outer layers of the star. In the collapse phase, rotation becomes
extremely important if angular momentum is conserved by the collapsing
core. But substantial magnetic fields may allow transfer of angular
momentum from the core to the rest of the star, permitting a more
spherical collapse.
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One thing is certain: supernova explosions often leave behind rapidly
rotating neutron stars, which are observed as pulsars. In fact, one of the
problems theoreticians must face is that the pulsar birth-rate may be as
large as the supernova rate, so all these added complications must still
somehow produce neutron stars. Black holes produced by supernovae
would be much harder to observe unless they were part of a binary
system which survived the explosion and in which the other star was not
so highly evolved. One such system is the X-ray source Cygnus X-1, in
which the compact object is thought to have a mass larger than 10 Mg
(Bahcall 1978). This exceeds, by a large margin, the theoretical upper
limit on the mass of a neutron star, so there is general confidence that
this is a black hole. But one example is too small a sample for statistical
analysis, so it is very uncertain what observational constraints are set on
the black-hole birth-rate.

Even the theoretical limit to the mass of a neutron star is very uncertain.
For nonrotating stars (and éven for pulsars, which rotate but not fast
enough to affect their structure much), the limit appears to be less than
2 My (Hartle 1978), and there is some observational evidence for 1.4 Mg:
the binary pulsar system contains two stars of that mass (see Ch. 9), one
of which is certainly a neutron star and the other probably is one; and
those binary X-ray systems in which the compact star’s mass can be
estimated either give about 1.4 Mg or very much larger masses (as for
Cygnus X-1).

Rotation can, in principle, considerably increase the upper limit on
stellar masses, at least until rotation-induced relativistic instabilities set
in (Durisen 1975, Friedman & Schutz 1978). This probably doesn’t allow
more than a factor of 3 in mass.

Quantum mechanical pressure. We shall now give an elementary discussion
of the forces that support white dwarfs and neutron stars. Consider an
electron in a box of volume V. Because of the Heisenberg uncertainty
principle, its momentum is uncertain by an amount of the order of

Ap=hv'/?3 (10.71)
where h is Planck’s constant. If its momentum has magnitude between

p and p+dp, it is in a region of momentum space of volume 47p* dp.
The number of ‘cells’ in this region of volume Ap is

4mp*d
—’1’}%3 V. (10.72)

Since it is impossible to define the momentum of the electron more

N =4mp*dp/(Ap)’ =
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precisely than Ap, this is the number of possible momentum states with
momentum between p and p+dp in a box of volume V. Now, electrons
are Fermi particles, which means that they have the remarkable property
that no two of them can occupy exactly the same state. (This is the basic
reason for the variety of the periodic table and the solidity and relative
impermeability of matter.) Electrons have spin 3, which means that for
each momentum state there are two spin states (‘spin-up’ and ‘spin-
down’), so there are a total of
2

VSL;E—‘-D (10.73)
states, which is then the maximum number of electrons that can have
momenta between p and p+dp in a box of volume V.

Now suppose we cool off a gas of electrons as far as possible, which
means reducing each electron’s momentum as far as possible. If there is
a total of N electrons, then they are as cold as possible when they fili
all the momentum states from p =0 to some upper limit p;, determined
by the equation

P¢ 2 3
E=J 8mp dp_8mpr (10.74)
V Jo h 3h

Since N/ V is the number density, we get that a cold electron gas obeys
the relation

8 p? (3h3)'/3 3
n= ) = . 10.
e p=(3o) (10.75)
The number p; is called the Fermi momentum. Notice that it depends
only on the number of particles per unit volume, not on their masses.

Each electron has mass m and energy E =(p®+m?)'/%. Therefore the
total energy density in such a gas is

_EtoraL J""fS‘rrpz
=y X

(m*+pH)"? dp. (10.76)
I'he pressure can be found from Eq. (4.22) with AQ set to zero, since we
are dealing with a closed system:

d 8wp? dp
P= —W(ETOTAL): - V“";;T'f'(mz'*’l’%)'/zavr—.o-

l'or a constant number of particles N, we have

dp, dp I(3h’)"3 ,
v S (2L 3L
dv- "an 3\sx) " T3Pr
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and we get

87
P=(3—h"5) pi(m*+pi)'*—p. (10.77)

For a very relativistic gas where p;>» m (which will be the case if the gas
is compressed to small V) we have

2 4
~ ’;3” r (10.78)
p=ip. (10.79)

This is the equation of state for a ‘cold’ electron gas. So-the gas has a
pressure comparable to its density even when it is as cold as possible.
In Exer. 22, § 4.10 we saw that Eq. (10.79) is also the relation for a photon
gas. The reason that the relativistic Fermi gas behaves like a photon gas
is essentially that the energy of each electron far exceeds its rest mass;
the rest mass is unimportant, so setting it to zero changes little.

White dwarfs. When an ordinary star is compressed, it reaches a stage
where the electrons are free of the nuclei, and one has two gases, one
of electrons and one of nuclei. Since they have the same temperatures,
and hence the same energies per particle, the less-massive electrons have
far less momentum per particle. Upon compression the Fermi momentum
rises (Eq. (10.5)) until it becomes comparable with the momentum of
the electrons. They are then effectively a cold electron gas, and supply
the pressure for the star. The nuclei have momenta well in excess of
Pr, so they are a classical gas, but they supply little pressure. On the
other hand, the nuclei supply most of the gravity, since there are more
neutrons and protons than electrons, and they are much more
massive. So the mass density for Newtonian gravity (which is adequate
here) is

p = um,n,, (10.80)
where u is the ratio of number of nucleons to the number of electrons
(of the order of 1 or 2), m,, is the proton mass, and n, the number density

of electrons. The relation between pressure and density for the whole
gas when the electrons are relativistic is thesefore

4/3

p=kp™",

270 ( 3R \*°
k=—— .
3h3 (swm,,)

(10.81)
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The Newtonian structure equations for the star are

g-"—1———4';':'r2p
dr ’
dp__ m
ar PP

In order of magnitude, these are (for a star of mass M, radius R, typical
density g and typical pressure p)

M =R’
’ 0.
5 M (10.82)
R PR
Setting 7 = kg /3, from Eq. (10.81), gives
M
kp'/?=—. 10.83
P R ( )

Using Eq. (10.82) in this, we see that R cancels out and we get an equation
only for M:

3k3)|/2 1 (6h3)l/2
M={—] = . 10.84
(417 R2u’ml\ =« ( )
Using geometrized units, one finds (with u =2)

M =0.47 X 10° cm = 0.32 M. (10.85)

From our derivation we should expect this to be the order of magnitude
of the maximum mass supportable by a relativistic electron gas, when
most of the gravity comes from a cold nonrelativistic gas of nuclei. This
is called the Chandrasekhar limit, and a more precise calculation puts it
at M =~ 1.3 Me. Any star more massive than this cannot be supported by
electron pressure, and so cannot be a white dwarf. In fact, the upper
mass limit is marginally smaller, occurring at central densities of about
10'°kgm™, and is caused by the instability described below.

Neutron stars. 1f the material is compressed further than that characteristic
of a white dwarf (which has p < 10'® kg m™), it happens that the kinetic
energy of electrons gets so large that if they combine with a proton to
form a neutron, energy can be reileased. So compression results in the
loss of electrons from the gas which is providing pressure: pressure does
not build up rapidly enough, and the star is unstable. There are no stable
stars again until central densities reach the region of 10'° kg m~>. By this
density, all the electrons are united with the protons to form a gas of
pure neutrons. These are also Fermi particles, and so obey exactly the
same quantum equation of state as we derived for electrons, Egs. (10.78)
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and (10.79). The differences between a neutron star and a white dwarf
are two: firstly, a much higher density is required to push p; up to the
typical momentum of a neutron, which is more massive than an electron;
and secondly, the total energy density is now provided by the neutrons
themselves: there is no extra gas of ions providing most of the self-
gravitation. So, here, the total equation of state at high compression is
Eq. (10.79):

p=ip. (10.86)
Unfortunately, there exist no simple arguments giving an upper mass in
this case, since the fully relativistic equation must be used. One has to
look at the upper limit given by instabilities, because as neutrons are
compressed they can begin forming heavier baryons, by processes that
are incompletely understood. The simple equation of state, Eq. (10.79),
is inadequate for a study of instabilities, and the nuclear physics required
for a proper study is incompletely understood. A review is Canuto
(1974, 1975). It appears now that the upper mass limit for nonrotating
stars is probably smaller than 2 Mg, and some observational evidence
even suggests 1.4 Mg (Taylor & Weisberg 1982).

10.8 Bibliography
Our construction of the spherical coordinate system is similar
to that in most other texts, but it is not particularly systematic, nor is it
clear how to generalize the method to other symmetries. Group theory
affords a more systematic approach. See Kramer et al. (1981).

We have not tried to find simple ways to caiculate the Riemann and
Einstein tensors of any given metric, but labor-saving methods do exist.
One, the Cartan approach, is described in Misner et al. (1973). Another,
the use of modern algebraic computer programs, is described by d’Inverno
(1980).

A full discussion of spherical stellar structure may be found in Thorne
(1967). In deriving stellar solutions we demanded continuity of go, and
g, across the surface of the star. A full discussion of the correct ‘junction
conditions’ across a surface of discontinuity is in Misner et al. (1973).

There are other exact compressible solutions for stars in the literature.
See Kramer et al. (1981).

A more rigorous derivation of the equation of state of a Fermi gas
may be found in quantum mechanics texts. See Chandrasekhar (1957)
for a full derivation of his limit on white dwarf masses.

The instability which leads to the absence of stars intermediate in
central density between white dwarfs and neutron stars is discussed in
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Harrison et al. (1965), Shapiro & Teukolsky (1983), and Zel’dovich &
Novikov (1971). It is generally agreed that pulsars are rapidly rotating
neutron stars with strong magnetic fields. See Smith (1977).

Calculations of the collapse of stars to form black holes are reviewed
by Miller & Sciama (1980).

10.9

6(2)
(b)

8(a)

Exercises

Starting with ds* = 7,5 dx*dx”, show that the coordinate transforma-
tion r=(x’+y*+2%"? @=arc cos (z/r), ¢ =arc tan (y/x) leads to
Eq. (10.1), ds*=~ds* +dr? + r* (d6° +sin’ 0 d¢?).

In deriving Eq. (10.5) we argued that if & were not orthogonal to &,
and é,, the metric would pick out a preferred direction. To see this,
show that under rotations that hold ¢ and r fixed, the pair (gq, g4.)
transforms as a vector field. If these don’t vanish, they thus define a
vector field on every sphere. Such a vector field cannot be spherically
symmetric unless it vanishes: construct an argument to this effect,
perhaps by considering the discussion of parallel-transport on the sphere
at the beginning of § 6.4.

The locally measured energy of a particle, given by Eq. (10.11), is the
energy the same particle would have in SR if it passed the observer
with the same speed. It therefore contains no information about gravity,
about the curvature of spacetime. By referring to Eq. (7.34) show that
the difference between E* and E in the weak-field limit is, for particles
with small velocities, just the gravitational potential energy.

Use the result of Exer. 35, § 6.9 to calculate the components of G,,, in
Eqgs. (10.14-10.17).

Show that a static star must have U’ = U® = U® = 0 in our coordinates,
by examining the result of the transformation - —#

Derive Eq. (10.19) from Eq. (10.18).
Derive Eqs. (10.20)«10.23) from Eq. (4.37).

Describe how to construct a static stellar model in the case that the
equation of state has the form p = p(p, §). Show that one must give an
additional arbitrary function, such as S(r) or S(m(r)).

Prove that the expressions T°° g for @ =1, 8, or ¢ must vanish by virtue
of the assumptions of a static geometric and spherical symmetry. (Do
not calculate the expressions from Egs. (10.20)<10.23). Devise a much
shorter argument.)
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11
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Derive Eq. (10.27) from Eqs. (10.20)—(10.23).

Derive Eq. (10.30) from Eqs. (10.14), (10.20), (10.29).
Prove Eq. (10.31).

Derive Eq. (10.39).

Define a new radial coordinate in terms of the Schwarzschild r by
r=rf1+M/2F)% (10.87)

Notice that as r » o, 7> r, while at the horizon r=2M, we have F =i M.
Show that the metric for spherical symmetry takes the form

dee _[1 - M/2F
1+M/2F

Define quasi-Cartesian coordinates by the usual equations x=

Fcos ¢ sin 0, y =7 sin ¢ sin 6, and z = F cos & so that (as in Exer. 1),

dF +7 d0’ =dx® +dy* +dz°.

Thus, the metric has been converted into coordinates (x, y, z) which are

called isotropic coordinates. Now take the limit as -0 and show

2M 1 2M 1
ds?= — [1 —0 +0(3)] dr? +[l +— +0(;5)] (dx’ +dy® +dz?).
r r

This proves Eq. (10.38).

2 M 4
] d12+[1+5;] [dF? + 7 dQ?). (10.88)

Complete the calculation for the uniform-density star.

Integrate Eq. (10.48) to get Eq. (10.49) and fill in the steps leading to
Egs. (10.50)«10.52) and (10.54).

Calculate e® and the redshift to infinity from the center of the star if
M =1Mp=1.47 km and R =1 Ry =7 % 10° km (a star like the Sun), and
again if M =1 Mg and R =10 km (typical of a neutron star).

Take p=10"""m 2 and M =0.5M ¢, and compute R, e® at surface and
center, and the redshift from the surface to the center. What is the
density 107" m™? in kgm™?

Derive the restrictions in Eq. (10.57).

Prove that Egs. (10.60)-(10.63) do solve Einstein’'s equations, given by
Eqs. (10.14)—(10.17) and (10.20)10.23) or (10.27), (10.30), and (10.39).

Derive Egs. (10.66) and (10.67).

A Newtonian polytrope of index n satisfies Eqs. (10.30) and (10.44),
with the equation of state p = Kp"'*'/") for some constant K. Polytropes
are discussed in detail by Chandrasekhar (1957). Consider the case
n =1, to which Buchdahl’s equation of state reduces as p—> 0.

Show that p satisfies the equation

1 d 2dp) 4
- — 1 +—p=0, 10.89
rzdr(r dr K p ( )
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and show that its solution is

sin Ar , 2m

Ar’ A”= K’

where a is an arbitrary constant.

Find the relation of the Newtonian constants « and K to the Buchdahl
constants B8 and p, by examining the Newtonian limit (8->0) of
Buchdahl’s solution.

From the Newtonian equations find p(r), the total mass M and the
radius R, and show them to be identical to the Newtonian limits of
Eqgs. (10.62), (10.67), and (10.65).

p=au(r), u(r)=

Calculations of stellar structure more realistic than Buchdahl’s solution
must be done numerically. But Eq. (10.39) has a zero denominator at
r =0, so the numerical calculation must avoid this point. One approach
is to find a power-series solution to Eqs. (10.30) and (10.39) valid near
r =0, of the form

m(r)=z mjrj,

p(n=% pr’, (10.90)
J

p(r)=X p;r’.
J

Assume that the equation of state p = p(p) has the expansion near the
central density p.

p=plp) +(pLe/pXp—p)+- - -, (10.91)
where I, is the adiabatic index d(Inp)/d(Inp) evaluated at p.. Find the
first two nonvanishing terms in each power series in Eq. (10.90), and
estimate the largest radius r at which these terms give an error no larger
than 0.1% in any power series. Numerical integrations may be started
at such a radius using the power series to provide the initial values.

The two simple equations of state derived in § 10.7, p =kp*? (Eq.
(10.81)) and p = p/3 (Eq. (10.86)), differ in a fundamental way: the first
has an arbitrary dimensional constant k, the second doesn’t. Use this
fact to argue that a stellar model constructed using only the second
equation of state can only have solutions in which p = u/r* and m = vr,
for some constants u and ». The key to the argument is that p(r) may
be given any value by a simple change of the unit of length, but there
are no other constants in the equations whose values are affected by
such a change.

Show from this that the only nontrivial solution of this type is for
u=3/(56m), v=3/14. This is physically unacceptable, since it is sin-
gular at r =0 and it has no surface.

Do there exist solutions which are nonsingular at r =0 or which have
finite surfaces?
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(This problem requires access to a computer or a programmable calcu-
lator with a sizable memory.) Numerically construct a sequence of stellar
models using the equation of state
4/3 - 3y-1
p ={fp > P ;(27 k) (10.92)
3P, p=(27k),
where k is given by Eq. (10.81). This is a crude approximation to a
realistic ‘stiff® neutron-star equation of state. Construct the sequence by
using the following values for p.: p./p,=0.1,0.8,1.2,2,5,10, where
Py =27 k*)~'. Use the power series developed in Exer. 15 to start the
integration. Does the sequence seem to approach a limiting mass, a
limiting value of M /R, or a limiting value of the central redshift?

Show that the remark made before Eq. (10.80), that the nuclei supply
little pressure, is true for the regime under consideration, i.e. where
m.<pt/3kT < m,,, where k is Boltzmann’s constant (not the same Kk as
in Eq. (10.81)). What temperature range is this for white dwarfs, where
n=10""m™?

Our Sun has an equatorial rotation velocity of about 2kms™".
Estimate its angular momentum, on the assumption that the rotation is
rigid (uniform angular velocity) and the Sun is of uniform density. As
the true angular velocity is likely to increase inwards, this is a lower
limit on the Sun’s angular momentum.

If the Sun were to collapse to neutron-star size (say 10 km radius),
conserving both mass and total angular momentum, what would its
angular velocity of rigid rotation be? In nonrelativistic language, would
the corresponding centrifugal force exceed the Newtonian gravitational
force on the equator?

A neutron star of 1 Mg and radius 10 km rotates 30 times per second
(typical of young pulsars). Again in Newtonian language, what is the
ratio of centrifugal to gravitational force on the equator? In this sense
the star is slowly rotating,

Suppose a main-sequence star of | My has a dipole magnetic field with
typical strength 1 Gauss in the equatorial plane. Assuming flux conserva-
tion in this plane, what field strength should we expect if the star
collapses to radius of 10 km? (The Crab pulsar’s field is of the order of
10'" Gauss.)
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Schwarzschild geometry
and black holes

11.1 Trajectories in the Schwarzschild spacetime
The ‘Schwarzschild geometry’ is the geometry of the vacuum
spacetime outside a spherical star. It is determined by one parameter,
the mass M, and has the line element

~1
dsz:—(l—w)dt%(l—-z—rw—l) dr’+r* dO? (11.1)
in the coordinate system developed in the previous chapter. Its import-
ance is not just that it is the gravitational field of a star: we shall see that
it is also the geometry of the spherical black hole. A careful study of its
timelike and null geodesics — the paths of freely moving particles and
photons — is the key to understanding the physical importance of this
metric.

Conserved quantities. We have seen (Eq. (7.29) and associated discussion)
that when a spacetime has a certain symmetry, then there is an associated
conserved momentum component for trajectories. Because our space has
sO many symmetries — time independence and spherical symmetry — the
values of the conserved quantities turn out to determine the trajectory
completely. We shall treat ‘particles’ with mass and ‘photons’ without
mass 1n parallel.



276 Schwarzschild geometry and black holes

Time independence of the metric means that p, is constant on the
trajectory. We define the related constants
particie: E=—p,/m;  photon: E = —p,, (11.2)

where m is the particle’s rest mass. Independence of the metric of the
angle ¢ about the axis implies that p, is constant. We again define

particle L=p,/m; photon L = p,,. (11.3)
Because of spherical symmetry, motion is always confined to a single
plane, and we can choose that plane to be the equatorial plane. Then 6
is constant (8 = 7/ 2) for the orbit,so d8/dA =0, where A is any parameter
on the orbit. But p° is proportional to this, so it also vanishes. The other
components of momentum are:

2M\ 7!
particle: p°=g%p, = m(] - ) E,
r

p'=mdr/dr,
I
p*=g%ps=m=L; (11.4)
2M\ ™!
photon: pom(l ﬂT) E,
p’=dr/da,
p?=d¢/dr=L/r" (11.5)

The equation for a photon’s p" should be regarded as defining the affine
parameter A. The equation p- p=—m’ implies

particle:
—mzxéz(l—&)_]wkmz(l—-zijl)_l(g—r)2
r r dr
272
PLUE I (11.6)
r
photon:
2M\ ! 2M\ 7' dr\? L?
*EZ(IFT) +(l—-r—) (a—;) +7=0. (11.7)

These can be solved to give the basic equations for orbits,

SR 2M [’
particle: (%) =Ez—(l"7)(l+?); (11.8)

dr)?
: — . 11.9
photon (d,\) > (11.9)
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Types of orbits. Both equations have the same general form, and we define
the effective potentials

2
particle: Vz(r)=(l—%d)(l+%); (11.10)
2
photon: vz(r)=(1—&4)£2—. (11.11)
r r

Their typical forms are plotted in Figs. 11.1 and 11.2, in which various
points have been labeled and possible trajectories drawn (dotted lines).

V2(r)

Fig. 11.1 Typical effective potential for a massive particle of fixed specific
angular momentum in the Schwarzschild metric.

Vi(r)

M r

Fig. 11.2 The same as Fig. 11.1 for a massless particle.
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Both Eq. (11.8) and Eq. (11.9) imply that, since the left side is positive
or zero, the energy of a trajectory must not be less than the potential V.
(Here and until Eq. (11.14) we will take E and V to refer to E and V
as well, since the remarks for the two cases are identical.) So for an orbit
of given E, the radial range is restricted to those radit for which V is
smaller than E. For instance, consider the trajectory which has the value
of E indicated by point G (in either diagram). If it comes in from r = o0,
then it cannot reach smaller r than where the dotted line hits the V2
curve, at point G. Point G is called a turning point. At G, since E*= V?
we must have (dr/dA)’ =0, from Eq. (11.9). Similar conclusions apply
to Eq. (11.8). To see what happens here we differentiate Eqgs. (11.8) and
(11.9). For particles, differentiating the equation

2
(g;') =E*-V(r)

with respect to r gives

(©)E)--sos
dr/\dr?) dr dr’

or
, d&r 1d.,

particles: -5 V(r). (11.12)

Similarly, the photon equation gives
d*r 1 d
: === V(). 11.13

photons TP (r) ( )
These are the analogues in relativity of the equation

ma= —Va,

where ¢ is the potential for some force. If we now look again at point
G, we see that the radial acceleration of the trajectory is outwards, so
that the particle (or photon) comes in to the minimum radius, but is
accelerated outward as it turns around, and so it returns to r = oo, This
is a ‘hyperbolic’ orbit — the analogue of the orbits which are true
hyperbolae in Newtonian gravity.

It is clear from Eq. (11.12) or (Eq. (11.13) that a circular orbit (r=
const.) is possible only at a minimum or maximum of V2. These occur
at points A and B in the diagrams (there is no point B for photons). A
maximum is, however, unstable, since any small change in r results in
an acceleration away from the maximum, by Egs. (11.12) and (11.13).
So for particles, there is one stable (B) and one unstable circular orbit
(A) for this value of L. For photons, there is only one unstable orbit for
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this L. We can be quantitative by evaluating

)

and
df/. 2m\L?
O=—||1—— )|
drL r /r
These give, respectively
rticles: —Lz(li\/(l—lez))' (11.14)
pa es: r—2M I ; .
photons: r=3M. (11.15)

For particles, there are two radii, as we expect, but only if [*>12M?,
The two radii are identical for [?=12M? and don’t exist at all for
[* < 12M?, This indicates a qualitative change in the shape of the curve
for V2(r) for small L The two cases, [*=12M? and L[’ <12M?, are
illustrated in Fig. 11.3. Since there is a minimum £ for a circular particle

" L2 =12m? ) L? < 12m?
1+ 1
/'m: /—
inflection
Ll 1
M (@) r M ®) r

Fig. 11.3  As Fig. 11.1 for the indicated values of specific angular momentum.

orbit, there is also a minimum r, obtained by taking L?> = 12M? in Eq.
(11.14)

particle: ryn=6M. (11.16)
For photons, the unstable circular orbit is always at the same radius,
r=3M, regardless of L.

The last kind of orbit we need consider is the one whose energy is
given by the line which passes through the point F in Figs. 11.1 and
11.2. Since this nowhere intersects the potential curve, this orbit plunges
right through r = 2M and never returns. From Exer. 1, § 11.6, we see that
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for such an orbit the impact parameter (b) is small: it is aimed more
directly at the hole than are orbits of smaller E and fixed L.

Of course, if the geometry under consideration is a star, its radius R
will exceed 2M, and the potential diagrams, Figs. 11.1-11.3, will be valid
only outside R. If a particle reaches R it will hit the star. Depending on
R/ M, then, only certain kinds of orbits will be possible.

