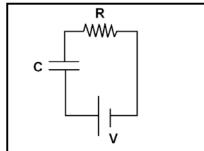
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Métodos Experimentales


GUIA DE LABORATORIO Nº3

Al final de esta sesión, debe entregar un informe escrito con los resultados de los experimentos. Todos los gráficos deben ser impresos y adjuntados al informe **en una sola hoja (si no es así, se descontará puntaje)**.

PARTE A: Carga de un condensador

MONTAJE A:

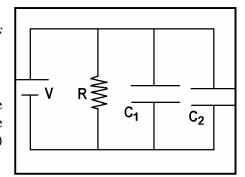
- 1.- Descargue el condensador.
- 2.- Arme el circuito de la figura con R = $1M\Omega$, C= $10~\mu F$ y V = 12~V, entregado por la fuente de voltaje (no debe ser exacto)

MEDIDA A:

Utilizando un cronómetro y el multímetro, mida el voltaje sobre la resistencia en función del tiempo, cada 5 segundos, durante 60 segundos. Considere t = 0 s, al conectar el cable de la alimentación de la fuente.

ANÁLISIS B:

- 1.- Grafique la corriente y el voltaje sobre el condensador en función del tiempo, en algún programa computacional.
- 2.- Explique brevemente el comportamiento de ambos gráficos. ¿A qué valor tienden el voltaje y la corriente para $t=10\ RC$ y $t=100\ RC$?
 - 3.- ¿Cómo cambian las curvas anteriores al cambiar el condensador por uno de 4,7 µF?
 - 4.- ¿Cómo cambian las curvas anteriores al cambiar el voltaje de la fuente por 5 volt?


PARTE B : Descarga de una asociación de condensadores

MONTAJE B:

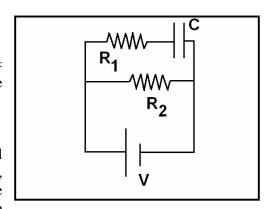
- 1.- Descargue el condensador.
- 2.- Arme el circuito de la figura con R = 1M Ω , C₁=C₂=10 μF y V = 12 V, entregado por la fuente de voltaje (no debe ser exacto)

MEDIDA B:

Utilizando un cronómetro y el multímetro, mida el voltaje sobre la resistencia en función del tiempo, cada 5 segundos, durante 60 segundos. Considere t = 0 s, **al desconectar el cable** (no apagar) de la alimentación de la fuente.

ANÁLISIS B:

- 1.- Grafique la corriente y el voltaje sobre la asociación de condensadores en función del tiempo, en algún programa computacional.
- 2.- Explique brevemente el comportamiento de ambos gráficos. ¿A qué valor tienden el voltaje y la corriente para t = 10 RC y t = 100 RC?
 - 3.- ¿Cómo cambia la curva anterior al cambiar el condensador por uno de 4,7 μF?
 - 4.- ¿Cómo cambia la curva anterior al cambiar el voltaje de la fuente por 5 volt?


PARTE C: Estudio de un circuito RC.

MONTAJE C:

- 1.- Descargue los condensadores que va a usar.
- 2.- Conecte el circuito de la figura con $R_1=R_2=1 M \Omega$, $C=10~\mu F$ y V=12~V, entregado por la fuente de voltaje (no debe ser exacto). No alimente aún el circuito.

Utilizando un cronómetro y el multímetro, mida el voltaje sobre R_1 en función del tiempo, cada 5 segundos, durante 60 segundos de la siguiente forma: en t=0 s, conecte la alimentación, en t=30 s, desconecte uno de los cables que van a la alimentación.

ANÁLISIS C:

- 1.- Con los valores registrados, grafique el voltaje y corriente sobre el condensador, las corrientes sobre las resistencias y la potencia entregada por la fuente, en función del tiempo. Use las leyes de Ohm y Kirchoff, para obtener los valores solo a partir de la medida ya hecha.
 - 2.- Explique el comportamiento de cada gráfico.
- 3.- Explique en que cambia cada gráfico si en el circuito se conecta en serie un condensador de $10~\mu F$, con el anterior.

Recuerde imprimir todos sus gráficos en una sola hoja (si no es así, se descontará puntaje) y adjuntarlos al informe.