

Departamento de Física, Facultad de Ciencias, Universidad de Chile. Las Palmeras 3425, Ñuñoa. Casilla 653, Correo 1, Santiago FONO: 562 678 7276 FAX: 562 271 2973 E-MAIL: secretaria@fisica.ciencias.uchile.cl

INTRODUCCIÓN A LA MECÁNICA

Herbert Massmann

Transcriptores: Víctor Muñoz G. Max Ramírez G.

Índice general

1.	\mathbf{Exp}	oansiones y Trigonometría	1			
	1.1.	Expansiones y series	1			
	1.2.	Elementos de trigonometría	4			
	1.3.	Problemas	11			
	1.4.	Solución a algunos de los problemas	20			
2.	Cin	emática en una dimensión	25			
	2.1.	Posición, velocidad y aceleración	25			
	2.2.	El camino inverso	33			
	2.3.	Máximos y mínimos	36			
	2.4.	Problemas	37			
	2.5.	Solución a algunos de los problemas	47			
	2.6.	Elementos del cálculo infinitesimal e integral	54			
3.	Cin	emática en dos y tres dimensiones	57			
	3.1.	Vectores	57			
	3.2.	Cinemática	62			
	3.3.	* Coordenadas polares	68			
	3.4.	Problemas	70			
	3.5.	Solución a algunos de los problemas	81			
4.	Las leyes de Newton 8					
	4.1.	Espacio y tiempo	87			
	4.2.	Las leves de Newton	88			
	4.3.	Uso de las leyes de Newton	91			
	4.4.	Roce cinético y estático	96			
	4.5.	Problemas	100			
	4.6.	Solución a algunos de los problemas	112			
5.	Trabajo y Energía 12					
	5.1.	Trabajo y energía para movimientos en una dimensión	123			
	5.2.	Trabajo para un movimiento en tres dimensiones	129			
	5.3.	Ejemplos	132			
	5.4.	Problemas	135			
	5.5.	Solución a algunos de los problemas	147			

6.	Momento lineal v colisiones	155			
	6.1. Conservación del momento lineal	155			
	6.2. Colisiones	157			
	6.3. Impulso	160			
	6.4. Problemas	162			
	6.5. Solución a algunos de los problemas	169			
	6.6. Colisión de dos discos	174			
-		100			
1.	7 1 Producto vectorial	183			
	7.1. Troducto vectoriar	196			
	7.2. Contro do masos	188			
	7.5. Centro de masas	100			
	7.4. Evaluation numerica del centro de masas	100			
	7.6. Problemes	192			
	7.0. I Toblemas	190			
	7.7. Solucion a algunos de los problemas	204			
8.	Momento angular	213			
	8.1. Momento angular de una partícula	213			
	8.2. Momento angular de varias partÍculas	215			
	8.3. Problemas	220			
	8.4. Solución a algunos de los problemas	224			
9.	Rotación de un cuerpo rígido 22				
	9.1. Las ecuaciones básicas	229			
	9.2. Momento de inercia	232			
	9.3. Problemas	237			
	9.4. Solución a algunos de los problemas	249			
10	Fuerzas ficticias	259			
10	10.1 Referencial uniformemente acelerado	259			
	10.2 Referencial en rotación uniforme	262			
	10.3. Problemas	265			
	10.4. Solución a algunos de los problemas	268			
11	.Gravitación	273			
	11.1. Elipses	273			
	11.1.1. Elipse en coordenadas cartesianas	273			
	11.1.2. Elipse en coordenadas polares	274			
	11.2. Las leyes de Kepler	277			
	11.3. Satelites	280			
	11.4. Potencial efectivo	283			
	11.5. Trayectorias de los satélites	289			
	11.6. El campo y potencial gravitacional	291			
	11.7. El caso eléctrico: la ley de Coulomb	295			
	11.8. Campo gravitacional de una cáscara esférica	296			

ÍNDICE GENERAL

11.9. Campo gravitacional de una esférica sólida	300
11.9.1. Densidad media de la Tierra	301
11.10Problemas	302
11.11Solución a algunos de los problemas	310
12.Fluidos	317
12.1. Conceptos Preliminares	317
12.2. La presión atmosférica P_0	318
12.3. Principio de Arquímedes	320
12.4. La fórmula barométrica	323
12.5. Tensión superficial	326
12.6. Capilaridad	328
12.7. Fluidos en movimiento	329
12.8. Aplicaciones del principio de Bernoulli	331
12.9. *Viscosidad \ldots	335
12.10Problemas	338
12.11Solución a algunos de los problemas	349
13.Oscilador Armónico	353
13.1. La ecuación diferencial $\ddot{x}(t) + \omega_0^2 x(t) = 0$	353
13.2. El oscilador armónico simple	356
13.3. El oscilador armónico atenuado	358
13.4. El oscilador armónico forzado	361
13.5. Osciladores armónicos acoplados	364
13.6. * Modos normales de una cuerda	368
13.7. Problemas	372
13.8. Solución a algunos de los problemas	383

 \mathbf{III}

Capítulo 1

Expansiones y Trigonometría

En este primer capítulo se recopilarán algunos resultados de las matemáticas que son básicos para los capítulos que siguen.

1.1. Expansiones y series

Consideremos las expansiones:

$$(1+x)^{1} = 1+x$$

$$(1+x)^{2} = 1+2x+x^{2}$$

$$(1+x)^{3} = 1+3x+3x^{2}+x^{3}$$

$$(1+x)^{4} = 1+4x+6x^{2}+4x^{3}+x^{4}$$

$$(1+x)^{5} = 1+5x+10x^{2}+10x^{3}+5x^{4}+x^{5}$$

Generalizando, para un enter
onpositivo arbitrario, la expansión del binomi
o $(1\!+\!x)^n$ puede escribirse en la forma

$$(1+x)^{n} = 1 + \frac{n}{1!}x + \frac{n \cdot (n-1)}{2!}x^{2} + \frac{n \cdot (n-1) \cdot (n-2)}{3!}x^{3} + \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)}{4!}x^{4} + \dots + nx^{(n-1)} + x^{n},$$
(1.1)

donde $n! \equiv 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$. Por definición $0! \equiv 1$. La expansión 1.1 es válida para cualquier valor de x y cualquier valor de n entero no negativo.

Una expresión análoga también se puede escribir para $(1+x)^{\alpha}$, donde α es ahora cualquier número real. En efecto, en ese caso

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha \cdot (\alpha - 1)}{2!}x^{2} + \frac{\alpha \cdot (\alpha - 1) \cdot (\alpha - 2)}{3!}x^{3} + \frac{\alpha \cdot (\alpha - 1) \cdot (\alpha - 2) \cdot (\alpha - 3)}{4!}x^{4} + \cdots$$
(1.2)

Sin embargo, si α no es nulo o un entero positivo, hay una diferencia importante entre las dos expresiones: la expansión (1.1), con *n* entero no negativo siempre tiene una cantidad finita de términos y se puede usar para cualquier valor de *x*; la serie (1.2), por otra parte, posee infinitos términos (sumandos) y sólo se puede usar (en el lenguaje técnico, "converge") si |x| < 1.

Ejemplos:

1. Usando la ecuación (1.2) con $\alpha = -1$ se obtiene la serie geométrica

$$(1-x)^{-1} = \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots$$
(1.3)

Si bien el lado izquierdo está bien definido para cualquier valor de x, el lado derecho sólo da un resultado finito si |x| < 1.

Para x = 1/2 el lado izquierdo es igual a 2, mientras que el lado derecho da la serie

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

que, obviamente, al sumarla, también da 2.

Para x = 1/10 el lado izquierdo es igual a 10/9, mientras que el lado derecho da la serie

$$1 + 0, 1 + 0, 01 + 0, 001 + \ldots = 1, 1111\ldots$$

que es el desarrollo decimal de 10/9.

2. Evaluemos la suma finita

$$S_N = 1 + x + x^2 + x^3 + \dots + x^N$$
.

Para ello restemos de esta serie la misma serie, pero multiplicada por x, es decir:

$$S_N = 1 + x + x^2 + x^3 + \dots + x^N$$

x S_N = x + x² + x³ + \dots + x^N + x^{N+1}

Al restar, al lado izquierdo queda $(1 - x) \cdot S_N$, mientras que al lado derecho queda $1 - x^{N+1}$, o sea,

$$(1-x) \cdot S_N = 1 - x^{N+1}$$

Despejando S_N se obtiene

$$S_N = \frac{1 - x^{N+1}}{1 - x} \, .$$

Si hacemos N cada vez más grande, es decir lo hacemos tender a infinito, en el lado derecho se tendrá algo finito sólo si |x| < 1. En efecto, en ese caso $\lim_{N\to\infty} x^{N+1} = 0$ y entonces

$$\lim_{N \to \infty} S_N = 1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x} ,$$

resultado consistente con el del ejemplo 1.

3. Escribamos la relación (1.2) para $\alpha = 1/2$. En ese caso se obtiene

$$(1+x)^{1/2} = \sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \cdots$$

La razón por la cual esta expresión es útil es que con frecuencia se requerirá evaluar la raíz de (1 + x) para situaciones en que x es un número muy pequeño. En ese caso los términos sucesivos de la serie son cada vez más pequeños y es posible obtener un resultado satisfactorio usando sólo los dos o tres primeros términos del lado derecho. La tabla adjunta muestra un pequeño análisis para x = 0,1:

lado izquierdo	lado derecho	# de términos	error
1,04880884817	1,0	1	4,9%
	1,05	2	$0{,}11\%$
	1,04875	3	$0,\!0059\%$
	1,0488125	4	0,00037%

Ejercicio: Verifique que para valores de x más pequeños, la convergencia del resultado de la serie truncada hacia el resultado exacto es aun más rápida.

4. Sea $\alpha \neq 0$ un número real arbitrario y evaluemos $[(1 + x)^{\alpha} - 1]/x$ para valores de x muy pequeños. Observe que para valores de x cada vez más pequeños, tanto el numerador como el denominador tienden a cero.

De acuerdo a la ecuación (1.2), para x muy pequeño vale la aproximación

$$(1+x)^{\alpha} \simeq 1 + \alpha \ x$$

(o sea, estamos despreciando todos los términos de la serie excepto los dos primeros). Usando esta aproximación se encuentra que (para x muy pequeño)

$$\frac{(1+x)^{\alpha}-1}{x} \simeq \frac{1+\alpha x-1}{x} = \frac{\alpha x}{x} = \alpha .$$

Verifique numéricamente este resultado usando una calculadora.

Algunas aproximaciones que se obtienen a partir de la ecuación (1.2) para |x| pequeño, que se usarán con frecuencia, y conviene tener siempre presentes, son:

$$(1+x)^{\alpha} \simeq 1 + \alpha x \quad , \tag{1.4}$$

$$\frac{1}{1+x} \simeq 1 - x , \qquad (1.5)$$

$$\frac{1}{1-x} \simeq 1+x , \qquad (1.6)$$

$$\sqrt{1+x} \simeq 1 + \frac{x}{2} \ . \tag{1.7}$$

Para abreviar la escritura de series, se usa frecuentemente la letra griega sigma mayúscula (\sum) . Ilustramos el uso de este símbolo con algunos ejemplos:

$$\sum_{j=1}^{6} j = 1 + 2 + 3 + 4 + 5 + 6 = 21 ,$$

$$\sum_{j=1}^{4} j^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30 ,$$

$$\sum_{k=-2}^{2} j^k = j^{-2} + j^{-1} + 1 + j + j^2 ,$$

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2 .$$

1.2. Elementos de trigonometría

Consideremos los triángulos rectángulos $\triangle (ABC)$ y $\triangle (AB'C')$ mostrados en la figura 1.1. De acuerdo a un teorema de la geometría elemental, la razón (entre trazos) $\overline{AC} : \overline{AB}$ es igual a la razón $\overline{AC'} : \overline{AB'}$, dependiendo ésta sólo del valor del ángulo α . Se ha convenido llamar a tal razón $\cos \alpha$; o sea, en un triángulo rectángulo, el cuociente entre el cateto adyacente y la hipotenusa define el *coseno* del ángulo que forman esos dos lados:

$$\cos \alpha = \frac{\overline{AC}}{\overline{AB}} = \frac{\text{longitud del lado adyacente}}{\text{longitud de la hipotenusa}} \,.$$

También el cuociente entre el cateto opuesto al ángulo α y la hipotenusa es independiente del tamaño del triángulo rectángulo y sólo depende del valor de α . A esta razón se la llama seno del ángulo, teniéndose

$$\sin \alpha = \frac{\overline{BC}}{\overline{AB}} = \frac{longitud \ del \ lado \ opuesto}{longitud \ de \ la \ hipotenusa} \ .$$

Es útil definir también la función tangente:

$$\tan \alpha \equiv \frac{\text{longitud del lado opuesto}}{\text{longitud del lado adyacente}} = \frac{\sin \alpha}{\cos \alpha}$$

Evaluemos $\sin^2 \alpha + \cos^2 \alpha$. Se tiene:

$$\cos^{2} \alpha + \sin^{2} \alpha = \left(\frac{\overline{AC}}{\overline{AB}}\right)^{2} + \left(\frac{\overline{BC}}{\overline{AB}}\right)^{2}$$
$$= \frac{(\overline{AC})^{2} + (\overline{BC})^{2}}{(\overline{AB})^{2}}.$$

Pero, de acuerdo al teorema de Pitágoras, $(\overline{AC})^2 + (\overline{BC})^2 = (\overline{AB})^2$, luego

$$\cos^2 \alpha + \sin^2 \alpha = 1$$

Dos relaciones trigonométricas importantes son:

$$\sin(\alpha + \beta) = \sin\alpha \,\cos\beta + \,\sin\beta \,\cos\alpha \tag{1.8}$$

у

$$\cos(\alpha + \beta) = \cos\alpha \,\cos\beta \, - \,\sin\alpha \,\sin\beta \,. \tag{1.9}$$

Figura 1.2

Demostremos al menos una de ellas; la primera. Para ello consideremos la figura 1.2. Partiendo del triángulo \triangle (*ABC*), prolongamos el lado *BC* y graficamos las alturas *CD* y *AE*. Note que el ángulo \measuredangle *ACE* resulta ser igual a $\alpha + \beta$. El área de un triángulo es la mitad del producto de su base por la altura. De la figura 1.2, para el área del \triangle (*ABC*), obtenemos

$$2 \cdot \text{Area} \left[\triangle (ABC) \right] = \overline{BC} \cdot \overline{EA} = \overline{AB} \cdot \overline{CD} .$$

En la última ecuación hemos escrito el producto "base por altura" del triángulo $\Delta(ABC)$ de dos maneras distintas: en la primera igualdad, \overline{BC} es la base y \overline{EA} la altura, mientras que en la segunda, \overline{AB} es la base y \overline{CD} la altura. Partiendo de la última igualdad, dividiendo ambos lados por \overline{AC} y \overline{CB} , se obtiene

$$\frac{\overline{BC}}{\overline{BC}} \cdot \frac{\overline{EA}}{\overline{AC}} = \frac{\overline{AB} \cdot \overline{CD}}{\overline{AC} \cdot \overline{CB}},$$

o sea,

$$\frac{\overline{EA}}{\overline{AC}} = \frac{(\overline{AD} + \overline{DB}) \cdot \overline{CD}}{\overline{AC} \cdot \overline{BC}} \\ = \frac{\overline{AD}}{\overline{AC}} \cdot \frac{\overline{CD}}{\overline{BC}} + \frac{\overline{DB}}{\overline{BC}} \cdot \frac{\overline{CD}}{\overline{AC}} + \frac{\overline{DB}}{\overline{C}} \cdot \frac{\overline{CD}}{\overline{AC}} + \frac{\overline{CD}}{\overline{CD}} + \frac{\overline{CD}}{\overline{CD}} - \frac{\overline{CD}}{\overline{CD}} + \frac{\overline{CD}}{\overline{CD}} - \frac{\overline{CD}}{\overline{CD}} + \frac{\overline{CD}}{\overline{CD}} - \frac$$

Usando las definiciones de seno y coseno, se deduce finalmente que

$$\sin(\alpha + \beta) = \sin \alpha \, \cos \beta \, + \, \sin \beta \, \cos \alpha$$

Como casos particulares de las ecuaciones (1.8) y (1.9), se encuentra

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha \tag{1.10}$$

у

$$\sin(2\alpha) = 2\cos\alpha \,\sin\alpha \,. \tag{1.11}$$

Existen muchas identidades trigonométricas de este tipo que resultan ser útiles para llevar adelante diferentes tipos de cálculos. Dejamos que el lector demuestre las siguientes identidades:

$$\sin \alpha \pm \sin \beta = 2 \sin \left[\frac{\alpha \pm \beta}{2} \right] \cos \left[\frac{\alpha \mp \beta}{2} \right] , \qquad (1.12)$$

$$\cos \alpha + \cos \beta = 2 \cos \left[\frac{\alpha + \beta}{2} \right] \cos \left[\frac{\alpha - \beta}{2} \right] , \qquad (1.13)$$

$$\cos \alpha - \cos \beta = -2\sin \left[\frac{\alpha + \beta}{2}\right] \sin \left[\frac{\alpha - \beta}{2}\right] , \qquad (1.14)$$

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta} \ . \tag{1.15}$$

La definición del *seno* y *coseno* que hemos dado es válida para ángulos α entre 0 y 90 grados. Para definir estas funciones para otros ángulos es conveniente considerar un círculo de radio R = 1 centrado en el origen (ver figura 1.3). Por convención, los ángulos se miden desde el eje \hat{x} en el sentido contrario a los punteros del reloj.

Figura 1.3

Consideremos el punto A sobre el círculo, formando un ángulo α con el eje \hat{x} . Usando el hecho que la hipotenusa vale 1, es fácil convencerse de que las coordenadas $x \in y$ del punto A coinciden con los valores de $\cos \alpha$ y $\sin \alpha$, respectivamente.

Es ésta la propiedad que se usa para definir el valor del *seno* y *coseno* para cualquier ángulo β . El procedimiento es el siguiente: i) Encontrar el punto P sobre el círculo que forma un ángulo β con el eje \hat{x} (en la figura 1.3, esto se muestra para $\beta = 210^{\circ}$); ii) luego, proyectar el punto P sobre los ejes para encontrar $x_p \in y_p$. Entonces $\cos \beta = x_p$ y $\sin \beta = y_p$. Para el caso mostrado en la figura 1.3, $\cos(210^{\circ}) = -\sqrt{3}/2 = -0,8660\ldots$ y $\sin(210^{\circ}) = -1/2$. Es evidente que, para todos los ángulos θ , siempre se cumple

$$-1 < \cos \theta < 1$$

 $-1 \leq \sin \theta \leq 1$.

у

Podemos graficar las proyecciones del punto P a medida que variamos β . De esta manera se obtiene el gráfico de las funciones *coseno* y *seno* (ver figura 1.4).