Perihelion shift. A particle (or planet) in a (stable) circular orbit around
a star will make one complete orbit and come back to the same point
(i.e. same value of ¢) in a fixed amount of coordinate time, which is
called its period P. This period can be determined as follows. From Eq.
(11.14) it follows that a stable circular orbit at radius r has angular
momentum

_ Mr
[*= 11.17
]_3_1‘!, ( )

r

and since £2= V7 for a circular orbit, it also has energy

E=(1—£’)2/(1—3—A—4). (11.18)
r r

d ¢ S
d_‘f’E Ut =L gesle_peey _Lj (11.19)
T m m r

and
dt p° Po = E
—= =k = 00RO _ 00 Fy_ ) 11.2
dr m 5 m g7 (-E) 1_31\_4 (11.20)

r

We obtain the angular velocity by dividing these:
Q_M_(_’i)”z (11.21)
dé d¢/dr \M/ '

The period, which is the time taken for ¢ to change by 27, is

r3
P=2”\/(7\Z)' (11.22)

This is the coordinate time, of course, not the particle’s proper time. (But
see Exer. 7, § 11.6: coordinate time is proper time far away.) It happens,
coincidentally, that this is identical to the Newtonian expression.
Now, a slightly noncircular orbit will oscillate in and out about a
central radius r. In Newtonian gravity the orbit is a perfect ellipse, which
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means, among other things, that it is closed: after a fixed amount of time
it returns to the same point (same r and ¢). In GR, this does not happen
and a typical orbit is shown in Fig. 11.4. However, when the effects of
relativity are small and the orbit is nearly circular, the relativistic orbit
must be almost closed: it must look like an ellipse which slowly rotates

—_ e

I |
v f ¢t v 3 Fr ¥ v 3 11

T S N T T

{c)

Fig. 11.4 (a) A Newtonian orbit is a closed ellipse. Grid marked in units of M.
(b) An orbit in the Schwarzschild metric with pericentric and apcentric distances
similar to those in (a). Pericenters (heavy dots) advance by about 97° per orbit.
(¢) A moderately more compact orbit than in (b) has a considerably larger
pericenter shift, about 130°

about the center. One way to describe this is to look at the perihelion of
the orbit, the point of closest approach to the star. (‘Peri’ means closest
and ‘helion’ refers to the Sun; for orbits about any old star the name
‘periastron’ is more appropriate. For orbits around Earth - ‘geo’ — one
speaks of the ‘perigee’. The opposite of ‘peri’ is ‘ap’: the furthest distance.
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Thus, an orbit also has an aphelion, apastron, or apogee, depending on
what it is orbiting around.) The perihelion will rotate around the star in
some manner, and observers can hope to measure this. It has been
measured for Mercury to be 43"/century, and we must try to calculate
it. Note that all other planets are further from the Sun and therefore
under the influence of significantly smaller relativistic corrections to
Newtonian gravity. The measurement of Mercury’s precession is a her-
culean task, first accomplished in the 1800s. Due to various other effects,
such as the perturbations of Mercury’s orbit due to the other planets,
the observed precession is about 5600"/century. The 43" is only the part
not explainable by Newtonian gravity, and Einstein’s demonstration that
his theory predicts exactly that amount was the first evidence in favor
of the theory.

To calculate the precession, let us begin by getting an equation for the
particle’s orbit. We have dr/dr from Eq. (11.8). We get d¢/d7 from Eq.
(11.19) and divide to get

- M [2
()
dr r r
(a—d:) = iy . (11.23)
It is convenient to define
u= l/r ' (] 1.24)
and obtain
du\? E? |
(ﬁ) =7 —2Mu)(i—2+u2). (11.25)

The Newtonian orbit is found by neglecting u’ terms (see Exer. 11,
§11.6)
du\?> E? 1
@) =F*i.—2(l—2Mu)—u2. (11.26)
A circular orbit in Newtonian theory has u = M/L* (take the square root
equal to 1 in Eq. (11.14)), so we define

Newt: (

M
y=u-73 (11.27)
so that y represents the deviation from circularity. We then get
dy\* E’-1 M?*
- =—=—4+—Fy . 11.28
It is easy to see that this is satisfied by

E*+M*[*~1]"?
Newt: y= IE cos (¢ + B), (11.29)
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where B is arbitrary. This is clearly periodic: as ¢ advances by 27, y
returns to its value and, therefore, so does r. The constant B just deter-
mines the initial orientation of the orbit. It is interesting, but unimportant
for our purposes, that by solving for r we get
2 2 1/2
Newt: 1=-"-’§+[E2+—M—LZIZ——_—I] cos (¢ + B), (11.30)
r L L
which is the equation of an ellipse.

We now consider the relativistic case and make the same definition of
y, but instead of throwing away the u’ term in Eq. (11.25) we assume
that the oribit is nearly circular, so that y is small, and we neglect only
the terms in y*. Then we get

Nearly circ:
dy\? E*+M¥*[*-1 2M* eM® 6M* s
— ] = - +—+ y+ -1}~
de [E G I I y

(11.31)

This can be made analogous to Eq. (11.28) by completing the square on
the right-hand side. The result is the solution

y=yo+ A cos (k¢ + B), (11.32)
where B is arbitrary and the other constants are

24 172
k=(l—6M) ,

Ez
yo=3M?/K*[?,

IfE2+M¥/2-1 2M* 172
A=-[ [ + 7 -y5| -

. (11.33)

The appearance of the constant y, just means that the orbit oscillates
not about y =0 (u = M/L? but about y = y,: Eq. (11.27) doesn’t use the
correct radius for a circular orbit in GR. The amplitude A is also
somewhat different, but what is most interesting here is the fact that &k
is not 1. The orbit returns to the same r when k¢ goes through 27, from
Eq. (11.32). Therefore the change in ¢ from one perihelion to the nextis

2w 6M*\ /2
which, for nearly Newtonian orbits, is
IM?
Aqb=21-r(]+ I ) (11.35)

The perihelion shift, then, from one orbit to the next, is
A¢ = 6mM?/ [? radians per orbit. (11.36)
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We can use Eq. (11.17) to obtain L in terms of r, since the corrections
for noncircularity will make changes in Eq. (11.36) of the same order as
terms we have already neglected. Moreover, if we consider orbits about
a nonrelativistic star, we can approximate Eq. (11.17) by

Mr
[2= ~
M Mr,
l__
r
so that we get
M
A¢*67r-;-. (11.37)

For Mercury’s orbit, r=5.55x 10" km and M =1 Mg = 1.47 km, so that
(Ad)mercury =4.99 X 1077 radians per orbit. (11.38)
Each orbit takes 0.24 yr, so the shift is
(A dIMercury = 43"/ yr=43"/century. (11.39)

The binary pulsar. Another system in which the pericenter shift is observ-
able is the binary pulsar system discussed in Ch. 9. The stars have mean
separation 1.2x10° m, so using Eq. (11.37) with M =14M;y=2.07km
gives a crude estimate of A¢ =3.3 x107° radians per orbit = 2°.1 per year.
This is much easier to measure than Mercury’s shift! In fact, a more
careful calculation, taking into account the high eccentricity of the orbit
and the fact that the two stars are of comparable mass, predicts 4°.2 per
year.

For our purposes here we have calculated the periastron shift from
the known masses of the star. But in fact the observed shift of 4.2261°x
0.0007 per year is one of the data which enable us to calculate the masses.
The other datum is another relativistic effect: a redshift of the signal
which results from two effects. One is the special-relativistic ‘transverse-
Doppler’ term: the 0(v?) term in Eq. (2.39). The other is the changing
gravitational redshift as the pulsar’s eccentric orbit brings it in and out
of its companion’s gravitational potential. These two effects are observa-
tionally indistinguishable from one another, but their combined resultant
redshift gives one more number which depends on the masses of the
stars. Using it and the periastron shift and the Newtonian mass function
for the orbit allows one to determine the stars’ masses and the orbit’s
inclination (see Blandford & Teukolsky 1976 and Epstein 1977).
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Gravitational deflection of light. In the previous section we treated particles
only because photons do not have bound orbits in Newtonian gravity.
In this section we treat the analogous effect for photons, their deflection
from straight-line motion as they pass through a gravitational field.
Historically, this was the first general-relativistic effect to have been
predicted before it was observed and its confirmation in the eclipse of
1919 (see McCrae 1979) made Einstein an international celebrity. The
fact that it was a British team (led by Eddington) who made the observa-
tions to confirm the theories of a German incidentally helped to alleviate
post-war tenston between the scientific communities of the two countries.
In modern times, the light-deflection phenomenon remains important to
astronomy, both because of observations of multiple images of the same
quasar (gravitational lensing) and because corrections for deflection by
the Sun and even by Jupiter will have to be applied to high-precision
measurements of stellar positions that will be made by the Hipparcos
satellite now being planned for launch in the mid-1980s.

We begin by calculating the trajectory of a photon in the Schwarzschild
metric under the assumption that M/r is everywhere small along the
trajectory. The equation of the orbit is the ratio of Eq. (11.5) to the sqaure
root of Eq. (11.9):

dé 1

ar ® Z[L_L(l_w)]‘”’
r b r? r

where we have defined the impact parameter,

b=L/E. (11.41)
In Exer. I, § 11.6, it is shown that b would be the minimum value of r
in Newtonian theory, where there is no deflection. It therefore represents
the ‘offset’ of the photon’s initial trajectory from a parallel one moving
purely radially. An incoming photon with L> 0 obeys the equation

do_ ‘
du (1 22
* (EE‘”“Z'*'zM“J)

with the same definition as before,

u=1/r. (11.43)
If we neglect the u* term in Eq. (11.42), all effects of M disappear, and
the solution is

rsin (¢ —dy)=b, (11.44)
a straight line. This is, of course, the Newtonian result.

(11.40)

(11.42)
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Suppose now we assume Mu<« 1 but not entirely negligible. Then if
we define

y=u(l - Mu), u=y(l + My)+0(M?*u?), (11.45)
Eq. (11.42) becomes
ﬂ=—(]iz—M»)-’-)w+0(Mzuz). (11.46)

dy l 5 1/2
B—z—y
This can be integrated to give

M 1/2
¢ = ¢ +g-b—~ +arcsin (by) —2M(B]—2~—y2) . (11.47)

The initial trajectory has y >0, s0 ¢ - ¢o: ¢y is the incoming direction.
The photon reaches its smallest r when y =1/b, as one can see from
setting dr/dA =0 in Eq. (11.19) and using our approximation Mu « |,
This occurs at the angle ¢ = ¢o+2M /b + m/2. It has thus passed through
an angle w/2+2M/b as it travels to its point of closest approach. By
symmetry, it passes through a further angle of the same size as it moves
outwards from its point of closest approach (see Fig, 11.5). It thus passes

a N=¢,

Fig. 11.5 Deflection of a photon.

through a total angle of = +4M/b. If it were going on a strz;ight line,
this angle would be 7, so the net deflection is

Ap=4M/b. (11.48)
To the accuracy of our approximations, we may use for b the radius of
closest approach rather than the impact parameter L/ E. For the sum,

the maximum effect is for trajectortes for which b= R, the radius of
the Sun. Given M =1 Mg =1.47km and Rp =6.96 x10° km, we find

(Ad)o.max = 8.45 %10 % rad = 1".74. (11.49)
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For Jupiter, with M =1.12x10">km and R =6.98 x10* km we have

(Ad)w max = 6.42x107% rad = 0".013. (11.50)
This is well above the limit of the accuracy anticipated for the Hipparcos
satellite.

Of course, satellite observations of stellar positions are made from a
position near Earth, and for stars that are not near the Sun in the sky
the satellite will receive their light before the total deflection, given by
Eq. (11.48), has taken place. This situation is illustrated in Fig. 11.6. An
observer at rest at the position of the satellite observes an apparent
position in the direction of the vector 4, tangent to the path of the light
ray, and if he knows his distance r from the Sun he can calculate the
true direction to the star, 5. Exer. 16, § 11.6, derives the general resuit.

—
$o

7
satellite G/.
furq

R Sun

Fig. 11.6 An observation from Earth of a star not at the limb of the Sun does
not need to correct for the full deflection of Fig. 11.5.

®

X — DB

@

Fig. 11.7 Deflection can produce multiple images.

It may of course happen that photons from the same star will travel
trajectories that pass on opposite sides of the deflecting star and intersect
each other after deflection, as illustrated in Fig. 11.7. Rays 1 and 2 are
essentially parallel if the star (*) is far from the deflecting object (S). An
observer at position B would then see two images of the star, coming
from apparently different directions. This phenomenon appears to have
been observed in at least two cases where light from quasars has been
deflected by a cluster of galaxies, so that on Earth we receive three or
more images (see Young et al 1981, Burke 1981). For a general discussion
of the possibilities of observing lensing in a variety of astrophysical
situations, see Cowling (1983).
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11.2 Nature of the surface r=2M

Coordinate singularities. It is clear that something funny goes
wrong with the line element, Eq. (11.1) at r =2M, but what is not clear
is whether the problem is with the geometry or just with the coordinates.
Coordinate singularities — places where the coordinates don’t describe
the geometry properly — are not unknown in ordinary calculus. Consider
spherical coordinates at the poles. The north pole on a sphere has
coordinates 6 =0, 0= ¢ < 2. That is, although ¢ can have any value
for 6 =0, all values really correspond to a single point. We might draw
a coordinate diagram of the sphere as follows (Fig. 11.8 — maps of the

)
00 /2 n 3n/2 27
6 3

Fig. 11.8 One way of drawing as sphere on a flat piece of paper. Not only are
¢ =0 and ¢ =27 really the same lines, but the lines 8 =0 and 8 = 7 are each
really just one point. Spherical coordinates are therefore not faithful representa-
tions of the sphere everywhere.
globe are sometimes drawn this way), in which it would not be at all
obvious that all points at 8 =0 are really the same point. We could,
however, convince ourselves of this by calculating the circumference of
every circle of constant 6 and verifying that these approached zero as
#—->0 and 60— That is, by asking questions that have an invariant
geometrical meaning, one can tell if the coordinates are bad. For the
sphere, the metric is positive-definite, so if two points have zero distance
between themthey are the same point(e.g. 8 =0, ¢ =mand 6 =0, ¢ =2
see Exer. 18, § 11.6). In relativity, the situation is more subtle, since there
are curves (null curves) where distinct points have zero invariant distance
between them. In fact, the whole question of the nature of the surface
r=2M is so subtle that it was not answered satisfactorily until 1960.
(This was just in time, too, since black holes began to be of importance
in astronomy within a decade as new technology made observations of
quasars, pulsars, and X-ray sources possible.) We shall explore the
problem by asking a few geometrical questions about the metric and
then demonstrating a coordinate system which has no singularity at this
surface,
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Infalling particles. Let a particle fall to the surface r = 2M from any finite
radius R. How much proper time does that take? That is, how much time
is elapsed on the particle’s clock? The simplest particle to discuss is the
one which falls in radially, Since d¢p =0 we have L=0 and, from Eq.
(11.8),

ar\?
(—’) g1 +2M (11.51)
dr r
or d
dr=-— 4 (11.52)

1/2
(E2—1+-2—A—4)

r

(the minus sign because the particle falls inward). It is clear that if E*> 1
(unbound particle) the integral of the right-hand side from R to 2M is
finite. If E =1 (particle falling from rest at o) the integral is simply

2M ( r )3/2]R
Ar=—1|—— s 11.53
3 [ 2M oM ( )

which is again finite. And if E <1, there is again no problem since the
particle cannot be at larger r than where 1 — E>=2M/r (see Eq. (11.51)).
So the answer is that any particle can reach the horizon in a finite amount
of proper time.

We now ask how much coordinate time elapses as the particle falls
in. For this we use

dt Po . 2MN\ 7
U°=—=g"Uy=g"—==- °°E=(l—-———) E
dr § Yo=8 m g r
Therefore we have
d d
dt = — 4 (11.54)

e(C2) " p(1-2) (o)

For simplicity, we consider the case E = | and examine this near r=2M
by defining the new variable
e=r—2M.

Then we get

_ (e +2M)*? de
2 M)%

It is clear that as £ - 0 the integral of this goes like In g, which diverges.
One would also find this for E # 1, because the divergence comes from
the [1 —(2M/r)]"" term, which doesn’t contain E. Therefore a particle
reaches the surface r=2M only after an infinite coordinate time has

dt

(11.55)
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elapsed. Since the proper time is finite, the coordinate time must be
behaving badly.

Inside r =2M. To see just how badly it behaves, let us ask what happens
to a particle after it reaches r=2M. It must clearly pass to smaller r
unless it is destroyed. This might happen if at r=2M there were a
‘curvature singularity’, where the gravitational forces grew strong enough
to tear anything apart. But calculation of the components R%g,, of
Riemannian tensor in the local inertial frame of the infalling particle
shows them to be perfectly finite: Exer. 20, § 9.6. So we must conclude
that the particle will just keep going. If we look at the geometry inside
but near r=2M, by introducing e =2M —r, then the line element is

€ 2M —¢

de* - de?+(2M — ) dQ° (11.56)

2=
ds = mM—s

Since £ >0 inside r =2 M we see that a line on which 1, 6, ¢ are constant
has ds®<0: it is timelike. Therefore ¢ (and hence r) is a timelike coord-
nate, while ¢ has become spacelike: even more evidence for the funniness
of t and #! Since the infalling particle must follow a timelike world line,
it must constantly change r, and of course this means decrease r. So a
particle inside r=2M will inevitably reach r =0, and there a frue cur-
vature singulaity awaits it: sure destruction by infinite forces (Exer, 20,
§ 9.6). But what happens if the particle inside r =2M tries to send out
a photon to someone outside r=2M in order to describe his impending
doom? This photon, no matter how directed, must also go forward in
‘time’ as seen locally by the particle, and this means to decreasing r. So
the photon will not get out either. Everything inside r=2M is trapped
and, moreover, doomed to encounter the singularity at r =0, since r=0
is in the future of every timelike and null world line inside r =2 M. Once
a particle crosses the surface r=2M, it cannot be seen by an external
observer, since to be seen means to send out a photon which reaches the
external observer. This surface is therefore called a horizon, since a
horizon on Earth has the same effect (for different reasons!): We shall
henceforth refer to r =2M as the Schwarzschild horizon.

Coordinate systems. So far, our approach has been purely algebraic - we
have no ‘picture’ of the geometry. To develop a picture we will first draw
a coordinate diagram in Schwarzschild coordinates, and on it we will
draw the light cones, or at least the paths of the radially ingoing and
outgoing null lines emanating from certain events (Fig. 11.9). These light
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Fig. 11.9 Light cones drawn in Schwarzschild coordinates close up near the
surface r=2M.

cones may be calculated by solving ds’=0 for 8 and ¢ constant:

g—i——l—- 11.57
dr— l—&' ( . )

r

In a t—r diagram, these lines have slope x| far from the star (standard
SR light cone) but their slope approaches +oc as r—>2M. This means
that they become more vertical: the cone ‘closes up’. Since particle world
lines are confined within the local light cone (a particle must move slower
than light) this closing up of the cones forces the world lines of particles
to become more vertical: if they reach r =2M, they reach it at t = 0. This
is the ‘picture’ behind the algebraic result that a particle takes infinite
coordinate time to reach the horizon. Notice that no particle world line
reaches the line r = 2M for any finite value of t. This might suggest that
the line (r =2M, —00 <t <0) is really not a line at all but a single point
in spacetime. That is, our coordinates may go bad by expanding a single
event into the whole line r =2 M, which would have the effect that if any
particle reached the horizon after that event then it would have to cross
r=2M ‘after’ t = +o00. This singularity would then be very like the one
in Fig. 11.8 for spherical coordinates at the pole: a whole line in the bad
coordinates representing a point in the real space. Notice that the coordin-
ate diagram in Fig. 11.9 makes no attempt to represent the geometry
properly, only the coordinates. It clearly does a poor job on the geometry
because the light cones close up. Since we have already decided that
they don’t really close up (particles reach the horizon at finite proper
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time and encounter a perfectly well-behaved geometry there), the remedy
is to find coordinates which do not close up the light cones.

Kruskal-Szekeres coordinates. The search for these coordinates was a
long and difficult one, and ended in 1960. The good coordinates are
known as Kruskal-Szekeres coordinates, are called u and v, and are
defined by

r 1/2 /aM t
=l==-1) ¢ h——
u (2M ) e Cos aM’

. t (11.58)
v=(——£——l) e”/*M sinh —
2M 4M’°
for r>2M and
1/2
t
u=(l——'2LM) g’/4M Sinhm,
2 t (11.59)
_(1__" P/AM ook ——
v (1 ZM) e cos A’

for r <2 M. (This transformation is singular at r = 2M, but that is necessary
in order to eliminate the coordinate singularity there.) The metric in these
coordinates is found to be

32M3

ds?=— e M dv? —du?) + r2 dO?, (11.60)

where, now, r is not to be regarded as a coordinate but as a function of
u and v, given implicitly by the inverse of Egs. (11.58) and (11.59):

(;g-/;—l)e””’=u2~vz. (11.61)
Notice several things about Eq. (11.60). There is nothing singular about
any metric term at r = 2 M. There is, however, a singularity at r =0, where
we expect it. A radial null line (dd =d¢ =ds =0) is a line

dv=+du - (11.62)
This last result is very important. It means that in a (u, v) diagram, the
light cones are all as open as in SR. This result makes these coordinates
particularly useful for visualizing the geometry in a coordinate diagram.
The (u, v) diagram is, then, given in Fig. 11.10. Compare this with the
result of Exer. 21, § 5.9.

Much needs to be said about this. First, two light cones are drawn for

illustration. Any 45° line is a radial null line. Second, only u and v are
plotted: 0 and ¢ are suppressed; therefore each point is really a two-
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Fig.11.10  Kruskal-Szekeres coordinates keep the light cones at 45° everywhere.
The singularity at r=0 (toothed line) bounds the future of all events inside
(above) the line r =2M, t = +00. Events outside this horizon have part of their
future free of singularities.

sphere of events. Third, lines of constant r are hyperbolae, as is clear
from Eq. (11.61). For r>2M these hyperbolae run roughly vertically,
being asymptotic to the 45° line from the origin u =v=0. For r<2M
the hyperbolae run roughly horizontally, with the same asymptotes. This
means that for r <2M, a timelike line (confined within the light cone)
cannot remain at constant r. This is the result we had before. The
hyperbola r=10 is the end of the spacetime, since a true singularity is
there. Note that although r =0 is a ‘point’ in ordinary space, it is a whole
hyperbola here. However, not too much can be made of this, since it is
a singularity of the geometry: we should not glibly speak of it as a part
of spacetime with a well-defined dimensionality. Fourth, lines of constant
t, being orthogonal to lines of constant r, are straight lines in this diagram,
radiating outwards from the origin u = v = 0. (They are orthogonal to the
hyperbolae r = const. in the spacetime sense of orthogonality; recall our
diagrams in § 1.7 of invariant hyperbolae in SR, which had the same
property of being orthogonal to lines radiating out from the origin.) In
the limit as £ —» o0, these lines approach the 45° line from the origin. Since
all the lines f=const. pass through the origin, the origin would be
expanded into a whole line in a (¢, r) coordinate diagram like Fig. 11.9,
which is what we guessed after discussing that diagram. A world line
crossing this ¢ = © line enters the region in which r is a time coordinate,
and so cannot get out again. The true horizon, then, is this line r =2M,
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t = +00, Fifth, this horizon is itself a null line. This must be the case,
since the horizon is the boundary between null rays that cannot get out
and those that can. It is therefore the path of the ‘marginal’ null ray.
Sixth, the 45° lines from the origin divide spacetime up into four regions,
labeled I, II, 11, IV. Region 1 is clearly the ‘exterior’, r> 2 M, and region
IT is the interior of the horizon. But what about I1I and IV? To discuss
them is beyond the scope of these lectures (see Misner et al. 1973, Box
33.2G and Ch. 34; and Hawking & Ellis 1973), but one remark must be
made. Consider the dashed line in Fig. (11.10), which could be the path
of an infalling particle. If this black hole were formed by the collapse
of a star, then we know that outside the star the geometry is the Schwar-
zschild geometry, but inside it may be quite different. The dashed line
may be taken to be the path of the surface of the collapsing star, in which
case the region of the diagram to the right of it is outside the star and
so correctly describes the spacetime geometry, but everything to the left
would be inside the star (smaller r) and hence has possibly no relation
to the true geometry of the spacetime. This includes all of regions I1I
and IV, so they are to be ignored by the astrophysicist (though they can
be interesting to the mathematician!). Note that parts of I and II are also
to be ignored, but there is still a singularity and horizon outside the star,
The seventh and last remark we will make is that the coordinates u and
v are not particularly good for describing the geometry far from the star,
where g,, and g,, fall off exponentially in r. The coordinates ¢ and r are
best there; indeed, they were constructed in order to be well behaved
there. But if one is interested in the horizon, then one uses u and v.

11.3 More-general black holes

General theorems. The phenomenon of the formation of a horizon
has to do with the collapse of a star to such small dimensions that the
gravitational field traps everything within a certain region, which is called
the interior of the horizon. We have explored the structure of the black
hole in one particular case — the static, spherically symmetric situation
— but the formation of a horizon is a much more general phenomenon.
Just how general is still a matter for conjecture, since no one has
determined a criterion which would decide exactly when a horizon must
be present. Thorne has conjectured (see Misner et al. 1973, Box 32.3)
that whenever matter of mass M is concentrated in a region whose
circumference in any direction is always smaller than 27 (2 M), then the
mass will be inside a horizon. This conjecture is very vaguely worded,
since ‘mass’ is not a locally determined quantity and since ‘circumference’
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is ill defined in the absence of any symmetry, so it may be wiser to regard
the conjecture as just a kind of physicist’s rule of thumb for deciding in
which physical situations a horizon is likely to appear.

