Sistemas Newtonianos Unidad 4B Sólidos rígidos: Energía de Rotación

Rodrigo Soto

Departamento de Física, Universidad de Chile

Semestre Primavera 2008

 $\partial f \iota$

- Conservación de energía para una partícula
- Conservación de energía en un sólido rígido en rotación
 - Momento de inercia
 - Energía potencial
- Ejemplo
- Teoremas para momentos de inercia
- Práctica

- Conservación de energía para una partícula
- Conservación de energía en un sólido rígido en rotación
 - Momento de inercia
 - Energía potencial
- Ejemplo
- Teoremas para momentos de inercia
- Práctica

- Conservación de energía para una partícula
- Conservación de energía en un sólido rígido en rotación
 - Momento de inercia
 - Energía potencial
- Ejemplo
- Teoremas para momentos de inercia
- Práctica

- Conservación de energía para una partícula
- Conservación de energía en un sólido rígido en rotación
 - Momento de inercia
 - Energía potencial
- Ejemplo
- Teoremas para momentos de inercia
- Práctica

- Conservación de energía para una partícula
- Conservación de energía en un sólido rígido en rotación
 - Momento de inercia
 - Energía potencial
- Ejemplo
- Teoremas para momentos de inercia
- Práctica

- Conservación de energía para una partícula
- Conservación de energía en un sólido rígido en rotación
 - Momento de inercia
 - Energía potencial
- Ejemplo
- Teoremas para momentos de inercia
- Práctica

- Conservación de energía para una partícula
- Conservación de energía en un sólido rígido en rotación
 - Momento de inercia
 - Energía potencial
- Ejemplo
- Teoremas para momentos de inercia
- Práctica

En el caso de una partícula se vio en Fl100 que

$$\Delta K = K_B - K_A = W_{A \to B}$$

donde

$$K = \frac{1}{2}mv^2$$
 energía cinética

$$W_{A \to B} = \int \vec{F} \cdot d\vec{x}$$
 trabajo mecánico

Donde \vec{F} incluye a todas las fuerzas (conservativas y no conservativas).

Si hay fuerzas conservativas y no conservativas: $\vec{F}=\vec{F}_C+\vec{F}_{NC}$ Las fuerzas conservativas cumplen

$$W_{C,A\to B}=\int \vec{F}_C\cdot d\vec{x}=-(U_B-U_A)$$

dopnde U es la energía potencial de la fuerza.

Luego el teorema de energía trabajo se escribe

$$(K_B + U_B) - (K_A + U_A) = W_{NC,A \to B}$$

Se define la energía mecánica

$$E = K + U$$

Y se tiene el teorema de conservación de energía

$$\Delta E = E_B - E_A = W_{NC,i \rightarrow t}$$

La energía sólo varía cuando hay fuerzas no conservativas que hacen trabajo.

Si hay fuerzas conservativas y no conservativas: $\vec{F}=\vec{F}_C+\vec{F}_{NC}$ Las fuerzas conservativas cumplen

$$W_{C,A\to B} = \int \vec{F}_C \cdot d\vec{x} = -(U_B - U_A)$$

dopnde U es la energía potencial de la fuerza. Luego el teorema de energía trabajo se escribe

$$K_B - K_A = W_{A \to B}$$

$$= W_{C,A \to B} + W_{NC,A \to B}$$

$$= -(U_B - U_A) + W_{NC,A \to B}$$

$$(K_B + U_B) - (K_A + U_A) = W_{NC,A \to B}$$

Se define la energía mecánica

$$E = K + U$$

Y se tiene el teorema de conservación de energía

Si hay fuerzas conservativas y no conservativas: $\vec{F}=\vec{F}_C+\vec{F}_{NC}$ Las fuerzas conservativas cumplen

$$W_{C,A\to B}=\int \vec{F}_C\cdot d\vec{x}=-(U_B-U_A)$$

dopnde U es la energía potencial de la fuerza. Luego el teorema de energía trabajo se escribe

$$(K_B + U_B) - (K_A + U_A) = W_{NC,A \to B}$$

Se define la energía mecánica

$$E = K + U$$

Y se tiene el teorema de conservación de energía

$$\Delta E = E_B - E_A = W_{NC,i \rightarrow f}$$

La energía sólo varía cuando hay fuerzas no conservativas que hacen trabajo.