Figura 1.4

Recordemos que los ángulos también pueden ser medidos en *radianes* (unidad adimensional que se abrevia por *rad*). El valor del ángulo α , en radianes, es igual al largo del arco subtendido sobre el círculo unitario desde donde lo cruza el eje \hat{x} hasta el punto A (ver

figura 1.3). De acuerdo a la definición, un ángulo de 360°, o sea, la circunferencia completa, corresponderá a un ángulo igual a 2π rad. El ángulo recto es igual a $\pi/2$. No es difícil verificar que

$$1 \operatorname{rad} = \frac{360^{\circ}}{2\pi} = 57, 3^{\circ}$$

Para llegar al punto P (figura 1.3) originalmente se recorrió un ángulo β desde el eje \hat{x} positivo. Al continuar y dar una vuelta completa para volver al punto P, habremos recorrido desde el eje \hat{x} un ángulo $2\pi + \beta$. Sucesivas rotaciones nos llevarán nuevamente al punto P, habiéndose recorrido ángulos $4\pi + \beta$, $6\pi + \beta$, etc. Cada vez que, desde el eje \hat{x} positivo, recorremos un ángulo β más un múltiplo de 2π , estaremos en el punto P. Se trata de un movimiento que se repite y se dice que es *periódico* en el ángulo β , con período igual a 2π . Se tiene (ver figura 1.4) que, para cualquier ángulo β ,

$$\cos(\beta + n \, 2\pi) = \cos\beta$$
$$\sin(\beta + n \, 2\pi) = \sin\beta \, ,$$

у

donde n es un entero. Note que, cuando el ángulo se expresa en radianes, se cumplen las siguientes relaciones:

$$\sin(\pi - \theta) = \sin \theta$$
$$\sin(\pi/2 - \theta) = \cos \theta$$
$$\cos(\pi - \theta) = -\cos \theta$$
$$\cos(\pi/2 - \theta) = \sin \theta$$
$$\cos(\theta + \pi/2) = -\sin \theta$$
$$\sin(\theta + \pi/2) = \cos \theta .$$

Cuando el argumento (en radianes) de una función trigonométrica es muy pequeño, ésta puede aproximarse con una expresión simple. En efecto, consideremos el triángulo rectángulo ABC mostrado en la figura 1.5. A medida que θ decrece, el cateto opuesto a se hace cada vez más parecido al arco de círculo s con centro en A.

Usando la definición de la función seno se tiene

$$\sin \theta = \frac{a}{c} \simeq \frac{s}{c} \quad .$$

Pero el cuociente s/c es precisamente el ángulo α en radianes, luego, para ángulos pequeños (y éstos expresados en *radianes*)

$$\sin \alpha \simeq \alpha . \tag{1.16}$$

Sabemos que

$$\cos^2 \alpha = 1 - \sin^2 \alpha \; .$$

2

2

Luego, para ángulos pequeños

$$\cos^2 \alpha \simeq 1 - \alpha^2 ,$$

 $\cos \alpha \simeq \sqrt{1 - \alpha^2} \simeq 1 - \frac{1}{2}\alpha^2 .$ (1.17)

Ejemplo:

o sea,

Evalúe, usando una calculadora, las funciones $\sin \theta \ y \ \cos \theta$ para $\theta = 5^{\circ}$. Compare los valores obtenidos con aquéllos que resultan de usar las expresiones aproximadas escritas más arriba. Ingresando el valor $\theta = 5^{\circ} = 5 \cdot 2\pi/360$ rad en una calculadora, obtenemos:

$$\sin 5^{\circ} = 0,0871557$$

у

$$\cos 5^{\circ} = 0,9961947$$
.

Si ahora hacemos uso de las expresiones aproximadas, obtenemos

$$\sin 5^{\circ} \simeq \frac{5 \cdot 2\pi}{360} = 0,087266$$

у

$$\cos 5^{\circ} = 1 - \frac{1}{2} \cdot \left(\frac{5 \cdot 2\pi}{360}\right)^2 = 0,9961923$$

Note que los valores aproximados difieren poco de los obtenidos con la calculadora. Para el coseno el error es inferior al 0,003 %.

Cabe destacar que las funciones $\sin \theta \ge \cos \theta$ pueden ser expresadas como una suma infinita de términos proporcionales a diferentes potencias del ángulo θ (expresado en radianes):

$$\cos\theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots , \qquad (1.18)$$

у

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots ,$$

donde $n! \equiv n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$. Para $|\theta| \ll 1$, estas series convergen rápidamente, lo que permite representar las funciones *seno* y *coseno* con pocos términos.

Ejemplo:

Representemos en un mismo gráfico, para el intervalo $~t \in [-\pi, 2\pi]$, las siguientes cinco funciones:

- i) $f_0(t) = \cos t$
- ii) $f_1(t) = 1$
- iii) $f_2(t) = 1 t^2/2!$

iv)
$$f_3(t) = 1 - t^2/2! + t^4/4!$$

v) $f_4(t) = 1 - t^2/2! + t^4/4! - t^6/6!$

Observe que de acuerdo a la ecuación (1.18), las funciones $f_1(t)$, $f_2(t)$, etc., para t pequeño son aproximaciones cada vez mejores de $f_0(t) = \cos t$. Este comportamiento se observa claramente en la figura 1.6 (página siguiente) donde se han graficado las diversas funciones.

Figura 1.6

Funciones trigonométricas inversas

En ocasiones, lo que se conoce es $x=\cos\alpha$ y lo que se dese
a conocer es el ángulo $\alpha.$ Esta operación inversa se denota por

$$\alpha = \arccos(x) \; .$$

Es importante darse cuenta de que esta "función" inversa, llamada *arcocoseno*, es una función multivaluada, o sea, que la respuesta no es única. Hay varios ángulos α distintos para los cuales el coseno del ángulo tiene el mismo valor. Las calculadoras, al evaluar las

funciones trigonométricas inversas, sólo dan la solución que está en el intervalo $[0, \pi]$ para el arcocoseno y el intervalo $[-\pi/2, +\pi/2]$ para la función arcoseno y la función arcotangente. En ocasiones la solución entregada por la calculadora no es la físicamente aceptable, en cuyo caso uno debe preocuparse de encontrar la solución correcta (en el lenguaje técnico: elegir la rama adecuada). Algo similar ocurre cuando uno extrae raíces: puede ocurrir que la raíz de 9 de interés físico sea -3 y no la solución que entrega la calculadora (que es +3).

Para la función *arcocoseno* la calculadora, al evaluar $\alpha = \arccos(x)$ con $|x| \leq 1$, siempre dará la respuesta α que se ubica en el intervalo $[0, \pi]$ (si está usando la calculadora en radianes) o en el intervalo $[0, 180^{\circ}]$ si la calculadora está calculando en grados.

Ejercicio: Sea $|x| \leq 1$ cierto valor dado y suponga que deseamos encontrar todos los ángulos γ (en radianes) para los cuales $\cos \gamma = x$. Suponga además que hemos, de alguna manera, encontrado una solución $\gamma = \alpha_0$ (por ejemplo, el ángulo que muestra la calculadora al evaluar $\arccos(x)$). Demuestre que todas las demás soluciones a nuestro problema vienen dadas por $\gamma = \alpha_0 + j \cdot 2\pi$ y $\gamma = -\alpha_0 + j \cdot 2\pi$, con *j* cualquier valor entero.

Para la función *arcoseno* la calculadora, al evaluar $\alpha = \arcsin(x)$ con $|x| \leq 1$, siempre dará la respuesta α que se ubica en el intervalo $[-\pi/2, \pi/2]$ (si está usando la calculadora en radianes) o en el intervalo $[-90^{\circ}, +90^{\circ}]$ si la calculadora está calculando en grados.

Ejercicio: Sea $|x| \leq 1$ cierto valor dado y suponga que deseamos encontrar todos los ángulos γ (en radianes) para los cuales $\sin \gamma = x$. Suponga además que hemos, de alguna manera, encontrado una solución $\gamma = \alpha_0$ (por ejemplo, el ángulo que muestra la calculadora al evaluar $\arccos(x)$). Demuestre que todas las demás soluciones a nuestro problema vienen dadas por $\gamma = \alpha_0 + j \cdot 2\pi$ y $\gamma = (\pi - \alpha_0) + j \cdot 2\pi$, con *j* cualquier valor entero.

Por ser frecuentemente fuente de errores reiteramos lo dicho unos párrafos antes: al evaluar funciones trigonométricas inversas la solución entregada por la calculadora **no** es siempre la físicamente aceptable. El alumno debe asegurarse de que la respuesta mostrada por la calculadora efectivamente resuelve completamente su problema, en caso contrario, debe analizar si alguna de las otras soluciones, que se obtuvieron en los dos ejercicios anteriores, sirve.

1.3. Problemas

1. Evalúe las siguientes sumatorias

a)
$$S = \sum_{\substack{n=1,2\\m=1,2,3}} n^m$$

b)
$$S = \sum_{j=-3,...,8} 1$$

c)
$$S = \sum_{j=0}^{N} j$$

d)
$$S = \sum_{\substack{i, j = 1, \dots, 4 \\ i > j}} \frac{1}{|i - j|}$$

Respuestas: a) 17 , b) 12 , c) $N(N+1)/2\,$, d) 13/3

2. Encuentre una expresión para [$(x + \Delta)^{\beta} - x^{\beta}$]/ Δ , en el *límite* en que Δ tiende a cero. En otras palabras, Δ tiene un valor finito pero pequeñísimo (tan pequeño como se quiera); al final del cálculo se permite poner $\Delta = 0$.

Usando una notación y un lenguaje más técnico, el enunciado de este problema sería:

$$f(x) = \lim_{\Delta \to 0} \frac{1}{\Delta} \left[(x + \Delta)^{\beta} - x^{\beta} \right].$$

Respuesta: $f(x) = \beta x^{\beta-1}$.

Evalúe

3. Evalúe $\frac{\cos(x+\varepsilon)-\cos x}{\varepsilon} \quad \text{para} \quad |\varepsilon| \ll 1 \; .$

Respuesta: $-\sin x$.

- 4. Represente en forma cuidadosa, en un **mismo** gráfico, para el intervalo $t \in [-1, 1]$, las siguientes cuatro funciones:
 - a) $f_0(t) = 1/(1-t)$
 - $b) f_1(t) = 1 + t$
 - c) $f_2(t) = 1 + t + t^2$
 - $d) \qquad f_3(t) = 1 + t + t^2 + t^3$

Observe que, de acuerdo a la ecuación (1.3), $f_1(t)$, $f_2(t)$ y $f_3(t)$ son sucesivamente aproximaciones cada vez mejores (para t pequeño) de la función $f_0(t)$.

5. Demuestre las siguientes relaciones trigonométricas:

(a)
$$\sin \alpha = \frac{\tan \alpha}{\sqrt{1 + \tan^2 \alpha}}$$

(b)
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \, \tan \beta}$$

(c)
$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

- 6. Sea r el radio del círculo circunscrito de un pentágono regular (ver figura 1.7).
 - a) ¿Cuánto mide el ángulo interior β (en radianes)?
 - b) Determine el largo del lado s en función de r.
 - c) Determine el área del pentágono.

Respuestas: a) $\beta = 3\pi/5$ radianes ; c) área $= \frac{5}{2}r^2\sin(2\pi/5)$.

- 7. Una camionada de arena seca se descarga formando un cono de 4 metros de diámetro. Si la densidad de la arena seca es $\rho = 1.7 \text{ g/cm}^3$ y el el ángulo del cono (ver figura 1.8) es de $\theta = 32^{\circ}$, calcule la masa de la arena (en toneladas).
- 8. Encuentre todos los valores de x en el intervalo [-5, +5] (cuando no se especifica nada se asume que las unidades son radianes) para los cuales se cumple la relación

$$\sin x \, \tan x = -\frac{3}{2}$$

Respuesta: $x = -4\pi/3$, $-2\pi/3$, $2\pi/3$, $4\pi/3$.

9. Represente en un mismo gráfico, par
aten el intervalo $\ [-\pi,2\pi]$, las siguientes cu
atro funciones:

$$a) \qquad f_0(t) = \sin t$$

 $b) \qquad f_1(t) = t$

- c) $f_2(t) = t t^3/3!$
- d) $f_3(t) = t t^3/3! + t^5/5!$

Aquí nuevamente $f_1(t)$, $f_2(t)$ y $f_3(t)$ son sucesivamente aproximaciones cada vez mejores (para t pequeño) de la función $f_0(t)$.

10. Al incidir luz sobre una interfase, por ejemplo, al pasar del aire al vidrio o viceversa, ésta generalmente sufre un cambio de dirección (ver figura 1.9). Este fenómeno se conoce con el nombre de *refracción* de la luz. La ecuación que describe este fenómeno es la *Ley de Snell*:

$$\frac{\sin\alpha}{\sin\beta} = \frac{v_{\rm aire}}{v_{\rm vidrio}} \; ,$$

donde $v_{\rm aire}$ y $v_{\rm vidrio}$ corresponden a la velocidad de la luz en el aire y el vidrio, respectivamente. (Para el vidrio común se tiene $v_{\rm aire}/v_{\rm vidrio}\simeq 1.5$.)

Figura 1.9

- a) Supongamos que un haz de luz incide sobre un vidrio de 2 cm de espesor, con un ángulo de incidencia $\alpha = 40^{\circ}$. Encuentre la distancia *d* por la cual el haz de luz emergente se encontrará paralelamente desplazado respecto al haz incidente (ver figura 1.10).
- b) Considere ahora un haz de luz incidiendo sobre un prisma en la forma que se muestra en la figura 1.11. Encuentre el ángulo β para $\alpha = 20^{\circ}$, 40° , 50° y 70° . ¿Para qué ángulo $\alpha = \alpha_0$ se obtiene $\beta = 90^{\circ}$? Para $\alpha > \alpha_0$ el haz de luz es reflejado especularmente (como si fuese un espejo) por la superficie interior del prisma, fenómeno conocido con el nombre de *reflexión total*.

1.3 Problemas

11. La figura 1.12 adjunta indica la diferencia entre un *día sideral* y un *día solar*. Para facilitar la explicación supongamos que es posible observar las estrellas durante el día. (Por supuesto que las estrellas están allí y de hecho los radioastrónomos observan algunas de ellas.)

Para un observador en el Ecuador, el día solar es el período que transcurre entre dos pasos consecutivos del sol por el zenit (posición del sol justo sobre nuestras cabezas). El día sideral consiste en el mismo fenómeno pero que ahora ocurre con una estrella muy lejana. La diferencia entre ambas definiciones se debe a la traslación de la tierra alrededor del sol. Determine el valor del ángulo α que se muestra en la figura y calcule la diferencia entre el día sideral y el día solar en segundos.

Figura 1.12

Figura 1.13

- 12. Un tambor de 50 cm de radio y 1.5 m de largo se encuentra "acostado" y lleno con parafina hasta una altura h = 60 cm (ver figura 1.13). ¿Cuántos litros de parafina hay en el tambor?
- 13. La esfericidad de la tierra fue postulada por Pitágoras y confirmada por Aristóteles al observar la forma circular de la sombra que proyecta la tierra en la superficie de la luna durante un eclipse lunar.

El primer cálculo que se conoce del radio de la tierra se debe a Eratóstenes (276 A.C.– 194 A.C.), quien a la fecha estaba a cargo del Museo de Alejandría. El método que usó se basó en observar el ángulo con que inciden los rayos solares sobre la superficie de la tierra, el mismo día y a la misma hora, en dos lugares separados entre sí por una gran distancia. Los lugares elegidos fueron Siena (S) (hoy Asuán) y Alejandría (A).

Figura 1.14

Eratóstenes sabía que al mediodía del 22 de junio el Sol caía verticalmente en Siena, pues la luz se reflejaba directamente en el fondo de una noria. El mismo día, a la misma hora, midió la sombra que proyectaba en Alejandría un alto obelisco, que le indicó que los rayos solares formaban un ángulo de $7,2^{\circ}$ con la vertical (ver figura 1.14).

Dado que el sol está a gran distancia de la tierra se puede suponer que los rayos que llegan a ambas ciudades son paralelos. Eso quiere decir que la separación angular entre Siena y Alejandría medida con respecto al centro de la tierra es también 7,2°. Sabiendo que la distancia entre Siena y Alejandría (arco de círculo) es de aproximadamente 800 km, estime el radio de la tierra.

Respuesta: Radio ~ 6100 km. (El resultado que obtuvo Eratóstenes en su época fue incorrecto, debido a la imprecisión con que estimó la distancia entre los dos lugares.)

14. Una persona ubicada en el punto P observa dos montañas que la rodean, una a la derecha y la otra a la izquierda. Sean α y β los ángulos de elevación, respectivamente (ver figura 1.15). Si la montaña de la izquierda tiene una altura h y la separación entre las proyecciones de las cimas sobre el nivel de la superficie terrestre es D, calcule la altura del otro monte.

Figura 1.15

15. En el año 1752 los astrónomos Landale y Lacaille determinaron en Berlín (B) y en la ciudad del Cabo (C), a la misma hora, el ángulo entre la normal y la recta entre su

posición y un punto predeterminado del borde de la luna. Los ángulos que determinaron fueron $\beta = 32,08^{\circ}$ en Berlín y $\gamma = 55,72^{\circ}$ en El Cabo. Ambas ciudades se ubican en el mismo meridiano y se encuentran en las latidudes $\lambda_B = 52,52^{\circ}$ y $\lambda_C = -33,93^{\circ}$, respectivamente (ver figura 1.16). Usando para el radio terrestre el valor de 6370 km, determine la distancia entre la tierra y la luna.

Figura 1.16

- 16. Encuentre el ángulo entre dos diagonales de un cubo.
- 17. a) **Teorema del seno**. Demuestre que en un triángulo cualquiera se cumplen las siguientes relaciones:

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

donde α , β y γ son los ángulos interiores del triángulo y a, b y c los lados opuestos a cada uno de estos ángulos.

b) **Teorema del coseno**. Demuestre que en un triángulo cualquiera se cumplen las siguientes relaciones:

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$

у

$$a^2 = b^2 + c^2 - 2cb \,\cos\alpha$$

18. Determine el largo mínimo que debe tener una cadena para unir dos poleas de radios $R \ge r$, separadas por una distancia D (ver figura 1.17).

Respuesta:

$$L = 2(R - r) \arcsin\left(\frac{R - r}{D}\right) + 2\sqrt{D^2 - (R - r)^2} + \pi(r + R).$$

- 19. Un tetraedro regular es la figura geométrica que se obtiene al formar una pirámide con cuatro triángulos equiláteros idénticos. Encuentre el ángulo entre dos de sus caras.
- 20. La altura de un edificio se puede determinar midiendo su ángulo de elevación y la distancia a la que uno se encuentra del edificio. Suponga que el instrumento que tiene a disposición le permite medir ángulos con un error de $\pm 1^{\circ}$. Determine el menor error porcentual con que, con tal instrumento, usted puede medir la altura de un edificio.
- 21. Dos observadores A y B miden ángulos de elevación de un avión que los sobrevuela a una altura constante. En cierto instante los ángulos medidos por A y B son $\alpha = 60^{\circ}$ y $\beta = 40^{\circ}$, respectivamente. Diez segundos más tarde, A mide un ángulo de elevación $\gamma = 110^{\circ}$ (ver figura 1.18). La separación entre A y Bes D = 1 km. ¿A qué altura vuela el avión? ¿Cuál es su velocidad?

Figura 1.18

- 22. Grafique, usando un computador, la función $f(t) = cos(\pi t) + cos(0, 9\pi t)$ para $t \in [0, 40]$ y observe el fenómeno de *pulsaciones*.
- 23. ¿Para qué latitud el paralelo terrestre tiene 1/3 de la longitud del Ecuador?

1.3 Problemas

24. Una cuneta de forma angular está caracterizada por los ángulos α y β respecto a la horizontal. Una bola de acero de radio R posa sobre la cuneta, ver figura 1.19. Determine el nivel mínimo de agua, medido desde el punto más bajo de la cuneta, necesario para cubrir la bola completamente.