The principal difficulty here is treating time-dependent situations. Since
a horizon is the boundary between what can get out and what can’t, its
position in space can vary. For instance, a collapsing spherical star
eventually produces a Schwarzschild black hole (after all of the star is
inside the horizon), but there is an intermediate period of time in which
the horizon is growing from zero radius to its full size. This is easy to
see by considering Fig. 11.11, which illustrates (very schematically) the

(c)

(@)

\m‘d lines of

collapsing matter

r

Fig. 11.11 Schematic spacetime diagram of spherical collapse. Light ray (a)
hardly feels anything, (b) is delayed, and (c) is marginally trapped. The horizon
is defined as the ray (c¢), so it grows continuously from zero radius as the collapse
proceeds.

collapsing situation. (The time coordinate is a kind of Schwarzschild
time, but it isn’t to be taken too literally.) As matter falls in, the trajectories
of outgoing photons (wavy lines) are more and more affected. Photon
(a) gets out with little trouble, photon (b) has some delay, and photon
(c) i1s the ‘marginal’ one, which just gets trapped and remains on the
Schwarzschild horizon. Anything later than (c) is permanently trapped,
anything earlier gets out. So photon (c¢) does in fact represent the entire
horizon, by definition, since it is the boundary. Thus, one sees the horizon
grow from zero radius to 2M by watching photon (¢)’s progress outwards.
For this spherically symmetric situation, if one knew the details of the
collapse, one could easily determine the position of the horizon. But if
there were no symmetry — particularly if the collapse produced a large
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amount of gravitational radiation — then the calculation would be far
more difficult, and that is why it is only conjectural at this point. However,
some results are known firmly:

(1) If the collapse is nearly spherical, then all nonspherical parts

(2)

3)

of the mass distribution — quadrupole moment, octopole moment
- except for some angular momentum, are radiated away in
gravitational waves, and a stationary black hole of the Kerr type
(see below) is left behind. If there is no angular momentum, a
Schwarzschild hole is left. This was proved by Price (19724, b).

It is felt that any horizon will eventually become stationary, after
everything has settled down. The stationary horizons, by contrast
with nonstationary ones, are completely known. The principal
result is that a stationary black hole is characterized by four
numbers: its total mass M, its total angular momentum J, its
total electric charge Q, and its total magnetic monopole charge
F. All four of these parameters are defined not by any integrals
over the ‘interior’ of the horizon, but by the gravitational and
electromagnetic fields far from the hole. We have defined the
mass M of any metric in this fashion in Ch. 8 and in Exer. 19,
§ 8.6, we have seen how J can be similarly defined. The electric
and magnetic charges are defined by Gauss’ law integrals over
surfaces surrounding the hole and far from it. Since magnetic
monopoles (i.e. isolated north poles or south poles) are not
known to exist in nature (though Maxwell’s equations could be
generalized to accommodate them), F is almost never considered.
Also, it is felt that collapse is unlikely with significant charge Q,
so we shall henceforth take only M and J to be nonzero. The
unique stationary black hole (with Q = F=0) is the Kerr black
hole described below. This theorem results from work done by
Hawking (1972), Carter (1973), and Robinson (1975). The Kerr
hole for zero angular momentum is the Schwarzschild metric.
One general result concerning nonstationary horizons is known,
and is called Hawking’s area theorem: in any physical process
involving a horizon, the area of the horizon cannot decrease in
time. We shall see below how to calculate the area of the Kerr
horizon. This fundamental theorem has the result that, while two
black holes can collide and coalesce, a single black hole can
never bifurcate spontaneously into two smaller ones. (A restricted
proof of this is in Exer. 26, § 11.6 using the Kerr area formula
below; a full proof is outlined in Misner et al. 1973, Exer. 34,4,
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and requires techniques beyond the scope of this book.) The
theorem assumes that the local energy density of matter in
spacetime (p) is positive. This can be violated in quantum
mechanics, with fundamental consequences described in § 11.4
below.

Kerr black hole. The Kerr black hole is axially symmetric but not spheri-
cally symmetric (i.e. rotationally symmetric about one axis only, which
1s the angular-momentum axis), and is characterized by two parameters,
M and J. Since J has dimension m’, one conventionally defines

a=J/M, (11.63)
which then has the same dimensions as M. The line element is

A— 2 - 29 -2
ds?= 2T E S By IMISIT6 s
P
r’+a%)?—a*Asin® @ 2
+( ) e sin29d¢2+%- dr’ +p2de> (11.64)

where
A=r’—2Mr+a’,
p’=r’+a’cos’ 6. (11.65)
The coordinates are called Boyer—Lindquist coordinates; ¢ is the angle
around the axis of symmetry, t is the time coordinate in which everything
is stationary, and r and 6 are similar to the spherically symmetric r and
6 but are not so readily associated to any geometrical definition. In
particular, since there are no metric two-spheres, the coordinate r cannot
be defined as an ‘area’ coordinate as we did before. The following points
are important:
(1) Surfaces t=const., r=const. do not have the metric of the two-
sphere, Eq. (10.2).
(2) The metric for a=0 is identically the Schwarzschild metric.
(3) There is an off-diagonal term in the metric, in contrast to
Schwarzschild:

2Mr sin’ 6
8o = —a—— g, (11.66)
p
which is 3 the coefficient of df d¢ in Eq. (11.64) because the line element

contains two terms,

g8edtde +g, do dt=2g,, do¢ dt,
by the symmetry of the metric. Any axially symmetric, stationary metric
has preferred coordinates f and ¢, namely those which have the property
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8ap. = 0= g,p4 But the coordinates r and & are more-or-less arbitrary,
except that they may be chosen to be (i) orthogonalto t and ¢ (g, = g,4 =
86: = 8o = 0) and (ii) orthogonal to each other (go, =0). In general, one
cannot choose t and ¢ orthogonal to each other (g, #0). Thus Egq.
(11.64) has the minimum number of nonzero g.s. (See Carter 1969.)

Dragging of inertial frames. The presence of g,, # 0 in the metric intro-
duces qualitatively new effects on particle trajectories. Because g,z Is
independent of ¢, a particle’s trajectory still conserves p,. But now we

have
p*=g*p.=g*p, +2%p, (11.67)

and similarly for the time components:
P =g"p.=g"p+8"ps (11.68)

Consider a zero angular-momentum particle, p, =0. Then, using the
definitions (for nonzero rest mass)

p'=mdt/dn, p?=mde¢/dr, (11.69)
we find that the particle’s trajectory has

d 4 ¢!

f:%:%zw(r‘, 0). (11.70)

This equation defines what we mean by w, the angular velocity of a zero
angular-momentum particle. We shall find w explicitly for the Kerr metric
when we obtain the contravariant components g* and g" below. But it
is clear that this effect will be present in any metric for which g, #0,
which in turn happens whenever the source is rotating (e.g. a rotating
star as in Exer. 19, § 8.6). So we have the remarkable result that a particle
dropped ‘straight in’ (p, =0) from infinity is ‘dragged’ just by the
influence of gravity so that it acquires an angular velocity in the same
sense as that of the source of the metric (we’ll see below that, for the
Kerr metric, w has the same sign as a). This effect weakens with distance
(roughly as 1/7°; see Eq. (11.83) below for the Kerr metric), and it makes
the angular momentum of the source measurable in principle, although
in most situations the effect is small, as we have seen in Exer. 19, § 8.6.
(An experiment is being planned, however, to use precision gyroscopes
in a satellite to measure the effect due to rotation of the earth. This is
discussed in Misner et al. 1973, § 40.7). The effect is called — somewhat
fancifully — the ‘dragging of inertial frames’; the gyroscopic precession
it produces is called the ‘Lense-Thirring effect’.
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Ergoregion. Consider photons emitted in the equatorial plane (6 = 7/2)
at some given r. In particular, consider those initially going in the
+ ¢-direction, i.e. tangent to a circle of constant r. Then they generally
have only df and d¢ nonzero on the path at first and since ds’=0, we
have

0=g, dt’+2g,,dtdd +g4, d¢’

2
édﬁz_ﬁi\/[(ﬁ) _ﬁ] (11.71)
dt ) Ese 8o
Now, a remarkable thing happens if g, =0: the two solutions are
d d 2
9®_0 and 8- _28s (11.72)
d: d:t Boo

We will see below that for the Kerr metric the second solution gives
d¢/dt the same sign as the parameter a, and so represents the photon
sent off in the same direction as the hole’s rotating. The other solution
means that the other photon — the one sent ‘backwards’ — initially doesn’t
move at all. The dragging of orbits has become so strong that this photon
cannot move in the direction opposite the rotation. Clearly, any particle,
which must move slower than a photon, will therefore have to rotate
with the hole, even if it has an angular momentum arbitrarily large in
the opposite sense to the hole’s!

We shall see that the surface where g, =0 lies outside the horizon; it
is called the ergosphere. It is sometimes also called the ‘static limit’, since
inside it no particle can remain at fixed r, 8, ¢. From Eq. (11.64) we
conclude that it occurs at

Fo= Fergosphere = M +V(M? — a? cos® ). (11.73)
Inside this radius, since g, > 0, all particles and photons must rotate with
the hole.

Again, this effect can occur in other situations. Models for certain
rotating stars are known where there are toroidal regions of space in
which g, > 0 (Butterworth & Ipser 1976). These will have these super-
strong frame-dragging effects. They are called ergoregions, and their
boundaries are ergotoroids. They can exist in solutions which have no
horizon at all.

The horizon. In the Schwarzschild solution the horizon was the place
where g, =0 and g,, = . In the Kerr solution the ergosphere occurs at
&, =0 and the horizon is at g,, = %, i.e. where A =0:

r+=rhorizon=M+\/(M2_az)- (1174)
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It is clear that the ergosphere lies outside the horizon except at the poles,
where it is tangent to it. The full proof that this is the horizon is beyond
our scope here: one needs to verify that no null lines can escape from
inside r,. We shall simply take it as given. (See the next section below
for a partial justification.) Since the area of the horizon is important
(Hawking’s area theorem), we shall calculate it.

The horizon is a surface of constant r and ¢, by Eq. (11.74) and the
fact that the metric is stationary. Any surface of constant r and ¢ has an
intrinsic metric whose line element comes from Eq. (11.64) withdt=dr =
0:

(PP +a’)’-a’A
pz

The proper area of this surface is given by integrating the square root

of the determinant of this metric over all 8 and ¢:

dr sin® 9§ d¢* +p” d6>. (11.75)

2w ™
A(r)=J d¢J. dé V[(r*+a’)*—a’A]sin 6. (11.76)

0 V]
Since nothing in the square root depends on 6 or ¢, and since the area
of a unit two-sphere is

27 .
477=[ do J dé sin 6,

0 0
we immediately conclude that

A(P)=47V[(r* +a®)’ - a*Al. (11.77)
Since the horizon is defined by 4 =0, we get
A(horizon)= 47 (r2 +a?). (11.78)

Equatorial photon motion in the Kerr metric. A detailed study of the
motion of photons in the equatorial plane gives insight into the ways in
which ‘rotating’ metrics differ from nonrotating ones. First, we must
obtain the inverse of the metric, Eq. (11.64), which we write in the general
stationary, axially symmetric form:

ds’=g,dr’ +2g,, dt dd +g,, dd’ +g,, dr’ +gs d6°.
The only off-diagonal element involves ¢ and ¢ ; therefore

r 1 - -2 0¢ _“_!____ -2

g Z. dp 5, g 2 P (11.79)

We need to invert the matrix

( gu gl¢ ) ‘
o 8o
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Calling its determinant D, the inverse is

1 8s0 —g:¢) 2
— D= (g ) _
D( — 8 8u ’ BiuBos (g"t') (1 1 80)

Notice one important deduction from this. The angular velocity of the
dragging of inertial frames is Eq. (11.70):
Pt
w=8 _8elD__ 8 (11.81)
g 8ss/ D Lo
This makes Eqgs. (11.71) and (11.72) more meaningful. For the metric,
Eq. (11.64), some algebra gives

(r* +a**—a’Asin’ @
p’A ’
A—a’sin’ @

D=-Asin’8, g'=

2Mr

9 _ __ ¢ _ . 1.82
B =74y B T ain’ e (11.82)
Then the frame dragging is
2M
ra (11.83)

@ T (F*+a)?—a*Asin’ 6
The denominator is positive everywhere (by 'Eq. 11.65), so this has the
same sign as a, and it falls off for large r as r°, as we noted earlier.

A photon whose trajectory is in the equatorial plane has dé = 0; but,
unlike the Schwarzschild case, this is only a special kind of trajectory:
photons not in the equatorial plane may have qualitatively different
orbits. Nevertheless, a photon for which p® =0 initially in the equatorial
plane always has p° = 0, since the metric is reflection symmetric through
the plane 6 = 7/2. By stationarity and axial symmetry the quantities
E=—-p, and L=p, are constants of the motion. Then the equation
P+ p=0determines the motion. Denoting p” by dr/dA as before, we get,
after some algebra,

dr

2
(EX) =g"[(-g")E*+2g"*EL-g**L’]

o
=g"(-—g”)[E2~2wEL+ggTL2]. (11.84)
Using Egs. (11.65), (11.79), and (11.83) for 8 = 7/2, we get
(Sﬁ)z:(’er“Z)z“azA[Ez_ 4Mra
dA rt (r*+a*’—a’A
__r-2Mr 2]
(r*+a?-a’a" |

EL

(11.85)
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This is to be compared with Eq. (11.9), to which it reduces when a = 0.
Apart from the complexity of the coefficients, Eq. (11.85) differs from
Eq. (11.9) in a qualitative way in the presence of a term in EL. So we
cannot simply define an effective potential V? and write (dr/dA)’ =
E?— V2. What we can do is nearly as good. We can factor Eq. (11.84):

dr\? (*+a’-a’A
( dA) = = (E— V. )(E-V.). (11.86)
Then V., by Egs. (11.84) and (11.85), are
Vai(r)=[w (e’ -g**/g") 1L (11.87)

_ 2Mra+r’p'? L

T(fPr+a-alA”
This is to be compared to the square root of Eq. (11.11), to which it
reduces when a=0. Now, the square root of Eq. (11.11) becomes
imaginary inside the horizon; similarly, Eq. (11.88) is complex when
A <0. In each case the meaning is that in such a region there are no
solutions to dr/dA =0, no turning points regardless of the energy of the
photon. Once a photon crosses the line A =0 it cannot turn around and
get back outside that line. Clearly, A=0 marks the horizon in the
equatorial plane. What we haven’t shown, but what is also true, is that
A =0 marks the horizon for trajectories not in the equatorial plane.

We can discuss the qualitative features of photon trajectories by plot-
ting V.(r). We choose first the case aL > 0 (angular momentum in the
same sense as the hole), and of course we confine attention to r=r,
(outside the horizon). Notice that for large r the curves (in Fig. 11.12)

(11.88)

al >0

4 A

orbidden region

A’

Fig. 11.12 Factored potential diagram for equatorial photon orbits of posifive
angular momentum in the Kerr metric. As a -0, the upper and lower curves
approach the two square roots of Fig. 11.2 outside the horizon.
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are asymptotic to zero, falling oft as 1/r. This is the regime in which the
rotation of the hole makes almost no difference. For small r we see
features not present without rotation: V_ goes through zero (easily shown
to be at r, =2 M, the edge of the ergosphere) and meets V, at the horizon,
both curves having the value aL/2Mr, = w_ L, where w, is the value of
w on the horizon. From Eq. (11.86) it is clear that a photon can move
only in regions where E>V, ¢r E<V_. We are used to photons
with positive E: they may come in from infinity and either reach a
minimum r or plunge in, depending on whether or not they encounter
the hump in V.. There is nothing qualitatively new here. But what
of those for which E < V_? Some of these have E > 0. Are they to be
allowed?

To discuss negative-energy photons we must digress a moment and
talk about moving along a geodesic backwards in time. We have associ-
ated our particles’ paths with the mathematical notion of a geodesic.
Now a geodesic is a curve, and the path of a curve can be traversed in
either of two directions; for timelike curves one is forwards and the other
backwards in time. The tangents to these two motions are simply opposite
in sign, so one will have four-momentum p and the other —p. The energies
measured by observer U will be - U - p and +U- p. So one particle will
have positive energy and another negative energy. In flat spacetime we
conventionally take all particles to travel forwards in time; since all
known particles have positive or zero rest mass, this causes them all to
have positive energy relative to any Lorentz observer who also moves
forwards in time. Conversely, if p has positive energy relative to some
Lorentz observer, it has positive energy relative to all that go forwards
in time. In the Kerr metric, however, it will not do simply to demand
positive E. This is because E is the energy relative to an observer at
infinity; the particle near the horizon is far from infinity, so the direction
of ‘forward time! isn’t so clear. What we must do is set up some observer
U near the horizon who will have a clock, and demand that ~p- U be
positive for particles that pass near him. A convenient observer (but any
will do) is one who has zero angular momentum and resides at fixed r,
circling the hole at the angular velocity w. This zero angular-momentum
observer (ZAMO) is not on a geodesic, so he must have a rocket engine
to remain on this trajectory. (In this respect he is no different from us,
who must use our legs to keep us at constant r in Earth’s gravitational
field.) It is easy to see that he has four-velocity U= A, U? = wA,
U'=U®=0, where A is found from the condition U- U=-1: A=
gs6/(— D). This is nonsingular for r>r,. Then he measures the energy
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of a particle to be
Ezamo=—P" U= —(Po U0+P¢U¢)
=A(E —wl). (11.89)
This is the energy we must demand be positive-definite. Since A is
positive, we require
E> oL (11.90)
From Eq. (11.88) it is clear that any photon with E > V. also satisfies
Eq. (11.90) and so is allowed, while any with E < V_ violates Eq. (11.90)
and is moving backwards in time. So in Fig. 11.12 we consider only
trajectories for which E lies above V_; for these there is nothing qualita-
tively different from Schwarzschild.
For negative angular-momentum particles, however, new features do

appear. If aL<0 it is clear from Eq. (11.88) that the shape of the V,
curves is just turned over, so they look like Fig. 11.13. Again, of course,

’ al <0
A
Id ,////
o
wielt B
PE
Fig. 11.13  As Fig. 11.12 for negative angular momentum photons.

condition Eq. (11.90) means that forward-going photons must lie above
V.(r), but now some of these can have E <0! This happens only for
r<r,, i.e. inside the ergoregion. Now we see the origin of the name
ergoregion: it is from the Greek ‘ergo-’, meaning energy, a region in
which energy has peculiar properties. It leads to the following interesting
circumstance. At some point between r, and r, it is possible to create
two photons, one having energy +E and the other — E, so that their rotal
energy is zero. Then the positive-energy photon could be directed in such
a way as to leave the hole and reach infinity, while the negative-energy
photon is necessarily trapped, and inevitably crosses the horizon. The
net effect is that the positive-energy photon will leave the hole, carrying
its energy to infinity, where it can be converted into useful work: energy,
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and therefore mass, has been extracted from the hole, at zero cost! By
examining Figs. 11.12 and 11.13, one can convince oneself that this only
works if the negative-energy particle has a negative L whose absolute
value exceeds the value of L for the postive-energy particle, so that the
process involves a decrease in the angular momentum of the hole. The
energy extracted can therefore be thought of as coming from the rotational
energy of the hole. This process is called the Penrose process, after its
discoverer. It is not peculiar to the Kerr black hole; it happens whenever
there is an ergoregion. If a rotating star has one without a horizon, the
effective potentials look like Fig. 11.14, drawn for aL <0 (Comins and
Schutz 1978). (For aL > 0 the curves just turn over, of course.)

al <0

ARt
QNS

V_(r)

Fig. 11.14 As Fig. 11.13 for equatorial orbits in the spacetime of a star rotating
rapidly enough to have an ergoregion.

The curve for V., dips below zero inside the ergoregion, which is
toroidal. Qutside the ergoregion it is positive, climbing to infinity as r > 0.
The curve for V_ never changes sign, and also goes to infinity as r-> 0.
The Penrose process operates inside the ergoregion, where the negative-
energy photons are trapped. This leads, in fact, to an instability in such
stars (Friedman 1978).

11.4 Quantum mechanical emission of radiation by black holes:
The Hawking process
In 1974 Hawking startled the physics community by proving that
black holes aren’t black: they radiate energy continuously! This doesn’t
come from any mistake in what we have already done; it arises in the
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application of quantum mechanics to electromagnetic fields near a black
hole. We have until now spoken of photons as particles following a
geodesic trajectory in spacetime; but according to the uncertainty prin-
ciple these ‘particles’ cannot be localized to arbitrary precision. Near the
horizon this markedly changes the behavior of ‘real’ photons from what
we have already described for idealized null particles.

Hawking’s calculation (Hawking 1975) uses the techniques of quantum
field theory, but we can derive its main prediction very simply from
elementary considerations. What follows, therefore, is a ‘plausibility
argument’, not a rigorous discussion of the effect. One form of the
uncertainty principle is AE At =#, where A E is the minimum uncertainty
in a particle’s energy which resides in a quantum mechanical state for a
time At. According to quantum field theory, ordinary space is filled with
‘vacuum fluctuations’ in electromagnetic fields, which consist of pairs of
photons being produced at one event and recombining at another. Such
pairs violate conservation of energy, but if they last less than At =Hh/AE,
where AE is the amount of violation, they violate no physical law. Thus,
in the large, energy conservation holds rigorously, while, on a small scale,
itis always being violated. Now, as we have emphasized before, spacetime
near the horizon of a black hole is perfectly ordinary and, in particular,
locally flat. Therefore these fluctuations will also be happening there.
Consider a fluctuation which produces two photons, one of energy E
and the other with energy —E. In flat spacetime the negative-energy
photon would not be able to propagate freely, so it would necessarily
recombine with the positive-energy one within a time #/ E. But if produced
just outside the horizon, it has a chance of crossing the horizon before
the time k/E elapses; once inside the horizon it can propagate freely,
as we shall now show. Consider the Schwarzschild metric for simplicity,
and recall from our discussion of orbits in the Kerr metric that negative
energy is normally excluded because it corresponds to a particle that
propagates backwards in time. Inside the event horizon, an observer
going forwards in time is one going toward decreasing r. For simplicity
let us choose one on a trajectory for which p,=0= U’=0. Then U’ is
the only nonzero component of U, and by the normalization condition
U-U=-1we find U":

~ oM\
U’=—(——l) . r<2M, (11.91)
r

negative because the observer is ingoing. Any photon orbit is allowed
for which —p- U>0. Consider a zero angular-momentum photon,
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moving radially inside the horizon. By Eq. (11.9) with L =0, it clearly has
E =+p". Then its energy relative to the observer is

- oM\
=p- U:—p'Urg"=—(—;'-—l) p’. (1192)

This is positive if and only if the photon is also ingoing: p” <0. But it
sets no restriction at all on E. Photons may travel on null geodesics inside
the horizon, which have either sign of E, as long as p” <0. (Recall that
t is a spatial coordinate inside the horizon, so this result should not be
surprising: E is a spatial momentum component there.)

Since a fluctuation near the horizon can put the negative-energy photon
into a realizeable trajectory, the positive-energy photon is allowed to
escape to infinity. Let us see what we can say about its energy. We first
look at the fluctuations in a freely falling inertial frame, which is the one
for which spacetime is locally flat and in which the fluctuations should
look normal. A frame that is momentarily at rest at coordinate 2M + ¢
will immediately begin falling inwards, following the trajectory of a
particle with L=0 and E=[1-2M/(2M +¢)]"*=(e/2M)"?, from Eq.
(11.8). It reaches the horizon after a proper-time lapse A7 obtained by
integrating Eq. (11.52):

M dr
Ar= ‘LMH 2M__ M\ (1193
(7—21\4 +£)
To first order in ¢ this is
Ar=2(2Me)'?, (11.94)

We can find the energy & of the photon in this frame by setting this
equal to the fluctuation time #/ &, The result is

€ =3h(2QMe)"'2, (11.95)
This is the energy of the outgoing photon, the one which reaches infinity,

as calculated on the local inertial frame. To find its energy when it gets
to infinity we recall that

€=—p- 0,
with ~ U, = E =~ (&/2M)'/%. Therefore
€ =—g"p U, = U,g™E, (11.96)

where E is the conserved energy on the photon’s trajectory, and is the
energy it is measured to have when it arrives at infinity. Evaluating g%
at 2M +¢ gives, finally,

E=%(e/2M)"*=h/4M = h/87M. (11.97)
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Remarkably, it doesn’t matter where the photon originated: it always
comes out with this characteristic energy!

The rigorous calculation which Hawking performed showed that the
photons which come out have the spectrum characteristic of a black body
with a temperature

T=4/87kM, (11.98)
where k is Boltzmann’s constant. Associated with this radiation is a
typical photon energy

E=kT=%/8mM, (11.99)
fairly close to our crude result, Eq. (11.97). Our argument does not
show that the photons should have a black-body spectrum; but the fact
that the spectrum originates in random fluctuations, plus the fact that
the black hole is, classically, a perfect absorber, makes this resuilt plausible
as well.

Notice that the temperature of the hole is proportional to M~'. The
rate of radiation from a black body is proportional to AT*, where A is
the area of the body, in this case of the horizon, which is proportional to
M? (see Eq. (11.78)). So the luminosity of the hole is proportional to
M ™2, This energy must come from the mass of the hole (every negative-
energy photon falling into it decreases M), so we have

dM >
df " (11.100)
M?*dM ~dt,
or the lifetime of the hole is
T~ M. (11.101)

The bigger the hole the longer it lives, and the cooler its temperature.
The numbers work out that a hole of mass 10'? kg has a lifetime of 10'® yr,
about the age of the universe. Thus

(—l—) —(-«—-M——m)s 11.102
10%yr/  \10"kg/ - (11.102)

Since a solar mass is about 10®° kg, black holes formed from steliar
collapse are essentially unaffected by this radiation, which has a tem-
perature of about 1077 K. On the other hand, it is possible for holes of
10"* kg to form in the very early universe. To see the observable effect
of their ‘evaporation’, let us calculate the energy radiated in the last
second by setting =1 s =(3x10")"' yrin Eq. (11.102). We get |

M =10°kg~ 10%J. (11.103)
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So for a brief second it would be comparable in luminosity to a small
star, but in spectrum it would be very different. Its temperature would
be 10'' K, emitting primarily in y-rays! No such events have been iden-
tified.

