

PROGRAMA DE CURSO

Código Non	nbre			
FI1A2		Sistemas New	tonianos	
Nombre en Ing	lés			
	N	ewtonian System	าร	
SCT	Unidades Horas de Docencia Trabajo Docentes Cátedra Auxiliar Personal			
6	10	3	3	5
	Requisitos		Carácter	del Curso
CC100 Comput REQUISITOS ECálculo: Representación Diferenciación Álgebra: Sumatorias Raíces y númer Física I: Geometría y trea Análisis dimenteción Ecuaciones de movimientos un Computación: Implementación:	ión a la Física New ación I DE CONTENIDOS I In gráfica de cónica y primitivas en una eros complejos igonometría espacisional e Newton en sistem iformes. In de algoritmos: lo ensionales del tipo	ESPECÍFICOS as y funciones a variable ial as con ops, recurrencia	Obligatorio Plar	n Común

Resultados de Aprendizaje

Al final el estudiante demuestra que comprende fenómenos que involucren sólidos, fluidos y medios elásticos. Lo anterior en el marco de las leyes de Newton extendidas a sistemas más complejos.

Metodología Docente	Evaluación General
La metodología que se utilizará en el curso es activo - participativa con el uso de las siguientes estrategias: • Clases expositivas, en donde el estudiante logra desarrollar ejercicios que se le presentan. • Laboratorios.	La evaluación permitirá que los alumnos demuestren los resultados de aprendizaje alcanzadas en los distintos momentos del proceso de enseñanza, siendo estas:

Unidades Temáticas

Número	Nombre de la Unidad Durad			ción en Semanas
1	Uso de software de	manipulación simbólica y		1 semana
	nı	umérica.		
	Contenidos	Resultados de Aprendizajes d	le la	Referencias a
•	Contenidos	Unidad		la Bibliografía
1.1 Represent	ación gráfica de	El estudiante al final de la un	idad,	"Physics for
ecuaciones lin	eales.	demuestra que:		Scientists and
1.2 Cálculo de	derivadas, cálculo de	1. Utiliza programas de cá	ilculo	Engineers",
integrales.		simbólico y numérico que perr	nitan	Raymond A.
1.3 Resolución de ecuaciones de		desarrollar operatoria	que	Serway, John
movimiento simples.		involucren derivadas, integra	ición,	W.
1.4 Integración de áreas y volúmenes.		manejo algebraico y resolució	in de	Jewett.
1.5 Resolución de ecuaciones		sistemas de ecuaciones, relati	vos a	
diferenciales por iteración.		los conocimientos de FI10A.		
1.6 Replantea	miento y resolución de	2. Utiliza programas de cá	ilculo	
sistemas físico	s estudiados en la	simbólico y numérico que perr	nitan	
asignatura de	física anterior.	representar gráficam	nente	
		resultados y datos, relativos	a los	
		conocimientos de FI10A.		

Número	Nombre d	e la Unidad	Duració	n en Semanas
2	Métodos ex	perimentales	1 semana	
	Contenidos	Resultados de Aprendiza	ijes de la	Referencias a
	Contenidos	Unidad		la Bibliografía
2.1 Método	s de medición de	El estudiante al final de	la unidad,	"Physics for
volumen, posi	ción y velocidad	demuestra que:		Scientists and
2.2 Análisis	de errores. Errores	1. Utiliza métodos exper	rimentales	Engineers",
sistemáticos y	aleatorios	para medir posición y velocidad. R		Raymond A.
2.3 Representación gráfica de		2. Reconoce la exist	encia de	Serway, John
resultados. I	dentificación de leyes	errores en las mediciones	•	W.
lineales, de	potencia, logaritmo y	3. Analiza gráficam	iente y	Jewett.
exponenciales	i.	analíticamente, mediant	e ajustes,	
2.4 Ajuste de i	mínimos cuadrados	los resultados experiment	ales.	

críticos.