- 25. Son las 12 del día. Determine en cuánto rato más se vuelven a juntar los punteros del reloj.
- 26. a) Calcule la razón entre las áreas del círculo y del triángulo equilátero que lo circunscribe (ver figura 1.20a).
 b) Hana el miemo cílculo enterior nome el como el triángulo enterior per el como el triángulo enterior el como el triángulo enterior el como el triángulo enterior enterior

b) Haga el mismo cálculo anterior pero para el caso en que el triángulo contenga n(n+1)/2 discos de radio R dispuestos como se muestra en la figura 1.20b.

Figura 1.20a

- 27. Usted se plantea tener un atardecer de 24 horas de duración en el Ecuador, para lo cual cuenta con un aeroplano. Calcule la velocidad con que debería volar y la dirección que debe tomar para lograr su propósito. Si un amigo viaja a la misma velocidad relativa a la tierra, pero en sentido opuesto, calcule el tiempo que transcurrirá hasta encontrarse nuevamente con él.
- 28. Hay que decidir el tipo de empaque que se le va a dar a pelotas de tenis en una bandeja de forma cuadrada. Decida cual de las dos configuraciones mostradas en la figura 21 resulta más conveniente. Justifique su respuesta cuantitativamente.

Figura 1.21a

1.4. Solución a algunos de los problemas

Solución al problema 15

Figura 1.22

Inspeccionando la figura 1.22 se deduce de inmediato que

$$\phi = \delta_\beta + \delta_\gamma$$

у

$$\phi = \beta + \gamma - \lambda_B - |\lambda_C| \; .$$

Usando el teorema del seno (ver problema 17) en los triángulos OBL y OLC, se obtienen las expresiones

$$\frac{\sin \delta_{\beta}}{R} = \frac{\sin(\pi - \beta)}{D}$$

у

$$\frac{\sin \delta_{\gamma}}{R} = \frac{\sin(\pi - \gamma)}{D}$$

Como δ_{β} y δ_{γ} son ángulos pequeños podemos usar las aproximaciones

S

$$\sin \delta_{\beta} \simeq \delta_{\beta}$$

у

$$\sin \delta_{\gamma} \simeq \delta_{\gamma}$$

De esta manera se obtienen

$$\delta_{\beta} \simeq \frac{R}{D} \sin \beta$$

у

$$\delta_{\gamma} \simeq \frac{R}{D} \sin \gamma$$

Sumando estas ecuaciones se deduce que

$$\phi = \delta_{\beta} + \delta_{\gamma} \simeq \frac{R}{D} \left(\sin \beta + \sin \gamma \right)$$

o sea,

$$D \simeq \frac{R\left(\sin\beta + \sin\gamma\right)}{\phi} = \frac{R\left(\sin\beta + \sin\gamma\right)}{\beta + \gamma - \lambda_B - |\lambda_C|}$$

Sustituyendo en esta ecuación los valores numéricos se encuentra que

$$D \simeq 367,000 \, \mathrm{km}$$
,

valor muy cercano al actualmente aceptado para el radio de la órbita lunar, que es de 384.000 km.

Solución al problema 16

Consideremos un cubo de lados a. Sea A un vértice de una diagonal y B el vértice de otra diagonal del cubo. De los dos vétices de la segunda diagonal, denotaremos por B al vértice que está a una distancia a de A (el otro vértice se encontrará a una distancia $a\sqrt{2}$ de A). Sea O el punto central del cubo.

El triángulo AOB es isósceles: con base $\overline{AB} = a$ y lados $b \equiv \overline{AO} = \overline{BO} = \frac{\sqrt{3}}{2}a$. El ángulo $\alpha = \not\leq (AOB)$ es el ángulo buscado. Se tiene que

$$\sin\frac{\alpha}{2} = \frac{a/2}{b} = \frac{1}{\sqrt{3}} \; ,$$

de donde se deduce que

$$\alpha = 70,529^{\circ}$$

El ángulo complementario $\not<$ $(AOC)=109,47^{\circ}.$

Figura 1.23

Solución al problema 21

Sea $a = \overline{AP}$ y $d = \overline{PQ}$. Usando el teorema del seno en el triángulo APB se obtiene

$$\frac{\sin\beta}{a} = \frac{\sin\left(\alpha - \beta\right)}{D} \; ,$$

o sea,

$$a = D \frac{\sin \beta}{\sin(\alpha - \beta)}$$

Usando el teorema del seno en el triángulo AQP se deduce que

$$\frac{\sin(\pi - \gamma)}{a} = \frac{\sin(\gamma - \alpha)}{d}$$

Usando las dos ecuaciones anteriores se obtiene para d la expresión

$$d = D \frac{\sin \beta}{\sin(\alpha - \beta)} \frac{\sin(\gamma - \alpha)}{\sin \gamma}$$

Reemplazando los valores numéricos se encuentra que la distancia recorrida por el avión en 10 segundos es d = 1,53 km. La velocidad del avión es, por lo tanto, v = 552 km/h. La altura a la que vuela el avión viene dada por

$$h = a \sin \alpha = 1628$$
 [m]

Figura 1.24

Solución al problema 24

Primero giremos la cuneta de manera que que de simétrica respecto a la horizontal, es decir, con un ángulo $(\alpha + \beta)/2$ a cada lado (ver figura 25a).

Figura 1.25a

$$\overline{AB} = \frac{R}{\cos\left(\frac{\alpha+\beta}{2}\right)} \; .$$

Para volver a poner la cuneta en la orientación original debemos girarla en un ángulo $(\beta-\alpha)/2.$ Por lo tanto, (ver figura 1.25b)

$$\overline{BD} = \overline{AB} \cos\left(\frac{\alpha - \beta}{2}\right) = R \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)} .$$

Para la altura del nivel de agua se obtiene finalmente la expresión

$$h = R \left[1 + \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)} \right].$$

Capítulo 2

Cinemática en una dimensión

2.1. Posición, velocidad y aceleración

Cinemática es la descripción del movimiento de un cuerpo sin considerar las causas que lo producen. Más tarde, al estudiar las leyes de Newton, analizaremos el origen del movimiento. Para simplificar la discusión, comenzaremos por estudiar el movimiento de objetos cuya ubicación queda determinada especificando la posición de un solo punto. Este tipo de objeto recibe el nombre de *partícula*. Contrariamente a lo que pudiera pensarse, no es necesario que los objetos sean pequeños para que puedan ser considerados partículas. Por ejemplo, cuando se estudia el movimiento de la tierra en torno al sol, la distancia relevante es la distancia Tierra–sol. En este caso, el tamaño de la Tierra no es importante, pudiéndose tratar como una partícula ubicada en el centro de la tierra.

El movimiento más simple de una partícula se tiene cuando la posición de ésta viene descrita por una única coordenada; por ejemplo, el movimiento de una partícula que se traslada a lo largo de una línea recta. (En el presente capítulo nos restringiremos a este tipo de movimientos.) La elección de un origen divide naturalmente a la recta en dos zonas. En forma arbitraria llamamos a una de ellas el lado positivo y a la otra el lado negativo (ver figura 2.1).

Figura 2.1

La posición de una partícula queda determinada dando simplemente un número (la "coordenada x"). La descripción de su movimiento es completa si conocemos la función x(t) que indica la posición que ocupa en cada instante t.

La diferencia entre la coordenada de una partícula entre dos instantes t_1 y t_2 (con $t_2 > t_1$) se denomina *desplazamiento*:

Desplazamiento
$$\equiv x_2 - x_1 \equiv \Delta x$$

El desplazamiento es una cantidad que tiene signo. Si la coordenada x de la partícula se incrementa durante cierto intervalo de tiempo, entonces el desplazamiento es positivo; si, por el contrario, decrece, el desplazamiento es negativo.

Se define velocidad media de una partícula durante el intervalo $[t_1, t_2]$ como la razón entre el desplazamiento y la duración del intervalo de tiempo,

$$\overline{v}(t_1, t_2) = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

En un gráfico x(t) en función de t, esta definición corresponde a la tangente del ángulo que forma la recta que une (x_1, t_1) y (x_2, t_2) con el eje del tiempo (ver figura 2.2).

Figura 2.2

La velocidad promedio entrega una información global sobre el movimiento que realiza una partícula en un cierto intervalo de tiempo. Si se desea tener una información más precisa acerca de la velocidad durante el movimiento, es necesario subdividir el intervalo de tiempo original en subintervalos y calcular en cada uno de ellos una velocidad media. Mientras más pequeño es el tamaño de esos subintervalos, más precisa es la información acerca de las variaciones que experimenta la velocidad de la partícula mientras se desplaza. El valor que se mide para la velocidad media en un cierto intervalo de tiempo ε pequeño, donde ε es finito pero tan pequeño como nosotros deseamos, se denomina velocidad instantánea. Para determinar la velocidad instantánea de la partícula en un instante t, se evalúa la velocidad promedio durante un intervalo muy pequeño que comienza en t y termina en $t+\varepsilon$, donde ε es un incremento de tiempo infinitesimal (más adelante, al finalizar el cálculo,

haremos $\varepsilon \to 0$). Explícitamente:

$$\overline{v}(t,t+\varepsilon) = \frac{x(t+\varepsilon) - x(t)}{\varepsilon}$$

Al hacer $\varepsilon \to 0$, se obtiene la velocidad instantánea de la partícula en el instante t. Esta la denotaremos por v(t) o $\dot{x}(t)$. Se tiene

$$v(t) = \lim_{\varepsilon \to 0} \frac{x(t+\varepsilon) - x(t)}{\varepsilon} = \dot{x}(t) .$$
(2.1)

Este proceso de límite está ilustrado en la Figura 2.3. Allí se observa cómo cambia el valor de la velocidad media de la partícula en un intervalo $[t, t + \Delta t]$ cuando es evaluada para diferentes valores de Δt . En el caso límite, cuando $\varepsilon \to 0$, se observa que la velocidad instantánea queda representada por la tangente del ángulo (pendiente) que forma la recta tangente a la curva x(t) vs. t con el eje del tiempo.

De aquí en adelante el término velocidad siempre se referirá a la velocidad instantánea.

Figura 2.3

Ejemplos:

1. Supongamos que la posición de una partícula viene dada por $x(t) = x_0 + v_0 t$, con $x_0 = -1$ m y $v_0 = 0.5 \frac{\text{m}}{\text{s}}$. El gráfico x(t) en función de t da lugar a la recta que se muestra en la figura 2.4.

Esa curva corresponde a una partícula que se mueve con velocidad *uniforme*. La inclinación de la recta con respecto al eje del tiempo es una medida de la velocidad de la partícula. Una recta horizontal corresponde a una partícula en reposo mientras que una recta perpendicular al eje del tiempo representa un objeto que tiene velocidad infinita.

Evaluemos explícitamente la velocidad en un instante t cualquiera. Usando la ecuación (2.1) y la expresión para x(t) de este ejercicio, se obtiene

$$v(t) = \lim_{\varepsilon \to 0} \frac{x(t+\varepsilon) - x(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{[x_0 + v_0 \cdot (t+\varepsilon)] - [x_0 + v_0 \cdot t]}{\varepsilon}$$
$$= \lim_{\varepsilon \to 0} \frac{v_0 \cdot \varepsilon}{\varepsilon} = \lim_{\varepsilon \to 0} v_0 = v_0 .$$

Figura 2.4

Este resultado indica que la expresión para x(t) escrita más arriba efectivamente corresponde al movimiento de una partícula con velocidad constante v_0 (i.e., independiente del tiempo).

2. Supongamos ahora que la posición de una partícula viene dada por

$$z(t) = z_0 - \frac{1}{2} g t^2 ,$$

con $z_0 = 10 \text{ m y } g = 9.81 \frac{\text{m}}{\text{s}^2}$. Al graficar la posición en función del tiempo se encuentra la curva (parábola) mostrada en la figura 2.5.

Evaluemos la velocidad en un instante t cualquiera. Usando la ecuación (2.1), se obtiene

$$v(t) = \lim_{\varepsilon \to 0} \frac{z(t+\varepsilon) - z(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{[z_0 - \frac{1}{2}g \cdot (t+\varepsilon)^2] - [z_0 - \frac{1}{2}g \cdot t^2]}{\varepsilon}$$
$$= \lim_{\varepsilon \to 0} \frac{-\frac{1}{2}g \cdot \varepsilon \cdot (2t+\varepsilon)}{\varepsilon} = -\lim_{\varepsilon \to 0} \frac{g \cdot (2t+\varepsilon)}{2} = -gt .$$

La figura 2.6 muestra el gráfico de la velocidad instantánea en función del tiempo. Se observa que ésta decrece linealmente a medida que transcurre el tiempo. El signo negativo de la velocidad significa que la partícula se está desplazando en el sentido negativo del eje z.

Sin embargo, el módulo de la velocidad de la partícula (magnitud que en algunos textos es denominada *rapidez*) aumenta a medida que transcurre el tiempo:

$$|v(t)| = gt$$
.

El movimiento descrito por la función z(t) de este ejemplo corresponde a la caída libre de una partícula en el campo gravitacional terrestre y desde una altura z_0 .

Si la velocidad de una partícula cambia a medida que transcurre el tiempo, entonces la partícula tiene una *aceleración*.

La *aceleración media* (o promedio) que tiene la partícula durante el intervalo $[t_1, t_2]$ es igual al cambio de velocidad que ocurre durante el intervalo, dividido por la duración de éste, es decir

$$\overline{a}(t_1, t_2) = \frac{v(t_2) - v(t_1)}{t_2 - t_1}$$

Para determinar en un instante t la aceleración instantánea de la partícula, evaluamos la aceleración promedio durante un intervalo muy pequeño que comienza en t. Sea $[t, t + \varepsilon]$ ese intervalo, donde ε es un tiempo infinitesimal (de hecho, al finalizar el cálculo nuevamente tomaremos $\varepsilon \to 0$). Entonces

$$\overline{a}(t,t+\varepsilon) = \frac{v(t+\varepsilon) - v(t)}{\varepsilon}$$

Al hacer $\varepsilon \to 0$ se obtiene la aceleración instantánea de la partícula (en el instante t). Esta la denotaremos con a(t), $\ddot{x}(t)$ o $\dot{v}(t)$. Se obtiene

$$a(t) = \lim_{\varepsilon \to 0} \frac{v(t+\varepsilon) - v(t)}{\varepsilon} = \ddot{x}(t) = \dot{v}(t) .$$
(2.2)

De aquí en adelante el término *aceleración* siempre se referirá a la aceleración instantánea.

Ejemplos:

1. Para el movimiento rectilíneo uniforme, la posición de una partícula viene dada por $x(t) = x_0 + v_0 t$. Ya hemos visto que, en ese caso, su velocidad es constante e igual a v_0 . Demostremos ahora, usando la ecuación (2.2), que en este caso la partícula efectivamente no tiene aceleración. De hecho,

$$a(t) = \lim_{\varepsilon \to 0} \frac{v(t+\varepsilon) - v(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{v_0 - v_0}{\varepsilon} = \lim_{\varepsilon \to 0} 0 = 0.$$

2. En un ejemplo anterior vimos que la posición y velocidad de una partícula que cae libremente bajo la acción de la aceleración de gravedad terrestre están dadas por las siguientes ecuaciones

$$z(t) = z_0 - \frac{1}{2} g t^2$$

 $v(t) = -g t$.

Evaluemos la aceleración:

$$\begin{split} a(t) &= \lim_{\varepsilon \to 0} \, \frac{v(t+\varepsilon) - v(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \, \frac{\left[-g \cdot (t+\varepsilon)\right] - (-g \cdot t)\right]}{\varepsilon} \\ &= \lim_{\varepsilon \to 0} \, \frac{-g \cdot \varepsilon}{\varepsilon} = \lim_{\varepsilon \to 0} \, (-g) = -g \; . \end{split}$$

El resultado indica que la aceleración es constante y negativa. Eso significa que la partícula acelera en el sentido negativo del eje z.

Generalizando, podemos concluir que cuando el gráfico v(t) en función del tiempo t es una recta, el movimiento de la partícula corresponde a un movimiento uniformemente acelerado. El caso particular en que la recta es horizontal corresponderá a la situación donde la aceleración es nula.

En el gráfico x(t) en función de t, las aceleraciones se manifiestan en la *curvatura* del gráfico. Se dice que un gráfico tiene *curvatura positiva*, si ésta tiene la misma orientación que la curvatura de un pocillo, y *negativa* si la curvatura tiene la orientación de la de un paraguas.

Si en un gráfico x(t) vs. t la curvatura es positiva dentro de un cierto intervalo, entonces también lo será la aceleración en ese intervalo. Por ejemplo, en la figura 2.5 (que corresponde a la caída libre) la curvatura es negativa, luego también lo será la aceleración.

3. Consideremos una partícula de masa m, cuya posición a medida que transcurre el tiempo viene dada por

$$z(t) = A\cos(\omega t) ,$$

donde $A \neq \omega$ son constantes. Tal movimiento de la partícula es un movimiento oscilatorio periódico. La amplitud de las oscilaciones es $A \neq el período del movimiento (es$ decir, el tiempo que debe transcurrir hasta que una configuración se vuelva a repetir)es

$$T = 2\pi/\omega$$
.

Al inverso de T se le llama frecuencia: $\nu = 1/T$. A la magnitud ω se le llama frecuencia angular. Se tiene que $\omega = 2\pi\nu$.

у

Evaluemos la velocidad de la partícula:

$$\begin{split} v(t) &= \lim_{\varepsilon \to 0} \frac{z(t+\varepsilon) - z(t)}{\varepsilon} \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[A\cos(\omega(t+\varepsilon)) - A\cos(\omega t) \right] \\ &= \lim_{\varepsilon \to 0} \frac{A}{\varepsilon} \left[\cos(\omega t)\cos(\omega \varepsilon) - \sin(\omega t)\sin(\omega \varepsilon) - \cos(\omega t) \right] \\ &\simeq \lim_{\varepsilon \to 0} \frac{A}{\varepsilon} \left[\cos(\omega t) \left(1 - \frac{\omega^2 \varepsilon^2}{2} \right) - \sin(\omega t) \cdot (\omega \varepsilon) - \cos(\omega t) \right] \\ &= \lim_{\varepsilon \to 0} \frac{A}{\varepsilon} \left[-\cos(\omega t) \frac{\omega^2 \varepsilon^2}{2} - \sin(\omega t) \cdot (\omega \varepsilon) \right] \\ &= \lim_{\varepsilon \to 0} A \left[-\cos(\omega t) \frac{\omega^2 \varepsilon}{2} - \omega \cdot \sin(\omega t) \right] \\ &= -A\omega \cdot \sin(\omega t) \end{split}$$

Una vez conocida la velocidad podemos, en forma análoga, calcular la aceleración:

$$a(t) = \lim_{\varepsilon \to 0} \frac{v(t+\varepsilon) - v(t)}{\varepsilon}$$

=
$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[-A\omega \sin(\omega(t+\varepsilon)) - (-A\omega) \sin(\omega t) \right]$$

=
$$\lim_{\varepsilon \to 0} -\frac{A\omega}{\varepsilon} \left[\sin(\omega t) \cos(\omega \varepsilon) + \cos(\omega t) \sin(\omega \varepsilon) - \sin(\omega t) \right]$$

$$\simeq \lim_{\varepsilon \to 0} -\frac{A\omega}{\varepsilon} \left[\sin(\omega t) \left(1 - \frac{\omega^2 \varepsilon^2}{2} \right) + \cos(\omega t) \cdot \omega \varepsilon - \sin(\omega t) \right]$$

=
$$\lim_{\varepsilon \to 0} -A\omega \left[-\sin(\omega t) \frac{\omega^2 \varepsilon}{2} + \omega \cos(\omega t) \right]$$

=
$$-A\omega^2 \cos(\omega t)$$

La figura 2.7 muestra la posición, velocidad y aceleración de la partícula en función del tiempo.