It must be pointed out that all derivations of Hawking’s result are
valid only if the typical photon has E « M, since they involve treating
the spacetime of the black hole as a fixed background in which one
solves the equations of quantum mechanics, unaftected to first order by
the propagation of these photons. This approximation fails for M = h/ M,
or for black holes of mass

M,=h'"?=16x100"m=22x10"%kg. (11.104)

This is called the Planck mass, since it is a mass derived only from
Planck’s constant (and ¢ and G). To treat quantum effects involving such
holes, one needs a consistent theory of quantum gravity, which is one
of the most active areas of research in relativity today. Al we can say
here is that the search has not yet proved fully successful, but Hawking’s
calculation appears to have been one of the most fruitful steps.

Before leaving the Hawking effect, we shall show how it has provided
aremarkable unification of gravity and thermodynamics. Consider Hawk-
ing’s area theorem, which we may write as

gﬁz 0. (11.105)
d¢
For a Schwarzschild black hole,
A=167M?,
dA=327M dM,
or
] h A
dM:SZdeA:md(E)' (11.106)

Since dM is the change in the hole’s total energy, and since h/8#M is
its temperature, we may write Eq. (11.106) in the form

dE=TAdS,
with

S=A/4h. (11.107)
Since, by Eq. (11.105), this quantity S can never decrease, we have in
Eqgs. (11.106) and (11.105) the first and second laws of thermodynamics

as they apply to black holes! That is, a black hole behaves in every
respect as a thermodynamic black body with temperature h/87M and
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entropy A/4h. This analogy had been noticed as soon as the area theorem
was discovered (see Misner et al. 1973, Box 33.4), but at that time it was
thought to be an incomplete analogy because black holes did not have
a temperature. The Hawking effect has fitted the missing piece into the
puzzle.
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Exercises

Consider a particle or photon in an orbit in the Schwarzschild metric
with a certain E and L, at a radius r » M. Show that if spacetime were
really flat, the particle would travel a straight line which would pass a
distance b = L/[E? — m?]'”? from the center of coordinates r = 0. This
ratio b is called the impact parameter. Show also that photon orbits that
follow from Eq. (11.9) depend only on b.

Prove Egs. (11.14) and (11.15).

Plot V2 against r/ M for the three cases L2=25 M2, [?=12 M2, [?=
9 M? and verify the qualitative correctness of Figs. 11.1 and 11.3.

What kind of orbits are possible outside a star of radius (a) 2.5 M, (b)
4M,(c) loM?

It is possible that the centers of active galaxies and quasars may contain
black holes of mass 10°-10° M.

Find the radius R, at which —gg, differs from the ‘Newtonian’ value
| -2 M/R by only 1%. (One may think of this as a kind of limit on
the region in which relativistic effects are important.)

A ‘normal’ star may have a radius of 10'® m. Approximately how many
such stars could occupy the volume of space between the horizon
R=2M and Ry,?

Compute the wavelength of light that gets to a distant observer from
the following sources.

Light emitted with wavelength 6563 A (Ha line) by a source at rest
where ® = —107°. (Typical star.)

Same as (a) for ® = —6 X 107> {value for the white dwarf 40 Eridani B).
Same as (a) for a source at rest at radius r =2.2 M outside a black hole
of mass M =1 Mg=1.47x10° cm.

Same as (¢) for r=2.02 M.
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(a)
(b)

(©)
(d)

(e)

8(a)
(b)

(a)
(b}

10(a)

(b)
(©)

11

12(a)
(b)

13(a)

Schwarzschild geometry and black holes

A clock is in a circular orbit at r =10 M in a Schwarzschild metric.
How much time elapses on the clock during one orbit? (Integrate the
proper time dr = |ds?|'/? over an orbit.)

It sends out a signal to a distant observer once each orbit. What time
interval does the distant observer measure between receiving any two
signals?

A second clock is located at rest at r=10 M next to the orbit of the
first clock. (Rockets keep it there.) How much time elapses on it between
successive passes of the orbiting clock?

Calculate (b) again in seconds for an orbit at r=6 M where M = 14 Mo.
This is the minimum fluctuation time one expects in the X-ray spectrum
of Cyg X-1: why?

If the orbiting ‘clock’ is the twin Artemis, in the orbit in (d), how much
does she age during the time her twin Diana lives 40 years far from the
black hole and at rest with respect to it?

Derive Egs. (11.17) and (11.21).
Derive Egs. (11.23) and (11.25).

(This problem requires access to a computer or a programmable calcu-
lator.)

Integrate numerically Eq. (11.23) or Eq. (11.25) for the orbit of a particle
(i.e. for r/M as a function of ¢) when E*=091 and (L/M)*=13.0,
Compare the perihelion shift from one orbit to the next with Eq. (11.34).
Integrate again when £?=0.95 and (L/ M)*=13.0. How much proper
time does this particle require to reach the horizon from r =10 M if its
initial radial velocity is negative?

For a given value of L, what is the minimum value of E that permits
a particle with m # 0 to reach the Schwarzschild horizon?

Express this result in terms of the impact parameter b (see Exer. 1).
Conversely, for a given value of b, what is the maximum value of L
that permits a particle wth m # 0 to reach the Schwarzschild horizon?
Relate your result to Fig. 11.3.

The right-hand side of Eq. (11.25) is a polynomial in u. Trace the u’
term back through the derivation and show that it would not be present
if we had started with the Newtonian version of Eq. (11.6). Interpret
this term as a redshift effect on the orbital kinetic energy. Show that it
is responsible for the maximum in the curve in Fig. 11.1.

Prove that Eq. (11.29) solves Eq. (11.28).
Derive Eq. (11.30) from Eq. (11.29) and show that it describes an ellipse
by transforming to Cartesian coordinates.

Derive Eq. (11.31) in the approximation that y is small. What must it
be small compared to?
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Derive Eqgs. (11.32) and (11.33) from (11.31).

Verify the remark after Eq. (11.33) that y =0 is not the correct circular
orbit for the given E and L by using Egs. (11.17) and (11.18) to find
the correct value of y and comparing it to y, in Eq. (11.33).

Show from Eq. (11.10) that a particle which has an inner turning point
in the ‘Newtonian’ regime, i.e. for r » M, has a value L » M. Use this
to justify the step from Eq. (11.34) to Eq. (11.35).

Compute the perihelion shift per orbit and per year for the following
planets, given their distance from the Sun and their orbital period:
Venus (1.1 X10'"' m, 1.9x107 s5); Earth (1.5%x10'' m, 3.2x10"s); Mars
(2.3x10"' m, 5.9x107s).

Derive Eq. (11.44) from (11.42), and show that it describes a straight
line passing a distance b from the origin.

Derive Eq. (11.46) from (11.42).

Integrate Eq. (11.46) to get (11.47).

We calculate the observed defiection of a null geodesic anywhere on
its path as follows. See Ward (1970).
Show that Eq. (11.47) may be solved to give

: M , . [(M?
bu=sm(¢o—¢0)+ﬂg[l——cos(qb—qso)] +0 27 ) (11.108)
In Schwarzschild coordinates, the vector
v->—(0,1,0,d¢/dr) (11.109)
is tangent to the photon’s path as seen by an observer at rest in the

metric at the position r. Show that this observer measures the angle «
in Fig. 11.15 to be

cos a = (- &,)/(0- 0)/%(E,- é,)"?, (11.110)
v « é
-
¢
Sx}'j\i" \
~
N
~
N

Fig. 11.15 The deflection of light by the Sun.

where €, has components (0, 1, 0, 0). Argue that ¢ — 7 + « is the apparent
angular position of the star, and show from Eq. (11.108) that if M =0
(no deflection}, ¢ — 7w +a = ¢,.



314

©

(d)

17

(2)

®)
(©)

(d)

(e

Schwarzschild geometry and black holes

When M # 0, calculate the deflection
Sp=m(p-—m+a)—d¢, (11.111)

to first order in M/b. Don't forget to use the Schwarzschild metric to
compute the dot products in Eq. (11.110). Obtain

8¢=-2—2—4[l—cos(¢—¢o)], (11.112)

which is, in terms of the position r of the observer,
_2M 1 —cos (¢ —¢y)
rosin(¢—do)

For M =1Mg=1.47km, r=1AU= 1.5 x 10° km, how far from the Sun

on the sky can this deflection be detected if one can measure angles to
an accuracy of 2 x 107 arcsec?

(11.113)

We can use Eq. (11.108) above on a different problem, namely to
calculate the expected arrival times at a distant observer of pulses
regularly emitted by a satellite in a circular orbit in the Schwarzschild
metric. This is a simplified version of the timing problem of the binary
pulsar system, which consists of two neutron stars of roughly equal
mass int orbit about one another, one of which is a pulsar, See Blandford
& Teukolsky (1976) and Epstein (1977).

Show that along the trajectory, Eq. (11.108), coordinate time elapses at
the rate

dt/de¢ =b[(bu)2(a —zgfbu)]- ) (11.114)

Integrate this to find the coordinate travel time for a photon emitted at
the position ug, ¢ and received at the position ug, ¢g, Where ug < ug.
Since Eq. (11.108) is satisfied at both (ug, ¢r) and (ug, dg), show that

U . ugp

SrR—Po="sIn{(¢Pg— ¢R){ | +—=cos (¢ — dg)
Ug U
+M“E(l_COS[¢E—¢R])2/Sin2(¢E‘¢R)}, (11.115)

to first order in M and ug/ug and that, similarly,

b=(1/ug){dr — o+ Mug[1 —cos (¢~ ¢g)F/sin (¢~ ¢r)}. (11.116)
Use these in your result in (b) to calculate the difference &t in travel
time between pulses emitted at (ug, ) and at (ug, ¢pg +8Pg) to first
order in 8¢g. (The receiver is at fixed (ug, ¢r).)

For an emitter in a circular orbit ug = const., ¢g = (g, plot the relativistic
corrections to the arrival time interval between successive pulses as a
function of observer ‘time’, {75. Comment on the use of this graph, in
view of the original assumption M/b« I.

Use the expression for distances on a sphere, Eq. (10.2), to show that
all the points on the line 6 = 0 in Fig. 11.8 are the same physical point.
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Derive Eqs. (11.52) and (11.53).

Using the Schwarzschild metric, compute all the nonvanishing Chris-
toffel symbols:

M 2M\ ™! M M
r!rt=_rrrr=_—2-(l"——) ’ rru=_~i.(‘_—)1
r r r r

2M
F'“ = rr“/Siﬂz 8= _f(l _—— ),

| r (11.117)
Fa,, = F‘w = ra¢¢/5in2 é= :,

I, =cot 6.
Show that all others vanish or are obtained from these by symmetry.
(In your argument that some vanish, you should use the symmetries
t->—t, ¢ > —¢, under either of which the metric is invariant.)
Use (a) or the result of Exer. (6.35) to show that the only nonvanishing
components of the Riemann tensor are

-1
R -2M(1-24)7,

r r

Rlyo=R'yy/sin? 6=M/r
R®,06 =2M sin’ 8/ r°, (11.118)
R’g,.g = Rr¢,‘/5in2 6= —M/rs,
plus those obtained by symmetries of the Riemann tensor.
Convert these components to an orthonormal basis aligned with the
Schwarzschild coordinates. Show that all components fall off as r~* for
large r.
Compute R****R,,,,,, which is independent of the basis, and show that
it is singular as r—->0.

A particle of m # 0 falls radially toward the horizon of a Schwarzschild
black hole of mass M. The geodesic it follows has E =0.95.

Find the proper time required to reach r=2M from r=3M.

Find the proper time required to reach r=0 from r=2M.

Find, on the Schwarzschild coordinate basis, its four-velocity com-
ponents at r=2.00f M.

As it passes 2.001 M, it sends a photon out radially to a distant stationary
observer. Compute the redshift of the photon when it reaches the
observer. Don’t forget to allow for the Doppler part of the redshift
caused by the particle’s velocity.

A measure of the tidal force on a body is given by the equation of
geodesic deviation, Eq. (6.87). If a human will be crushed when the
acceleration gradient across its body is 400 m s~ per meter, calculate
the minimum mass Schwarzschild black hole that would permit a human
to survive long enough to reach the horizon on the trajectory in Exer.
21.



316

23

25

26

27

28(a)
(b)

29

31

32

33

34(a)

(b)

35
(a)

Schwarzschild geometry and black holes

Prove Eq. (11.60).

Show that spacetime is locally flat at the center of the Kruskel-Szekeres
coordinate system, ¥ = v =0 in Fig. 11.10.

Given a spherical star of radius R » M and mean density p, estimate
the tidal force across it which would be required to break it up. Use
this as in Exer. 22 to define the tidal radius Ry of a black hole of mass
M,;: the radius at which a star of density p near the hole will be torn
apart. For what mass M, is Rr=100 M, if p=10"kgm™>, typical of
our Sun? This illustrates that even some applications of black holes in
astrophysical contexts require few ‘relativistic’ effects.

Given the area of a Kerr hole, Eq. (11.78), with r, defined in Eq. (11.74),
show that any two holes with masses m, and m, and angular momenta
m,a, and m,a, respectively have a total area less than that of a single
hole of mass m, + m, and angular momentum m,a, + m,a,.

Show that the ‘static limit’, Eq. (11.73), is a limit on the region of
spacetime in which curves with r, 6, and ¢ constant are timelike.

Prove Eq. (11.80).
Derive Eq. (11.82).

In the Kerr metric, show (or argue on symmetry grounds) that a geodesic
which passes through a point in the equatorial ‘plane’ (§ = »/2) and
whose tangent there is tangent to the plane (p® = 0) remains always in
the plane.

Derive Eqgs. (11.84) and (11.85).

Show that a ZAMO has four-velocity components U= A, U? = A,
U'=U°=0, A= g,,(—D), where D is defined in Eq. (11.80).

Show, as argued in the text, that the Penrose process decreases the
angular momentum of the hole.

Derive Eq. (11.94) from Eq. (11.93).

Use the area theorem to calculate the maximum energy released when
two Schwarzschild black holes of mass M collide to form a Schwarz-
schild hole.

Do the same for holes of mass m, and m,, and express the result as a
percentage of m, when m, >0 for fixed m,.

The Sun rotates with a period of approximately 25 days.

Idealize it as a solid sphere rotating uniformly. Its moment of inertia
is sMoR3, where Mo =2x10*" kg and R =7 x10* m. In SI units com-
pute Jo.
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Convert this to geometrized units.

If the entire Sun suddenly collapsed into a black hole, it would form
a Kerr hole of mass M and angular momentum Js. What would be
the Kerr parameter, ag = Jo/ Mg, in cm? What is the ratio ag/Mg?
Physicists expect that a Kerr hole will never be formed with a> M,
because centrifugal forces will halt the collapse or create a rotational
instability. The result of this exercise is that even a quite ordinary star
like the sun needs to get rid of angular momentum before forming a
black hole.

Does an electron have too much angular momentum to form a Kerr
hole with a < M? (Neglect its charge.)

For a Kerr black hole, prove that for fixed M, the largest area is obtained
for a =0 (Schwarzschild).

Conversely, prove that for fixed area, the smallest mass is obtained for
a=0.

An observer sits at constant r, ¢ in the equatorial plane of the Kerr
metric (0 = 7/2) outside the ergoregion. He uses mirrors to cause a
photon to circle the hole along a circular path of constant r in the
equatorial plane. Its world line is thus a null line with dr=d8 =0, but
it is not, of course, a geodesic. How much coordinate time t elapses
between the emission of a photon in the direction of increasing ¢ and
its receipt after it has circled the hole once? Answer the same for a
photon sent off in the direction of decreasing ¢, and show that this is
a different amount of time. Does the photon return redshifted from its
original frequency?

A difterent observer rotates about the hole on an orbit of r = const. and
angular velocity given by Eq. (11.70). Using the same arrangement of
mirrors, he measures the coordinate time that elapses between his
emission and his receipt of a photon sent in either direction. Show that
in this case the two terms are equal. (This is a ZAMO, as defined in the

text.)

Consider equatorial motion of particles with m # 0 in the Kerr metric.
Find the analogues of Egs. (11.84)~(11.88) using E and L as defined in
Egs. (11.2) and (11.3). Plot V, for a=0.5 M and L/ M =20, 12, and 6.
Discuss the qualitative features of the trajectories. For arbitrary a
determine the relations among E, L, and r for circular orbits with either
sense of rotation. What is the minimum radius of a stable circular orbit?
What happens to circular orbits in the ergosphere?

Derive Eq. (11.102) from Eq. (11.98) and the black-body law,
luminosity = cAT*, where A is the area and o is the Stefan—Boltzmann
radiation constant, o = 0.567 X 10”7 Wm™%(K)™*.

How small must a black hole be to be able to emit substantial numbers
of electron—positron pairs?
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Cosmology

12.1 What is cosmology?

The universe in the large. Newtonian theory is an adequate
description of gravity as long as, roughly speaking, the mass M of a
system is small compared to the size, R: M/ R « 1. Conversely, GR may
be expected to be important where either R becomes small faster than
M or M becomes large faster than R. The first case is that of compact
or collapsed objects: neutron stars and black holes have masses typical
of ordinary stars (though larger black holes may, of course, exist), but
much smaller radii. The second case is cosmology: if space is filled with
matter of roughly the same density everywhere, then, as we consider
volumes of larger and larger radius R, the mass increases as R® and
M /R eventually must get so large that GR becomes important.

What length scale is this? Suppose we begin increasing R from the
center of our Sun. The Sun is nowhere relativistic, and once R is larger
than Rz, M hardly increases at all until the next star is reached. The
system of stars of which the Sun is a minor member is a galaxy, and
contains some 10'' stars in a radius of about 15kpc. (One parsec,
abbreviated pc, is about 3 x10'*m.)

For this system, M/R ~107°, similar to that for the Sun itself. So
galactic dynamics has no need for relativity. (This applies to the galaxy
as a whole: small regions may be dominated by black holes or other
relativistic objects.)
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When we go to larger scales than the size of a galaxy we enter the
domain of cosmology.

In the cosmological picture, galaxies are very small-scale structures,
mere atoms in the larger universe. Even clusters of galaxies, which can
have thousands of members, are mere density fluctuations. Qurtelescopes
are capable of seeing to distances of the order of 10'" pc; the diameter
of a cluster of galaxies, typically some 10° pc, is much smaller. One finds
that, if one averages over distances of, say, 10° pc, the universe seems to
be pretty much the same everywhere (Tammann ez al. 1980). On the large
scale, the universe seems to have roughly the same density everywhere.
This density is very poorly measured. It is at least 107?* kg m ™~ but may
be considerably larger. (It is uncertain because we can measure directly
only the matter that sends electromagnetic radiation to us. There are
indirect indications that the amount of ‘dark’ matter may substantially
exceed 1077® kg m . See Peebles (1971 and 1980) for a discussion.) Taking
this density, then, M =4mpR’/3 is equal to R for R ~ 10" m ~ 10* Mpc.
We can certainly study objects, such as quasars, at distances of this order,
so to understand the universe that our telescopes reveal to us, we need GR.

Homogeneity and isotropy of the universe. The simplest approach to
applying GR is to use the remarkable large-scale uniformity we observe.
We see, on scales of 10° Mpc, not only a uniform average density but
uniformity in other properties: types of galaxies, their clustering densities,
their chemical composition and stellar composition. We therefore con-
clude that, on the large scale, the universe is homogeneous. What is more,
on this scale the universe seems to be isotropic about every point. What
this means is that it is not possible by making local observations to
distinguish one direction on the sky from another. (A universe could be
homogeneous but anisotropic, if, for instance, it had a large-scale mag-
netic field which pointed i:: ore direction everywhere and whose magni-
tude was the same everywhere. On the other hand, an inhomogeneous
universe could not be isotropic about every point, since most—if not
all — pieces in the universe would see a sky that is ‘lumpy’ in one direction
and not in another.) A third feature of the observable universe is its
expansion: all galaxies, on average, seem to be receding from us at a
speed which is proportional to their distance from us. This is easily
visualized in the ‘balloon’ model (see Fig. 12.1). Paint dots on a balloon
and then inflate it. As it grows, the distance on the surface of the balloon
between any two points grows at a rate proportional to that distance.
Therefore any point will see all other points receding at a rate propor-
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Fig. 12.1 As the figure is magnified, all relative distances increase at a rate
proportional to their magnitudes,

tional to their distance. This recessional velocity, called the ‘Hubble flow’
after its discoverer, gives another opportunity for anisotropy. The universe
would be homogeneous and anisotropic if every point saw a recessional
velocity larger in, say, the x direction than in the y direction. This does
not appear to be the case in our universe, however. The constant of
proportionality H in the equation relating recessional velocity and
distance,

v=Hd (12.1)
is called Hubble’s constant and has the value (75 =25) km/s/Mpc in the
astronomer’s peculiar but useful units. (In normal units it is 2.5X
107" s7'; in geometrized units 8.3 107" m™".) It has this value in all
directions on the sky, to quite high accuracy. This gives a good argument
for isotropy of the universe about us; if we are ‘typical’ (the Copernican
viewpoint), then the universe should be isotropic about every point and,
therefore, must be homogeneous.

One may object that the above discussion ignores the relativity of
simultaneity. If the universe is changing in time - expanding — then it
may be possible to find some definition of time such that hypersurfaces
of constant time are homogeneous and isotropic, but this would not be
true for other choices of a time coordinate. Moreover, Eq. (12.1) cannot
be exact since, for d > 1.2 X 10°* m = 4000 Mpc, the velocity exceeds the
velocity of light! These objections are right on both counts. Our discussion
was a local one (applicable for recessional velocities « 1) and took the
point of view of a particular observer, ourselves. Fortunately, the cosmo-
logical expansion is slow, so that over distances of 1000 Mpc, encompass-
ing most visible ordinary galaxies, the velocities are essentially nonrela-
tivistic. Moreover, the average random velocities of galaxies relative to
their near neighbors is less than 500 km s~', which is very nonrelativistic.
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So one can properly say that in our neighborhood of the universe there
exists a preferred choice of time, whose hypersurfaces are homogeneous
and isotropic, and with respect to which Eq. (12.1) is valid.

Models of the universe: the cosmological principle. If we are to make a
large-scale model of the universe, we must make some assumption about
regions that we have no way of seeing now because they are too distant
for our telescope. One must in fact distinguish two different inaccessible
regions of the universe. The first is the region which is so distant that
no information (traveling on a null geodesic) could reach us from it no
matter how early this information began traveling. Such regions usually
exist if the universe has a finite age, as ours does. (See Fig. 12.2.) These

our location _
t = now

particle horizon
unknown

unknown

uncbserved
t=0

Fig. 12.2 Schematicspacetime diagram showing the past history of the Universe,
back to t=0. The ‘unknown’ regions have not had time to send us information;
the ‘unobserved’ regions are obscured by intervening matter.

‘unknown’ regions are unimportant in one respect: they have no effect
on the interior of our past light cone, so how we incorporate them into
our model universe has no effect on the way it describes our history. On
the other hand, our past light cone is a kind of horizon, called ‘the
particle horizon’: every moment, more and more of the ‘unknown’ enters
the interior and becomes known. So the unknown regions can have a
real influence on our future. In this sense cosmology is a retrospective
study: it reliably helps us understand only our past. It must be acknowl-
edged, however, that if information began coming in tomorrow that
yesterday’s ‘unknown’ region was in fact very inhomogeneous, then we
would be posed difficult physical and philosophical questions regarding
the apparently special nature of our history until now. It is to avoid these
difficulties that a good number of scientists believe in the homogeneity
and isotropy of the unknown regions. This is called the cosmological
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principle, or the assumption of mediocrity: the ordinary-ness of our own
location in the universe. It is, mathematically, a powerful assumption.
We shall use it, bearing in mind its limited predictive power.

Another unknown region is that part of the interior of our past light
cone which our instruments cannot get information about. This includes
galaxies so distant that they are too dim to be seen; processes that give
off radiation - like gravitational waves — which we do not have the
sophistication to detect; and events that are masked from view, such as
those which emitted electromagnetic radiation before recombination (see
below). None of this is, in principle, unknowable, and the study of
cosmology can in fact help us to understand what went on in regions
not directly observable, by drawing conclusions from observable effects
these events have had (i.e. indirect observations). But one must be careful
of one fundamental limitation: the very early universe is not yet directly
accessible to our instruments, so we have no direct knowledge that it
had the high degree of isotropy and homogeneity that the present universe
has. Any theory framed in a homogeneous, isotropic model must be
treated cautiously. We do not have the time here to study anisotropic or
inhomogeneous models of the early universe, but this is a very active
field of research today.

12.2 General relativistic cosmological models

Robertson—Walker metrics. We shall adopt the following assump-
tions about the universe: (i)} spacetime can be sliced into hypersurfaces
of constant time which are perfectly homogeneous and isotropic; and
(ii) the mean rest frame of the galaxies agrees with this definition of
simultaneity. Let us therefore adopt comoving coordinates: each galaxy
is idealized as having no random velocity, as it has a fixed set of
coordinates {x’,i=1, 2, 3}. The time coordinate is ¢, the proper time for
each galaxy. The expansion of the universe —the change of proper dist-
ance between galaxies—is represented by time-dependent metric
coefficients. Thus, if at one moment, ¢,, the hypersurface of constant time
has the line element

d%(10) = hy(to) dx' dx’ (12.2)
(these hs have nothing to do with linearized theory), then the expansion
of the hypersurface can be represented by
dPP(t,) = f(t,, to)hy;(to) dx' dx’
= hy(t;) dx' dx’, (12.3)
Here we have assumed that all the hys increase at the same rate; otherwise
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the expansion would be anisotropic (see Exer. 3, § 12.6). In general, then,
Eq. (12.2) can be written

dI*(t)= R*(t)h; dx’ dx’, (12.9)

where R is an overall scale factor which equals | at t,, and where h; is
a constant metric equal to that of the hypersurface at t,. We shall explore
hy in detail in a moment.