UNIVERSIDAD	DE CHILE			
Número	Nombre	e de la Unidad	Dura	ción en Semanas
3	Estátio	ca de sólidos	1 ser	manas
	Contenidos	Resultados de Aprendizajes d	e la	Referencias a
•	Contenidos	Unidad		la Bibliografía
3.1 Definición de producto cruz.		El estudiante al final de la un	idad,	"Physics for
3.2 Las le	yes de la estática.	demuestra que:		Scientists and
Formulación	Formulación fenomenológica y a 1. Comprende el significado de las Engineers",			Engineers",
partir de las leyes de Newton.		leyes de la estática.		Raymond A.
3.3 Análisis experimental		2. Verifica las leyes de la est	ática	Serway, John
3.3 Resolu	Resolución de sistemas en situaciones controladas. W.			W.
algebraicos	para situaciones	3. Calcula las fuerzas de rea	cción	Jewett.
específicas.		en sistemas estáticos.		
3.4 Análisis	v discusión de casos			

Número	Nombre de la Unidad D		Dura	ción en Semanas
4	Dinámica plai	na de sólidos rígidos	3 sen	nana
	Contenidos	Resultados de Aprendizajes d	e la	Referencias a
		Unidad		la Bibliografía
_	nética de un sólido	El estudiante al final de la un	idad,	"Physics for
rotando.		demuestra que:		Scientists and
	de inercia. Cálculo para	1. Describe el movimiento		Engineers",
distintos obje		sólidos rotando en torno a u	n eje	Raymond A.
	indirecta de de los	fijo.		Serway, John
momentos de		2. Comprende la noción		W.
	las que conserven	momento de inercia y calcu		Jewett.
energía		analíticamente, usando soft		
	ión de momentos de	de cálculo numérico o simbólio		
inercia		3. Analiza la conservación		
4.5 Momento	_	energía en sistemas que involu	ıcren	
	tos planos de sólidos	sólidos que roten.		
rígidos		4. Reconoce que la energía cinética		
	s que involucren el uso	se descompone en la compor		
simultaneo de		del centro de masa y el relati	vo al	
leyes de fuerz	a, torque y energía.	centro de masa.		
		5. Comprende el rol de los		
		momentos de inercia como medio		
		para almacenar energía mecánica. 6. Calcula la energía potencial		
			enciai	
		gravitacional de sólidos. 7. Calcula el momento angula	or do	
		un sólido.	ar ue	
			onto	
		8. Reconoce que el mom angular se descompone e		
		componente del centro de m		
		el relativo al centro de masa.	asa y	
		9. Describe el movimiento	de	
		sólidos que rotan debido a tor		
		externos.	ques	
		10. Resuelve la dinámica de só	olidos	
		planos que involucren el		
		simultáneo de las leyes de fu		
		torres e concrete	.c. 2u,	

torque y energía.

péndulo real.

Número		e de la Unidad	Dura	ción en Semanas
5		cilaciones		nanas
Co	ntenidos	Resultados de Aprendizajes d	e la	Referencias a
CO	internuos	Unidad		la Bibliografía
5.1 Ecuación can	nónica del movimiento	Al final de la unidad, se espera	a que	"Physics for
armónico simple	2	el estudiante:		Scientists and
5.2 Ecuaciones	del péndulo y el	1. Reconoce las oscilaciones o		Engineers",
resorte		el movimiento general que o	curre	Raymond A.
5.3 Definicion	' '	en torno al equilibrio.		Serway, John
frecuencia y peri		2. Describe el movim		W.
5.4 Represent	•	oscilatorio elemental en siste	emas	Jewett.
oscilaciones en o	•	simples.		
de energía poter		3. Caracteriza los movimie	entos	
5.5 Condiciones		oscilatorios.		
	ón de constantes que	4. Reconoce que en	los	
	sistemas descritos.	movimientos armónicos	las	
	I rol de las fuerzas de	frecuencias de oscilación	no	
roce viscoso.	mónico amortiguado	dependen de las condici iniciales.	iones	
	ar gráficamente las	5. Describe el movim	ionto	
soluciones	ai grancamente las	oscilatorio de un oscilador		
	s en sólidos rígidos	presencia de fuerzas viscosas.	CII	
	el efecto del tamaño	6. Reconoce las condiciones	ane	
	/forma) del péndulo.	dan lugar al fenómeno	de	
5.12 Solucion	·	resonancia.	40	
	adas: resonancia.			
5.13 Solucion				
oscilaciones no l	ineales:			