Figura 2.7

Notemos que para todo t, $a(t) = -\omega^2 z(t)$. El lector ya familiarizado con la ecuaciones de Newton (que analizaremos recién en el capítulo 4) puede establecer una interesante relación con la *Ley de Hooke*. En efecto, al hacer uso de la ecuación de Newton F = m a, se encuentra que la fuerza neta que actúa sobre la partícula de masa m debe satisfacer la relación

$$F = -(m\omega^2) z \; .$$

Denotando a la constante $(m\omega^2)$ por k, se tiene F = -kz. Esto nos muestra que la fuerza neta sobre la partícula es proporcional al desplazamiento. El signo negativo indica que la dirección en que actúa la fuerza es opuesta al desplazamiento. Un ejemplo concreto en que aparece una fuerza del tipo F = -kz es una masa m colgando de un resorte. En ese caso k es la constante del resorte y a F = -kz se le llama Ley de Hooke.

4. Una persona levanta un peso P, sujetando una cuerda que pasa por una polea y caminando horizontalmente con velocidad v_0 . ¿Cuál es la velocidad del peso P? Supongamos que el largo de la cuerda es 2h (o sea, cuando la persona

da es 2h (o sea, cuando la persona está en x = 0, el cuerpo P está en el suelo encontrándose la cuerda estirada). Se tiene

Figura 2.8

$$(h-y) + \sqrt{h^2 + x^2} = 2h$$
,

o sea,

$$y(t) = \sqrt{h^2 + x^2(t)} - h = \sqrt{h^2 + v_0^2 t^2} - h$$
.

Para la velocidad obtenemos

$$\begin{split} \dot{y}(t) &= v(t) = \lim_{\varepsilon \to 0} \frac{y(t+\varepsilon) - y(t)}{\varepsilon} \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\left(\sqrt{h^2 + v_0^2 (t+\varepsilon)^2} - h \right) - \left(\sqrt{h^2 + v_0^2 t^2} - h \right) \right] \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\sqrt{(h^2 + v_0^2 t^2) + (2v_0^2 t\varepsilon + v_0^2 \varepsilon^2)} - \sqrt{h^2 + v_0^2 t^2} \right] \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \sqrt{h^2 + v_0^2 t^2} \left[\sqrt{1 + \frac{2v_0^2 t\varepsilon + v_0^2 \varepsilon^2}{h^2 + v_0^2 t^2}} - 1 \right] \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \sqrt{h^2 + v_0^2 t^2} \left[1 + \frac{1}{2} \frac{2v_0^2 t\varepsilon + v_0^2 \varepsilon^2}{h^2 + v_0^2 t^2} - 1 \right] \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \frac{1}{2} \frac{2v_0^2 t\varepsilon + v_0^2 \varepsilon^2}{\sqrt{h^2 + v_0^2 t^2}} \\ &= \frac{v_0^2 t}{\sqrt{h^2 + v_0^2 t^2}} \end{split}$$

Ejercicio: Demuestre que la aceleración de P viene dada por:

$$a(t) = \ddot{y}(t) = v_0^2 \frac{h^2}{\left(h^2 + v_0^2 t^2\right)^{3/2}}$$

2.2. El camino inverso

En la sección anterior se presentó el procedimiento que permite evaluar, partiendo del conocimiento de la posición en función del tiempo, la velocidad y luego la aceleración. En esta sección analizaremos el camino inverso, es decir, conociendo la aceleración en función del tiempo, calcular la velocidad y posición.

Suponga que la velocidad de una partícula en función del tiempo viene dada por el gráfico mostrado en la figura 2.9.

Figura 2.9

¿Cuál será la distancia recorrida por la partícula entre los instantes t_i y t_f ? Entre esos dos instantes la velocidad de la partícula es constante (igual a v_0), por lo tanto la distancia recorrida será $x(t_f) - x(t_i) = v_0 \cdot (t_f - t_i)$. Podemos escribir

$$x(t_f) = x(t_i) + v_0 \cdot (t_f - t_i)$$
,

o sea, si una partícula entre dos instantes (inicial y final) se mueve a una velocidad constante, entonces la posición final es igual a la posición inicial más el área de la función v(t) entre los instantes t_i y t_f .

Cuando la función v(t) no es constante la situación es más compleja. Intentemos evaluar la distancia que recorre la partícula entre los instantes $t_1 y t_4$. Como la velocidad no es constante, tomaremos algunas mediciones intermedias, separadas por un intervalo de tiempo Δt . Entre $t_1 y t_2$ la distancia recorrida será aproximadamente $v(t_1) \cdot (t_2 - t_1) = v(t_1) \cdot \Delta t$, entre $t_2 y t_3 \operatorname{será} v(t_2) \cdot (t_3 - t_2) = v(t_2) \cdot \Delta t$, y finalmente entre $t_3 y t_4$ será aproximadamente $v(t_3) \cdot (t_4 - t_3) = v(t_3) \cdot \Delta t$. La distancia total recorrida será aproximadamente

$$x(t_4) - x(t_1) \simeq \sum_{j=1}^{3} v(t_j) \cdot \Delta t$$
, (2.3)

donde $\Delta t = (t_4 - t_1)/3$. Observe que el lado derecho de la ecuación (2.3) es igual al área de los rectángulos mostrados en la figura 2.10. Evidentemente el resultado anterior es sólo aproximado: hemos tomado 3 mediciones intermedias y hemos supuesto que entre las mediciones la velocidad es constante (igual al valor de la última medición). También es claro que si aumentamos el número de mediciones intermedias obtendremos un resultado más preciso. Para un número muy grande (infinito) de mediciones intermedias, el procedimiento sería exacto; en ese caso el área de los rectángulos sería igual al área entre la función v(t)y el eje \hat{t} . De esta manera hemos encontrado un resultado completamente general:

$$x(t_f) = x(t_i) + (\text{Area entre } v(t) \text{ y el eje } t \text{ entre } t = t_i \text{ y } t_f) .$$

$$(2.4)$$

Otra manera de proceder es la siguiente: dividir el intervalo $[t_i, t_f]$ en muchísimos (infinitos) intervalos de ancho dt. Entonces $v(t) \cdot (dt)$ es igual a la distancia recorrida entre los instantes

t y t + dt. Para obtener la distancia recorrida entre $t_i y t_f$, habrá que sumar todas las contribuciones. Se tiene entonces que

$$x(t_f) = x(t_i) + \int_{t_i}^{t_f} v(t) dt \quad .$$
(2.5)

El símbolo $\int_{t_i}^{t_f}$ significa "sume las contribuciones que están detrás del símbolo desde $t = t_i$ hasta $t = t_f$ ". Por supuesto que

$$\int_{t_i}^{t_f} v(t) dt = (\text{\acute{A}rea delimitada por } v(t) \text{ y el eje } t \text{ entre } t = t_i \text{ y } t_f) .$$

Ejemplos:

1. Movimiento uniforme: Consideremos una partícula cuya velocidad es constante $v(t) = v_0$ en todo instante. Si la partícula en el instante t = 0 se encuentra en x_i , ¿dónde se encontrará en el instante t?

Usando la ecuación (2.4) se obtiene

$$\begin{aligned} x(t) &= x(0) + \text{Area entre } v_0 \text{ y el eje } t, \text{ entre } t = 0 \text{ y } t \\ &= x(0) + v_0 t \end{aligned}$$

2. Movimiento uniformemente acelerado: Consideremos una partícula cuya velocidad viene dada por

$$v(t) = v_0 + a_0 t ,$$

(ver figura 2.10). Observe que v_0 es la velocidad de la partícula en el instante t = 0. Al calcular la aceleración se encuentra que

$$a(t) = \lim_{\varepsilon \to 0} \frac{v(t+\varepsilon) - v(t)}{\varepsilon} = a_0 ,$$

o sea, la expresión para la velocidad corresponde a una partícula que en todo instante sufre una aceleración constante a_0 .

Encontremos el desplazamiento entre los instantes t = 0 y el instante $t = t_f$. Usando la ecuación (2.4) se obtiene

$$\begin{aligned} x(t_f) &= x(0) + \text{Area entre } v(t) \text{ y el eje } t, \text{ entre } t = 0 \text{ y } t = t_f \\ &= x(0) + v_0 t_f + \frac{1}{2}(v(t_f) - v_0) \cdot t_f \\ &= x(0) + v_0 t_f + \frac{1}{2}a_0 t_f^2 . \end{aligned}$$

Figura 2.10

Conociendo la posición x(t) de una partícula, siempre es posible determinar su velocidad. El recíproco no es cierto: si se conoce la velocidad v(t) no es posible determinar la posición; lo único que se puede determinar es el desplazamiento entre dos instantes. En otras palabras, si conocemos v(t), debemos conocer además la posición en algún instante para poder determinar x(t).

Las relaciones que permiten obtener la velocidad si se conoce la aceleración a(t), son análogas a las que relacionan la posición con la velocidad:

$$v(t_f) = v(t_i) + \text{Årea entre } a(t) \text{ y el eje } t \text{ entre } t = t_i \text{ y } t_f .$$
(2.6)

0

$$v(t_f) = v(t_i) + \int_{t_i}^{t_f} a(t) dt \quad .$$
(2.7)

Ejemplo: Movimiento uniformemente acelerado.

Suponga que la aceleración de una partícula es constante ($a(t)=a_0$, $\forall t).$ Usando (2.6) se deduce que

$$v(t) = v(0) + a_0 t$$
.

Haciendo uso del resultado obtenido en el ejemplo anterior se obtiene finalmente que

$$x(t) = x(0) + v(0) t + \frac{1}{2}a_0 t^2$$

Observe que x(0) y v(0) son la posición y la velocidad de la partícula en el instante t = 0.

2.3. Máximos y mínimos

Considere una función f(t) suave (o sea, sin saltos ni puntas). Ya sabemos (ver último problema de la sección anterior) que $\dot{f}(t)$ está relacionado con la pendiente de las tangentes

de la función f(t). Observemos que para valores de t en los cuales $\dot{f}(t) = 0$, la función f(t) tiene un máximo o mínimo (local). También podemos invertir la argumentación: encontrar los máximos y mínimos de una función f(z) es equivalente a encontrar los ceros de la función derivada

$$g(z) = \lim_{\varepsilon \to 0} \frac{f(z+\varepsilon) - f(z)}{\varepsilon}$$

Ejemplo: Suponga que un agricultor tiene L metros de malla para construir un corral rectangular. El agricultor desea aprovechar una muralla de piedra (recta) para obtener un corral mayor. ¿Qué dimensiones deberá tener el corral para que su área sea máxima?

Figura 2.11

Solución: Sean $a \neq b$ los largos del gallinero (ver figura 2.11). El largo de la malla es L = 2a + b, mientras que el área del gallinero es $A = a \cdot b$. Despejando b de la primera ecuación y sustituyéndolo en la segunda se obtiene:

$$A = a \cdot (L - 2a) \; .$$

El área es una función de a. Tanto para a = 0 como para a = L/2 se tiene que A = 0. Para algún valor intermedio el área del gallinero será máxima. Para resolver el problema debemos encontrar el máximo de la función $f(a) = a \cdot (L - 2a)$. Para ello encontremos los ceros de la función derivada

$$g(a) = \lim_{\varepsilon \to 0} \frac{f(a+\varepsilon) - f(a)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[(a+\varepsilon) \cdot (L - 2(a+\varepsilon)) - a \cdot (L - 2a) \right] = L - 4a.$$

La función g(a) tiene un (único) cero para a = L/4. Luego para ese valor de a el área del gallinero será máxima.

2.4. Problemas

- 1. Suponga que la altura de cierto proyectil en función del tiempo viene dada por la relación $z(t) = -a_0 \cdot (t t_0)^2 + z_0$, con $z_0 = 125$ m, $t_0 = 5$ s y $a_0 = 5$ m/s².
 - a) Grafique la altura del proyectil en función del tiempo desde t = 0 hasta t = 12 s.
 - b) $i \in \mathbb{E}$ n qué instante choca el proyectil contra el suelo?
 - c) Encuentre gráficamente la velocidad instantánea (es decir, mida las pendientes de las tangentes) en los instantes t=0 s, t=2 s, t=4 s, t=6 s, t=8 s y t=10 s. Grafique su resultado.
- Un conductor maneja su coche 10 km a una velocidad de 90 km/h y luego otros 10 km a 70 km/h. ¿Cuál es la rapidez promedio durante el trayecto de 20 km? (La respuesta no es 80 km/h.)

- 3. La figura 2.12 muestra la posición de una partícula en función del tiempo. Encuentre la velocidad promedio durante los siguientes intervalos de tiempo:
 - a) $0 \le t \le 4 \le$ b) $7 \le t \le 10 \le$ c) $0 \le t \le 13 \le$ (Respuesta: $\langle v \rangle = -0.154$ m/s) d) $10 \le t \le 13 \le$

Figura 2.12

- 4. La figura 2.13 muestra la posición de una partícula en función del tiempo. ¿En qué instantes o en qué intervalos de tiempo
 - a) la velocidad (instantánea) es cero?
 - b) la velocidad es positiva?
 - c) la velocidad es negativa?
 - d) el módulo de la velocidad es máximo?
 - e) la velocidad es constante?
 - f) la aceleración es negativa?

Figura 2.13

5. Suponga que la posición de una partícula en función del tiempo (medido en segundos) viene dada por

$$z(t) = \frac{t}{1+t^2} \quad [m]$$

- a) Grafique z(t) en el intervalo de tiempo -4 s < t < +4 s.
- b) Encuentre la velocidad instantánea en función del tiempo evaluando

$$v(t) = \lim_{\Delta t \to 0} \frac{z(t + \Delta t) - z(t)}{\Delta t}$$
.

Grafique v(t).

- 6. La figura 2.14 muestra la posición de una partícula en función del tiempo.
 - a) Encuentre la velocidad promedio en el intervalo de tiempo 2 s < t < 10 s.
 - b) Encuentre la velocidad instantánea para t = 10 s.
 - c) ¿En qué instante o instantes la velocidad (instantánea) de la partícula es nula?
 - d) ¿En qué instante la rapidez es máxima?
 - e) ¿En qué instante la aceleración es nula?

Figura 2.14

7. Suponga que la posición de una partícula en función del tiempo (medido en segundos) viene dada por

$$z(t) = t - 4\cos t \quad [m]$$

- a) Grafique z(t) en el intervalo de tiempo 0 < t < +6 s.
- b) A partir del gráfico responda las siguientes preguntas:
 - 1) ¿En qué instante la velocidad es nula?
 - 2) ¿En qué instantes la partícula se encuentra en el origen?
 - 3) ¿En qué intervalos de tiempo la velocidad es negativa?
 - 4) ¿En qué intervalos de tiempo la aceleración es positiva?
- c) Encuentre la velocidad instantánea en función del tiempo evaluando

$$v(t) = \lim_{\Delta t \to 0} \frac{z(t + \Delta t) - z(t)}{\Delta t}$$

- d) Grafique v(t) encontrada en la parte anterior. A partir del gráfico responda las siguientes preguntas:
 - 1) ¿En qué instante la velocidad es nula?
 - 2) ¿En qué intervalos de tiempo la velocidad es negativa?
 - 3) ¿En qué intervalos de tiempo la aceleración es positiva?

(Compare las respuestas con las de la parte b)).

8. La figura 2.15 muestra la velocidad de una partícula en función del tiempo.

Figura 2.15

¿En qué instantes o en qué intervalos de tiempo:

- a) La velocidad es cero?
- b) La velocidad es constante?
- c) La velocidad es positiva?
- d) La aceleración es nula?
- e) La aceleración es positiva?
- f) El módulo de la velocidad es máximo?
- g) El módulo de la aceleración es máximo?
- h) ¿Cuál es la distancia que recorre la partícula entre t = 2 s y t = 4 s?
- *i*) Si en el instante t = 0 la partícula se encuentra en el origen (es decir, si s(0) = 0), haga un gráfico aproximado del desplazamiento s(t).
- *j*) Haga un gráfico aproximado de s(t) si s(0) = -4 m.

Respuestas: a) En t = 2 s y t = 8,5 s; b) A partir de t = 10 s, se podría decir también que en el instante t = 6 s la velocidad es constante; c) Entre t = 2 s y t = 8,5 s; d) Misma respuesta de la parte b); e) Entre t = 0 s y t = 6 s; f) En t = 6 s; g) Entre t = 7 s y t = 9 s; h) Entre t = 2 s y t = 4 s la velocidad media es de 1 m/s, luego la distancia recorrida es de 2 m (note que esto coincide con el área bajo la curva).

- 9. La figura 2.16 muestra la aceleración de una partícula en función del tiempo.
 - a) Si en el instante t = 0 s la partícula está en reposo, encuentre la velocidad de la partícula en cada instante. ¡Grafique!
 - b) Calcule el tamaño de las áreas I, II y III. ¿Qué unidades tienen? ¿Qué relación hay entre estas áreas y la parte a) de este problema?
 - c) Repita lo hecho en la parte a), pero suponiendo que en el instante t = 0 la partícula tiene una velocidad $v_0 = -8$ m/s. ¡Grafique!

- 10. En cada una de las siguientes expresiones para la posición s(t) de una partícula, encuentre una expresión analítica para la velocidad instantánea:
 - $a) \quad s(t) = at^2 + bt + c$
 - b) $s(t) = at^{\alpha}$
 - c) $s(t) = a\cos(\omega t + \beta)$

En las ecuaciones anteriores $a, b, c, \omega, \alpha \neq \beta$ son constantes.

- 11. Para cada una de las siguientes expresiones para la aceleración a(t) de una partícula $(a \text{ en m/s}^2 \text{ y } t \text{ en s})$, encuentre la expresión más general para la velocidad v(t) y la posición x(t).
 - $a) \qquad a(t) = a_0$
 - $b) \qquad a(t) = a_0 \, \cos\left(\omega t\right)$

En las expresiones anteriores, $a_0 \ge \omega$ son constantes.

- 12. Un observador suelta una piedra desde el techo de un edificio. El sonido de la piedra chocando contra el suelo se escucha después de $t_0 = 6$ s.
 - a) Si la velocidad del sonido es c = 340 m/s, encuentre la altura del edificio. (Ignore los efectos del roce del aire, que en la práctica, para este problema, no son despreciables.)
 - b) Demuestre que si $gt_0/c \ll 1$, entonces la altura del edificio viene aproximadamente dada por

$$h = \frac{1}{2}gt_0^2 \left(1 - \frac{gt_0}{c}\right) \ .$$

13. Dos trenes A y B, inicialmente separados por una distancia de 13 km, viajan hacia su encuentro a una velocidad de 30 km/h. Desde A parte una paloma mensajera que llega al tren B 10 minutos después. Calcule la velocidad con que vuela la paloma respecto al tren A. Resuelva el problema en forma gráfica y luego en forma analítica.