First we extend the constant-time line element to a line element for
the full spacetime. In general, it would be

ds®=—dt* + g, dt dx' + R*(t)h,; dx' dx’, (12.5)

where goo = —1, because ¢ is proper time along a line dx' =0. However,
if the definitions of simultaneity given by f=const., and by the local
Lorentz frame of a galaxy, are to agree (assumption (ii) above), then &,
must be orthogonal to € in our comoving coordinates. This means that
goi = €, €, must vanish, and we get

ds® = —d1* + R*(t)h, dx' dx’. (12.6)

What form can h; take? It must, first of all, be isotropic about every
point, in particular spherically symmetric about the origin of the coordin-
ates. When we discussed spherical stars we showed that such a metric
always has the line element

di*=¢e**"7 dr’ + 7 dQ (12.7)

This follows only from isotropy at one point. Now, isotropy about every
point implies homogeneity. In particular, if the three-space is curved,
the Ricci scalar curvature R’ must have the same value at every point.
We can calculate R'; using Egs. (10.15)—(10.17) of our discussion of
spherically symmetric spacetimes in Ch. 10, by realizing that G; for the
line element, Eq. (12.7), above is obtainable from G, for the line element,
Eq. (10.7), of a spherical star by setting ® to zero. One gets

Grr —_ __li CZA(] — e—ZA)’
r

Goo=—re 27, (12.8)
G'bdt = Sin2 0699.
The Ricci scalar curvature is found from
Gl‘j = Rg _'%gl:fR’
G'=R'-3(3) R=-3R, (12.9)
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Then we get
R = _2[ ____!_i e2A(1 _e—-2A) e—ZA___ 2r e—ZAArr—Z]
r
2.2
r2 r2

%[1 —(re*"Y1. (12.10)

e M1 —=2rA)

-

Demanding homogeneity means setting R to some constant k:
2
k=-r—2[r(1—e'2")]’. (12.11)
This is easily integrated to give

1

2A

v = e = , ]2.12
£ | —ikr’—A/r (z.12)
where A is a constant of integration. As in the case of spherical stars,
we must demand local flatness at r=0: g,.(r =0) = 1. This implies A=0.

Re-defining the constant k gives
1

8er

=1--kr2

2
d12=1d'k - +r2dQ>. (12.13)

— Kr

We have not yet proved that this space is isotropic about every point;
all we have shown is that Eq. (11.13) is the unique space which satisfies
the necessary condition that its scalar curvature be homogeneous. Thus,
if a space that is isotropic and homogeneous exists at all, it must have
the metric, Eq. (12.13), for some k. In fact, the converse is true: the metric
of Eq. (12.13) is homogeneous and isotropic for all k. General proofs
can be found in, for example, Weinberg (1972) or Schutz (1980b). We
will demonstrate it explicitly for positive, negative, and zero k separately
in the nextsection. Therefore, the cosmological spacetime has the metric

dr’

1 —kr?

This is called the Robertson—-Walker metric. Notice that we can, without
loss of generality, scale the coordinate r in such a way as to make k take
one of the three values +1, 0, —1, For, consider k = —3. Then re-define

F= V3r and R=1/V3R, and the line element becomes
=2

ds’=~de* + R*(1) [ dr

c1s2=~dr2+R2(t)[ +r? d().z]. (12.14)

1_f2+F2 dﬂz]. (12.15)
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What one cannot do is change the sign of k Therefore there are only
three spatial hypersurfaces we need consider. We do this next. .

Three types of universe. Consider first k = (. Then, at any moment f,, the
line element with dr=0 is

dP =df + 7 dQ? (12.16)
with F = R(t,)r. This is obviously the metric of flat Euclidean space. This
is the flat Robertson—-Walker universe. That it is homogeneous and
isotropic is obvious.

Consider, next, k = +1. Let us define a new coordinate x(r) such that
dr’

1—r

dy’=——=. (12.17)

This implies that

r=sin y (12.18)
and that the line element for the space t =1, is
di? = R¥(to)[dx? +sin® y (46 +sin’ 8 dé?)]. (12.19)

We showed in Exer. 33, § 6.9, that this is the metric of a three-sphere of
radius R(?,). This model is called the closed, or spherical Robertson—
Walker metric and the balloon analogy of cosmological expansion is
particularly appropriate (Fig. 12.1) for it. Remember that the fourth
spatial dimension — the radial direction to the center of the three-sphere —
has no physical meaning to us: no known physical law permits any
measurements in that dimension.

The final possibility is k= —1. A similar coordinate transformation
(Exer. 7, § 12.6) gives the line element

di*= R*(t,)(dx* +sinh? y dQ?). (12.20)

This is called the hyperbolic, or open, Robertson-Walker model. Notice
one peculiar property. As the proper radial coordinate y increases away
from the origin, the circumferences of spheres increase as sinh . Since
sinh y > yx for all y > 0, it follows that these circumferences increase more
rapidly with proper radius than in flat space. For this reason this hypersur-
face is not realizable as a three-dimensional hypersurface in a four- or
higher-dimensional Euclidean space. That is, there is no picture which
we can easily draw like that for the three-sphere. The space is call ‘open’
because, unlike k = +1, circumferences of spheres increase monotonically
with y: there is no natural end to the space.

In fact, as we show in Exer. 7, § 12.6, this geometry is the geometry
of a hypersurface in Minkowski space: specifically. a hypersurface of
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constant timelike interval from the origin. Since this hypersurface has
the same interval from the origin in any Lorentz frame (intervals are
Lorentz invariant), this hypersurface is indeed homogeneous and
isotropic.

Dynamics of Robertson—Walker universes: the big bang. Until now we
have simply cataloged possible geometries; now we ask how Einstein’s
equations predict how they should behave. We idealize the universe as
filled with a perfect fluid p = p(t), p=p(t), etc. First, consider T**,, =0.
Since there is spatial homogeneity, only the time component of this
equation is nontrivial. It is easy to show that it gives

d
a(pR’)=-p~£~(R3), (12.21)

where R(t)is the cosmological expansion factor. This is easily interpreted:
R? is proportional to the volume of any fluid element, so the left-hand
side is the rate of change of its total energy, while the right-hand side is
the work it does as it expands (—p d V). There are two cases of interest
in cosmology, the matter-dominated and radiation-dominated eras. In
the matter-dominated era, which is the present epoch, the main energy
density is that of ordinary matter in galaxies, whose random velocities
are small and which therefore behave like dust: p =0. So we have

Matter-dom: (—% (pR*)=0. (12.22)

In a radiation-dominated era (as we shall see, in the early universe) the
principal energy density is in radiation or relativistic particles, which
have an equation of state p =3p (Exer. § 4.10). Then we get

. d d
Radiation-dom: T (R = —1p P (RY), (12.23)
or
Radiation-dom: Eid_t (pRY=0. - (12.29)

The Einstein equations are also easy to write down. The Einstein tensor
for Eq. (12.14) has a time component,

G, =3(R/R)* +3k/R? (12.25)
and also r-r, -6, and ¢—¢ components. These last three are all propor-
tional, by isotropy, so contribute only one equation. And even this
equation gives no new information, since it is obtained from the G,
equation via the Bianchi identities. (The same happened for the spherical
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star.) Therefore, besides Egs. (12.22) or (12.24), we have only

G,=8=T, (12.26)
or
(R/R)* = ~k/R*+%mp. (12.27)
If one wants to include the cosmological constant in Eq. (12.26) it is easy
to do so; however, we will reserve this for an exercise (Exer. 9, § 12.6).
Let us see what the equations predict for each era. For matter-domi-
nated universes we have p = A/ R?, where A is a constant, by Eq. (12.22).
This transforms Eq. (12.27) into
(R/RY = GmA) 5~ =5
or
(RY = %A%— k. (12.28)

We can use effective-potential techniques here. Define

(R)*=(=k)— Vu(R),  Vm=—3mA/R; (12.29)
Vum(R) is plotted in Fig. 12.3. Then the universe can only exist in regions
where —k exceeds Vy(R), so that (R)? > 0. Since we know that, at present,

vt

Fig. 12.3 Effective potential for the evolution of a Robertson-Walker universe.
The different values of k play the role of different values of energy in analogous
diagrams like Fig. 11.1.

R >0, then there are three possible futures: if k= —1, the universe
expands to infinite radius with finite terminal velocity; if k=0, the
universe expands to infinite radius with ever decreasing speed; and if
k = +1 it reaches a maximum radius R =%7A, at which it has a turning
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point, and then it re-collapses. Perhaps more interesting is the past history
of all of these: all of them originate at R =0; none has a turning point
for small R. This is the ‘Big Bang’.

If the universe is today described by Fig. 12.3, then, much earlier, it
must have been smaller, denser and hotter. Since the density of matter
is proportional to R™*, while that of radiation to R™* (Egs. (12.22) and
(12.24)), there will be some radius at which the two will have been equal.
Earlier than that, we can, to a good approximation, use the radiation-
dominated equation of state. Then we can write p = BR™*, and Einstein’s
equations, Eq. (12.27), give

R*=%xB/R*—k. (12.30)

Qualitatively, this differs in no way from Eq. (12.28), so we are indeed
permitted to conclude that the universe originated at R =0, provided, of
course, it is adequately described as homogeneous and isotropic back
then. We'll come back to this point. First we must ask whether R=0
was a finite or infinite proper time in the past. From Eq. (12.30) we can
see that if R is sufficiently small, then k is negligible, i.e. all universes
have the same initial dynamics, and we are dealing with

R*=%7BR7?,
or
dR
G-;=(§7TB)'/2R"'. (12.31)

This has the solution

R*=(3xB)'*t +const. (12.32)
So, indeed, R =0 was achieved at a finite time in the past, and we
conventionally adjust our zero of time so that R=0at 1 =0.

The conceptual and philosophical implications of this result are enor-
mous; we have simply no framework within which we can meaningfully
discuss earlier times in this model. How certain, then, is our conclusion
that the universe began with a Big Bang? First, one must ask if isotropy
and homogeneity were crucial; the answer is no. The ‘singularity
theorems’ of Penrose and Hawking (see Hawking & Ellis 1973) have
shown that our universe certainly had a singularity in its past, regardless
of how asymmetric it may have been. But the theorems predict only the
existence of the singularity: the nature of the singularity is unknown,
except that it has the property that at least one particle in the present
universe must have originated in it. Nevertheless, the evidence is strong
indeed that we all originated in it. Another consideration however is that
we don’t know the laws of physics at the incredibly high densities (p - %)
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which existed in the early universe. The singularity theorems of necessity
assume (1) something about the nature of T") and (2) that Einstein’s
equations (without cosmological constant) are valid at all R Almost
certainly a proper theory of quantum gravity and an increasing under-
standing of high-energy physics will revise our view of the early universe
to some degree. We will come back to this point at the end of § 12.4.
For now, we will just remark that the very earliest epochs are not
understood with any confidence.

12.3 Cosmological observations

Observations in an expanding universe. Before we discuss the
physical history of the universe insofar as our understanding of physics
allows, we must learn how observational data are gathered and what
they tell us about the universe. The objects observed are on the observer’s
past light cone, not on his preferred ¢ = const. hypersurface, and this fact
complicates the analysis of the observations in two ways. First, the
universe changes along the past light cone: because of its expansion, it
is homogeneous only on a 1= const. hypersurface. Second, astronomical
objects evolve in time in ways which are very incompletely understood,
so it is dangerous to assume that a distant object, say a giant elliptical
galaxy, shares all the properties of similar nearby objects.

Deceleration parameter. To illustrate the importance of these two prob-
lems, and the general subtlety of cosmological analysis, we shall look at
a fundamental problem: deducing the mass density of the universe from
its deceleration. A fuller discussion is in Weinberg (1972). The general
idea is that the Hubble law, Eq. (12.1), tells us how fast the universe is
expanding; if we extend that law to very distant objects we should see
the expansion changing with time, so we should be able to see the
expansion slowing down. This in turn is related to the mass density
through the time derivative of Eq. (12.28):

RR = ~37AR?R= —%mpRR.
It is convenient to define the dimensionless deceleration parameter
g=—-RR/R? (12.33)
in terms of which we have
p=£‘; g(R/R). (12.34)

Recall that the scale factor R contains an arbitrary multiplicative con-
stant, so that only ratios in which that constant cancels out are measur-
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able; g and p are evidently measurable. Notice also that Eq. (12.27) picks
out a certain density as special: since R/R is measurable (it is just
Hubble’s constant, as we will see below), the kind of universe we live in
(sign of k) is determined by the magnitude of p relative to the critical
density p. for which k = 0:

pe=—(R/R)" (12.35)
7

The ratio of the universe’s true density to the critical is called Q
Q=p/p.=24. (12.36)

So if we can measure g, the deceleration, we can deduce the total density
of the universe p and, incidentally, the global structure of the universe
(if the cosmological principle applies): if {1 <1 the universe is open, if
(Q>1 it is closed! (If €1 is so close to 1 that local density fluctuations
caused by clustering of galaxies make it larger than 1 in some places and
smaller in others, then the simple Friedman model will break down
eventually.)

Let us anticipate a later result by denoting

R/R= H(1). (12.37)
If we Taylor-expand R(?) about the present time 1, then we may write
R(1)=Ry{1+ Hy(t— tg)—3qoH3 (1 — to)’ +- ], (12.38)

where subscripted zeroes denote quantities evaluated at f,. What does
Hubble’s law, Eq. (12.1), look like to this accuracy? The recessional
velocity v is deduced from the redshift of spectral lines, so it is more
convenient to work directly with the redshift. Then Exer. 12, § 12.6 shows
that

1 +2z=Ry/R(1), (12.39)
where 1 is the time of emission of the light observed now. From Egq.
(12.38) we then have

z(1)=Hy(to— t) +(1 +qo/ ) Hi(ty— t)* +- - - . - (12.40)
This is not directly useful yet, since we have no independent information
about the time ¢ at which a galaxy emitted its light. Perhaps Eq. (12.40)
is more useful when inverted:

to—t=z(t)/ Hy— (1 +qo/2)z(1)*/ Ho +- - - . (12.41)

Luminosity distance. By analogy with Eq. (12.1), we would like to replace
tin Eq. (12.40) with distance. But what distance? Not coordinate distance,
which would be unmeasurable. What about proper distance ? The proper
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distance between the events of emission and reception of the light is
zero, since light travels on null lines. The proper distance between the
emitting galaxy and us at the present time is also unmeasurable: in
principle, the galaxy may not even exist now, perhaps because of a
collision with another galaxy. To get out of this difficulty, let us ask how
distance crept into Eq. (12.1) in the first place. Distances of nearby
galaxies are always inferred from luminosity measurements. An object
whose absolute luminosity L is known (say from a theory of its nature)
is observed in a galaxy; its flux F is measured and its distance d deduced
from the relation

L=4nd’F. (12.42)

The role of 4 in Eq. (12.1) is, then, as a replacement for the observable
(L/ F)"%. So what we should be aiming for is to replace 1 in Eq. (12.40)
by L/F, which would then relate the observables L/F and z to the
parameter q, that we wish to deduce.

We must therefore answer the question: What is the flux of an object
of luminosity L, at time ¢, which is observed at time ¢,? Suppose for
simplicity that the object gives off only photons of frequency », at time
I.. In a small interval of time &8¢, it emits

N =Lét./hv, (12.43)

such photons. We must calculate the area of the sphere that these photons
occupy at a later time. From the line element, Eq. (12.14), with the spatial
origin at the emitting event, a radial null line obeys the equation

dr/de=(—kr®)'?/R(1). (12.44)
In the spirit of our earlier Taylor expansion we write this as

Rodr=[1—- Hyt-t,)] d
(We keep only the accuracy that we shall later require.) This can be
integrated to give

Roro=(to= t)[1 +3Ho(to— 1)+ * °], (12.45)
where r, is the radial coordinate of the photon at t,. The N photons are
therefore spread out over an area given by the spherical part of the line
element, Eq. (12.14):

A= 4m(Roro)’. (12.46)
The photons have been redshifted by the amount given in Eq. (12.39) to
frequency v:

hvy = hv /(1 +2). (12.47)
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Moreover, they arrive spread out over a time 8¢, which is also redshifted:

8ty = ot (1 + 2). (12.48)
The energy flux at ¢, is thus
F = Nhyo/(Abdty) = L/ A(l +z)°. (12.49)

Rather than use the ratio L/ F directly, it is conventional to retain the
language of distance and define the luminosity distance d; of an object
by Eq. (12.42):

d =(L/4wF)">. (12.50)

This is the distance at which the object would be if it were stationary in
Euclidean space with luminosity L and flux F. Then we have

d. =(1+2)Rr,. (12.51)

We can now eliminate ¢ from our formulae. If we substitute Eq. (12.41)
for t,—1,. into Eq. (12.45) for Ryr,, and put the result into Eq. (12.51)
with (1 +z) replaced using Eq. (12.40), we obtain

Hodl_z ¥4 +%(1 - QQ)22+' e, (12.52)

Remembering that, to lowest order, z = v and d; = d, we see that this is
indeed the law which Hubble found empirically, Eq. (12.1). Incidentally,
it justifies our earlier identification of H with R/R in Eq. (12.37).

It is clear from Eq. (12.52) that we can measure q, if we can find an
object sufficiently far away for which d; is known, i.e. whose intrinsic
luminosity is known. This is not easy, since few objects are understood
well enough theoretically. Many candidates have been explored (see
Peebles 1980), but, so far, the best bet seems to be supernovae in very
distant galaxies (Kirschner 1976, Branch 1977, Wagoner 1980a). The
required observations do not appear to be practicable until the Space
Telescope is launched. When we do eventually have a reliable value for
4o, the problem will then be to account for the required density of ‘dark’
matter: the excess of p = 3q,Hj /4 over the density of luminous matter
that we can observe. .

Eq. (11.52) illustrates the two difficulties mentioned earlier, that of
accounting for the effect on observations of the expanding universe and
that of knowing enough about objects at early times to apply the mathe-
matical formulae. Its derivation illustrates another point which we have
encountered before: in the attempt to translate the nonrelativistic formula
v = Hd into relativistic language, we were forced to re-think the meaning
of all the terms in the equations and to go back to the quantities which
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one can directly measure. If the study of GR teaches us only one thing,
it should be that physics rests ultimately on measurements: concepts like
distance, time, velocity, energy and mass are derived from measurements,
but they are often not the quantities directly measured, and one’s assump-
tions about their global properties must be guided by a careful under-
standing of how they are related to measurements.

The extragalactic distance scale. The observational task of deducing d,
is often called building up the cosmological distance scale. It works as
follows. Suppose that a certain class of stars is known to have intrinsic
luminosity L, and is observable at d, between r and 10r. Suppose another
kind of star is observed in physical association with the more distant
stars of the first class. Then its intrinsic luminosity L, may be deduced
from the ratio of the two fluxes. If this is considerably larger than L,
then the second class of stars may be observable at d; » 10r. If, in addition,
there is good reason to believe that the more distant stars of the second
class have the same luminosity L, then their distance can be deduced
from their flux, even where stars of the first class are unobservable. We
say that distances to stars of the second kind have been calibrated in
terms of distance to stars of the first kind.

The most uncertain step is, of course, the assumption that the intrinsic
luminosities L, and L{ are uniform within each class of objects. Another
source of uncertainty is the distance to (or intrinsic luminosity of) the
nearest objects in the distance scale. In practice, several classes of objects
are used at each distance (see Table 12.1) but, at present, estimates of
H, vary from 50 km s~' Mpc™' (Tammann et al. 1980) to 95 kms~' Mpc ™"
(de Vaucouleurs 1982). In view of this disagreement, we adopt the value
H=75kms™' Mpc™' in this book, but regard it as uncertain by 30% or
so. There are no reliable values of q,.

Satellite-based measurements in the late 1980s may improve the situ-
ation considerably. The European satellite Hipparcos may provide con-
siderably better data on parallaxes for calibrating the nearest of the
objects in the first group in Table 12.1. The Space Telescope may be able
to use the supernova method mentioned earlier to give good data for H,
and moderate accuracy for g, (Wagoner 1980a). It should be noted that
this method is an angular-diameter method rather than a luminosity
method. The effective distance d, that it defines is the ratio of the true
diameter D to the apparent angular size @ of the supernova. The relation
between d, and z is deduced in Exer. 16, § 12.6.
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Table 12.1. Distance indicators

Class of object Where calibrated Maximum distance used

(1) Cephied variables
RR Lyrae variables
Novae
AB supergiants
Eclipsing binaries
(2) Bright supergiant stars
Supergiant variables
Globutar clusters
HII regions
(3) Total magnitudes
of certain
spiral galaxies
Visual diameters
of certain
spiral galaxies Nearby gataxies d <100 Mpc, sufficient
Brightest galaxies for calculating H,
in clusters
Supernova maxima
Bright superassociations
21 cm line width

Within our Galaxy, Local group of galaxies,
i.e., by parallax d, <1 Mpc

and stetlar-model

computations

Nearby galaxies,

Within our Galaxy d, <8 Mpc
L

and the local group,
using (1) above

12.4 Physical cosmology

Physical regimes. Observations of our ‘neighborhood’ can, in
principle, tell us what sort of universe we live in, but in order to understand
the early history of the universe, one must solve the dynamical equations
of GR using realistic physics for the stress—energy tensor. Because a full
discussion of the physics is inappropriate in this introductory textbook,
our discussion will be largely descriptive. Going back in time from the
present, there are a number of major milestones, each of which presents
its own physical problems: galaxy and star formation, recombination of
the ionized plasma into neutral hydrogen, production of deuterium and
helium, thermal energies exceeding those achievable in present-day par-
ticle accelerators, hypothetical ‘grand unification’ energy scales, and the
quantum gravity regime. We shall treat each regime in turn.

Galaxy formation. If the universe were perfectly homogeneous, galaxies
could not form. But they did indeed form, probably between redshifts
of 100 and 10. (It is customary to use redshift as a delimiter of epochs.
Radius or time can be deduced from Eq. (12.39) or Eq. (12.41). Redshift
is more natural than time, since most physical problems depend on the
density of the universe, which is a function only of z and p,; by contrast,
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an epoch’s time is uncertain because H, is uncertain.) The initial density
perturbations which produced galaxies had to be much greater than those
which might be attributed to random placement of hydrogen atoms within
an overall smooth density, and we have very little idea about how these
perturbations arose. Recent work (Peebles 1980) suggests that if we accept
an initial random density perturbation, then the observed properties of
galaxies — their clustering and angular momenta — may not be too hard
to explain. But much observational work is needed before we can infer
the initial perturbation spectrum with confidence. It is not known whether
stars formed before or after galaxies began condensing, and whether
spiral and elliptical galaxies have similar or radically different histories.

Decoupling and the microwave background. One of the most important
cosmological observations was the accidental discovery of the cosmic
microwave background radiation by Penzias and Wilson in 1965. (See
Penzias 1979 and Wilson 1979 for their fascinating accounts of the
discovery in their Nobel-prize acceptance speeches.) It is a radiation
bath of nearly uniform temperature 2.7 K in which we and, apparently,
the whole universe, are immersed. This radiation had actually been
predicted by Gamow (1948) and Alpher & Herman (1949), but the
prediction had been ignored. It is usually interpreted as the remnant of
the radiation present in a high-temperature phase in the early universe.

The present temperature of the microwave background is 2.7K, and
increases inversely as R(?) (as for any adiabatic compression of a photon
gas: see Exer. 8, § 12.6), hence as 1 +z For z~3 x 10’ the temperature
will be such that the energy kT is enough to ionize hydrogen. In fact,
because there are about 10° black-body photons for each hydrogen atom,
ionization will be complete at rather lower temperatures, such that the
high-energy tail of the black-body distribution contains enough photons
to ionize the gas. This happens at z ~ 1600, depending on ) and H,
(Peebles 1971: see Exer. 11, § 12.6). For z less than this, photons move
through neutral hydrogen or, later, empty space, and have a very small
chance of being scattered. This means that the observed microwave
photons come to us directly from z ~ 1600, and their isotropy implies
the isotropy of the universe at that epoch.

Infact, the microwave background is not perfectly isotropic, but, rather,
has a dipole anisotropy: temperature a maximum in one direction and a
minimum in the opposite direction. This is easily explained as an effect
of Earth’s motion relative to the cosmological rest frame, a motion toward
the direction of greatest temperature. Measurements indicate a velocity
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of about 500 kms™' roughly toward the Virgo cluster (Smoot & Lubin
1979). Since this is very large compared to velocities within our Galaxy,
the whole Galaxy must be falling toward the massive Virgo cluster at
this rate. The dipole anisotropy does not indicate an anisotropy in the
geometry of the cosmological model: this would require a quadrupole
anisotropy, which has not been observed.

The fact that the present microwave radiation is decoupled from the
matter means that the two fluids have evolved independently since
decoupling. The radiation gas has retained a Planck spectrum with
decreasing temperature. The hydrogen gas initially remained in rough
thermal equilibrium, but with its own temperature independent of that
of the radiation. But, soon, density perturbations caused different regions
to separate, and hydrogen is therefore no longer in a global thermal
equilibrium state.

Element production. If we go earlier still, we reach temperatures at which
nuclear reactions can occur, At still earlier times, thermal energies will
be enough to break up any nuclei, so that for T> 10" K (z>3x10%,
one expects only protons, neutrons, electrons, neutrinos, and radiation.
As the universe expands, first neutrons and later deuterium and helium
‘freeze out’ (Peebles 1971). If the universe is assumed to be homogeneous
at this early epoch (for which we have little evidence), then one can
calculate the final abundances of the various elements. These numbers
are, in principle, sensitive to the rate at which the universe was then
expanding (and hence to the present density), since abundances freeze
out when the decreasing density and temperature cause reaction times
to become long compared to the expansion time. Calculations (Wagoner
1980b) show that the abundance of ‘He is relatively insensitive to (,
being of the order of 20% by mass relative to 'H, in good agreement
with the present observed abundance. The abundance of deuterium, 2H,
however, is very sensitive to {). Since the subsequent nuclear history of
the universe probably does not make more 2H, the present abundance
of ~107°, or so, implies Q < 0.06. This is one of the strongest arguments
for a low-density, open universe, but it is subject to uncertainties, par-
ticularly regarding the validity of the assumption that the early universe
was as homogeneous and isotropic as today’s universe.