Si hay fuerzas conservativas y no conservativas: $\vec{F}=\vec{F}_C+\vec{F}_{NC}$ Las fuerzas conservativas cumplen

$$W_{C,A\to B} = \int \vec{F}_C \cdot d\vec{x} = -(U_B - U_A)$$

dopnde U es la energía potencial de la fuerza. Luego el teorema de energía trabajo se escribe

$$(K_B + U_B) - (K_A + U_A) = W_{NC,A \to B}$$

Se define la energía mecánica

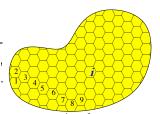
$$E = K + U$$

Y se tiene el teorema de conservación de energía

$$\Delta E = E_B - E_A = W_{NC, i \to f}$$

La energía sólo varía cuando hay fuerzas no conservativas que hacen trabajo.

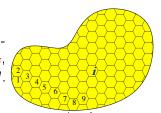
El sólido se considera formado por muchos elementos pequeños de masa m_i , posición \vec{r}_i y velocidad \vec{v}_i ; $i=1,2,\ldots,N$.



Sobre cada elemento actúan las fuerzas internas y las fuerzas externas (gravedad, normales, roce, tensión, etc.)

En un sólido rígido las fuerzas internas no hacen trabajo Demotración:

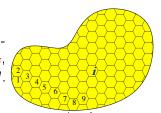
El sólido se considera formado por muchos elementos pequeños de masa m_i , posición \vec{r}_i y velocidad \vec{v}_i ; $i=1,2,\ldots,N$.



Sobre cada elemento actúan las fuerzas internas y las fuerzas externas (gravedad, normales, roce, tensión, etc.)

En un sólido rígido las fuerzas internas no hacen trabajo Demotración:

El sólido se considera formado por muchos elementos pequeños de masa m_i , posición \vec{r}_i y velocidad \vec{v}_i ; $i=1,2,\ldots,N$.



Sobre cada elemento actúan las fuerzas internas y las fuerzas externas (gravedad, normales, roce, tensión, etc.)

En un sólido rígido las fuerzas internas no hacen trabajo Demotración:

Supongamos que la única fuerza externa conservativa es la gravedad Para cada partícula

$$\Delta(K_i + m_i g z_i) = W_{NC,A \rightarrow B}^i$$

donde $W^i_{NC,A\to B}$ sólo incluye a las fuerzas externas no conservativas.

Sumando sobre todo el sistema

$$\sum_{i} \Delta(K_{i} + m_{i}gz_{i}) = \sum_{i} W_{NC,A o B}^{i}$$

$$\Delta\left(\sum_{i} K_{i}\right) + \Delta\left(MgZ\right) = W_{NC,A o B}^{\mathrm{total}}$$

$$\Delta K + Mg\Delta Z = W_{NC,A o B}^{\mathrm{total}}$$

Supongamos que la única fuerza externa conservativa es la gravedad Para cada partícula

$$\Delta(K_i + m_i g z_i) = W_{NC,A \to B}^i$$

donde $W_{NC,A\rightarrow B}^{i}$ sólo incluye a las fuerzas externas no conservativas.

Sumando sobre todo el sistema

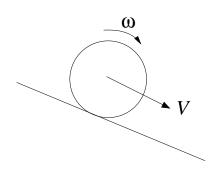
$$\sum_{i} \Delta(K_{i} + m_{i}gz_{i}) = \sum_{i} W_{NC,A o B}^{i}$$

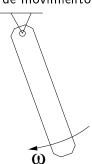
$$\Delta\left(\sum_{i} K_{i}\right) + \Delta\left(MgZ\right) = W_{NC,A o B}^{ ext{total}}$$

$$\Delta K + Mg\Delta Z = W_{NC,A o B}^{ ext{total}}$$

Movimiento plano

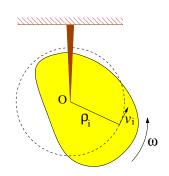
- La velocidad del sólido está en un plano (movimiento bidimensional)
- Eje de rotación es perpendicular al plano de movimiento.





Se tiene un punto fijo O.

La distancia de cada partícula al punto fijo es constante ρ_i . Movimiento circular de ese radio en torno al punto fijo.