- 14. La figura 2.17 muestra la velocidad de una partícula en función del tiempo.
 - a) Si en el instante t = 0 s la partícula se encuentra en el origen (es decir, x(0) = 0), encuentre la posición de la partícula en cada instante. Grafique.
 - b) Repita lo hecho en la parte a), pero suponiendo que en el instante t = 0 se tiene x(0) = -3 m.
- 15. Desde un puente de 60 m de altura se deja caer una piedra. Una segunda piedra se arroja verticalmente hacia abajo 1 s más tarde. Ambas piedras llegan al suelo simultáneamente. ¿Cuál fue la velocidad inicial de la segunda piedra? (Desprecie el roce del aire.)
- 16. Un cohete se dispara verticalmente, subiendo con aceleración constante de 20 m/s² respecto a la plataforma de lanzamiento durante 1 minuto. En ese momento se agota su combustible y continúa moviéndose sólo bajo la acción de la aceleración de gravedad.
 - a) ¿Cuál es la máxima altura que alcanza?
 - b) ¿Cuál es el tiempo transcurrido desde que despega hasta volver a caer sobre la plataforma?
 - c) Grafique la posición y velocidad en función del tiempo.
- 17. Panchito deja caer una pelota desde una altura h. La pelota, cada vez que choca contra el suelo, rebota con una rapidez igual a aquélla con la cual llegó al suelo multiplicada por α , donde α es una constante $0 < \alpha < 1$. Encuentre:

- a) La altura que alcanza la pelota después del primer rebote.
- b) La altura que alcanza después del segundo rebote.
- c) La altura que alcanza después del k-ésimo rebote.
- d) La distancia total recorrida desde que se soltó la pelota hasta el k-ésimo rebote.
- e) La distancia total recorrida por la pelota hasta que se detiene (tome $k \longrightarrow \infty$ en la expresión anterior).

Respuest as: c) $\alpha^{2k}h$; d) $h + 2h\alpha^2 \frac{\alpha^{2(k-1)}-1}{\alpha^2-1}$.

- 18. Un automovilista pasa a exceso de velocidad frente a un retén policial. 5 minutos más tarde sale en su persecusión un policía motorizado a una velocidad de 120 km/h. Después de 40 minutos, el policía da alcance al infractor. ¿Cuál era la velocidad del infractor?
- 19. Consideremos el movimiento de una esfera en un medio viscoso (en ausencia de fuerzas gravitacionales). La aceleración que sufre la esfera es proporcional a su velocidad, pero en dirección contraria, es decir $\vec{a}(t) = -\eta \vec{v}(t)$, donde η es una constante. Supongamos que $\eta = 0.01 \text{ s}^{-1}$ y la velocidad inicial de la esfera es $|\vec{v}_0| = 50 \text{ m/s}$. Encuentre numéricamente la distancia s(t) recorrida por la esfera y grafíquela. Para resolver el problema note que, si Δ es un pequeño intervalo de tiempo, entonces

$$\begin{cases} v(t + \Delta) \simeq v(t) + a(t) \Delta \\ s(t + \Delta) \simeq s(t) + v(t) \Delta \end{cases}$$

20. Considere dos varillas muy largas: una fija horizontalmente y la otra formando un ángulo ϕ constante con la primera, y moviéndose verticalmente con rapidez v_0 constante (ver figura 2.18). Determine la velocidad con que se mueve el punto de intersección de las dos varillas (tal punto de intersección no corresponde al movimiento de algún objeto físico real).

Figura 2.18

21. Un pasajero corre con velocidad de 4 m/s para alcanzar un tren. Cuando está a una distancia d de la portezuela más próxima, el tren comienza a moverse con una aceleración constante $a=0.4 \text{ m/s}^2$, alejándose del pasajero.

- a) Si d=12 m y el pasajero sigue corriendo, ¿alcanzará a subirse al tren?
- b) Haga un gráfico de la función $x_t(t)$ del tren. En el mismo gráfico dibuje la función $x_p(t)$ correspondiente al pasajero para diversos valores de la distancia de separación d. Encuentre el valor crítico d_c para el cual el pasajero alcanza apenas el tren.
- c) Para la separación crítica d_c , ¿cuál es la velocidad del tren cuando el pasajero lo alcanza?
- 22. Desde un edificio se lanza una piedra A con una velocidad inicial vertical hacia abajo $v_0 = 30$ m/s. Desde el suelo, al pie del edificio y en el mismo instante, se lanza una piedra B hacia arriba. Las dos piedras chocan a una altura h = 30 m, siendo en ese instante la rapidez de ambas piedras la misma. Encuentre el tiempo que transcurre entre el lanzamiento y la colisión. (Use para g el valor 10 m/s².)

Respuesta: $t = \sqrt{3} - 1$ s.

- 23. Considere un avión de pasajeros cuya velocidad de aterrizaje es de unos 400 km/h. Suponga que la desaceleración del avión es uniforme. Encuentre el valor que debe tener ésta para que el avión llegue al reposo en una pista de 1200 m. Respuesta: $a = 5,15 \text{ m/s}^2$
- 24. ¿Cuál será la forma del cilindro de máximo volumen que puede ser inscrito en una esfera de radio R?
- 25. En Paine un agricultor tiene la posibilidad de realizar una (y sólo una) exportación de sandías de su plantación. Al comienzo de la temporada el precio es bueno, pero la producción no es grande. En efecto, al comienzo tiene 6 toneladas para vender y el precio es de \$40,000/ton. . Por cada día que demore la exportación puede exportar 0.5 toneladas adicionales; sin embargo, el precio disminuye en aproximadamente \$800/ton. ¿Cuánto tiempo debería esperar para realizar la exportación si desea maximizar las entradas?

Respuesta: 19 días.

26. A partir de un tronco de 27 cm de diámetro se desea aserrar una viga de sección rectangular que tenga la mayor resistencia posible. La resistencia de una viga horizontal apoyada en sus extremos, en primera aproximación, es proporcional al ancho y proporcional al cuadrado de su altura. ¿Cuáles serán las dimensiones de la viga?

27. Un salvavidas ubicado en el punto A en una playa debe socorrer a un nadador ubicado en el punto B (ver figura 2.19). La velocidad con que puede correr el salvavidas en la arena es v_1 y la velocidad con que avanza en el agua es v_2 . Sea P el lugar óptimo en el cual el salvavidas debe ingresar al agua para que tarde el menor tiempo posible en el trayecto de A a B. Demuestre que en ese caso se satisface

 $\frac{\sin\alpha}{\sin\beta} = \frac{v_1}{v_2} \quad .$

Figura 2.19

Notemos que esta expresión es análoga a la ley de Snell para la refracción de un rayo de luz.

- 28. ¿Qué dimensiones (interiores) tiene un recipiente cilíndrico, cuya capacidad es de un litro, si la forma se ha elegido de tal manera que en su confección se use la menor cantidad de material posible?
- 29. Considere cierto objeto A que se mueve a lo largo del eje \hat{x} tal como se describe a continuación:
 - i) En el instante t = 0 se encuentra en $x_0 = -4$ [m] y su velocidad es $v_0 = 2$ [m/s].
 - ii) Durante los primeros cuatro segundos la velocidad permanece constante.
 - iii) A partir del instante t = 4 [s], el objeto frena uniformemente hasta quedar con la mitad de la velocidad. Durante este proceso de frenado la partícula avanza 3 [m].
 - iv) Luego mantiene esa velocidad durante 2 [s].
 - v) Luego la partícula acelera (en sentido negativo) con una aceleración constante $a_0 = -2 \text{ [m/s^2]}$ hasta que la velocidad sea $v_1 = -3 \text{ [m/s]}$.
 - vi) A continuación se desplaza con la velocidad v_1 hasta llegar a dos metros del punto de partida.
 - vii) Finalmente la partícula A frena uniformemente hasta quedar en reposo en el punto de partida ($x_0 = -4$ [m]).
 - a) Haga un gráfico detallado de $x(t) \ge v(t)$.
 - b) Encuentre la velocidad media de la partícula A entre los instantes t = 6 [s] y t = 13 [s].
 - c) ¿En qué instante el alejamiento desde el punto de partida es máximo y cuánto es ese alejamiento?

- d) Un segundo móvil *B* parte en t = 0 desde el origen y se deplaza con velocidad constante $v_B = 1$ [m/s] a lo largo de la misma recta que *A*. Suponga que cuando los dos móviles se encuentran por primera vez, *B* se detiene. ¿En qué instante volverán a encontrarse?
- 30. Un malabarista desea hacer piruetas manteniendo en forma rotativa, con una mano, tres manzanas en el aire. Si el malabarista desea hacer lanzamientos cada 0,5 s, determine la altura a la cual usted le aconsejaría lanzar cada manzana.
- 31. Desde la altura H con respecto al piso se deja caer un macetero. En ese instante, y desde el primer piso, un ascensor acelera hacia arriba con aceleración αg , ($\alpha < 1$). Si el ascensor tiene una altura h, (h < H) y parte del reposo, calcule el tiempo que demora el macetero en pasar desde el techo al piso del mismo. Para no hacer trágica la situación, suponga que la trayectoria (recta) del macetero pasa al lado del ascensor.
- 32. Dos móviles A y B (puntuales) están restringidos a moverse sobre el eje x de cierto sistema de coordenadas. Inicialmente A se desplaza a 10 m/s, mientras que B se encuentra en reposo en el origen del sistema de coordenadas. En t = 0 cuando A se encuentra en $x_A = 100$ m, el móvil B comienza a ser uniformemente acelerado en la dirección positiva del eje x con aceleración $a_1 = 1$ m/s². Este movimiento continúa hasta que B se encuentra a 22 m de A. Entonces B deja de acelerar y simultáneamente envía un mensaje al móvil A, que demora 0,5 s en llagar a destino. Tan pronto A recibe el mensaje, se detiene.
 - a) ¿Cuál es la velocidad c con que se propaga el mensaje entre A y B? Suponga que la velocidad con que viaja el mensaje es constante.
 - b) ¿Cuál es la velocidad de B en el instante en que envía el mensaje?
 - c) ¿Cuál es el desplazamiento de B entre t = 0 y el instante en que choca con A?
 - d) ¿Cuál es la velocidad media de B entre t = 0 y el instante en que choca con A?

2.5. Solución a algunos de los problemas

Solución al problema 19

Sea x la dirección a lo largo de la cual ocurre el movimiento y denotemos, respectivamente, con s(t), v(t) y a(t) a la posición , velocidad y aceleración que tiene la partícula en el instante t. Las condiciones iniciales son s(0) = 0 y v(0) = 50 m/s.

Conociendo s(0), v(0) podemos encontrar a(0). En efecto $a(0) = -\eta v(0)$.

Usando las expresiones

$$\begin{cases} v(t + \Delta) \simeq v(t) + a(t) \Delta \\ s(t + \Delta) \simeq s(t) + v(t) \Delta \end{cases} \quad (*) \quad .$$

y eligiendo cierto valor pequeño para Δ , podemos encontrar $s(\Delta)$ y $v(\Delta)$.

Conociendo $s(\Delta) \neq v(\Delta)$ podemos encontrar $a(\Delta)$. En efecto $a(\Delta) = -\eta v(\Delta)$.

Usando nuevamente las relaciones (*) (pero ahora con $t = \Delta$), podemos encontrar $s(2\Delta)$ y $v(2\Delta)$, y a partir del último también $a(2\Delta)$. Etc...

Todo el proceso anterior se puede automatizar. En la próxima página se presenta un programa en QUICKBASIC (para un PC compatible) que resuelve numéricamente el problema y grafica los resultados en la pantalla del computador.

Al resolver numéricamente el problema, repita el cálculo con distintos valores de Δ y observe como el resultado no depende de este parámetro cuando Δ es lo suficientemente chico. También repita el cálculo para distintos valores de η y analice como este parámetro afecta al resultado.

```
CLS
                                           'LIMPIA PANTALLA
    SCREEN 12
                                           'ELIGE SUPERVGA COLOR
    VIEW (160, 20)-(580,310)
                                           'DEFINE AREA DE TRABAJO
                                           'MINIMO DE ABSISA
    TMIN = 0
    TMAX = 500
                                           'MAXIMI DE ABSISA
    YMIN = 0
                                           'MINIMO DE ORDENADA
    YMAX = 6000
                                           'MAXIMO DE ORDENADA
    WINDOW (TMIN, YMIN)-(TMAX, YMAX)
                                           'fIJA VALORES ANTERIORES
    LINE (TMIN, YMIN)-(TMAX, YMAX), , B 'GRAFICA EJES (CAJA)
    FOR I = 0 TO 6
    YP = I * 1000
                                           'EVALUA POSICION DE TIC
    PSET (TMIN, YP)
                                           'POSICIONA EL LAPIZ EN ORDENADA (IZQ)
    DRAW ''R8"
                                           'GRAFICA TIC
                                           'POSICIONA EL LAPIZ EN ORDENADA (DER)
    PSET (TMAX - 10, YP)
    DRAW ''R8"
                                           'GRAFICA TIC
    NEXT I
    LOCATE 2, 17
                                           'POSICIONA LAPIZ
    PRINT "60"
                                           'IMPRIME 60 EN ORDENADA IZQUIERDA
    LOCATE 2, 74
                                           'POSICIONA LAPIZ
    PRINT YMAX
                                           'IMPRIME EN ORDENADA DERECHA
    LOCATE 2, 18
                                           'POSICIONA LAPIZ
    PRINT "O"
                                           'IMPRIME
    LOCATE 20, 74
                                           'POSICIONA LAPIZ
    PRINT YMIN
                                           'IMPRIME
    LOCATE 11, 17
                                           'POSICIONA LAPIZ
    PRINT "30"
                                           'IMPRIME
    LOCATE 11, 76
                                           'POSICIONA LAPIZ
    PRINT "X"
                                           'IMPRIME LEYENDA DE ORDENADA DERECHA
    LOCATE 2, 13
                                           'POSICIONA LAPIZ
    PRINT "V"
                                           'IMPRIME LEYENDA DE ORDENADA IZQUIERDA
    FOR I = 0 \text{ TO } 10
    XP = TMIN + I * (TMAX - TMIN) / 10
                                           'EVALUA POSICION DE TICS DE ABSISA
    PSET (XP, YMIN)
                                           'POSICIONA LAPIZ
    DRAW Ü5"
                                           'GRAFICA TIC
    NEXT I
                                           'POSICIONA LAPIZ
    LOCATE 21, 20
                                           'IMPRIME
    PRINT TMIN
    LOCATE 21, 71
                                           'POSICIONA LAPIZ
    PRINT TMAX
                                           'IMPRIME
    LOCATE 23, 44
                                           'POSICIONA LAPIZ
    PRINT "TIEMPO"
                                           'IMPRIME LEYENDA DE ABSISA
    DT = 1
                                           'SE ELIGE DT
    T = 0
                                           'TIEMPO INICIAL
    X = 0
                                           'POSICION INICIAL
    V = 40
                                           'VELOCIDAD INICIAL
    ETA = 0.01
                                           'SE FIJA PARAMETRO DE FRICCION
    TF = 500
                                           'TIEMPO FINAL
    LOCATE 1, 36
                                           'POSICIONA LAPIZ
                                           'IMPRIME TITULO
    PRINT "DT="; DT; "ETA="; ETA;
                                           'EL CALCULO EMPIEZA AQUI !!
10 T = T + DT
                                           'SE INCREMENTA EL TIEMPO
    IF T >TF THEN STOP
                                           'SI T>TF EL CALCULO TERMINA
    A = -ETA * V
                                           'EVALUACION DE LA ACELERACION
    X = X + V * DT
                                           'NUEVA POSICION
    V = V + A * DT
                                           'NUEVA VELOCIDAD
    PSET (T, X), 12
                                          'GRAFICA PUNTO (T,X)
    PSET (T, V * 100), 14
                                          'GRAFICA PUNTO (T,V)
    GOTO 10
```

Solución al problema 27

Los tiempos t_1 , que el salvavidas tarda para correr de A a P y t_2 , que tarda para nadar de P a B vienen dados por

 $t_1 = \frac{\sqrt{x^2 + z_a^2}}{v_1} \; .$

$$t_2 = \frac{\sqrt{(L-x)^2 + z_b^2}}{v_1} \; .$$

Por lo tanto, el tiempo total que tarda en ir de A a B es

$$T = \frac{\sqrt{x^2 + z_a^2}}{v_1} + \frac{\sqrt{(L - x)^2 + z_b^2}}{v_1}$$

Figura 2.20

En la expresión anterior L, z_a y z_b son fijos; el valor de x se debe determinar de manera que T sea mínimo.

Encontrar el mínimo de T en función de x es equivalente a encontrar los ceros de la función derivada dT/dx:

$$\frac{dT(x)}{dx} = \lim_{\varepsilon \to 0} \frac{T(x+\varepsilon) - T(x)}{\varepsilon} = \frac{x}{v_1 \sqrt{x^2 + z_a^2}} - \frac{(L-x)}{v_2 \sqrt{(L-x)^2 + z_b^2}}$$

La derivada tiene ceros si

$$\frac{x}{v_1 \sqrt{x^2 + z_a^2}} = \frac{(L-x)}{v_2 \sqrt{(L-x)^2 + z_b^2}}$$

Pero

$$\frac{x}{\sqrt{x^2 + z_a^2}} = \sin \alpha$$

у

$$\frac{(L-x)}{\sqrt{(L-x)^2 + z_b^2}} = \sin\beta \, ,$$

luego, T(x) tiene un extremo en función de x cuando

$$\frac{\sin\alpha}{v_1} = \frac{\sin\beta}{v_2}$$

No es difícil convencerse que tal extremo corresponde a un mínimo (y no a un máximo).

Solución al problema 29

a) Implícitamente supondremos que las distancias estarán expresadas en metros, el tiempo en segundos, las velocidades en m/s y las aceleraciones en m/s². De acuerdo al enunciado se tiene:

Punto de partida: x(0) = -4, v(0) = 2

Entre t = 0 y 4, v(t) = 2, lo que corresponde a una línea horizontal en el gráfico v en función de t (ver figura 2.21).

Entre t = 0 y 4 se tiene una recta con pendiente 2, en el gráfico x(t) en función de t (ver figura 2.22). La posición en t = 4 es $x(4) = x(0) + v_0 \cdot 4 = -4 + 2 \cdot 4 = 4$.

A partir de t = 4, en el gráfico v en función de t, la velocidad estará representada por una recta hasta llegar a $v_0/2 = 1$. Durante el proceso de frenado que tarda hasta cierto instante \tilde{t} , la partícula avanza 3 metros, o sea, el área bajo la curva v(t) entre t = 4 y \tilde{t} debe ser 3. No es difícil darse cuenta de que \tilde{t} debe ser 6.

La aceleración entre t = 4 y t = 6 es $a_1 = -0.5$ (es la pendiente en el gráfico 2.21).

De acuerdo al enunciado, la partícula avanza 3 metros durante el frenado, o sea, x(6) = x(4) + 3 = 7. El gráfico de x(t), entre t = 4 y $t = \tilde{t} = 6$ será parabólico con curvatura negativa. Otra forma de encontrar la posición en t = 6 es usando la expresión $x(6) = x(4) + v(4) \cdot (6-4) + 0.5 a_1 \cdot (6-4)^2$, o sea, $x(6) = 4 + 2 \cdot 2 - 0.5 \cdot 0.5 \cdot 2^2 = 7$.

De t = 6 hasta t = 8 (durante 2 segundos) la velocidad se mantiene constante. El gráfico de v(t) es una recta horizontal con velocidad 1.