Limit of present-day experimental physics. In the era of helium production,
the major uncertainty is the inhomogeneity, not the physics. But at earlier
epochs we reach temperatures at which collisions occur at energies in
excess of those accessible in the laboratory. Beyond that, our investiga-
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tions become more speculative, but not necessarily less rewarding. In
fact, cosmology may be regarded as one testing ground for theories of
physics. Any constraints that present-day observations can put on the
very early universe, however weak, are important because that era is the
only time and place in the history of the universe where such very
high-energy nuclear reactions have occurred. The limit of our confidence
at present is a thermal energy of about 100 GeV, up to which the unified
Weinberg—Salaam model of the electroweak interaction has been tested.
Even at these energies, the interactions of quarks dominate the physics
of the cosmological fluid and cause considerable uncertainty. As the
theory improves, one might hope to calculate such numbers as the
expected density of free quarks in the universe (Wagoner 1980b).

Earlier still. At earlier times and higher energies, physics becomes still
more speculative, but the problems one can hope to solve are even more
fascinating. Modern gauge theories give reason to hope that the strong
interaction will be unified with the electroweak interaction in a ‘grand
unified theory’, which might be expected to explain why the entropy of
the universe is what it is and why the number of baryons is very near to
the closure density, but not equal to it (or is it?). This could take us to
energies as high as 10'* GeV, at which all the interactions could have
comparable strength. In fact, such theories make even the vacuum a
dynamical entity and may explain how chaotic initial conditions evolved
into the homogeneous universe we see today. A recent model for this is
the ‘inflationary universe’. But even at energies of 10'* GeV the geometry
can still be regarded as classical. Not until we reach the ‘Planck mass’
of 10" GeV (see Exer. 17, § 12.6) do we expect that quantum gravity will
play a role. Perhaps it, too, will one day be part of a unified theory of
all physical interactions. Perhaps then we will learn whether it is meaning-
ful to ask what came earlier than the big bang.

Open or closed? The cosmological question which seems to generate the
most interest is whether our universe is open or closed. The reason this
question excites such debate is not scientific; the value of g, is probably
not crucial to an understanding of the main features of the early universe,
and the different futures predicted by Einstein’s equations for the different
models will have no practical influence on humanity. Rather, the interest
is philosophical: some scientists prefer infinite universes lasting infinite
times, while others prefer finite but unbounded ones that may cycle
through an unending sequence of ‘big bangs’. Both philosophical points
of view depend not only on the assumed value of q,, but also on the
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cosmological principle: no local measurement can tell us directly whether
our universe is finite or not or, indeed, anything at all about regions
outside our present particle horizon.

The evidence is scanty. Direct measurements of d H/dt are not reliable
yet. Observations of the mean density of the universe fall well short of
the critical density, Eq. (12.35), whichis 8 X 107>*m™2or 1 x 107 ** kg m™>.
The evidence of the deuterium abundance discussed above suggests
6 x107** kg m . Other measures, however, argue for somewhat larger
numbers, up to 3x107%" kg m™>. These include the evidence that there
is considerable dark matter (‘missing mass’) in galaxies and clusters, as
deduced from their dynamical behavior. At the present time there is no
strong evidence for a ‘closure density’ of 107?* kg m™>. So the universe
appears to be open. Perhaps the most interesting question is: Why is the
universe so near to the critical density?

12.5 Bibliography
Standard cosmology is treated in great detail in Weinberg (1972)
and updated by Zel’dovich (1979). Cosmological models become some-
what more complex when the assumption of isotropy is dropped, but
they retain the same overall features: the Big Bang, open vs. closed. See
Ryan & Shepley (1975). A well-balanced introduction to cosmology is
Heidmann (1980).

Astrophysics makes use of cosmological models in studying, for
example, galactic evolution, the cosmic microwave background radiation,
and galaxy formation. These are discussed in Peebles (1980), Liang &
Sachs (1980), and Balian et al. (1980).

Much cosmological research is directed at deciding whether our uni-
verse is open or closed, i.e., at determining the present mass density. See
Gott et al. (1974) for one view, Ostriker et al. (1974) for another.

An important current research area is into inhomogeneous cos-
mologies. See MacCallum (1979). Another subject closely allied to
theoretical cosmology is singularity theory: Geroch & Horowitz (1979),
Tipler et al. (1980). See also the stimulating article by Penrose (1979)
on time asymmetry in cosmology.

12.6 Exercises

1 Use the metric of a two-sphere to prove the statement associated with
Fig. 12.1, that the rate of increase of the distance between any two
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points as the sphere expands (as measured on the sphere!) is propor-
tional to the distance between them.

The astronomer’s distance unit, the parsec, is defined to be the distance
from the Sun to a star whose parallax is exactly one second of arc. (The
parallax of a star is half the maximum change in its angular position
as measured from Earth as Earth orbits the Sun.) Given that the radius
of Earth’s orbit is 1 AU =10'"' m, calculate the length of one parsec.

Show that if h;(t,)# f(¢,, to)h;(t;) for all i and j in Eq. (12.3), then
distances between galaxies would increase anisotropically: the Hubble
law would have to be written as

vf=Hijxj {12.53)
for a matrix H'; not proportional to the identity.

Show that if galaxies are assumed to move along the lines x' = const.,
and to see the local universe as homogeneous, then g,; in Eq. (12.5)
must vanish.

Prove the statement leading to Eq. (12.8), that we can deduce G;; of
our three-spaces by setting ® to zero in Egs. (10.15)—(10.17).
Derive Eqgs. (12.9) and (12.10).

Show that the metric, Eq. (12.7), is not locally flat at r =0 unless A=0
in Eq. (12.12).

Find the coordinate transformation leading to Eq. (12.20).

Show that the intrinsic geometry of a hyperbola t*—x?—y’—z?=

const. >0 in Minkowski spacetime is identical with that of Eq. (12.20)

in appropriate coordinates.

Use the Lorentz transformations of Minkowski space to prove that the
= —1 universe is homogeneous and isotropic.

Show from Eq. (12.24) that if the radiation has a black-body spectrum
of temperature T, then T is inversely proportional to R.

Prove Eq. (12.25).

With the cosmological constant A, Eq. (12.27) becomes
(R/RY¥=—-k/R>+8mp/3+A/3. (12.54)
Repeat the qualitative analysis of the analogue of Fig. 12.3. What

qualitatively new cosmological behaviors can you find? Be sure to
consider both signs of A.

(Parts of this exercise are suitable only for students with access to a
computer or programmable calculator.) Construct a more realistic
equation of state for the universe as follows.
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Assume that, today, the matter density is pm, = m x 10?7 kg m™> (where
m is of order 1) and that the cosmic radiation has black-body tem-
perature 2.7 K. Find the ratio € = p,/ p,, where p, is the energy density
of the radiation. Find the number of photons per baryon, ~em,c?/kT.
Find the general form of the energy-conservation equation, T , =0,
in terms of (t) and m(1).

Numerically integrate this equation and Eq. (12.27) back in time from
the present, assuming R/R=75kms™' Mpc™' today, and assuming
there is no exchange of energy between matter and radiation. Do the
integration for m=10.3, 1.0, and 3.0. Stop the integration when the
radiation temperature reaches E/26.7k, where E;is the ionization energy
of hydrogen (13.6 eV). This is roughly the temperature at which there
are enough photons to ionize all the hydrogen: there is roughly a fraction
2 x 1077 photons above energy E; when KT = E;/26.7, and this is
roughly the fraction needed to give one such photon per H atom.
For each m, what is the value of R(#)/R, at that time, where R, is the
present scale factor? Explain this result. What is the value of ¢ at this
epoch?

Determine whether the pressure of the matter is still negligible-compared
to that of the radiation. (You will need the temperature of the matter,
which equals the radiation temperature now because the matter is
ionized and therefore strongly coupled to the radiation.)

Integrate the equations backwards in time from the decoupling time,
now with the assumption that radiation and matter exchange energy in
such a way as to keep their temperatures equal. In each case, how long
ago was the time at which R =0, the Big Bang?

Show that a photon which propagates on a radial null geodesic of the
metric, Eq. (12.14), has energy —p, inversely proportional to R(¢).
Show from this that a photon emitted at time ¢, and received at time
t, by observers at rest in the cosmological reference frame is redshifted
by

1 +z=R(1,)/ R(1.). (12.55)
Calculate the redshift of decoupling by assuming that the cosmic micro-
wave radiation has temperature 2.7 K today and had the temperature
E;/20k at decoupling, where E; = 13.6 eV is the energy needed to ionize
hydrogen (see Exer. 11c). .

From Eq. (12.14) show that for light which travels a short distance

between emission and absorption, z is proportional to r, independent
of k.

If Hubble’s constant is 75kms™' Mpc™', what is the minimum present
density for a k = +1 universe?

Prove Eq. (12.40) and deduce Eq. (12.41) from it. '
Fill in the indicated steps leading to Eq. (12.52).
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Astronomers usually do not speak in terms of intrinsic luminosity and
flux. Rather, they use absolute and apparent magnitude. The
(bolometric) apparent magnitude of a star is defined by its flux F relative
to a standard flux F:

m=-25log,,(F/F), (12.56)
where F,=3x10"*Jm™s"" is roughly the flux of visible light at Earth
from the brightest stars in the night sky. The absolute magnitude is
defined as the apparent magnitude the object would have at a distance
of 10 pc:

M =-25log,o[L/47(10 pc)*F.]. (12.57)
Rewrite Eq. (12.52) in astronomer’s language as:
m— M =51log,,(z/10 pc Hp) +1.09(1 — g,)z. (12.58)

For objects of the same absolute magnitude M, then, the deviation of
a plot of m vs. log z from a straight line measures q,. If g, is 0.1, to
what redshift must one be able to observe in order to measure g, if
magnitudes are uncertain to +0.5? If evolution causes M to be a function
of z, how does this change one’s ability to measure g, from this equation?

The angular diameter distance d, to an object is defined as the ratio
of the actual diameter D of the object to its apparent angular diameter
6. (In flat space this would, of course, be the proper distance to the
object.)

Put the observer at the center of the coordinates and the object at the
coordinate r,. If it emitted its light at time r, when the radius was
R.= R(t.), show that D= R_r,6.

From this, show that d, = R.ro=(1 +2)"d,.

Show that the analogue of Eq. (12.52) is

Hody=2z-33+go)z  + - .

Show that the angular diameter of an object can actually increase as z
increases.

Estimate the times earlier than which our uncertainty about the laws
of physics prevents us drawing firm conclusions about cosmology as
follows.

Deduce from Egs. (12.27) and (12.32) that, in the radiation-dominated
early universe, where k is negligible, the temperature T behaves as
T=pgt"""? B =(45n /327 k"

Assuming that our knowledge of particle physics is uncertain for kT >
10° GeV, find the earliest time t at which we can have confidence in
the physics.

Quantum gravity is probably important when a photon has enough
energy kT to form a black hole within one wavelength (A = h/kT).
Show that this gives kT ~ h'/?. This is the Planck temperature. At what
time ¢ is this an important worry?



Appendix A
Summary of linear algebra

For the convenience of the student we collect those aspects of linear algebra that
are important in our study. We hope that none of this is new to the reader.

Vector space. A collection of elements V={A, B, ...} forms a vector space over
the real numbers if and only if they obey the following axioms {with a, b real
numbers).
(1) Vs an abelian group with operation + (A+ B =B+ A€ V) and identity
0(A+0=A).
(2) Multiplication of vectors by real numbers is an operation which gives
vectors and which is
(i) distributive over vector addition, a{A + B)=a{A) +a(B);
(ii) distributive over real number addition, (a +b) (A)=a(A) + b(A);
(ii1) Associative with real number multiplication, (ab) (A) = a(b(A));
(iv) consistent with the real number identity, 1{A) = A.
This definition could be generalized to vector spaces over complex numbers or
over any field, but we shall not need to do so.
A set of vectors {A, B, .. .} is said to be linearly independent if and only if there
do not exist real numbers {a, b, . . ., f} such that

aA+bB+- - - +fF=0.

The dimension of the vector space is the largest number of linearly independent
vectors one can choose. A basis for the space is any linearly independent set of
vectors {A,..., A,}, where n is the dimension of the space. Since for any B the
set {B, A,,..., A,} is linearly dependent, it follows that B can be written as a
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linear combination of the basis vectors:
B = b|Ai +b2A2+’ e +b"A".
The numbers {b,, ..., b,} are called the components of B on {A,,..., A,}.

An inner product may be defined on a vector space. It is a rule associating

with any pair of vectors, A and B, a real number A- B, which has the properties:

(1) A-B=B-A,

2) (aA+bB)-C=a(A - C)+b(B-C).
By (1), the map (A, B)—>(A- B) is symmetric; by (2), it is bilinear. The inner
product is called positive-definite if A:- A > 0 for all A # 0. In that case the norm
of the vector A is |A|=(A- A)"?. In relativity we deal with inner products that
are indefinite: A- A has one sign for some vectors and another for others. In this
case the norm, or magnitude, is often defined as |A|=|A- A]'/%. Two vectors A
and B are said to be orthogonal if and only if A-B=0.

It is often convenient to adopt a set of basis vectors {A,,..., A,} that are
orthonormal: A;- A;=0 if i#j and |A;[=1 for all k. This is not necessary, of
course. The reader unfamiliar with nonorthogonal bases should try the following.
In the two-dimensional Euclidean plane with Cartesian (orthogonal) coordinates
x and y and associated Cartesian (orthonormal)‘basis vectors e, and e,, define
A and B to be the vectors A=5e, +e, B=3e,. Express A and B as linear
combinations of the nonorthogonal basis {e, = e, e,= e, —e.}. Notice that,
although e, and e, are the same, the 1 and x components of A and B are not
the same.

Matrices. A matrix is an array of numbers. We shall only deal with square
matrices, e.g.

1 2 5
1 2
or -6 3 18
3 1 s
100 0 O

The dimension of a matrix is the number of its rows (or columns). We denote
the elements of a matrix by A,, where the value of i denotes the row and that
of j denotes the column; for a 2 X2 matrix we have

Ao (A” A)
Ay Ap
A column vector W is a set of numbers W, for example (3;) in two dimensions.

(Column vectors form a vector space in the usual way.) The following rule governs
multiplication of a column vector by a matrix to give a column vector V=A- W:

(VI)=(AII Alz)(wl):(Al|W|+A12W2)
v, Ay Ap/ \W, Ay W +A W,
In index notation this is clearly

2
V=% AW,

i=1
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For n-dimensional matrices and vectors, this generalizes to
n
V.= _ZI Aij W,
]=

Notice that the sum is on the second index of A.
Matrices form a vector space themselves, with addition and multiplication by
a number defined by:

For n xn matrices, the dimension of this vector space is n’. A natural inner
product may be defined on this space:

A-B= Z AjjB;j.
)

One can easily show that this is positive-definite. More important than the inner
product, however, for our purposes, is matrix multiplication. (A vector space with
multiplication is called an algebra, so we are now studying the matrix algebra.)
For 2 X2 matrices, the product is

Cll C]Z)
Cu Gy

=(A]l Aiz) (Bll Blz)

AZI AZZ BZI B22

___(A||B||+A|2322 A11312+A|szz)
A2 B\ +ApB, A B +AyuB;,

AB=C=(

In index notation this is
2
Cij = Z AikBkj-
k=1

Generalizing to n Xn matrices gives
n
Cij = kZ AikBkj-
=]

Notice that the index summed on is the second of A and the first of B. Multiplica-
tion is associative but not commutative; the identity is the matrix whosé elements
are §;;, the Kronecker delta symbol (§; =1 if i =j, 0 otherwise).

The determinant of a 2 X2 matrix is

A, Apn
=A, 1A= A4

Given any n xn matrix B and an element B,,, (for fixed I and m), we call S,
the (n—1) x(n—1) submatrix defined by excluding row ! and column m from B,
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and we call D,,, the determinant of $,,. For example, if B is the 3 X3 matrix

B,, B,, B
B={ B,, B,, By|,
By, B, B,

then the submatrix §,, is the 2 X2 matrix
S, = (le st)
12
BBI B33
and its determinant is

D\;= By B33 — By:1B4,.
Then the determinant of B is defined as

det(B)= Y (—1)*'B,D, for any i
i

o
In this expression one sums only over j for fixed i. The result is independent of
which i was chosen. This enables one to define the determinant of a 3 X3 matrix
interms of that of a 2 X 2 matrix,and that ofa4 X4 interms of 3 X 3, and so on.

Because matrix multiplication is defined, it is possible to define the multiplica-
tive inverse of a matrix, which is usually just called its inverse;

(B~ l)i_j =(- l)'*’D,-,-/det (B).

The inverse is defined if and only if det (B)#0.
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Appendix B

Hints and solutions to
selected exercises

Chapter |

3.7x107*kgm™; 3.5x10* kgm; 1077; 10*kg; 1.I1x10" 2 kg m™>;
10°kgm™2;3.7x10 ""® kg m™3.

3x10°ms';9%10** Nm™2;33%x10%°s;9%x10'Im™?; 9x10"" ms™>2
Write out all the terms.

Moo=l-'~2_a2, My =pv—aBf, M, = Vz“ﬁz, Mzzzaz, M33=b2; Mgy, =
My=M;;=M,;=M;,=0.

(¢) Use various specific choices of Ax'; e.g. Ax=1, Ay=0, Az=0=>
M“ = -'Moo.

Null; spacelike; timelike; null.

The principle of relativity implies that if time dilation applies to one
clock (like one based on light travel times over known distances, which
is effectively the sort we use to calibrate our time coordinate), then it
applies to all (like the pion half-life). Algebra gives the result.

(d) For (a), 3.7 x1075.

(a) In Fig. 1.14, we want the ratio t/t for event ® (these are its
time-coordinate differences from ). The coordinates of # in € are

(1, v1). The first line of Eq. (1.12) implies t=1(1-0vH"2
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(a) 12m; (b) 1.25x107® s =3.75m; 211 m’: spacelike; (c) 9m; 20 m;
(d) No: spacelike separated events have no unique time ordering; (€)
If one observer saw the door close, all observers must have seen it close.
The finite speed of transmission ( < ¢) of the shock wave along the pole
prevents it behaving rigidly.

(b) tanh [N tanh™' (0.9)]=1-2(19)"N2

Chapter 2

(a) — 4;(b)7,1,26,17; (c) same as (b); (d) — 15,27, 30, — 2; () A’B, =0,
A’B,=0, A’B, = 12, etc.; (f) —4; (g) the subset of (¢) with indices drawn
from (1, 2, 3) only.

(c) v, a free; u, A dummy; 16 equations.

Choose each of the basis vectors for A, getting the four equations in
Eq. (2.13) in turn.

(b) (35/6, -37/6, 3, 5).
(a) —(0.75/1.25)= —0.6 in the z direction.

@) (0, 0,0); (b) (3, yo©, y’, y°) with y=(1—-0v-0)""/% (c) v* =
U*/ U%=0.5, etc.

(a) Given d-d@>0, b-b>0, d-b=0;, then (d+b)-(a+b)=
d-d+2da-b+b-6>0.
(b) If d is timelike, use the frame in which d -»(a, 0, 0, 0).

(b) v=at(l +a’t})7/? a=11%x10""m™"; ¢=20x10"m=
6.7 x 10%s = 22 yr.
(¢) v=tanh (ar), x=a " '[(1 +a?1})"/?=1], 10 yr.

(a)4 kg,3.7 kg,0.25 (e, +e¢,); (b) (3, -3, 1,0) kg, 3 kg, 2.8 kg, —ie, +§¢y,
02e,.

lv]*=2/3.

Work in the CM frame.

(a) Lorentz transformation of p.

The cooler, because ratio of the rest masses is I +3.3 x107'¢,

Enax = 8 X 10° m,,, above the y-ray band.

Chapter 3
(b) p>(—1/4,~3/8,15/8, ~23/8); (d) yes.

(a) Consider g = @°, an element of the basis dual to {&,}; (b)(1, 0, 0, ).
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dT(P)~>(-15,-15); dT(2)> (0, 0).

(a) A partial derivative wrt x® holds all x* fixed for « # 8,50 3x*/3x® =0
if a # B. Of course, if a =B then ax*/ax? =1,

(a) By definition, A(f)=0 if & is tangent to S, so if D is not tangent,
then (D) # 0.

(b) If 6 and W point to the same side of S then there exists a positive
number a such that w = ad+ T, where T is tangent to S. Then A(W)=
afi(?) and both have the same sign.

(c) On the Cartesian basis, the components of # are (0,0, 8) for some
B. Thus any # is a multiple of any other.

(e) 10 and 6'in four dimensions.
(b) q._’(_l’ “"l, 1, l)

(a) In matrix language, A%A® is the product of the matrix A% with
the column vector A®, while A*sp, is the product of the transpose of
A*® 5 with the column vector p,. Since A* g is inverse to A% g, these are
the same transformation if A® equals the transpose of its inverse.

(a) The associated vectors for t=0 and ¢ =1 point inwards.
(b) No.
Use the inverse property of A®5 and A%,

(a) A°®B,;=—-AP"B,,=-A%*B,, =—A*'B,, =—-A"®B,,. Therefore
2A*?B,; = 0. The justification for each of the above steps: antisymmetry,
symmetry, relabel dummy indices, relabel dummy indices.

Arbitrariness of U.

(a) Since D D= -x*+25x*+2¢ # —1, D is not a four-velocity field;
() 5¢; (h) — 5t because of (e); (i) the vector gradient of p has components
{p*}=(-2¢,2x, =2y, 0); (j) VoD ->[r? 563 +5x(1 +1%), vV2(1 +1?), 0].

(d) Given any matrix (A) in 0(3), let (A) be the 4 x4 matrix

1 0 0 0

0

0 (A)

0
Show that this is in L{4) and that the product of any two such matrices
is one of the same type, so that they form a subgroup. These are pure
rotations of the spatial axes (relative velocities of the two frames are
zero). Transformations like Eq. (1.12) are pure boosts (spatial axes
aligned, relative velocity nonzero). The most general Lorentz transfor-
mation involves both boost and rotation.
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(€) Buw =800 =0, 8w ="1/2, 8uy=8u: = 8. =0, &, =8, =1; (¢) du=
dt—dx, do=dt +dx, g(é, )=—dv/2, g(é, )= —du/2. Notice that the
basis dual to {€, &,}, which is {du, dv}, is not the same as the set of
one-forms mapped by the metric from the basis vectors.

Chapter 4

Particles contributing to this flux need not be moving exclusively in the
x direction. Moreover, consider a change to the non-orthogonal
coordinates (¢, x, y'=x +y, z). A surface of constant x is unchanged, so
the flux across it is unchanged, but the ‘x direction’, which is the
direction in which now ¢, y’, and z are constant, is in the old &, +¢€,
direction. Is the unchanged flux now to be regarded as a flux in this
new direction as well? The loose language carries an implicit assumption
of orthogonality in it.

(a) In Galilean physics p changes when we change frames, but in
relativity p does not: only its components change.

(b) If in Galilean physics we define a four-vector (m, p) then the Galilean
transformation changes this to (m, p—mv), where v is the relative
velocity of the two frames. This is an approximation to the relativistic
one (see Eq. (2.21)) in which terms of order v? are neglected.

The required density is, by definition, N° in the frame in which U >
(1,0,0, 0). In this frame N- U = ~N°.

(a) Consider a two-dimensional space whose coordinates are, say, p
and T, each point of which represents an equilibrium state of the fluid
for that p and T. In such a space the dp of Eq. (4.25) is just (dp, &)
where A is whatever vector points from the old state to the new one,
the change in state contemplated in Eq. (4.25). Since we want Eq. (4.25)
to hold for arbitrary 4, it must hold in the one-form version. See Schutz
(1980b).

(b) If Ag=dyg, then T3S/ax' =a3q/ax’, where x' is either p or T. The
identity 8°q/3Top =06’q/apaT implies (3T/ap)(3S/dT)=a5/ap, which
will almost never be true.

(a) By definition of ‘rotation’: see Exer. 20b, § 2.9.

(b) Suppose M has the property OT MO = M for any orthogonal matrix
O. Consider the special case of a rotation about x>, where O,, = cos 6,
O,;=sin 6, O;, = —sin 6, Oy, =cos 6, 033 =1, all other elements zero.
Then O"MO = M for arbitrary 6 implies M3 = My, = M,, = M, =0,
M,, = M;,, and M,, = —M,,. By relabeling, a rotation about x implies
M, = M,, =0, My;= M,,. Therefore M is proportional to I

Us =1ayU": May is constant, so 1,,=0; U* gU",,=U? ju’n,,
(relabeling) = U s U%n,, (symmetry of ).
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Since U - mcrr (1, 0, 0, 0), multiplying by U,, and summing on a picks
out the zero component in the MCRF.

There is no guarantee that the MCRF of one element is the same as
that of its neighbor.

(b) F° is the rate of generation of energy per unit volume, and F' is
the ith component of the force. F* is the only self-consistent generaliz-
ation of the concept of force to relativity.

() T* = p, U*UP, U~ ¥(1,8,0,0), y=(1-p%)""%

(b) At any point on the ring, the particles have speed wa, At position
(x, ) we have U® » y(1, —wy, wx, 0), ¥y =(1 —w?a?)""% In the inertial
frame their number density is N[2w%(8a)?]”', which equals nLP,
where 7 is the number density in their rest frame. Therefore n =
N27*ya (3a)?] ! and T°F = mnU* U”.

