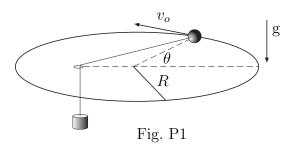
Auxiliar - Martes 5 de Agosto

FI2A1 - Mecánica Prof. Luis Rodriguez Semestre Primavera 2008 Auxs: Francisco Sepúlveda & Kim Hauser

P1

Una partícula se mueve con rapidez v_o constante, sobre un riel circular de radio R colocado en posición horizontal sobre una superficie también horizontal. La partícula se encuentra atada mediante una cuerda inextensible a un bloque que cuelga debajo de un agujero localizado a una distancia R/2 del centro del riel:

- (a) Determine la rapidez del bloque en función del ángulo θ .
- (b) Obtenga la rapidez máxima del bloque.
- (c) Determine la aceleración \vec{a} del bloque cuando la partícula que se mueve sobre el riel pasa por la posición $\theta = 0$.



$\overline{P2}$

La trayectoria de un punto P, en coordenadas cilíndricas, se define con:

$$\rho(t) = \rho_o, \qquad \theta(t) =?, \qquad z(t) = h - B\theta(t)$$

Se sabe que $\theta(t)$ es una función monótona, $\theta(0) = 0$ y que $\dot{\theta}(0) = \omega_o$ y donde h, B y ω_o son cantidades positivas conocidas.

- (a) Obtenga las expresiones para los vectores velocidad y aceleración en este ejemplo.
- (b) Obtenga una expresión para el vector tangente \hat{t} y para la rapidez de P. Comente sobre los signos de estas cantidades.
- (c) Obtenga expresiones para las aceleraciones centrípeta y tangencial:

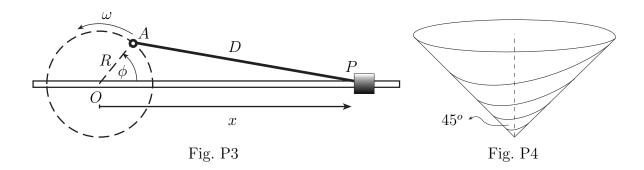
$$\vec{a}(t) = \vec{a}_{cent}(t) + \vec{a}_{tg}(t)$$

(d) ¿Cuál es la función $\theta(t)$ si se sabe que la aceleración apunta todo el tiempo perpendicular al eje Z?

P3

El punto de unión P entre un pistón y una biela de largo D se mueve a lo largo del eje x debido a que el cigüeñal (disco), de radio R y centro en un punto fijo O, rota a velocidad angular constante ω . En el instante t=0 la biela está horizontal ($\phi=0, x=R+D$).

- (a) Encuentre una expresión para la distancia x(t) entre P y O como función del tiempo t.
- (b) Encuentre la velocidad v(t) de P.
- (c) En la expresión para v(t) considere el caso $R \ll D$ y luego encuentre una expresión aproximada para la aceleración de P. ¿Cómo se compara la magnitud de la aceleración máxima del pistón con la aceleración del punto A?



P4

Considere una curva espiral cónica descrita en coordenadas esféricas por las ecuaciones:

$$\theta = 45^{\circ},$$

$$\phi = 2\pi \frac{r}{R},$$

donde R es una constante conocida. Una partícula se mueve sobre la espiral partiendo desde el origen manteniendo una velocidad radial constante y conocida, $\dot{r} = c$. Se pide:

- (a) Determine la distancia radial del punto P en el cual la rapidez de la partícula es 3c.
- (b) Encuentre una expresión para la longitud total de la espiral y para el tiempo que la partícula tarda en recorrerla. **Nota:** Está bien si deja su solución en términos de una integral muy complicada.
- (c) Determine el valor del radio de curvatura de la trayectoria en el punto P.

Respuestas:

(Podría haber errores.)

R1: (a)
$$v(\theta) = -\frac{\sin \theta}{\sqrt{5 + 4\cos \theta}} v_o;$$
 (b) $\vec{v}_{max} = \frac{v_o}{2} \hat{k};$ (c) $\vec{a}(\theta = 0) = -\frac{v_o^2}{3R} \hat{k}$

R2: (a)
$$\vec{v} = \rho_o \dot{\theta} \hat{\theta} - B \dot{\theta} \hat{k}$$
, $\vec{a} = -\rho_o \dot{\theta}^2 \hat{\rho} + \rho_o \ddot{\theta} \hat{\theta} - B \ddot{\theta} \hat{k}$ (b) $\vec{t} = \frac{\rho_o}{\sqrt{\rho_o^2 + B^2}} \hat{\theta} - \frac{B}{\sqrt{\rho_o^2 + B^2}} \hat{k}$, $v(t) = \dot{\theta} \sqrt{\rho_o^2 + B^2}$; (c) $\vec{a} = \ddot{\theta} \sqrt{\rho_o^2 + B^2} \hat{t} - \rho_o \dot{\theta}^2 \hat{\rho}$; (d) $\theta(t) = \omega_o t$

R3: (a)
$$x(t) = R\cos(\omega t) + \sqrt{D^2 - R^2 \sin^2(\omega t)}$$
; (b) $v(t) = -R\omega \sin(\omega t) \left[1 + \frac{R\cos(\omega t)}{\sqrt{D^2 - R^2 \sin^2(\omega t)}} \right]$; (c) $v(t) \approx -R\omega \sin(\omega t)$, $a(t) \approx -R\omega^2 \cos(\omega t)$

R4: (a)
$$r^* = \frac{2R}{\pi}$$
; (b) $L_{\Gamma} = \int_0^{t_2 = \frac{2R}{c\pi}} c\sqrt{1 + t^2 \frac{2\pi^2 c^2}{R^2}} dt$; (c) $\rho_c = \frac{27R}{2\sqrt{86}\pi}$.