El área bajo el gráfico v(t) entre t = 6 y 8 nos da la distancia que A avanza en ese intervalo. Tal área es 2, luego x(8) = 7 + 2 = 9. Durante este intervalo x(t) es representado por una recta (velocidad constante).

Se tiene que v(8) = 1. La partícula desacelera con aceleración $a_0 = -2$ hasta que la velocidad sea -3. Se observa inmediatamente que para ello debe desacelerar durante 2 segundos. Entonces $v(10) = v(8) + a_0 \cdot (10 - 8) = 1 - 2 \cdot (10 - 8) = 1 - 4 = -3$. Entre t = 8 y 10 el gráfico de v(t) es una recta (aceleración constante).

Podemos encontrar la posición de la partícula en t = 10: $x(10) = x(8) + v(8) \cdot (10 - 8) + 0.5 a_1 \cdot (10 - 8)^2$, o sea, $x(10) = 9 + 1 \cdot 2 + 0.5 \cdot (-2) \cdot 2^2 = 7$.

En t = 10 la partícula se encuentra en x(10) = 7 y su velocidad es v(10) = -3. La partícula sigue a velocidad constante hasta llegar a dos metros del punto de partida (o sea, hasta llegar a -2 metros). La partícula, por lo tanto, deberá recorrer 9 metros. Con $v_1 = -3$ [m/s] tardará para ello 3 segundos. O sea, entre t = 10 y t = 13 la velocidad será constante (linea horizontal) en el gráfico v en función de t.

A partir de t = 13 la partícula frena uniformemente hasta quedar en reposo en el punto de partida. El gráfico de v(t) es por lo tanto una recta hasta cero. El área bajo la curva entre t = 13 y el instante en que queda en reposo debe ser -3 (la partícula A debe recorrer aún dos metros hacia la izquierda para llegar al punto de partida). Es claro que para ello tardará 4/3 segundos.

Entre t = 13 y $t = 14, \overline{3}$, la partícula recorre -2 metros. El gráfico de x(t) es una parábola curvada hacia arriba que llega a $t = 14, \overline{3}$ con pendiente nula.

Figura 2.21

Figura 2.22

b) En t = 6 y t = 13 la partícula A se encuentra en x(6) = 7 y x(13) = -2, respectivamente. La velocidad media entre esos dos instantes es

$$\overline{v} = \frac{(-2) - 7}{13 - 6} = -9/7 \text{ m/s}.$$

c) En t = 8 la velocidad es 1 m/s. A partir de ese instante la partícula acelera con aceleración $a_0 = -2$, o sea, tarda 0.5 s para quedar temporalmente en reposo. En ese instante (8,5 s) ocurre el alejamiento máximo. Se tiene

$$\begin{aligned} x(8,5) &= x(8) + v(8) \cdot (8,5-8) + \frac{1}{2}a_0 \cdot (8,5-8)^2 \\ &= 9 + 1 \cdot 0, 5 - \frac{1}{2} \cdot 2 \cdot 0, 5^2 = 9,25 \text{ [m]}. \end{aligned}$$

d) Graficando $x_B(t)$ en la figura 2.21 se encuentra que los dos móviles se vuelven a encontrar en el instante t = 11 s.

Solución al problema 30

Cada manzana debe tardar $t_0 = 3 \cdot 0, 5 = 1, 5$ segundos en subir y bajar. Al lanzar un objeto con velocidad v_0 hacia arriba tarda un tiempo v_0/g hasta llegar arriba y un tiempo igual hasta volver al punto de partida. Tenemos

$$t_0 = \frac{2v_0}{g} = 1,5$$
 [s].

Esta ecuación nos permite evaluar la velocidad con que se debe lanzar la manzana, $v_0 = t_0 g/2$.

La altura a la que llega es un objeto lanzado con velocidad v_0 es $h = v_0^2/(2g)$. Combinando las dos últimas ecuaciones se encuentra para h la expresión

$$h = \frac{1}{8} g t_0^2 \ .$$

Con $g \simeq 10 \text{ [m/s^2]}$ se encuentra $h \simeq 3 \text{ metros}$.

Solución al problema 32

- a) Cuando *B* envía el mensaje se encuentra a 22 m de *A*. El mensaje tarda 1/2 s en llegar a su destino. Durante ese intervalo el móvil *A* seguirá moviéndose desplazándose $10 \cdot 0, 5 = 5$ metros. El mensaje deberá recorrer en 0,5 s una distancia de (22+5)=27 metros. La velocidad del mensaje será c = 27/0, 5 = 54 [m/s].
- b) Las ecuaciones de movimiento de los móviles, para 0 < t y el instante en que B envía el mensaje (llamémoslo t_1), son

$$x_A(t) = x_A(0) + v_A(0)t = 100 + 10 \cdot t$$
$$x_B(t) = \frac{1}{2}a_1t^2 = \frac{1}{2}t^2$$
$$v_A(t) = v_A(0) = 100$$

$$v_B(t) = a_1 t = t \; .$$

(En las expresiones anteriores estamos suponiendo que los tiempos están dados en segundos, las distancias en metros, las velocidades en $\rm [m/s]$ y las aceleraciones en $\rm [m/s^2].)$

Sabemos que en $t = t_1$ la separación entre A y B es de 22 metros, o sea,

$$x_A(t_1) - x_B(t_1) = 100 + 10 t_1 - \frac{1}{2} t_1^2 = 22$$

Resolviendo esta ecuación cuadrática para t_1 se encuentra que $t_1 = 10 \pm 16$. En el contexto del problema sólo la solución positiva tiene sentido, o sea, $t_1 = 26$ [s].

La velocidad de B en el instante t_1 es $v_B(t_1) = 26$ [m/s].

- c) Desde que *B* envía el mensaje hasta chocar con *A*, el móvil *B* debe recorrer una distancia de 22+5=27 metros. En el instante t_1 se encuentra a $x_B(t_1) = (26)^2/2 = 338$ m del origen. La distancia total que *B* debe recorrer desde que parte del origen hasta que choca con *A* es (338+27)=365 m.
- d) Desde que *B* envía el mensaje hasta chocar con *A*, el móvil *B* debe recorrer una distancia de 22+5=27 metros. Como su velocidad (a partir de t_1) es de 26 m/s, tardará 27/26 segundos. El tiempo total, desde que *B* parte del origen hasta que choca con *A* es (26+27/26) s. Para la velocidad media de *B* se encuentra

$$\overline{v} = \frac{365}{26 + \frac{27}{26}} \simeq 13,5 \text{ [m/s]}.$$

2.6. Elementos del cálculo infinitesimal e integral

A continuación se presenta un resumen de algunos resultados del cálculo que se usarán extensivamente en lo que sigue. Se dejará para los cursos de matemáticas la demostración rigurosa de los resultados. Supondremos implícitamente que las funciones que se usan más abajo tienen todas las propiedades necesarias para que los teoremas planteados sean válidos (por ejemplo, sean funciones continuas, derivables, acotadas, etc.).

Sean $f(t) \ge g(t)$ dos funciones y α un número (real o complejo). La función derivada df(t)/dt, relacionada con la pendiente de la función f(t), por definición es

$$\frac{df(t)}{dt} = \dot{f}(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[f(t+\varepsilon) - f(t) \right] \,.$$

Propiedades:

a)
$$\frac{d(\alpha f(t))}{dt} = \alpha \ \dot{f}(t) \ .$$

b)
$$\frac{d(f(t) + g(t))}{dt} = \dot{f}(t) + \dot{g}(t) .$$

c)
$$\frac{d(f(t) g(t))}{dt} = \dot{f}(t) g(t) + f(t) \dot{g}(t)$$
.

d)
$$\frac{df(g(t))}{dt} = \dot{f}(g(t)) \ \dot{g}(t) \ .$$

Demostración de c):

De la definición de la derivadase deduce que, para ε muy pequeño

$$f(t+\varepsilon) = f(t) + \varepsilon \ \dot{f}(t) \ . \tag{(*)}$$

Con esta relación, y una análoga para la función g(t), se deduce que

$$\begin{aligned} \frac{d(f(t) g(t))}{dt} &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[f(t+\varepsilon) g(t+\varepsilon) - f(t) g(t) \right] \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[(f(t) + \varepsilon \dot{f}(t)) (g(t) + \varepsilon \dot{g}(t)) - f(t) g(t) \right] \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\varepsilon \dot{f}(t) g(t) + \varepsilon f(t) \dot{g}(t) + \varepsilon^2 \dot{f}(t) \dot{g}(t) \right] \\ &= \dot{f}(t) g(t) + f(t) \dot{g}(t) .\end{aligned}$$

Demostración de d):

$$\begin{array}{lll} \displaystyle \frac{d}{dt}f(g(t)) & = & \displaystyle \lim_{\varepsilon \to 0} \; \frac{1}{\varepsilon} \; \left[f(g(t+\varepsilon)) - f(g(t))\right] \\ & = & \displaystyle \lim_{\varepsilon \to 0} \; \frac{1}{\varepsilon} \; \left[f(g(t) + \varepsilon \, \dot{g}(t)) - f(g(t))\right] \end{array}$$

Pero, usando nuevamente la ecuación (*), se tiene

$$f(g + \varepsilon \, \dot{g}) = f(g) + (\varepsilon \, \dot{g}) \, \dot{f}(g) \; ,$$

luego

$$\begin{split} \frac{d}{dt} f(g(t)) &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[f(g(t)) + \varepsilon \, \dot{g}(t) \, \dot{f}(g(t)) - f(g(t)) \right] \\ &= \dot{f}(g(t)) \, \dot{g}(t) \; . \end{split}$$

En un gráfico de la función f(t) en función de t, la expresión (*integral*)

$$A = \int_{a}^{b} f(t) \ dt$$

representa al área delimitado por la función f(t) y el eje t entre t = a y t = b (ver figura).

Figura 2.23

Propiedades:

a)
$$\int_{a}^{b} \alpha f(t) dt = \alpha \int_{a}^{b} f(t) dt .$$

b)
$$\int_{a}^{b} [f(t) + g(t)] dt = \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt .$$

c)
$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt .$$

En muchos casos es posible evaluar la integral A analíticamente. Para ello, se debe encontrar una función F(t) tal que su derivada sea la función que aparece tras el símbolo integral, o sea, tal que dF(t)/dt = f(t). Entonces

$$A = \int_{a}^{b} f(t) dt = F(t) \Big|_{a}^{b} = F(a) - F(b) .$$

Capítulo 3

Cinemática en dos y tres dimensiones

En este capítulo extenderemos la descripción del movimiento de una partícula a dos y tres dimensiones. Esto nos lleva a introducir el concepto de vector, cuya definición y propiedades ilustraremos con los vectores desplazamiento, velocidad y aceleración.

3.1. Vectores

Consideremos el movimiento de una partícula en un plano. La posición de la partícula podrá ser claramente especificada si se introduce un sistema de ejes perpendiculares que se intersectan en un punto, que llamaremos el "*origen*" (ver figura 3.1).

Por ejemplo, el punto P en la figura 3.1 se encuentra a 3 m a la derecha del origen, medidos a lo largo de la dirección del eje x, a 2 m sobre el origen, medidos a lo largo del eje y. En general, la posición de un punto cualquiera queda determinada dando un *par ordenado* (x, y) de números, en el sentido que *siempre* el primer número corresponderá a la proyección sobre el eje \hat{x} y el segundo número a aquélla sobre el eje \hat{y} .

Figura 3.1

El trazo que une el origen O con el punto P, en el sentido que indica la punta de flecha en la figura 3.1, se denomina el vector de posición $\vec{r_p}$ del punto P. La magnitud de este vector es igual a la longitud del trazo OP y se denota por $|\vec{r_p}|$ o simplemente como r_p (sin flecha). Rigurosamente, un vector es un objeto que, más allá de poseer las características descritas, está definido por la existencia de una operación de suma entre vectores y la multiplicación de un vector por un número (escalar), operaciones que satisfacen reglas muy precisas. Introduzcamos estas ideas a través de ejemplos.

Supongamos que la partícula en un instante t se encuentra en P y en un instante posterior t' > t se encuentra en el punto Q (ver figura 3.1). El vector que une el origen O con Q es el nuevo vector de posición de la partícula. Al vector conformado por el trazo PQ y cuyo sentido va desde P hacia Q, se llama vector desplazamiento, $\Delta \vec{r}$ (ver figura 3.1).

Suma de Vectores

Sean $\vec{A} \neq \vec{B}$ dos vectores. Traslademos paralelamente a sí mismo al vector \vec{B} hasta que su extremo romo se superponga con el extremo aguzado (punta de flecha) del vector \vec{A} . El vector suma $\vec{A} + \vec{B} \equiv \vec{C}$ se define como el trazo que comienza en el extremo romo de \vec{A} y termina en el extremo aguzado de \vec{B} . Esta definición se conoce con el nombre de *regla del paralelógramo*.

Ejemplo:

Un excursionista parte desde una cierta posición y camina 4 km hacia el Este y luego 3 km hacia el Sur. ¿Cuál es el vector desplazamiento resultante \vec{C} ?

El vector \vec{C} es la suma vectorial de los desplazamientos parciales realizados por el excursionista, hacia el este \vec{A} y luego hacia el sur \vec{B} . Gráficamente la situación está ilustrada en la figura 3.3. La magnitud del desplazamiento resultante se calcula utilizando el teorema de Pitágoras

$$C = \sqrt{A^2 + B^2} = \sqrt{9 + 16} = 5 \text{ km}$$

Figura 3.2

La dirección de \vec{C} que da definida por el ángulo ϕ que forma el vector \vec{C} con la dirección Oeste–Este. Consideraremos un ángulo positivo cu ando se mide en sentido contrario a los punteros del reloj, luego

$$\tan \phi = -\frac{3}{4} = 0.75, \text{ es decir}, \quad \phi = -36.9^{\circ}$$

Que el ángulo ϕ sea negativo significa que está medido en el mismo sentido de los punteros del reloj.

Propiedades de la suma de vectores.

- i) Conmutatividad: $\vec{A} + \vec{B} = \vec{B} + \vec{A}$.
- ii) Asociatividad: $\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$.
- iii) Existe un vector nulo tal que $\vec{A} + \vec{0} = \vec{A}$.
- iv) Para cada vector \vec{A} existe un vector opuesto, que denota remos por $-\vec{A},$ tal que $\vec{A}+(-\vec{A})=\vec{0}$.

Multiplicación de un vector por un escalar real.

La multiplicación de un vector \vec{A} por un número real α (escalar real) se define como un nuevo vector \vec{B} de magnitud $\alpha |\vec{A}|$, cuyo sentido coincide con el de \vec{A} si $\alpha > 0$ y es opuesto al de éste si $\alpha < 0$.

Propiedades de la multiplicación por un escalar real.

Sean $\alpha \neq \beta$ dos números reales y $\vec{A} \neq \vec{B}$ dos vectores, entonces:

i) $\alpha(\vec{A} + \vec{B}) = \alpha \vec{A} + \alpha \vec{B}.$

ii)
$$(\alpha + \beta)\vec{A} = \alpha\vec{A} + \beta\vec{A}$$
.

iii)
$$(\alpha\beta)\vec{A} = \alpha(\beta\vec{A}).$$

iv) Para todo vector \vec{A} se cumple que $1 \vec{A} = \vec{A}$.

Ejercicio: Compruebe gráficamente, con algunos ejemplos concretos, que se cumplen todas las propiedades de los vectores recién señaladas.

Note que dos vectores son iguales si tienen la misma magnitud y que apuntan en la misma dirección. En la figura 3.4 se muestra un conjunto de vectores iguales, dibujados en diferentes posiciones del plano xy.

Figura 3.4

Componentes cartesianas y polares de un vector.

Consideremos nuevamente al vector desplazamiento $\Delta \vec{r}$ de la figura 3.1. Proyectando los extremos del vector desplazamiento sobre el eje x, se obtienen los puntos x_P y x_Q . La diferencia $x_Q - x_P$ se llama componente cartesiana x del vector $\Delta \vec{r}$. De la misma forma, las líneas perpendiculares al eje y, trazadas desde los extremos del vector $\Delta \vec{r}$, definen su componente cartesiana y, o sea,

$$\Delta \vec{r} = (x_Q - x_P, y_Q - y_P) \quad .$$

Sea $\vec{A} = (A_x, A_y)$ un vector cualquiera del plano xy, con componentes cartesianas A_x y A_y . Expresemos las componentes del vector en función de su magnitud y del ángulo θ que forma con el semieje xpositivo. La figura 3.5 muestra que

$$A_x = A\cos\theta \qquad A_y = A\sin\theta \;,$$

donde

$$A = |\vec{A}| = \sqrt{(A_x^2 + A_y^2)}$$
 y $\tan \phi = \frac{A_y}{A_x}$.

Figura 3.5

De esta manera, un vector en un plano queda determinado si se conocen sus componentes cartesianas, o si se conoce su magnitud A y el ángulo que forma con el semieje x positivo (referidos a un sistema de coordenadas dado). Los números (A, ϕ) reciben el nombre de coordenadas polares del vector \vec{A} .

Vectores Unitarios.

Al dividir un vector \vec{A} por su magnitud se obtiene un nuevo vector \hat{a} , de módulo uno, cuya dirección y sentido coinciden con aquellos del vector \vec{A} . En efecto,

$$\hat{a} = \frac{\vec{A}}{A} = \left(\frac{A_x}{A}, \frac{A_y}{A}\right)$$
$$\hat{a}| = \sqrt{(A_x/A)^2 + (A_y/A)^2} = \sqrt{\frac{A_x^2 + A_y^2}{A^2}} = 1 .$$

A cada vector se le puede asociar un vector unitario. Existen, sin embargo, tres vectores unitarios que merecen mención especial. Estos son los vectores unitarios $\hat{x}, \hat{y} \neq \hat{z}$ que apuntan en sentido positivo sobre cada uno de los ejes coordenados de un sistema cartesiano en tres dimensiones.

La figura 3.6 muestra la descomposición de un vector arbitrario \vec{A} en la suma de tres vectores: un vector $A_x \hat{x}$, paralelo al eje x, otro $A_y \hat{y}$ paralelo al eje y y un tercero $A_z \hat{z}$ paralelo al eje z. Es decir,

$$\dot{A} = A_x \ \hat{x} + A_y \ \hat{y} + A_z \ \hat{z}$$

Figura 3.6

Producto escalar o producto punto de dos vectores

Sean

$$\vec{A} = (A_x, A_y, A_z) = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

у

у

$$\vec{B} = (B_x, B_y, B_z) = B_x \hat{x} + B_y \hat{y} + B_z \hat{z}$$

dos vectores arbitrarios. Se define el producto punto entre los vectores \vec{A} y \vec{B} mediante la expresión

$$\vec{A} \cdot \vec{B} \equiv |\vec{A}| \, |\vec{B}| \, \cos \gamma \; ,$$

Figura 3.7

donde γ es el ángulo entre los dos vectores (ver figura 3.7).

De la definición se desprende que el producto punto de dos vectores es un número real. Además, y esto es muy importante, es independiente de la orientación del sistema de coordenadas. Usando la definición de producto punto es inmediato que

$$\hat{x} \cdot \hat{x} = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z} = 1$$

 $\hat{x} \cdot \hat{y} = \hat{x} \cdot \hat{z} = \hat{y} \cdot \hat{z} = 0$.