(c) Add (b) to itself with w->—w. For example, T°*=0 and T* =

2mnwly?y?,

No bias means that TV is invariant under rotations. By Exer. 11 TV = p§"¥
for some p. Since T°' =0 in the MCRF, Eq. (4.36) holds. Clearly
p = ynm, where y=(1—v%)""2 The contributions of each particle to
T*, say, will be the momentum flux it represents. For a particle with
speed v in the direction (8, ¢), this is a z component of momentum
myv cos 0 carried across a z = const. surface at a speed v cos 8. If there
are n particles per unit volume, with random velocities, then T** =
n(myv) (v) times the average value of cos® @ over the unit sphere. This
is 4, so T = p = ynmv?/3. Thus, p/p=v*/3 >} as v- L. (In this limit
my remains finite, the energy of each photon.)

() R/x=[(1-0)/(1+0v)]/2

(h) E* = E*; let E’e, +E’e, be called E,, the part of E perpendicular
to v. Similarly, let E', = E”e; + E’e,. Then E', = y(E, +vx B).

Chapter 5

(b) (i) Good except at origin x =y =0: usual polar coordinates. (ii)
Undefined for x <0, fails at x =0, good for x> 0: maps the right-hand
plane of (x, y) onto the whole plane of (£, ). (iii) Good except at origin
and infinity: an inversion of the plane through the unit circle.

Compute slope of curve.
(a) and (b) have same path, x> +y?=1. J

Az'l = ‘J’/"zi Alz'z Y.
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(a) V" = r*(cos’ 8 +sin® @) +6r(sin 8 cos 8), W° = (cos 8 —sin 8)/r; (b)
(df), = 2r(1 +sin 28); (c) (W), = r(cos 8 —sin 6).

(b) Although it is possible to do this using matrices, the straightforward

expansion of the transformation equation is less error prone. Thus, the

r-r component of V7§ is

AV AP LVE g = AV ALY AV ATV AT ALV HAYAR VR,
=2r(cos® 8 +sin’ ) +6sin 6 cos 6.

(c) This gives the same as (b): V’,=V', is as above, and

the others are: V" o =2r%sin 8 cos 6(sin 8 —cos 8) +3r(cos* 8 —sin® 9),

v®.,=2sin 0 cos 6(sin @ — cos @) +3(cos” 6 —sin® 8)/r,

Ve, =2rsin 6 cos 6(sin 8 +cos 8) -6 sin 6 cos 8.

(d) 2(x +y).

{e) 2r(sin @ +cos #), same as (d).

(¢) These functions, which are the same as in (b), are related to the
answers given for Exer. 1lc as follows: p,., = V' p, o=V ,pp, =
r’V®., o =r*V®,. It happens that p,,=p,., for this one-form field.
This is not generally true, but happens only because p is the gradient
of a function.

A” o =r(l+cos@—tan8); A" ,=2r.

Of the first-derivative components, only V°.,=1/r is nonzero. Of the
second-derivative components, the only nonzero ones are V°, .=
—1/r?, VT go=—1,and V°,, =—1/r"

aé'#./ax”' =[a(A% €, )/oxBIAR . = A"',u-/\B 08, /3xP + ./\"’u-ﬁAB e
A - A B A a B A
=T =A% AP LAY T, #A% . g AP LAY,

_1
IwaB = igv#(gu-a.ﬁ +8upa " 8apu tCaus T Capa — CuuB)'

(a) Compute the,vectors (d¢/dA, dx/dA) and (dt/da, dx/da) and show
they are orthogonal.

(b) For arbitrary a and A, x and ¢ obey the restriction |x| > |t]. The lines
{x>0, t =+x} are the limit of the A = const. hyperbolae as a-> 0", but
for any finite A the limit a » 0" takes an event to the origin x=1=0.
To reach x =t =1, for example, one can set (A =In(2/a), which sends
A—=>00as a-»0.

©)gn=—0a%8.=1,8.,=0T", =1/a,?,, =a, all other Christoffel
symbols zero. Note the close analogy to Egs. (5.3), (5.30), and (5.44).
Note also that g,, (the time-time component of the metric) vanishes
on the null lines |x| =|¢|, another property we will see again when we
study black holes.

Use Eq. (5.68).
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Chapter 6

(a) Yes, singular points depend on the system.

(b) Yes: if we define r=(x?+y?'"% the map {X =(x/r)tan (wr/2),
Y =(y/r)tan (=wr/2)} shows that, as a manifold, the interior of the unit
circle (r <1) is indistinguishable from the whole plane (X, Y arbitrary).
This map distorts distances, but the metric is not part of the definition
of the manifold.

(¢) No, discrete.

(d) This consists of the unit circle and the coordinate axes. It has the
structure of a one-dimensional manifold everywhere except at the five
intersection points, such as (1, 0).

(a) Symmetry on (y', u') means there are in(n+1)=ten independent
pairs (y', u). Since a can assume four values independently, there are
40 coefficients.

(b) The number of symmetric combinations (1A', v, ') is gn{n +1) x
(n +2)=20, times four for «, gives 80.

(¢) Two symmetric pairs of ten independent combinations each give 100.

28500 = 8°°8 u.0 (symmetry of metric) = g*Pg,, 5 (relabeling dummy
indices) = g""guaﬁ (symmetry of metric). This cancels the second term
in brackets.

For polar coordinates in two-dimensional Euclidean space, g = r sin” 6.
In three dimensions it is g = #*sin’ §. Notice in these cases g>0, so
formulae like Eqgs. (6.40) and (6.42), which are derived from Eq. {(6.39),
should have —g replaced by g.

The vector maintains the angle it makes with the side of the triangle as
it moves along. On going around a corner the angle with the new side
exceeds that with the old by an amount which depends only on the
interior angle at that corner. Summing these changes gives the result.

Consider a spacelike curve {x*(A)} parametrized by A, and going from
x*(a) to x*(b). Its length is | [g.5(dx*/dA)dx?/dA)]"*/dA. Assume
that A is chosen so that the integrand is constant along the given curve.
Now change the curve to {x*(A)+6x%(A)} with 8x“(a)= 6x“(b)=0.
The first-order change in the length is, after an integration by parts,
[° (igup  U*UP —d(g,,U*)dA16x” dA, where U®=dx"/dA. For a
geodesic, the term in square brackets vanishes.

(b) Each pair ¢ or ur is antisymmetric, so has six independent
combinations for which the component need not vanish. Each pair can
be chosen independently from among these six, but the component is
symmetric under the exchange of one pair with the other. (c) Eq. (6.6‘9)
allows us to write Eq. (6.70) as R (p,.)=0. There are only n(n-1)Xx
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(n —2)/6 =four independent choices for the combination Suv, by anti-
symmetry. In principle a is independent, but if o equals any one of B,
w, and v then Eq. (6.70) reduces to one of Eq. (6.69). So Eq. (6.70) is
at most four equations determined only by, say, the value a. However,
Eq. (6.69) allows us also to change Eq. (6.70) to Rgp,,..; =0. Thus, if
we had earlier taken, say, « =1 and g8 =2, then that equation would
have been equivalent to the one with @ =2 and 8 =1: all values of a
give the same equation.

Use Egs. (6.69) and (6.70).
R9¢9¢ = Sin2 0.

Compare with Exer. 34, § 3.10.

The nonvanishing algebraically independent Christoffel symbols are:
Fy=—®, I''y=—®" exp (2P —2A), I'",,=A', T"g9=—rexp(-24),
IM,o=—rsin¢ exp(—2A), T'?4=T%,=r"", T'?,,=—sin8cos 6,
I'?,, =cot 8. Here primes denote r derivatives. {(Compare these with
the Christoffel symbols you calculated in Exer. 29.) As explained in the
solution to Exer. 18, in calculating R,g,, we should concentrate on the
pairs (aB) and (uv), choosing each from the six possibilities
(r, 16, tg, r6, ro, 6¢). Because R,z,, = R, .5, we do not need to calcu-
late, say, Rg,,4 after having calculated R, .. This gives 21 independent
components. Again following Exer. 18, one of the components with
four distinct indices, say R,s,, can be calculated from others. We
catalog, therefore, the following 20 algebraically independent com-
ponents:

R, =[®"— (D) -®'A]exp (2P), R,e=R,e=R,s=R,+=0,
R, = —r® exp (20 -24), R.pp=Rig6= Ri6r4 = Rigss =0,
Ryo=—1®'sin’ 0 exp (2®—2A),  Rise=Risrs = Risso =0,
R,pe=TrA’, R4, = Ry966 =0, R,4re=rsin’ 67,

R,466=0, Roses=r 2sin? 6[1 —exp (—-2A)).

See if you can use the spherical symmetry and time independence of
the metric to explain why certain of these components vanish. Also

compare R,,q, With the answer to Exer. 29 and see if you can explain
why they are different.

Since ¢ =0 is already inertial, we can look for a coordinate transforma-
tion of the form x* =(8%, + L*z)x?, where L”; is of order ¢. The
solution to Exer. 17, § 5.9, gives I“",,,,,, which must vanish at P. Since
A¥pg=8%g + L%+ L%, px* we find L* 5 ,,=3"", at P. The antisym-
metric part, L% (4 ,;, is undetermined, and represents a Lorentz transfor-
mation of order ¢. Since we are only looking for an inertial system, we
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can set Lz ,,=0. Calculating '* 4, at P (as in Exer. 3, § 7.6, below)
gives the new coordinates. In particular, the equation x' =0 gives the
motion of the origin of the new frame, whose acceleration is d*x'/d¢f* =
-TI «=—¢,; We shall interpret this in the next chapter, where we
identify ¢ as the Newtonian gravitational potential and see that this
acceleration expresses the equivalence principle.

(b) The ranges of the coordinates must be deduced: 0< y <7, 0 <8 < 7,
0 < ¢ <27 Then the volume is 27°¢>.

Chapter 7

Consider a fluid at rest, where U'=0 and U°=1 in a local inertial
frame. Then an/at = R, so Eq. (7.3) implies creation (or destruction) of
particles by the curvature.

g¥=-(1-2¢), g¥=8Y(1+2¢).

I‘Ooo"" ‘1.5, roo: = ¢,h Foij = -4:’5.'1, I‘ioo = d’,i, rio,' = "‘4:’5&], rijk =
5)k¢,i - 5&;‘3”,!: - 5;‘1:‘3”,)-

(a) ROin =¢ i+ 8¢ 00, Roj = ¢,Ojaik - ¢’,0k6ija R ijkl =
Oud ji + 8 ik — 8ud ji — 8 it

(c) The ‘acceleration’, in Newtonian language, is —¢ ;. The difference
between the accelerations of nearby particles separated by ¢’ is therefore
"“fjd’.i}'

(b) In terms of a Lorentz basis, the following vector fields are Killing
fields: é, ¢, ¢, €., xé, — yé,, yé. — zé,, z€, — xé., té, + xé, té_ + yé, té. + zé,
Any linear combination with constant coefficients of solutions to Eq.
(7.45) is a solution to Eq. (7.45), which means that the analogous fields
to these in another Lorentz frame are derivable from these.

Chapter 8

(c) (i) 7.425x107" m~2; (i) 8.261 x 107> m™2; (iii) 1.090x10™'"*m~';
(iv) 2.756 X 1072,

(d) mp =2.176 x10"%kg; tp =5.390x10"**s. Typical elementary-
particle lifetimes are 107*s or greater. The heaviest known particles
are less than 1072 kg. '

(a)—2.122x 1075;(b) —9.873 x 107%;(c) —6.961 x 1071%;(d) 9.936 x 105
(@) M =Rv*=(c*/27PY)~1.3km~ | Me. (b) 100 km~ 68 Mo.
(@) |A|<4x107* m™2

(a) T®=p, T = —pQx®, T =pQx', T**=0. The components T" are
not fully determined by the given information, but they must be of order
pv't’, i.e. of order p?R2



Hints and solutions to selected exercises 355

(b) Since VA" = ~167p, h*™ is just minus four times the Newtonian
potential, #®=4M/r exactlyy For A% we have %=
—4pQ [y’ |x—y|"'d®y. Use the binomial expansion [x—y|™'=
ro'[1 +x-y/r* +0(R/r)?). By symmetry, | y'd®>y =0, { y'y’ &’y =0if i #j,
and [ y'y' &Py ={y*y* &Py = y*y® &y = (47/15) R>. This implies h®' =
—(167/15)pR*Qx%/r*. In terms of the angular momentum J, we find
R°' = —2Jx%/r?, A% =2Jx"/r®, h® = 0. These fall off as r 2 and are correct
to order r~>. A more careful study of the properties of the solutions of
V2f = g would show that these are in fact exact: the higher-order terms
all vanish. The components A" are small compared to h* and A
because TV is small. Therefore Eq. (8.31) gives h*” and the metric
Boo=—1+2M/r+0(Q*R?), go, =2Jx%/rP +0(Q°R3), go,=—-2Jx"/r +
0(QPR3), 83 =0, g; = 8;(1 +2M/r) +0(Q*R?). Compare this with Eq.
(7.8). In standard spherical coordinates, go, is the same, g,, = g, =0,
8o = —2J/r, spatial line element di’=[1+2M/r—0(Q*RH))(dr* +
r’ de? + r? sin’ 8 d¢?).

(c) Such a particle obeys the geodesic equation with pp=—E and p, = L
constant, p” and p° zero. To this order, the normalization - j = —m?
implies E = m(1 — M/r+ L*/2m?r), just as in Newtonian theory (except
for the rest mass). The r component of the geodesic equation implies,
again to lowest order, L =m(Mr)"/?, again as in Newtonian theory.
One orbit, A¢ =27, will take a time At =(dt/d¢)A¢. Now dt/d¢ =
(dt/d7)/(d¢/dr)= U% U® = p°/ p®, and this can be expressed in terms
of E, L, and the metric; a straightforward calculation gives (A1) ,,grade —
(At) retrograse = —87J/ M, independently of r. In principle, this allows
measurement of a body’s angular momentum by the study of particle
orbits far from it.

(d) 0.16 ms.

Chapter 9
A solution of Eq. (9.22) is uniquely determined by the initial position
and U® The function U® =§%, satisfies Eq. (9.22) for all time (by

virtue of Eq. (9.23)), and so must be the unique solution for initial data
in which U = §%,.

No.

For the light beam, ds®* =0=>dt/dx = (g../|g.])"/*=1 +3h!T (1). There-
fore At = (2 + (hy 1)), where (h]}) is some mean value of AI! during
the time of flight of the photon. Since (AT ) changes with time while ¢
does not, free particles do see accelerations relative to their neighbors.

(a) For example, Rn o = _%wzh\:: (b) £ = _%B(x - ')2‘ &=0.
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In the TT coordinates of the wave, choose the wave’s direction to be
z, the ellipse’s principal axes to be x and y, and the masses’ separation
to be along the unit vector s - (sin 8 cos ¢, sin @ sin ¢, cos §) in the usual
spherical coordinates of the frame. Then in Eq. (9.42) we replace AT,
by h, =ssPhl; =sin® 8(cos 2¢ +ia sin 2¢p)hT;. There will be no
driving term if 8 =0, i.e. if the m.sses lie along the direction of the
wave’s propagation (compare with Exer. 12).

lin _ t J
I =%, meaXiaxia)

28 (a) (47/3)8" [ pr*dr:0. (b) Result of (a)+ Ma'a': M(a'a' -1 §"a?).

32

33

(¢) I =a*M/5, 1 =b*M 5,1 = c*M /5, F* = (2a® - b> - c})M/ 15,
PY=02b*~a*-cH)M/15, F*=(2c2—a?-b*)M/15, all other com-
ponents zero.
(d) I =[a? cos’ wt + b* sin” wt)M/5,

I, = (b* cos’ wt+a*sin® wt)M/5, I =c*M/5,

I =cos wt sin wt{a®>— b*)M /5,
* = (a*(3 cos? wt —1) +b*(3 sin” wt — 1) —c*]M/15,
P =[b*3 cos? wt —1) +a*(3sin? wt — 1) — c?]M/ 15,
F?=(2-a*-b5M/15, FV=1",

others zero.
(€} I'*=2ma*=I", others zero; > =2ma*/3=F", I =—4ma?/3,
others zero.
(f) Same as (e).
(g) 1™ =2m(A* cos® wt + Al cos wt + 13 /4), others zero; ¥ =21"/3,
£Y=—-1*/3=F others zero.
(h) I =(m+M)(A?cos’ wt +Al,cos wt +13/4), other zero; F~=
2173, P =—-1"/3=F" and w’=k/u, where u=mM/(M +m) is
the reduced mass.
There is no radiation in (a)-(c) and (¢), and no quadrupole radiation in
(f). For (d) first put the time dependence of f; from Exer. 28 into
complexform,e.g., ¥, = 5M(a’— b*) exp (—2iwt). Thenuse Egs. (9.75)~
(9.77) with 1 = 2w and correct permutations of indices. Along x axis,
h1T=-h]l= -iMw?(a*- b?) (exp[-2iw(t—r))/r, h =0. Along y
axis, h = —hIT =iMw?(a®- b?) exp [-2iw(t—r))/r, A}} =0. Along z
axis, hll= _h-;;r= —4iMw?(a?-b?) exp [-2iw(t—-r))/r, Fl;r =ih]l.
This means that the radiation is linearly polarized in the equatorial
plane, circularly polarized along the z axis. Notice there is no radiation
if the body is axially symmetric, i.e. if a = b. For (h), on y axis A} =
—(m+M)w*(2A? exp [“2iw(t—r)]+ Al, exp [—iw(t—r)]}/r= —E;;r,
hTT=0. On x axis, no radiation.

Without loss of generality choose the wave to be moving in the x—y
plane. Then P, =sin® §, P, =cos®* 8, P., = |, P, = —sin @ cos 6, others
zero. By matrix multiplication or otherwise we find AT =fsin’0,
RTT = fcos*8, h'l=—fsin@cos 6, hl, =—f, others zero, where f=
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mw? sin® 8{2A% exp [-2iw(t —r)]+ Alyexp [—iw(t — r)}/r. If we let I
be (—sin 6, cos 6, 0), then ! and é, are two orthogonal vectors perpen-
dicular to the motion of the wave. We find A" = I'Uh][" = f Recalling
hIT = —f, we see that the wave is always 100% linearly polarized with
the ellipse’s axes in the x~-y plane and parallel to é,: the component
rotated by 45° is absent.

Let the wave be traveling in the x—z plane at an angle 6 with the z axis.
Let &, and [~ (cos 6, 0, —sin @) be orthogonal vectors in the plane of
polarization. Then A} = (1 —$sin’ 8)f, A\ =I'A T =—icos 0 f, A} =
FPRT=—h]], where f=2mljw? exp[—2iw(t—-r)]/r. From Exer. 14b
we see that the wave is elliptically polarized with principal axes / and
é,. The percentage of circular polarization is |k}, /A, which ranges
from zero at the equator to 100% at the poles.

(a) P’=-m)(M+m)*u3/2E®, € =1+2ELY/(M+m)*u®, a=
-mM/2E (recall E <Q), where u=mM/(m + M),

Bring out the R™' as r™’, as in Eq. (9.94), but expand t—R about t—r.

Eq. (9.95) and its consequences still follow. The first term is Eq. (9.96)
but higher terms depend on (d/df)" § pyys . .. ¥1¥., d’y, where there are
n factors of y,. If p is spherical, then the integrations give indices of
the form &, - - * 8, (see Exer. 42) and permutations. The TT projection
eliminates traces and so completely eliminates these terms.

Chapter 10

Such a transformation must leave all quantities invariant, but it sends
t-> —t and hence dr/dt » —dr/dt Only if it vanishes can it be invariant.

(a) Use reasoning similar to that in Exer. 5.
(b) exp (P)=0.999997, 0.760; z=3x107°, 0.315.

p=ptpr’ p=pl+pT/pr?), m=dnr’p/3 +4mr’p,/5, with p, =
=2 wp.(p. + P)(pc + 3p)/(3T.p.). Estimate the error in neglecting the
next térm to be the square of the first correction, i.e., choose rsuch that
the corrections are <3% = r* <|p/30p,I.\.

(@) 1.12x10%kgm?s™"; (b) 1.4x10*s™"; yes, by 50%; (c) 2.7x107%;
(d) 5% 10° Gauss.

Chapter 11

(a) Use Eq. (11.21) in ds? = goodt® + g,,dedb” to get 7=20mV7 M.
(b) Same as coordinate time interval, Eq. (11.22): 20710 M.
(c) Integrate ds’ = good? over the time in (b): 407v2 M.

(d) 6.4 ms: innermost stable orbit.

(e) 40/v2 yr, independent of M.
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Appendix B:

(a) Turning points are at r=12.5 M and 5.47 M. (Notice that the high
L enables the particle to turn around inside 6 M.) The orbit changes
by A¢ =7.4 rad between these points. A full orbit has A¢ = 14.8 rad,
or a perihelion shift of 8.5 rad. The approximation Eq. (11.34) gives
only 2.3 rad. This shows that highly noncircular orbits can have much
greater shifts.

(a) (E/LY =[1+36 M?/ [*+(1 - 12M?*/ [*)*'?)/ (54 M?).

In arc sec per orbit and per year: Venus (0.052, 0.085), Earth (0.038,
0.038), Mars (0.025, 0.013).

Approx. 10° Me.

Estimate the total breakup force to be M/R?, giving Ry~ (My/p)'">.
About 10° Mo,

(@) @-V2)M, (b) E<m,+m,—V(m} +m})~m (1 -3 m/m,).

Chapter 12

(c) A Lorentz transformation leaves the metric and hence the hyperbola
unchanged, but changes the origin of spatial coordinates. Any point on
the hyperbola can be made into this origin by choosing the correct
transformation.

The energy density of black-body radiation is proportionai to T*.

To V\ in Eq. (12.29) must be added the term ~AR>/3. If A> 0, then
the new V¥, reaches a negative maximum. If this maximum value exceeds
—1 then there exist k = +1 models which collapse from R =0 to a finite
R and re-expand. If the maximum is less than —1 then the k = +1 model
expands from R = 0 to infinite radius. If the maximum is only slightly
less than 1, this model will ‘hesitate’ or ‘coast’ for a long time near the
vaiue of R at which the maximum occurs. If A <0 the new V), increases
monotonically from —oco at R=0 to +00 at R =00. All models expand
from R =0 to finite radii and re-coliapse. There is no gualitative differ-
ence between the matter-dominated and radiation-dominated cases.

(a) For black-body radiation p,=a,T%/c?, where a,=
7.56%107'*Jm>deg™* K™* is Stephan’s constant. This give €=
4.5x107™* m, and about 2m x10° photons per baryon.