Velocidad de cada partícula $v_i = \rho_i \omega$ perpendicular al vector posición

La energía cinética es

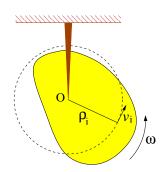
$$K = \sum_{i} \frac{1}{2} m_i v_i^2 = \sum_{i} \frac{1}{2} m_i \rho_i^2 \omega^2$$
$$= \frac{1}{2} \left(\sum_{i} m_i \rho_i^2 \right) \omega^2$$

$$K = I\omega^2/2$$

Se define el momento de inercia,

Se tiene un punto fijo O.

La distancia de cada partícula al punto fijo es constante ρ_i . Movimiento circular de ese radio en torno al punto fijo.



Velocidad de cada partícula $v_i = \rho_i \omega$ perpendicular al vector posición

La energía cinética es

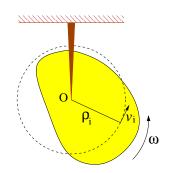
$$K = \sum_{i} \frac{1}{2} m_i v_i^2 = \sum_{i} \frac{1}{2} m_i \rho_i^2 \omega^2$$
$$= \frac{1}{2} \left(\sum_{i} m_i \rho_i^2 \right) \omega^2$$

$$K = I\omega^2/2$$

Se define el momento de inercia,

Se tiene un punto fijo O.

La distancia de cada partícula al punto fijo es constante ρ_i . Movimiento circular de ese radio en torno al punto fijo.



Velocidad de cada partícula $v_i = \rho_i \omega$ perpendicular al vector posición

La energía cinética es

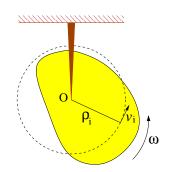
$$K = \sum_{i} \frac{1}{2} m_i v_i^2 = \sum_{i} \frac{1}{2} m_i \rho_i^2 \omega^2$$
$$= \frac{1}{2} \left(\sum_{i} m_i \rho_i^2 \right) \omega^2$$

 $K = I\omega^2/2$

Se define el momento de inercia,

Se tiene un punto fijo O.

La distancia de cada partícula al punto fijo es constante ρ_i . Movimiento circular de ese radio en torno al punto fijo.



Velocidad de cada partícula $v_i = \rho_i \omega$ perpendicular al vector posición

La energía cinética es

$$K = \sum_{i} \frac{1}{2} m_i v_i^2 = \sum_{i} \frac{1}{2} m_i \rho_i^2 \omega^2$$
$$= \frac{1}{2} \left(\sum_{i} m_i \rho_i^2 \right) \omega^2$$

$$K = I\omega^2/2$$

Se define el momento de inercia, I

Momento de inercia

El momento de inercia

$$I = \sum_{i} m_{i} \rho_{i}^{2}$$

es una propiedad que depende de:

- el cuerpo (depende de la masa y su distribución espacial)
- del eje en torno al cual rota.

<mark>El momento de inercia es aditivo</mark> Ej: "Cruceta" de la práctica de hoy

Momento de inercia

El momento de inercia

$$I = \sum_{i} m_{i} \rho_{i}^{2}$$

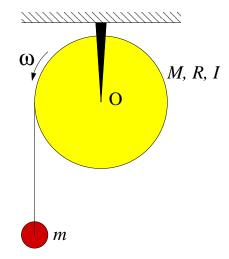
es una propiedad que depende de:

- el cuerpo (depende de la masa y su distribución espacial)
- del eje en torno al cual rota.

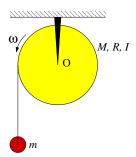
El momento de inercia es aditivo

Ej: "Cruceta" de la práctica de hoy

Ejemplo



Ejemplo

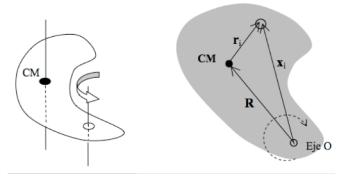


El momento de inercia depende del eje en torno al cual gira. Eso lo hace complejo de analizar

Solución: Teorema de Steiner.

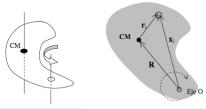
El momento de inercia depende del eje en torno al cual gira. Eso lo hace complejo de analizar

Solución: Teorema de Steiner.



El momento de inercia depende del eje en torno al cual gira. Eso lo hace complejo de analizar

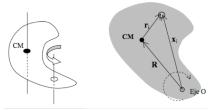
Solución: Teorema de Steiner.



$$\vec{x}_i = \vec{R} + \vec{r}_i$$

El momento de inercia depende del eje en torno al cual gira. Eso lo hace complejo de analizar

Solución: Teorema de Steiner.