Otras características importantes del producto punto son su conmutatividad

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

y distributividad

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C} \quad .$$

Evaluemos el producto punto entre los dos vectores \vec{A} y \vec{B} en términos de sus coordenadas. Se tiene

$$\begin{split} \vec{A} \cdot \vec{B} &= (A_x \hat{x} + A_y \hat{y} + A_z \hat{z}) \cdot (B_x \hat{x} + B_y \hat{y} + B_z \hat{z}) \\ &= A_x B_x \, \hat{x} \cdot \hat{x} + A_x B_y \, \hat{x} \cdot \hat{y} + A_x B_z \, \hat{x} \cdot \hat{z} + A_y B_x \, \hat{y} \cdot \hat{x} + A_y B_y \, \hat{y} \cdot \hat{y} + \\ &+ A_y B_z \, \hat{y} \cdot \hat{z} + A_z B_x \, \hat{z} \cdot \hat{x} + A_z B_y \, \hat{z} \cdot \hat{y} + A_z B_z \, \hat{z} \cdot \hat{z} \\ &= A_x B_x + A_y B_y + A_z B_z \; . \end{split}$$

Resumen: El módulo de un vector y la suma y producto punto de dos vectores vienen dados por

$$|\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

$$\vec{A} + \vec{B} = (A_x + B_x, A_y + B_y, A_z + B_z) = (A_x + B_x)\,\hat{x} + (A_y + B_y)\,\hat{y} + (A_z + B_z)\,\hat{z}$$

у

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \gamma = A_x B_x + A_y B_y + A_z B_z$$

Note que la última expresión permite evaluar el ángulo entre dos vectores si se conocen sus componentes cartesianas.

Ejemplo

Evaluemos nuevamente el ángulo entre dos diagonales de un cubo.

Sea \vec{A} el vector a lo largo de la diagonal que une el punto (0,0,0) con el punto (1,1,1) y \vec{B} el vector a lo largo de la diagonal que une el punto (1,0,0) con el punto (0,1,1). Los vectores \vec{A} y \vec{B} , por lo tanto, pueden escribirse en coordenadas cartesianas de la forma

 $\vec{A} = \hat{x} + \hat{y} + \hat{z}$ y $\vec{B} = -\hat{x} + \hat{y} + \hat{z}$.

Evaluemos el producto punto de estos dos vectores. Se tiene

$$ec{A}\cdotec{B} = ec{A}ec{A}ec{B}ec{B} = ec{A}ec{Q}ec{B}ec{B}ec{A} = \sqrt{3}\,\sqrt{3}\,\cos\gamma$$
 ,

donde γ es el ángulo entre los dos vectores (o sea, el ángulo entre las dos diagonales). Por otra parte, usando coordenadas cartesianas

$$\vec{A} \cdot \vec{B} = 1 \cdot (-1) + 1 \cdot 1 + 1 \cdot 1 = 1$$
.

De las dos ecuaciones anteriores se deduce que $\cos \gamma = 1/3$, o sea, $\gamma = 70,53^{\circ}$.

3.2. Cinemática

La generalización de los conceptos de la cinemática de una a dos y tres dimensiones es directa.

Supongamos que $\vec{r}(t)$ representa la posición de cierta partícula. Entonces su velocidad y aceleración (instantánea) vendrán dadas por

$$\vec{v}(t) = \dot{\vec{r}}(t) = \lim_{\Delta \to 0} \frac{\vec{r}(t + \Delta) - \vec{r}(t)}{\Delta}$$

у

$$\vec{a}(t) = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t) = \lim_{\Delta \to 0} \frac{\vec{v}(t + \Delta) - \vec{v}(t)}{\Delta}$$

De la expresión anterior se deduce que si

$$\vec{r}(t) = x(t)\hat{x} + y(t)\hat{y} + z(t)\hat{z} ,$$

Figura 3.9

donde x(t), y(t) y z(t) son las componentes del vector de posición, entonces

$$\vec{v}(t) = \dot{x}(t)\hat{x} + \dot{y}(t)\hat{y} + \dot{z}(t)\hat{z} ,$$

o sea, para encontrar la velocidad se puede derivar cada componente del vector posición por separado.

Introduzcamos también el concepto de velocidad relativa. Supongamos que una partícula A se mueve con velocidad \vec{v}_A y otra partícula B con velocidad \vec{v}_B , entonces la velocidad con que A observa que se mueve B, viene dada por

$$\vec{v} = \vec{v}_B - \vec{v}_A \; .$$

Se dice que " \vec{v} es la velocidad relativa de *B* respecto a *A*".

Ejemplo:

Suponga que la corriente de un canal tiene una velocidad de 10 km/h en dirección Este. Un transbordador navega en la dirección de 30° Noroeste, a una velocidad de 20 km/hora con respecto a la corriente del canal (ver figura 3.9). ¿Cuál es la velocidad y dirección del transbordador según un observador situado en la ribera?

Para resolver el problema introduciremos un sistema de coordenadas \hat{x}, \hat{y} cuyo origen O' se mueve junto al agua del canal. Para el observador O', un punto fijo en la orilla se mueve con velocidad

$$\vec{v}_A = [-10, 0] \text{ km/h}$$

mientras que el transbordador se aleja con una velocidad

$$\vec{v}_t = [-20\sin(30^\circ), 20\cos(30^\circ)] \text{ km/h} = [-10, 10\sqrt{3}] \text{ km/h}$$

Luego, la velocidad con que el observador parado en la orilla en el punto A ve alejarse al transbordador (o sea, la velocidad relativa entre el transbordador y la orilla), será

$$\vec{v} = \vec{v}_t - \vec{v}_A = [0, 10\sqrt{3}] \text{ km/h} = 10\sqrt{3} \hat{y} \text{ km/h}.$$

Figura 3.10

Analicemos ahora el problema de otra forma. Supongamos que nos damos un intervalo de tiempo arbitrario, por ejemplo, 1 hora (porque es el más fácil de usar en este caso) e imaginemos que durante ese intervalo la corriente del canal está detenida. Calculamos el desplazamiento del transbordador en este caso. En una hora el ferry se desplaza 20 km desde O hasta el punto P'. En seguida – y siempre en nuestra imaginación – dejemos fluir la corriente del canal durante una hora, pero ahora con el ferry detenido (dejando que simplemente flote en la corriente). El desplazamiento debido al arrastre del canal llevará al ferry desde el punto P' hasta P (10 km hacia la derecha), como mostramos en la figura 3.10. El desplazamiento total del ferry es el vector de O hasta P. Este desplazamiento, como es fácil de demostrar, coincide con el que el ferry hubiese tenido en una hora si los dos movimientos hubiesen estado presentes simultáneamente. Es decir, para resolver el problema podemos descomponer el movimiento en dos movimientos separados, congelando uno y otro sucesivamente. El movimiento total es la superposición de ambos movimientos. Esta operación, sólo posible en la imaginación, arroja los mismos resultados que se observan en la vida real.

Demos otro ejemplo del uso del principio de superposición. Consideremos un anillo que rueda (sin resbalar) por una superficie horizontal con velocidad constante. Tomemos un punto cualquiera sobre el anillo y analicemos su movimiento. Para un observador O en reposo respecto a la superficie, el movimiento del punto tendrá un aspecto complicado. Sin embargo, al trasladarnos uniformemente con la misma velocidad que el centro del anillo, el movimiento del punto se tornará muy simple: es un movimiento circular uniforme. Así, el movimiento complicado que observa O se puede descomponer en dos movimientos simples, un movimiento de traslación uniforme superpuesto a un movimiento circular uniforme (ver problema 13 de la sección 3.3).

Caída libre

Galileo fue el primero en considerar la caída de una partícula como una superposición de dos movimientos.

La figura 3.11, a la izquierda, muestra la posición de una pelota en caída libre durante varios instantes equiespaciados. A la derecha se muestra la situación que se observa si el cuerpo además inicialmente tiene una velocidad horizontal. La trayectoria en este caso es

una parábola. Antes de Galileo, los filósofos se esforzaron mucho para intentar explicar este movimiento. Galileo centró su interés buscando la descripción más sencilla y directa. De hecho, lo analizó como una superposición de dos movimientos: i) la tendencia natural de los cuerpos a mantener su velocidad (ley de inercia) y ii) la caída libre de un cuerpo debida a la atracción gravitatoria. Ambos movimientos se superponen simultáneamente y dan origen al movimiento parabólico.

Una vez aceptado que el movimiento de una partícula en un campo gravitatorio uniforme se puede describir como una superposición de dos desplazamientos que ocurren simultáneamente, continuamos con la descripción de este movimiento.

Para comenzar, especifiquemos el sistema de referencia. El eje \hat{x} lo elejimos de manera que su dirección coincida con la proyección de la velocidad sobre el plano horizontal, mientras que el eje \hat{z} lo elegimos hacia arriba (o sea, una partícula al caer acelera en la dirección $-\hat{z}$). De acuerdo a nuestra hipótesis, la aceleración en todo instante es $\vec{a}(t) = -g\hat{z}$. También supondremos que la velocidad en el instante t = 0 viene dada por $\vec{v}(0) = v_x^{(0)}\hat{x} + v_z^{(0)}\hat{z}$ y que la partícula se encuentra en el lugar $\vec{r}(0) = \vec{r_0} = x_0\hat{x} + z_0\hat{z}$. Analicemos cada una de las componentes por separado.

Componente x: La aceleración no tiene componente en la dirección x, o sea,

$$a_x = 0$$

La velocidad v_x es, por lo tanto, constante, igual al valor inicial:

$$v_x(t) = v_x^{(0)} \quad \forall t$$

Para el desplazamiento en la dirección x se encuentra que

$$x(t) = x(0) + v_x^{(0)} t$$
.

Figura 3.12

Componente z: La aceleración es

$$a_z = -g$$
.

La velocidad v_z y el desplazamiento en la dirección z vendrán dados por

$$v_z(t) = v_z^{(0)} - gt$$

у

$$z(t) = z(0) + v_z^{(0)} t - \frac{1}{2}gt^2$$
.

Estos resultados los podemos condensar escribiéndolos en forma vectorial:

$$\begin{split} \vec{a}(t) &= -g\hat{z} \\ \vec{v}(t) &= \vec{v}^{\,(0)} - gt\hat{z} \\ \vec{r}(t) &= \vec{r_0} + \vec{v}^{\,(0)} t - \frac{1}{2}gt^2\hat{z} \; . \end{split}$$

Ejemplo

Un bombardero vuela con una velocidad horizontal v_0 , constante, y a una altura h en una trayectoria que pasa directamente por sobre su objetivo. ¿A qué ángulo de visión ϕ debe soltar la bomba, de forma que ésta llegue a su objetivo? (Ignore el efecto debido al roce del aire.)

La bomba en el instante en que se deja libre tiene la misma velocidad que el bombardero. Definimos el sistema de coordenadas de acuerdo a lo que se observa en la figura 3.12. Entonces la posición y la velocidad inicial de la bomba vienen dadas por $\vec{r}_0 = h\hat{z}$ y $\vec{v}_0 = v_0\hat{x}$, respectivamente. ¿Cuánto demora la bomba en caer? La bomba llegará al suelo cuando $z(t) = h - gt^2/2 = 0$. Esto ocurre en el instante $\tau = \sqrt{(2h/g)}$. Durante el intervalo de tiempo τ la bomba alcanza a recorrer una distancia horizontal $L = v_0 \tau$. Luego para el ángulo de visión obtenemos

$$\tan \phi = \frac{L}{h} = \frac{v_0}{h} \sqrt{\frac{2h}{g}} = \sqrt{\frac{2v_0^2}{gh}}$$

Movimiento circular uniforme

Consideremos una partícula que gira con rapidez constante sobre una trayectoria circular de radio R (que define el plano x-y). Eligiendo el origen al centro del círculo, el ángulo del vector posición con el eje \hat{x} aumentará uniformemente:

$$\phi(t) = \phi_0 + \omega_0 t \quad ,$$

donde ϕ_0 es el ángulo en el instante t = 0 y ω_0 es una constante que determina cuán rápido varía el ángulo (por esta razón se le suele llamar *velocidad angular*). Las componentes x e y del vector posición vienen dadas por

$$x(t) = R\cos\phi(t) = R\cos(\phi_0 + \omega_0 t)$$

e

$$y(t) = R\sin\phi(t) = R\sin(\phi_0 + \omega_0 t).$$

El vector posición es, por lo tanto,

 $\vec{r}(t) = R\cos(\phi_0 + \omega_0 t)\hat{x} + R\sin(\phi_0 + \omega_0 t)\hat{y} .$

Derivando $\vec{r}(t)$ se encuentra la velocidad

$$\vec{v}(t) = - R\omega_0 \sin(\phi_0 + \omega_0 t)\hat{x} + R\omega_0 \cos(\phi_0 + \omega_0 t)\hat{y}.$$

Evaluemos el módulo de la velocidad (rapidez):

Figura 3.13

$$v = |\vec{v}(t)| = \sqrt{v_x(t)^2 + v_y(t)^2}$$

= $\sqrt{R^2 \omega_0^2 \sin^2(\phi_0 + \omega_0 t) + R^2 \omega_0^2 \cos^2(\phi_0 + \omega_0 t)} = R\omega_0$.

A pesar de que la rapidez es constante (no depende del tiempo), la velocidad no lo es, ya que continuamente cambia de sentido. Esta última ecuación enseña que la velocidad angular es la rapidez de la partícula dividida por el radio de giro.

Evaluando el producto punto entre \vec{r} y $\vec{v} :$

$$\vec{r}(t) \cdot \vec{v}(t) = x(t)v_x(t) + y(t)v_y(t) = 0$$

se encuentra que éste es nulo. Como el producto punto de dos vectores no nulos vale cero sólo si los dos vectores son perpendiculares, se halla que la velocidad de una partícula en un movimiento circular uniforme es siempre perpendicular al radio. Derivando la velocidad se encuentra la aceleración:

$$\vec{a}(t) = -R\omega_0^2 \cos(\phi_0 + \omega_0 t)\hat{x} - R\omega_0^2 \sin(\phi_0 + \omega_0 t)\hat{y} \,.$$
Note que en todo instante

$$\vec{a}(t) = -\omega_0^2 \ \vec{r}(t)$$

o sea, la aceleración siempre apunta hacia el origen (razón por la cual se llama *aceleración centrípeta*). La magnitud de la aceleración siempre es constante y vale

$$a = |\vec{a}(t)| = R\omega_0^2$$
.

3.3. * Coordenadas polares

Los vectores unitarios $\hat{r} \mathbf{y} \hat{\theta}$.

Hemos visto que el movimiento de un punto P en el plano x, y se puede especificar usando dos funciones que describan sus coordenadas cartesianas del punto, o sea,

$$ec{r}(t) = x(t)\,\hat{x} + y(t)\,\hat{y}$$
 .

También podemos especificar el movimiento P usando coordenadas polares, es decir, dando las funciones $r(t) \ge \theta(t)$. Al usar coordenadas polares para describir el movimiento de un punto P, resulta sumamente conveniente introducir los vectores unitarios $\hat{r} \ge \hat{\theta}$ definidos por

$$\hat{r} = \cos\theta \,\,\hat{x} + \sin\theta \,\,\hat{y}$$

у

$$\hat{\theta} = -\sin\theta \, \hat{x} + \cos\theta \, \hat{y}$$

Observe que estos vectores unitarios generalmente (cuando $\theta = \theta(t)$ depende del tiempo) son tiempo dependientes. El vector \hat{r} apunta en la dirección radial, mientras que el vector $\hat{\theta}$ es tangencial al círculo que pasa por P y tiene su centro en el origen.

Ejercicio: Demuestre que los vectores \hat{r} y $\hat{\theta}$ efectivamente son unitarios. Tambien demuestre que son *ortonor-males*, es decir, $\hat{r} \perp \hat{\theta}$.

Figura 3.14

Encontremos la derivada temporal de estos vectores unitarios, es decir, analicemos como varían a medida que transcurre el tiempo. Se tiene

$$\begin{aligned} \frac{d\hat{r}}{dt} &= \dot{\hat{r}} &= \frac{d}{dt} \left[\cos \theta \, \hat{x} + \sin \theta \, \hat{y} \right] \\ &= \frac{d \cos \theta(t)}{dt} \, \hat{x} + \frac{d \sin \theta(t)}{dt} \, \hat{y} \\ &= -\sin(\theta(t)) \, \dot{\theta}(t) \, \hat{x} + \cos(\theta(t)) \, \dot{\theta}(t) \, \hat{y} \\ &= \dot{\theta}(t) \, \left[-\sin(\theta(t)) \, \hat{x} + \cos(\theta(t)) \, \hat{y} \right] = \dot{\theta} \, \dot{\theta} \end{aligned}$$

у

$$\begin{aligned} \frac{d\hat{\theta}}{dt} &= \dot{\hat{\theta}} &= \frac{d}{dt} \left[-\sin\theta \, \hat{x} + \cos\theta \, \hat{y} \, \right] \\ &= -\frac{d\sin\theta(t)}{dt} \, \hat{x} + \frac{d\cos\theta(t)}{dt} \, \hat{y} \\ &= -\cos(\theta(t)) \, \dot{\theta}(t) \, \hat{x} - \sin(\theta(t)) \, \dot{\theta}(t) \, \hat{y} \\ &= -\dot{\theta}(t) \, \left[\cos(\theta(t)) \, \hat{x} + \sin(\theta(t)) \, \hat{y} \, \right] = -\dot{\theta} \, \hat{r} \end{aligned}$$

Resumen:

$$\dot{\hat{r}} = \dot{\theta} \ \hat{\theta} \tag{3.1}$$

$$\hat{\theta} = -\dot{\theta} \, \hat{r} \,. \tag{3.2}$$

Movimiento circular (en coordenadas polares).

Consideremos un punto P que se mueve entorno al origen sobre un círculo de radio R y sea $\theta(t)$ el ángulo polar (medido respecto al eje \hat{x} y en el sentido contrario al avance del reloj). El vector posición del punto P es:

$$\vec{r}(t) = R \ \hat{r}(t)$$

Derivando esta relación (sólo \hat{r} depende de t) encontramos la velocidad:

$$\dot{\vec{r}}(t) = R \, \dot{\hat{r}} = R \, \dot{\theta} \, \hat{\theta} \, .$$

Tal como se esperaba, la dirección de la velocidad es tangencial al círculo con centro en O que pasa por P. La rapidez es $|\vec{v}| = R \dot{\theta}$.

 $\theta(t)$ es un ángulo, por esa razón a $\dot{\theta}$ se le llama *velocidad angular*. Si el movimiento circular es uniforme (siempre con la misma rapidez) entonces $\theta(t) = \omega_0 t$. Para el movimiento circular uniforme la velocidad angular es simplemente $\dot{\theta}(t) = \omega_0$.

Determinemos ahora la aceleración para el movimiento circular. Derivando el vector velocidad se encuentra

$$\begin{aligned} \dot{\vec{v}}(t) &= R \frac{d}{dt} \left(\dot{\theta} \, \hat{\theta} \right) \\ &= R \left(\ddot{\theta} \, \hat{\theta} + \dot{\theta} \, \dot{\dot{\theta}} \right) \\ &= R \ddot{\theta} \, \hat{\theta} - R \dot{\theta}^2 \, \hat{r} \end{aligned}$$

El primer término nos da la *aceleración tangencial* mientras que el segundo es la *aceleración radial*. Para el movimiento circular uniforme (es decir, si $\theta(t) = \omega_0 t$) se obtiene

$$\vec{a}(t) = \ddot{\vec{r}}(t) = -R\omega_0^2 \,\hat{r}$$

o sea, el mismo resultado encontrado en la sección anterior.