(a) Because of homogeneity, p” is a constant. The result follows from
null-ness of p.
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Index

accelerated observer, in SR, 150
acceleration, 44, 51, 244, 278

absolute, 3

uniform, 56, 150
active galactic nuclei, 310, 311
adiabatic, 109
angular diameter, in cosmology, 333
angular diameter distance, 341
angular momentum, 298, 317

as source of metric, 213

conservation of, 191

in collapse, 296

in gravitational waves, 250

in Kerr metric orbit, 301, 302

of a black hole, 305

of star, 265

of the Sun, 274

total, 193
angular velocity, 280

of inertial frames, 301

of zero-angular-momentum particle, 298
anisotropy, 320

dipole, 335, 336

quadrupole, 336
aphelion, 282
area theorem, see Hawking's area theorem
assumption of mediocrity, 322
asymptotic flatness, 254

baryon, 106
basis

non-coordinate, 144, 146, 147
orthonormal, 144, 147, 315
transformation of, 40
Bianchi identities, 173, 175, 200, 257
contracted, 174
twice-contracted, 174
big bang, 326, 327, 328, 337, 338, 340
binary pulsar system, 284, 314
as source of gravitational waves, 232,
241
binary star system, 265
gravitational wave effects on, 250
orbit of, 249
Birkhof’s theorem, 258
black body, 339
luminosity of, 317
black hole, 106, 212, 226, 241, 253, 254,
260, 264, 266, 271, 288, 294, 315, 318
angular momentum of, 305
as a black body, 308, 309
entropy of, 310
formed by collapse, 295
in modern astrophysics, 310
Kerr, see Kerr solution
lifetime of, 308
luminosity of, 308
rotational energy of, 305
Schwarzschild, see Schwarzschild
solution
small, 308
stationary, 296
temperature of, 308

367
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black hole (cont.)

thermodynamics of, 310

tidal disruption by, 316
black hole collision, 311
Boltzmann’s constant, 274, 308
Boyer-Lindquist coordinates, for Kerr

metric 297

Buchdabhi interior solution, 262, 273
Buchdahl’s theorem, 264

calibration of axes, 15
Cartan method, 270
Cartesian coordinates, 74, 85, 133
causality, 262, 263, 264
center of momentum frame (CM), 47
Chandrasekhar limit, 269
Christoffel symbols, 135-7, 161, 162, 166,
169, 172, 180, 185, 188, 19!
and metric, 140, 142, 150
for exact plane wave, 220
for non-coordinate basis, 146, 150
for Schwarzschild metric, 315
for weak gravity, {87
symmetry of, 161
tensorial nature of, 143
collapse, 111, 258, 261, 264. 265, 294
as source of gravitational waves, 232
to a black hole, 295
comma-goes-to semicolon rule, 184
comoving coordinates, 322, 323
components, of a vector, 36
of a one-form, 63
of a tensor, 62, 71, 77, 78
of the metric, 60, 62
Compton scattering, 58
connecting vector, 172, 245
conservation, and symmetries of metric,
189, 194, 275
of angular momentum, 191
of charge, 116
of energy, 105, 109, 112, 190, 196, 197,
306
of energy-momentum, 104, 185, 189,
196, 197
of entropy, 109, 185
of particles, 106, 184
conservation laws, 47
constraint equations, 211
continuum, 89
rigidity of, 90, 102
continuum approximation, 90, 113, 114
contraction, 63, 68, 137, 153, 173, 175
contravariant vector, see vector
conventions
on indices, 7
on Riemann teasor, 169

on sign of interval, 21
coordinates, comoving, 322, 323
helpful, 201, 212
isotropic, 272
Copernican viewpoint, 320
cosmic ray, 58
cosmological constant, 199, 212, 327, 329
cosmologies with, 339
cosmological principle, 321, 330, 337
cosmology, 318
anisotropic, 338
inhomogeneous, 338
matter-dominated, 326
radiation-dominated, 326
covariant derivative, 136, 137, 153, 160,
175
commutator of, 170
commutes with index raising and
lowering, 174
definition of, 161
of a one-form, 138
of a scalar, 137
of a tensor, 138, 139
of the metric, 141
product rule for, 139
covariant vector, see one-form
covector, see one-form
critical density, 330, 338
curvature, 160, 163
and gravity, 125
and tidal force, 173
extrinsic, 163
intrinsic, 163, 167
of a sphere, 164
curvature coordinates, 252
curvature coupling, 184
curve, 129, 166
definition of, 128
curvilinear coordinates, 126
Cygnus X-1, 266, 312
cylinder, intrinsic geometry of, 166

D’Alembertian operator, 205
deceleration parameter, 329
decoupling, 335, 340
density, 90
as a timelike flux, 94
central, 259
cosmological perturbations of, 335, 336
critical, 330, 338
of electric charge, 116
of electric current, 116
of the universe, 319, 329, 334
derivative
covariant, see covariant derivative
Liebniz (product) rule for, 86
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Lie, 180

notation for partial, 70

of a determinant, 162

of a function, 67, 80

of a one-form, 138

of a scatar, 137

of a tensor, 80, 138

of a vector, 134

of basis vectors, 133

partial, 136
detectors of gravitational waves, 234

by light reflection, 244

laser interferometers, 222

guantum nondemolition, 242

resonant oscitlators, 222, 224

sources of noise in, 225

space-based, 222
determinant, 162, 344
differential geometry, 73
distance indicator, 334
distance scale, extragalactic, 333
divergence, 137, 177

in curved manifold, 162, 163

in polar coordinates, 138
Doppler shift, 53

transverse, 57, 284

dot product, see scalar product
dragging of inertial frames, 298, 301
dust, 107

definition of, 90

stress-energy tensor for, 97, 98

Earth’s motion in cosmology, 335
effective potential, 277, 305
for cosmology, 327
for Kerr orbit, 302
Einstein, as celebrity, 285
Einstein equations, 197, 199, 200, 208,
215, 220, 256, 328, 337
for cosmology, 326
for weak fields, 204, 205
for weak vacuum fields, 214
Einstein summation convention, 37, 40, 55
Einstein tensor, 175, 271
definition of, 174
efficient ways to calculate, 270
for static and spherical metric, 255
in cosmology, 326, 339
electric charge, conservation of, 116
density af, 116
of a black hole, 296
electric current four-vector, 116
electric field, 116
electromagnetism, see Maxwell’s
equations
element, of a continuum, 89

369

of a fluid, 99
of proper volume, 158, 162, 175
element abundances, in cosmology, 336,
338
element production, 336
ellipse, polar equation of, 283
elsewhere, absolute 15
energy
at infinity, 254
conservation of, 105, 109, 112, 190, 196,
197
density of, 89, 97, 99, 100, 101, 267, 326
difficulty of defining, 239
flux of, 99, 101, 104
frame-invariant expression for, 52
Galilean kinetic, 46
in Kerr metric orbit, 301
internal, 100
negative, 303, 304, 307
negative and Hawking process, 306
of a particle, 45, 51, 57, 94
of orbit in Schwarzschild metric, 278
positivity of, 297
relative to ZAMO, 304
total, 188
energy-momentum, conservation of, 104,
185, 189, 196, 197
entropy, 100, 101, 106, 256
conservation of, 109, 185
of a black hole, 310
equation of state, 115, 256, 261, 269, 273,
274, 328, 339
Buchdahl’s, 272
for cold electron gas, 268
for photon gas, 115
equivalence principle, 121, 122, 187
strong, 122, 184, 185, 196
weak, 122
ergoregion, 299, 304, 317
and Penrose process, 305
unstable in a star, 305
ergosphere, 300
of Kerr metric, 299
orbit in, 317
ergotoroid, in rotating star, 299
Euclidean space, 74, 125
Euler’s equation, 192
event, 6, 7
expansion of the universe, 319, 322, 325,
329

Faraday tensor, 117
antisymmetry of, 116

far field, of stationary body, 206

Fermi gas, 270

Fermi momentum, 267, 268
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flat space, 125, 160
Riemann tensor of, 170
fluid, 89, 90
perfect, see perfect fluid
fluid dynamics, 184
fluid element, 99
four-velocity of, 100
flux, 91, 92, 94, 95, 96, 331, 333
across surfaces of constant time, 95
frame-dependence of, 93
of radiation, 115
force four-vector, 114
four-acceleration, 51, 57, 109
four-momentum, 52, 57, 94, 97, 185
conservation of, 46, 57, 58, 104, 185
definition of, 45
Galilean, 113
of photons, 52
total, 47, 188, 189
four-vector, 39
four-velocity, 46, 50, 51, 56, 57, 67, 86,
100
definition of, 44
non-existence of for photons, 52
frequency, of a wave, 215
function, 61, 62
derivative of, 67
future, absolute, 15

galaxy cluster, 319
galaxy formation, 334
gas, electron, 268
Fermi, 270
photon, 115, 268
relativistic, 111, 268
gauge, de Donder, 204
harmonic, 204
Lorentz, 204, 205, 211, 216, 229
transverse-traceless (TT), 216, 218, 223,
229, 234, 244, 248
gauge invariance, 211
gauge theories, 337
gauge transformation, 201, 202, 204, 238
definition of, 203
Gauss' law, 105, L11, 112, 114, 117, 157,
162, 163, 209, 227, 228, 296
general relativity (GR), 3, 80, 110, 122,
125, 148, 155, 174, 197, 199, 201, 205,
206, 208, 239, 251, 261, 281
field equations, see Einstein equations
geodesic, 125, 163, 173, 175, 189, 217, 220
as path of freely falling particle, 125,
183
definition of, 166
extremal length of, 167
null, 177, 275, 307, 313, 321, 340

spacelike, 177
timelike, 177, 183, 275
uniqueness of, 167
geodesic deviation, 171, 218, 223, 245,
315
equation of, 173
for weak field, 193
geometrical object, 36, 93
GR, see general relativity
gradient, 66, 70
as a one-form, 68
of a tensor, 81
vector associated with, 69, 74, 132
grand unified theory, 337
gravitational field, 3, 4
far from relativistic source, 206
nonuniformities of, 124
of a rotating source, 213
tidal, see tidal force
weak, 185, 200, 201, 271
gravitational potential energy, 188, 190,
259, 271
gravitational waves, 208, 226, 228, 322
absence of in spherical symmetry, 233,
249, 258
angular momentum flux, 250
astrophysical interest in, 221
detectors of, 222
dispersion relation, 215
driving harmonic oscillator, 223
energy, 234
energy flux, 235, 236, 238, 249
exact solution for plane wave, 219
frequency, 215
from collapse, 296
generation of, see sources of gravita-
tional waves
ingoing and outgoing, 227
in Kerr metric, 310
plane, 215, 237
polarization, 219, 238
propagation of, 214
quadrupole approximation, 229
traveling at speed of light, 215
gravity, alternative theories, 197
as curvature, 118 ~
special relativistic theory, 120
group, Lorentz, 87, 88
orthogonal, 88
group theory, and symmetry, 270

harmonic oscillator, 222, 223, 235-7, 248,
249

Hawking process, 305, 309, 310 i

Hawking's area theorem, 296, 300, 316

heat, conduction of, 102, 106
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Hilbert, also derived GR equations, 197
Hilbert space, 75
Hipparcos satellite, 285, 287, 333
homogeneity, 319, 320, 324, 329, 334, 336,
339
of early universe, 328
of hyperbolic universe, 326
horizon, 150, 293, 294, 299, 300, 303,
306-8, 310-12, 315, 321
area of, 300
deflnition of, 290
of Kerr metric, 302
of Schwarzschild metric, 289, 290, 291,
295
patticle, 321
proper time to reach, 289
stationary, 296
Hubble flow, 319
Hubble law, 329, 330
anisotropic version, 339
Hubble’s constant, 320, 330, 333, 340
hydrostatic equilibrium, equation of, 260
in GR, 192, 256
hyperbola, see invariant hyperbola
hyperplane, 151
hypersurface, 47, 111, 193, 320, 322, 325,
329
null, 77
spacelike, 77
timelike, 77

impact parameter, 280, 285, 286, 311, 312
Index, barred, 37, 40

contravariant, 78

covariant, 78

dummy, 38, 40, 41, 54, 71, 76, 169

free, 38, 54, 256

Greek, 7, 21, 127

Latin, 7, 21, 38

raising and lowering of, 78, 79, 174
inertial frame, 5, 118, 326

dragging of, 298, 301

freely falling, 122, 123, 187

glcbal, 156

globally incompatible with gravity, 119,

123
local, 123-5, 155-7, 169, 183, 184, 190,
290, 307

not at rest on Earth, 120
inertial mass, density of, 110
inertial observer, 3-5
inflationary universe, 337
inhomogeneity, 319, 338
initial-value problem, 200
inner product, see scalar product
instability, of circular particle orbit, 278
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of circular photon orbit, 278
of ergoregion of star, 305
of white dwarf, 269, 270
rotational, 317
integrability conditions, for coordinate
basis, 147
for global parallelism, 177
interior solutions, Buchdahi, 262, 273
exact, 261
Schwarzschild, 261, 272
internal energy, 100
interval, invariance of, 10, 14, 24
lightlike, 14
null, 14
spacelike, 14, 35, 118
timelike, 14, 35, 118, 326
intrinsic curvature, 251
intrinsic metric, 300
invariant hyperbola, 15, 326, 339
ionization of hydrogen, in cosmology, 335
Isaacson stress-energy tensor, 249
isotherm, 83
isotropic coordinates, 272
isotropy, 319, 323, 324
of early universe, 328
of hyperbolic universe, 326

Jacobian, 126, 127, 148, 157

Kerr solution, 192, 2968, 303, 317
area theoem for, 316
horizon of, 302
inverse metric, 301
orbit of photon, 304
Penrose process in, 305
photon orbits in, 300
symmetry of, 310
Killing's equation, 194
Killing vectors and conserved quantities,
194
kinetic energy, 190
Kronecker delta, 11, 43, 49, 719, 344
Kruskal-Szekeres coordinates, 316
definition of, 292
spacetime diagram, 293

Laplace's equation, 208
Laplacian, 137
in polar coordinates, 138
lens, gravitational, 285, 287
Lense~-Thirring effect, 298
Lie bracket, 180
Lie derivative, 180
light cone, 14, 15, 233, 292
for Kruskal-Szekeres coordinates, 292
in cosmology, 322, 329
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light cone (cont.)
in Schwarzschild metric, 291
light deflection, 285, 310
by Jupiter, 287
by the Sun, 198, 286
partial, 287, 313
linear independence, 342
linearity, 61, 63
linearized theory, 205, 219, 310, 322
line element, 192, 331
in Boyer-Lindgquist coordinates, 297
in cosmology, 323
in Kruskal-Szekeres coordinates, 292
in null coordinates, 220
of Minkowski space, 220
of polar coordinates, 132
of spherically symmetric spacetime, 253
local flatness, 315, 324
local-flatness theorem, 156, 159, 163, 176
locally flat (inertial) coordinates, 154, 158,
165, 172, 173, 175, 180
Lorentz contraction, 1, 18, 20, 25, 26, 33,
91
Lorentz frame, see inertial frame
Lorentz transformation, 1, 18, 23, 24, 25,
33, 35, 37, 38, 48, 53, 55, 56, 58, 117,
128, 160, 194, 202, 339
as a group, 87
background, 201, 202, 216, 238, 245
luminosity, 115, 331, 332, 333, 34!
in cosmology, 333
of a black hole, 308, 309
of black body, 317
luminosity distance, 330, 332

magnetic charge, of a black hole, 296
magnetic field, 116, 265
magnitude, 341
main sequence, 265
manifold, 151, 176
affine, 154
coordinates of, 151
differentiable, 152, 182
differential structure of, 152
dimension of, 15!
local flatness of, 154, 158, 161
metric of, 154
pseudo-Riemannian, 154
Riemannian, 154, 175
mass, density of, 110, 195
limit for neutron stars, 266, 270, 274
of a relativistic source, 208
of a star, 259, 265
mass function of spherical metric, 257
mass of the Sun, geometrized, 199
Maxwell's equations, 116, 211
in curved spacetime, 184

MCREF, 44, 45, 47, 49-51, 53, 56, 90, 94,
96-103, 106-9, 114, 115, 124, 184, 195
Mercury, perihelion precession, 198, 282
metric, 49, 60, 69, 71, 154, 176
as a mapping, 73, 78
as a symmetric tensor, 72
components of, 60, 62
components of in polar coordinates, 131
covariantly constant, {4}
intrinsic, 300
inverse, 74, 76, 78, 154
inverse in polar coordinates, 132
Kerr, see Kerr metric
of a weak gravitational field, 185
of Euclidean space, 141
of three-sphere, 179
physically measurable, 118, 119, 182
positive-definite, 288
Robertson-Walker, see Robertson—
Walker metric
Schwarzschild, see Schwarzschild
solution
signature of, 155, 175
useful identities for, 179
see also line element
Michelson-Morley experiment, 3
microwave background radiation, 58, 221,
335, 336, 338.
Minkowski space, §, 26, 88, 125, 158, 179,
182, 193, 194, 201, 227, 251, 325, 339
background, 204, 216
missing mass, 338
momentarily comoving reference frame,
see MCRF
momentum
as a frame-dependent vector, 113
conservation of, 105, 196, 197
density of, 89, 98, 99, 102, 104
Fermi, 267, 268
flux of, 99, 102, 107
of a particle, 51, 94
spatial, 45, 307
total, 188

nearly-Lorentz coordinates, 200, 201
neutron, 106
neutron star, 111, 212, 261, 266, 269-71,
314, 318
Newtonian gravity, 110, 187, 188, 192,
205, 231, 249, 261, 268, 278, 282, 318
as a physical theory, 183
field equation for, 206
geodesic deviation in, 193
Riemann tensor for, 193 )
source of, 195
Newtonian limit, 199, 205, 208, 212, 264,
272
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Newtonian potential, 185, 199, 226, 232,
241
of a relativistic source, 207
norm, 343
normal, null, 76
one-form, 70, 83, 95, 111!
outward, 70, 77, 85, 111
unit, 76, 85, 95, 111, 193
vector, 70, 76
number, conservation of, 106, 184
density of, 92, 94, 100, L8
flux of, 92, 118
number-flux vector, 93
for fluid, 100
observation, defined, 4
visual, 5
one-form, 67, 73, 77, 78, 95, 127, 128; 152,
153
basis, 64, 65, 80, 82, 83
basis in polar coordinates, 130
basis transformation, 65
Cartesian, 74
components of, 63
component transformation, 63
definition of, 62
magnitude, 76
mapped to vector, 73, 84
normal, see normal, one form
null, 76
picture of, 66, 68
spacelike, 76
timelike, 76
unit basis, 131
zero, 64
one-forms, linear independence of, 65, 82
scalar product of, 76
Oppenheimer—Volkov equation, 258, 262
orbit, angular velocity, 280
circular, 278, 280, 317
in Kerr metric, 302, 304
in Newtonian gravity, 281, 282
in Schwarzschild metric, 277, 311
not closed in Schwarzschild metric, 281
periad of, 280
photon, 279
plunge, 279
stable, 278
turning point, 278
unstable, 278
orthogonality, 48, 49, 293
orthogonal matrix, 85, 88
orthonormality, 48, 315, 343
outer product, 71

paradox, 21, 23, 26
pole-in-barn, 26, 34
twin, 23, 26, 28
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parallelism
as axiom in geometry, 125, 147
global, 165, 170, 177
local, 165
on a sphere, 164
parallel-transport, 163, 165, 168, 171, 175
definition of, 166
on a sphere, 164, 271
preserving scalar product, 177
parameter, 129
affine, 167, 175, 177, 178, 186
parsec, 318
definition of, 339
past, absolute, 15
path, 128, 129
Penrose process, 305, 316
perfect fluid, 255, 326
definition of, 106
stress-energy tensor, 107, 115
periastron, shift of, 284
perihelion, 281, 282
precession of Mercury’s, 198, 282
shift of, 280, 283, 310, 312, 313
period of orbit in Schwarzchild metric,
280
perpetual motion, 119, 120, 148
phase spdce, 80, 176
pion, 33
Planck length, 210
Ptanck mass, 210, 309, 337
Planck’s constant, 52, 266, 309
Planck temperature, 341
Planck time, 210
polar coordinates, 130
bases, 130, 135
divergence in, 138
Laplacian in, 138
tensor calculus in, 133
tensors in, 126
unit basis, 144, 146
polarization, 238, 244, 248
circular, 231, 245
elliptical, 245, 249
linear, 219, 220, 230, 245, 249
orthogonality, 245
polytrope, 262, 272
Pound-Rebka—Snider experiment, 120,
121, 123
precession, of Mercury’s perihelion, 282
pressure, 89, 90, 94, 100, 107, 110, 265
gradient of, 110, 111, 256, 259, 260, 261
quantum mechanical, 266, 267
principle of equivalence, see equivalence
principle
projection operator, 87, 248
proper distance, 218, 322, 330, 341
proper length, 22, 223
as affine parameter, 167, 178
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proper length (cont.)
of a curve, 157
proper radial distance, 254
proper surface element, 163
proper time, 19, 56, 244, 280, 288, 312,
315, 328
proper volume, 157, 158, 162, 175, 180,
259
of a sphere, 180
of a three-sphere, 180
proton 106
pseudo-Riemannian space, 80
PSR 1913+ 16, see binary pulsar system
pulsar, 266, 271, 274, 288

quadrupole moment tensor, definition of,
229
of binary star system, 231
of harmonic oscillator, 230
of various systems, 247
trace-free, 229
quantum gravity, 309, 310, 329, 334, 337,
4]
quantum mechanics, 297
quark, 337
quasar, 241, 288, 311, 319

redshift, 272, 284, 315, 331, 334, 340
central, 274
cosmological, 330
gravitational, 119, 123, 255
transverse Doppler, 57, 284
relativistic gas, 111, 268
relativity, general, see general relativity
principle of, 2, 13, 21, 23
special, see special relativity
rest density, 94
rest mass, 57, 94, 190
definition of, 45
density of, 100
energy associated with, 46
retardation, 233
Ricci scalar, 175
definition of, 174
in cosmology, 323
Ricci tensor, 175, 196
definition of, 173
symmetry of, 173, 178
Riemannian space, 80, {41, 177
Riemann tensor, 147, 175
as commutator of covariant derivatives
171
at Schwarzschild horizon, 290
compoents in locally flat coordinates,
170

definition of, 169
efficient ways to calculate, 270
for exact plane wave, 220
independent components of, 170, 178
independent of gauge, 203
of flat space, 170
of Schwarzschild metric, 315
of weak field, 203
symmetries of, 170
Rindler space, 150
Robertson—Walker metric, 192, 322
closed, 325
definition of, 324
dynamics of, 326
Einstein tensor, 339
flat, 325
hyperbolic, 325
open, 325
spherical, 325
rotation, 114
cause of Lense-Thirring effect, 298
effect on metric, 213
of black hole, 303
slow, 265
spatial, 25

scalar, 48
field, 153
scalar product, 49, 60, 63, 66, 343
definition of, 48
Schwarzchild coordinates, inside horizon,
290
singularity of at horizon, 29}
spacetime diagram, 291
Schwarzschild interior solution, 261
Schwarzschild solution, 192, 257, 260, 275,
285, 296, 297, 306, 310, 312, 314
Christoffel symbols, 315
coordinates inside horizon, 290
in Kruskal-Szekeres coordinates, 293
orbit of photon in, 304
orbits in, 277, 311
Riemann tensor, 315
time dilation in, 312
separation vector, 218
simultaneity, 18, 23, 118, 320, 322
failure of, 9, 23
singularity, at center of star, 273
coordinate, 288, 291, 310
curvature, 290
in cosmology, 138
of Schwarzschild metric, 315
theorems for cosmology, 328
true, 293, 310 )
sources of gravitational waves, angular
momentum loss, 250
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binary star system, 231
collapsing mass, 232
harmonic oscillator, 229
luminosity of, 240
pair of oscillators, 249
slow-motion approximation, 226, 229
Space Telescope, 332, 333
spacetime diagram, 6
special relativity (SR), 1, 3, 4, 6, 15, 21,
26, 27, 46, 49, 53, 61, 14, 80, 89, 93,
110, 118, 119, 123, 150, 154, 155, 161,
184, 185, 188, 198, 202, 204
speed of light, and zero rest mass
particles, 53
universality of, 2, 3, 10, 12, 24, 26
speed of sound, 26}, 262
sphere, intrinsic geometry of, 164
metric of, 297, 338
spherical coordinates, singularity of, 288
volume element of, 158
spherical symmetry, 276, 323
general metric for, 253
in GR, 25!
no gravitational waves in, 233, 249, 258
spinor space, 80
SR, see special relativity
stability, of circular orbit, 278
static and spherical system, general metric
of, 254
static limit, see ergosphere
static system, definition of, 253
stationarity, 296, 300, 301
and energy conservation, 190
Stefan—Boltzmann constant, 317
stellar evolution, 264
stellar structure, Newtonian, 260, 269
numerical calculation of, 273, 274
relativistic, 258, 270, 271
stress, 102, 104
stress-energy tensor, {15, 193, 196, 334
components in MCREF, 101
definition of, 98
examples of, 114
for gravitational waves, 249
for static and spherical fluid, 255
Isaacson, 249
of a perfect fluid, 107
of collisionless gas, 115
of dust, 98
of radiation, 115
symmetry of, 99, 103
summation convention, 37, 40, 55
supergravity, 310
supernova, 226, 265, 266, 332, 333
surface element, 96
symmetry, axial 30!
of Schwarzschild metric, 315
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reflection, 301
spherical, 233

tangent vector, 130, 148
definition of, 129
of a geodesic,175
parallel-transport of, 166
temperature, 89, 90, 94, 100, 101
of a black hole, 308, 309
tensor, 60
antisymmetric, 72, 84, 85, 86
antisymmetric part of, 72, 86
basis, 71
Cartesian, 81
components of, 62
component transformation, 78, 87
contravariant, 78
covariant, 78
definition of, 61, 77
field, 153
metric, 49, 60, 61
metric, see metric
symmetric, 72, 84, 85
symmetric part of, 72, 86
tensor operations, 153
thermodynamics, first law of, 100, 106
of black holes, 309, 310
second law of, 101
three-sphere, 179
three-vector, 39
tidal force, 125, 173, 232, 315, 316
and geodesic deviation, 173
tida! radius, 316
time dilation, 1, 18, 20, 23, 25, 26, 33, 57
time reversal invariance, 253
topographical map, 68
trace reverse operation, 204, 211
transformation
inverse, 42, 44
matrix of, 128
of basis one-forms, 66
of basis vectors, 40
of one-form components, 63
of tensor components, 78
of vector components, 39
singular, 127
turning point, 278, 302, 313, 327

uncertainty principle, 306
units, geometrized, 198, 210, 317
natural, 5, 31
S1, 5, 30, 31, 210, 316
universe, age of, 308
closed, 325, 330, 337
closure density, 330, 338



376 Index

universe (cont.) spacelike, 48, 58
density of, 329, 334, 338 tangent, see tangent vector,
expansion of, 319, 322, 325, 329, 332 timelike, 48, 56, 58
flat, 325 zero, 48, 54
global structure of, 330 vectors, linear independence of, 54, 82
homogeneity of, 321, 322 vector space, definition of, 342
hyperbolic, 325 dimension, 342
inflationary, 337 dual, 63, 64, 75, 76, 85
isotropy of, 321, 322 nonmetric, 79
matter-dominated, 326, 327 velocities, Einstein composition of, 25, 33,
open, 325, 330, 336, 337 56
radiation-dominated, 326, 328, 341 Galilean addition of, 2, 3, 25, 26
spherical, 325 velocity, absolute, 2
very early, 308 velocity parameter, 34, 35

viscosity, 102, 106, 107
volume, see proper volume
vacuum fuctuations, 306-8
vector, 64, 73, 77, 78, 152, 153

as a function of one-forms, 96, 128 wave equation, 214

as a tangent vector, 130 exact solution, 233

basis, 39, 40, 54, 62-5, 80, 83, 88, wave operator, 205
133 white dwarf, 266, 268-70, 274

basis in polar coordinates, 130 world line, 793

components of, 36 accelerated, 6

connecting, 172, 245 null, 290

definition of, 36, 39 of light, 6

displacement, 36 timelike, 290

dual, 64

gradient, 69, 74, 132

magnitude, 47 X-ray source, 288, 310

mapped to one-form, 73, 84
normal, see normal

null, 48, 58 ZAMO (zero-angular-momentum
null basis, 88 observer), 316, 317
scalar product, see scalar product definition of, 303

separation, 218 zero rest mass particles, 53