UNIVERSIDAD	DE CHILE			
Número	Nombre de la Unidad Dura			ción en Semanas
6		Ondas	2 sen	nanas
	Contenidos	Resultados de Aprendizajes d	le la	Referencias a
	Contenidos	Unidad		la Bibliografía
1. Caracteriza	ción de sistemas	Al final de la unidad, se espera	a que	"Physics for
extendidos 10):	el estudiante:		Scientists and
densidad de n	nasa, tensión, "campo	1. Reconozca el carácter genér	rico	Engineers",
de		de las ondas: análogo en sistemas		Raymond A.
deformación", "campo de velocidad"		extendidos a las oscilaciones.		Serway, John
2. Ondas en 1	D. Descripción de ondas	2. Prediga las características de las V		W.
viajeras tipo		ondas viajeras y estacionarias en Jewett.		Jewett.
d'Alembert. Velocidad de onda.		una cuerda.		
3. Condiciones de borde rígidas y		3. Reconozca la fenomenología	a de	
libres		las ondas en 2D y 3D.		
4. Ondas estacionarias		4. Emplee métodos		
5. Descripción fenomenológica de las		experimentales para estudiar l	a	
ondas en 2D y		fenomenología ondulatoria.		
3D: difracción	, reflexión y refracción			
6. Ondas supei	rficiales en fluidos			

Número	Nombre de la Unidad Durac		ción en Semanas	
7	Fluidos 2 sem		nanas	
	Contenidos	Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
 Interpretado colisiones mo Equilibrio Pascal. Definición caudal. Conservación conservación. Flujos er fenomenológo. Definición arrastre de Stabilido en terminal. 	hidrostático. Ley de de velocidad de fluido y	Al final de la unidad, se espera el estudiante: 1. Reconozca que el movimien los fluidos puede ser comprera partir de las leyes de la mecode Newton. 2. Comprenda los concepto densidad, presión, velocidad fluido y caudal. 3. Aplique las leyes conservación para deducir las de movimiento de los fluidos. 4. Aplique las leyes de Pas Bernoulli para calcular simples en cañerías. 5. Aplique la fuerza de arrasti Stokes para describir movimiento de sólidos en fluidos.	to de ndido ánica es de de leyes cal y flujos re de el	"Physics for Scientists and Engineers", Raymond A. Serway, John W. Jewett.

FÍSICAS Y MAT UNIVERSIDAD	TEMÁTICAS DE CHILE			
Número	Nombre	e de la Unidad	Dura	ción en Semanas
8	Óptica	a geométrica	2 sen	nanas
	Contenidos	Resultados de Aprendizajes d	le la	Referencias a
,	Contenidos	Unidad		la Bibliografía
1. Fuentes y ra	ayos	Al final de la unidad, se espera	a que	"Physics for
2. Leyes de ref	flexión y refracción	el estudiante:		Scientists and
(Snell)		1. Reconozca el concepto de rayo		Engineers",
3. Espejos curv	os y parabólicos	en óptica geométrica.		Raymond A.
4. Lentes delga	ados	2. Aplique las leyes de reflexión y		Serway, John
5. Aparatos óp	oticos	refracción para calcular el		W.
		movimiento de rayos.		Jewett.
		3. Aplique las leyes de reflex	ión y	
		refracción para calcular	las	
		imágenes producidas por esp	ejos,	
		interfases y lentes.		
		4. Comprenda el funcionam	iento	
		de aparatos ópticos: teleso	opio,	
		lentes oftalmológicos, microsc	opio.	
		1	•	

D:1		C/	_	
Bib	lıogı	ratia	Gene	ıraı

ondulatorio.

también

5. Reconozca el comportamiento análogo de las ondas y la óptica geométrica y reconocer que la luz

un

fenómeno

Libro guía:

(1) "Physics for Scientists and Engineers", Raymond A. Serway, John W. Jewett.

Lecturas recomendadas:

- "Physics for Scientists and Engineers", Gene Mosca, Paul A. Tipler.
- "Feynman Lectures On Physics", Richard P. Feynman.
- "Calculus Made Easy", Silvanus P. Thompson, Martin Gardner.

Vigencia desde:	20/09/09 Última revisión.	
Elaborado por:	Hugo Arellano	
	Nicolás Mujica	
Revisado por:	Coordinadora del Curso Judit Lisoni	
	Área de Desarrollo Docente	