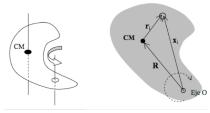
$$\vec{x}_i = \vec{R} + \vec{r}_i$$

Los momentos de inercia

$$I_O = \sum m_i x_i^2; \quad I_{cm} = \sum m_i r_i^2$$

El momento de inercia depende del eje en torno al cual gira. Eso lo hace complejo de analizar

Solución: Teorema de Steiner.



$$\vec{x}_i = \vec{R} + \vec{r}_i$$

Los momentos de inercia

$$I_O = \sum m_i x_i^2; \quad I_{cm} = \sum m_i r_i^2$$

$$I_O = I_{cm} + MR^2$$

El teorema de Steiner permite calcular el momento de inercia respecto a cualquier eje si se conoce el momento de inercia respecto al centro de masa.

Momentos de inercia respecto al centro de masa	
Disco	$\frac{1}{2}MR^2$
Aro	MR^2
Esfera llena	$\frac{2}{5}MR^2$
Cascarón esférico	$\frac{3}{5}MR^2$
Barra	$\frac{1}{12}ML^2$

Ejemplo de la clase antepasada

El momento de inercia de una barra respecto a su centro es $I = ML^2/2$.

¿Cuánto mide respecto a un extremo?

$$I_{\text{extremo}} = I_0 + M(L/2)^2$$
$$= ML^2/12 + ML^2/4$$
$$I_{\text{extremo}} = ML^2/3$$

Por lo tanto, si gira respecto a su extremo tiene más energía que si gira respecto a su centro.

Ejemplo de la clase antepasada

El momento de inercia de una barra respecto a su centro es $I = ML^2/2$.

¿Cuánto mide respecto a un extremo?

$$I_{\text{extremo}} = I_O + M(L/2)^2$$
$$= ML^2/12 + ML^2/4$$
$$I_{\text{extremo}} = ML^2/3$$

Por lo tanto, si gira respecto a su extremo tiene más energía que si gira respecto a su centro.

Ejemplo de la clase antepasada

El momento de inercia de una barra respecto a su centro es $I = ML^2/2$.

¿Cuánto mide respecto a un extremo?

$$I_{\text{extremo}} = I_O + M(L/2)^2$$
$$= ML^2/12 + ML^2/4$$
$$I_{\text{extremo}} = ML^2/3$$

Por lo tanto, si gira respecto a su extremo tiene más energía que si gira respecto a su centro.

- Tomar películas con formato de 320x200 pixeles
- ¿Cuántos cuadros por segundo efectivamente mide la cámara?
 En principio son 30 imágenes por segundo
 Ejemplo: tomar un video durante 10s y contar el número de cuadros.
- ¿Cómo lograr que sean reproducibles las condiciones iniciales? papel, regla, esquina, ...
- Atención que la posición del CM depende de la posición x de la "cruceta"

- Tomar películas con formato de 320x200 pixeles
- ¿Cuántos cuadros por segundo efectivamente mide la cámara?
 En principio son 30 imágenes por segundo
 Ejemplo: tomar un video durante 10s y contar el número de cuadros.
- ¿Cómo lograr que sean reproducibles las condiciones iniciales? papel, regla, esquina, ...
- Atención que la posición del CM depende de la posición x de la "cruceta"

- Tomar películas con formato de 320x200 pixeles
- ¿Cuántos cuadros por segundo efectivamente mide la cámara?
 En principio son 30 imágenes por segundo
 Ejemplo: tomar un video durante 10s y contar el número de cuadros.
- ¿Cómo lograr que sean reproducibles las condiciones iniciales? papel, regla, esquina, ...
- Atención que la posición del CM depende de la posición x de la "cruceta"

- Tomar películas con formato de 320x200 pixeles
- ¿Cuántos cuadros por segundo efectivamente mide la cámara?
 En principio son 30 imágenes por segundo
 Ejemplo: tomar un video durante 10s y contar el número de cuadros.
- ¿Cómo lograr que sean reproducibles las condiciones iniciales? papel, regla, esquina, ...
- Atención que la posición del CM depende de la posición x de la "cruceta"