3.4. Problemas

- 1. Sean \vec{A} , \vec{B} y \vec{C} los vectores $\vec{A} = 2\hat{x} + \hat{y}$, $\vec{B} = 3\hat{x} + \hat{y} 2\hat{z}$ y $\vec{C} = \hat{x} + 3\hat{y} \hat{z}$.
 - a) Encuentre el módulo de \vec{A} , \vec{B} y \vec{C} .
 - b) Encuentre el módulo del vector suma, o sea, evalúe

$$D = |\vec{D}| = |\vec{A} + \vec{B} + \vec{C}|$$

- c) ¿Cuál vector es más largo: $\vec{A} + \vec{B}$ o $\vec{A} + \vec{C}$? En vista de lo calculado en la parte a), ¿le sorprende este resultado?
- d) Encuentre el ángulo entre los vectores \vec{B} y \vec{C} .

Respuesta: d) $49,86^{\circ}$.

2. Demuestre que los vectores:

$$\vec{A} = \cos{(\alpha)\hat{x}} + \sin{(\alpha)\hat{y}}$$
$$\vec{B} = \cos{(\beta)\hat{x}} + \sin{(\beta)\hat{y}}$$

son vectores unitarios que forman un ángulo α y β con el eje \hat{x} , respectivamente. Evalúe $\vec{A} \cdot \vec{B}$ y encuentre una fórmula para $\cos(\alpha - \beta)$.

- 3. Considere los tres puntos cuyas coordenadas cartesianas vienen dadas por: $P_1 = (1,1,1), P_2 = (1,2,0) \text{ y } P_3 = (2,3,1)$. Demuestre que ellos definen los vértices de un triángulo rectángulo.
- 4. Encuentre un vector unitario \hat{A} que sea simultáneamente perpendicular a los vectores $\vec{u} = 2\hat{x} + \hat{y} \hat{z}$ y $\vec{v} = \hat{x} \hat{y} + \hat{z}$. ¿Cuántos vectores unitarios \hat{A} existen con esta propiedad?
- 5. Definamos los vectores:

$$\vec{s} = \frac{1}{\sqrt{2}}(\hat{x} + \hat{y})$$
$$\vec{t} = \frac{1}{\sqrt{2}}(-\hat{x} + \hat{y})$$

- a) Grafique \vec{s} y \vec{t} .
- b) Evalúe $s = |\vec{s}|$ y $t = |\vec{t}|$.
- c) Encuentre el ángulo entre \vec{s} y \vec{t} . Comentario: Note que \vec{s} y \vec{t} pueden considerarse como un nuevo conjunto de ejes de referencia (\hat{s}, \hat{t}) . Para indicar que \vec{s} y \vec{t} son vectores unitarios se ha usado la convención de reemplazar las flechas por tongos.
- d) Considere los vectores $\vec{A} = \hat{x} + 2\hat{y}$ y $\vec{B} = 2\hat{x} 3\hat{y}$. Exprese estos vectores en términos de los nuevos vectores unitarios, es decir, escriba \vec{A} y \vec{B} de la forma

$$\vec{A} = a_s \hat{s} + a_t \hat{t}$$
$$\vec{B} = b_s \hat{s} + b_t \hat{t}$$

y evalúe las constantes a_s, a_t, b_s y b_t .

- e) Evalúe $\vec{A} \cdot \vec{B}$ de dos maneras distintas: primero usando las componentes respecto al sistema de referencia (\hat{x}, \hat{y}) y luego usando las componentes respecto al sistema de referencia (\hat{s}, \hat{t}) .
- 6. Sea $\vec{A} = \hat{x} + 3\hat{z} 2\hat{y}$. Encuentre un vector \vec{B} en el plano \hat{x}, \hat{y} que sea perpendicular a \vec{A} .

Respuesta: $\vec{B} = \alpha \ (2\hat{x} + \hat{y})$, donde α es un número real no nulo.

7. Considere la siguiente situación en nuestro espacio físico de tres dimensiones: Desde cierto origen emergen cuatro vectores de igual tamaño, de manera que los ángulos entre cualquier par de vectores sean iguales. Encuentre el valor de ese ángulo. (Para resolver este problema relaciónelo con el de las diagonales de un cubo considerado en la sección 3.1.)

Comentario: Las "puntas" de los cuatro vectores forman los vértices de un tetraedro regular. La molécula de metano CH_4 es un ejemplo de lo arriba planteado. En tal molécula el átomo de carbono se encuentra al centro de los cuatro átomos de hidrógeno que están distribuidos de la manera más regular posible.

- 8. Encuentre el ángulo entre dos vectores de 8 y 10 unidades de largo, si el vector suma forma un ángulo de 50° con el mayor de ellos. Encuentre también la magnitud del vector suma.
- 9. La suma de dos vectores mide 30 unidades y forma ángulos de 25° y 50° con ellos. ¿Cuál es la magnitud de cada uno de los vectores?
- 10. Suponga que la posición \vec{r} de una partícula en función del tiempo t viene dada por:

$$\vec{r} = \vec{r}(t) = r_0 \left(\cos\left(\frac{t}{t_0}\right) \hat{x} + \sin\left(\frac{t}{t_0}\right) \hat{y} \right),$$

con $t_0 = 1$ min y $r_0 = 3$ cm. ¿Qué trayectoria recorre la partícula? ¿Cuánto tiempo tarda la partícula en volver al punto de partida?

11. Supongamos que la posición \vec{r} de una partícula en función del tiempo t viene dada por

$$\vec{r} = at\,\hat{x} + (b - ct^2)\,\hat{y} \;,$$

con a = 2 m/s, b = 10 m y c = 9.8 m/s². Grafique la trayectoria. ¿Qué tipo de trayectoria es? ¿En qué instante la partícula cruza el eje \hat{x} ?

12. Un barco a vapor se dirige hacia el sur con una velocidad $\vec{v_b} = 25$ km/h en un área donde sopla un viento desde el suroeste con velocidad $\vec{v_0} = 18$ km/h. Encuentre el ángulo θ_0 que forma el humo emitido por el vapor con la dirección norte-sur (ver figura 3.15). Respuesta: $\theta_0 \simeq 18, 64^o$

Figura 3.15

13. Considere un disco de radio R = 50 cm que rueda sobre una recta (el eje \hat{x}) con una velocidad angular $\omega = 2 \text{ s}^{-1}$. Considere un punto P ubicado en el perímetro del disco, y designe por \vec{r} al vector que va desde el origen hacia el punto P. Encuentre una expresión para $\vec{r} = \vec{r}(t)$; suponga que en el instante t = 0 el punto P está en el origen.

Figura 3.16

Haga un gráfico de $\vec{r}(t)$ para el intervalo $t \in [0 \text{ s}, 10 \text{ s}]$. ¿Cuánto tarda la rueda en dar una vuelta completa?

14. Una partícula recorre una trayectoria circular en el plano x-y, cuyo radio es R = 5 m con una velocidad constante $v_0 = 15$ m/s y en el sentido del reloj. Encuentre el vector posición $\vec{r}(t)$, el vector velocidad $\vec{v}(t)$ y el vector aceleración $\vec{a}(t)$ (en coordenadas cartesianas) si en el instante t = 0 la partícula se encuentra en $\vec{r}_0 = -5\hat{y}$.

15. Considere un disco de radio R en el plano x-y. Sea θ el ángulo de un punto ubicado en el borde del disco respecto al eje \hat{x} . Suponga que el disco gira con una *aceleración angular* constante α_0 (es decir, $\ddot{\theta}(t) = \alpha_0$). Encuentre la velocidad y aceleración de P en función del tiempo. Suponga que en el instante t = 0 el punto P se encontraba en reposo sobre el eje \hat{x} .

Figura 3.17

- 16. Estime (en m/s y km/h) la velocidad máxima con la que usted puede lanzar una piedra.
- 17. Una pelota sale rodando del descanso de una escalera con velocidad horizontal $v_0 = 1,52 \text{ m/s}$. Los escalones son de 20 cm de alto y 20 cm de ancho. ¿Cuál será el primer escalón al que llegue la pelota? Dibuje una figura para ilustrar el problema.
- 18. Un cañón se encuentra a una distancia D de un edificio. Encuentre el ángulo de elevación θ_0 y la velocidad v_0 de la bala de manera que el proyectil entre horizontalmente por la ventana que se encuentra a una altura h (ver figura 3.18).

Figura 3.18

19. Considere un río de ancho L en el cual el agua fluye con velocidad v_0 . Un nadador recorre el trayecto $A \longrightarrow B \longrightarrow$ A, mientras que un segundo nada el trayecto $C \longrightarrow D \longrightarrow C$ (ver figura 3.19). Los puntos $C \ge D$ están anclados fijamente al fondo del río y la separación entre $C \ge D$ es la misma que entre $A \ge B$. Si ambos nadan con la misma velocidad v respecto al agua, ¿quién ganará la carrera?

Figura 3.19

- 20. Un pato vuela horizontalmente en línea recta con velocidad v_p a una altura h. Un niño con una honda, que puede disparar piedras con una velocidad v_0 , hace uso de su arma en el instante que el pato lo sobrevuela.
 - a) ¿Cuál es el ángulo respecto a la normal con el cual debe disparar la piedra?
 - b) ¿Qué distancia *d* alcanza a recorrer el pato antes de ser alcanzado por el proyectil?

Figura 3.20

- (c) ¿Cuál es la velocidad mínima que debe tener el proyectil para que éste llegue al pato?
- 21. Se lanza un proyectil con cierto ángulo de elevación θ_0 . El alcance del proyectil es R (ver figura 3.21). Si se desprecia el roce con el aire, demuestre que la trayectoria viene dada por la ecuación

$$y(x) = -\left(\frac{\tan\theta_0}{R}\right)x^2 + x\,\tan\theta_0$$
.

Note que esta ecuación corresponde a una parábola. Demuestre también que el ángulo de la tangente en el punto x viene implícitamente dado por

$$\tan \theta = \left[1 - \frac{2x}{R}\right] \, \tan \theta_0 \; \; .$$

22. Grafique en papel polar la trayectoria de una partícula si su posición en coordenadas polares, en función del tiempo, viene dada por:

a)
$$\begin{cases} r(t) = r_{0} \\ \theta(t) = t/t_{0} \end{cases}$$

con $r_{0} = 1$ [m] y $t_{0} = 2\pi$ [s].
b)
$$\begin{cases} r(t) = At \\ \theta(t) = t/t_{0} \end{cases}$$

con $A = 1/(4\pi)$ [m/s] y $t_{0} = 2\pi$ [s].
c)
$$\begin{cases} r(t) = r_{0} + B\cos(t/2t_{0}) \\ \theta(t) = t/t_{0} \end{cases}$$

con $r_0 = 1$ [m], $t_0 = 2\pi$ [s] y B = 0.5 [m].

23. Una partícula se encuentra en el instante t = 0 en el lugar $\vec{r}(0) = 10\hat{y}$ cm y tiene una velocidad $\vec{v}(0) = 2\hat{x}$ cm/s. La aceleración en todo instante es

$$\vec{a} = -G\frac{\vec{r}}{r^3} \ ,$$

con $G=200 \text{ cm/s}^2$. Encuentre numéricamente la trayectoria de la partícula para $t \in [0, 3, 5 \text{ s}]$. ¡Grafique!

Indicación: programe las siguientes relaciones

$$\vec{r}(t + \Delta) \simeq \vec{r}(t) + \vec{v}(t) \Delta$$
$$\vec{v}(t + \Delta) \simeq \vec{v}(t) + \vec{a}(t) \Delta$$
$$\vec{a}(t + \Delta) = -G\vec{r}(t + \Delta)/r^3(t + \Delta)$$

- 24. Calcule la máxima distancia Δ que un objeto puede alejarse del borde de un "peldaño" para evitar ser alcanzado por los objetos lanzados con velocidad v_0 desde el punto A. La distancia desde A al borde del peldaño es L y la altura de éste es H.
- 25. Un proyectil se lanza con velocidad inicial v_0 y ángulo de lanzamiento θ , ambos conocidos. El proyectil sobrepasa una barrera rectangular de ancho *a* conocido, pero altura *h* desconocida, rozando sus dos vértices *A* y *B* (ver figura 3.23). Encuentre la distancia *d* que separa el punto de lanzamiento con la pared más cercana al obstáculo. También encuentre la altura *h* de la barrera.

26. Una partícula tiene un vector posición dado por $\vec{r} = 30 \cdot t \ \hat{x} + (40 \cdot t - 5 t^2)\hat{y}$, donde r está en metros y t en segundos. Encuentre los vectores velocidad y aceleración instantáneas. 27. Desde una distancia d del borde recto de un tobogán se dispara una bengala. Si el tobogán tiene una altura h y un largo b, determinar ambas componentes de la velocidad inicial del proyectil para que éste aterrice sobre el vértice superior del tobogán de manera que su velocidad sea paralela al plano inclinado.

Figura 3.24

Respuesta:

$$\vec{v} = d \sqrt{\frac{g b}{2 h (b+d)}} \, \hat{x} + (2 b+d) \sqrt{\frac{h g}{2 b (b+d)}} \, \hat{z}$$

28. Supongamos que r(t) y $\theta(t)$ son las coordenadas polares de un punto que se mueve en un plano. Demuestre que la velocidad de tal punto, en coordenadas cartesianas, viene dada por

$$\vec{v}(t) = \left[\frac{dr}{dt}\cos\theta - r\frac{d\theta}{dt}\sin\theta\right]\hat{x} + \left[\frac{dr}{dt}\sin\theta + r\frac{d\theta}{dt}\cos\theta\right]\hat{y} \\ = \left[\dot{r}\cos\theta - r\dot{\theta}\sin\theta\right]\hat{x} + \left[\dot{r}\sin\theta + r\dot{\theta}\cos\theta\right]\hat{y}.$$

Encuentre la velocidad en coordenadas cartesianas para los tres casos del problema 22.

29. Una partícula tiene aceleración constante

$$\vec{a} = (6 \cdot \hat{x} + 4 \cdot \hat{y})[m/s^2].$$

En t = 0 la velocidad es cero y el vector posición es $\vec{x}_0 = 10 \cdot \hat{x}$ [m].

- a) Encuentre los vectores velocidad y posición en un instante t cualquiera.
- b) Encuentre la ecuación de la trayectoria en el plano y dibújela.
- 30. De un cañón se disparan dos proyectiles: el primero con un ángulo de elevación $\theta_1 = 60^{\circ}$ y el segundo con un ángulo de elevación $\theta_2 = 45^{\circ}$. La velocidad de los proyectiles, al emerger del cañón es $v_0 = 250$ m/s. Despreciando la resistencia del aire, encuentre el intervalo de tiempo entre los dos disparos que asegure que los proyectiles choquen.

3.4 Problemas

- 31.La figura indica la conexión en una caja de cambios de un automóvil. Encuentre la razón entre los radios de ambos engranajes, que es la misma para ambos pares, si uno desea que en la primera marcha, con el motor a 2000 RPM, el auto tenga una velocidad de 30 Km/h. Por cada cinco vueltas en la salida de la caja de cambios, las ruedas, cuyo radio es de 50 cm, dan una vuelta.
- 32.Consideremos una turbina hidráulica. Supongamos que el agua ingresa a la turbina con una velocidad \vec{v} , con v = $|\vec{v}| = 15 \text{ m/s}$, formando un ángulo con la tangente al rotor en el punto de entrada $\alpha = 30^{\circ}$ (ver figura 3.26). Suponga además que el radio externo del rotor es R = 2 m y que, en su estado estacionario, el rotor gira a 30 RPM (o sea, con frecuencia $\nu = 0, 5 \text{ s}^{-1}$). La forma de las paletas de un rotor de

una turbina hidráulica es tal que la velocidad relativa entre el agua que ingresa a la turbina y la paleta en el punto de entrada, sea tangente a la paleta (de esta manera el agua ingresa a la turbina sin choques).

Figura 3.26

Determine el ángulo β entre la paleta del rotor y la tangente al rotor en el punto de entrada de agua. Encuentre también la velocidad relativa v_r del agua (respecto a la paleta) en ese punto.

Respuesta:

$$\tan \beta = \frac{v \sin \alpha}{v \cos \alpha - 2\pi R\nu} ; \qquad v_r = 10,06 \ [m/s] .$$

33. Una partícula se mueve en el plano xy con una velocidad (que depende de la posición) $\vec{v} = a\hat{x} + bx\hat{y}$, donde a y b son constantes. En el instante inicial la partícula se encuentra en el origen (x(0) = y(0) = 0). Encuentre la ecuación de la trayectoria y(x).

Respuesta:

$$y(x) = \frac{b}{2a}x^2$$

34. Un mono está colgado a una altura h de un árbol. Un cazador apunta con una cerbatana directamente al mono desde una distancia d (ver figura 3.27). En el mismo instante en que el cazador sopla el dardo envenenado el mono se suelta del árbol. ¿Sobrevivirá el mono? (Desprecie el efecto de fricción del dardo con el aire)

Figura 3.27

35. Una rueda gira en torno a un eje horizontal a 30 rpm (1 rpm = una revolución por minuto = 1 vuelta por minuto), de manera que su parte inferior queda a nivel del suelo, pero sin rozarlo. (O sea, la rueda gira sin rodar).

Sobre el borde de la rueda se han adosado dos piedrecitas, en posiciones diametralmente opuestas.

- a) Suponga que cuando el diámetro que une a las piedras pasa por la posición horizontal, éstas se desprenden del borde, en forma simultánea (figura 3.28a), y una de ellas llega al suelo antes que la otra. Se observa que durante el intervalo de tiempo entre la llegada al suelo de una y otra piedra, la rueda da una vuelta completa. Determine el radio de la rueda.
- b) ¿Qué ángulo α debe formar la línea que une a ambas piedras con la vertical para que, si las piedras se desprenden en esa posición, lleguen al suelo al mismo tiempo?

Figura 3.28b

3.4 Problemas

- 36. Un globo sonda es soltado desde la tierra y se aleja con velocidad constante en trayectoria recta la cual forma un ángulo de 30° con la vertical. La velocidad del viento con respecto al suelo es de 10 [km/h], estable, hacia el norte.
 - a) Calcule la velocidad del globo respecto al aire.
 - b) Calcule el tiempo que tarda el globo en alcanzar una altura de 1 km con respecto al suelo.

- 37. * Una rueda de radio 0,25 [m] ha estado girando en forma uniforme a razón de una revolución por segundo. En cierto instante la rueda es frenada y se detiene, uniformemente, después de haber girado media vuelta. Calcule la aceleración tangencial y centrípeta de un punto fijo en el borde de la rueda cuando ésta comienza a ser frenada.
- 38. Dos proyectiles son lanzados simultáneamente desde el mismo punto en un plano horizontal. Los proyectiles son lanzados con igual rapidez y con ángulos con respecto a la horizontal α y β , respectivamente ($\alpha < \beta$). Ambos proyectiles llegan al mismo punto en la horizontal pero a instantes diferentes. Demuestre que lo descrito es posible y encuentre la razón entre los tiempos de llegada. (Expresar el resultado en términos de α).
- 39. Un proyectil es lanzado desde un plano inclinado cuyo ángulo de inclinación con la horizontal es α . Si el proyectil es lanzado con rapidez v_0 y con un ángulo de eyección β con respecto al plano (ver figura 3.31), calcule el alcance Ddel proyectil a lo largo del plano.

Figura 3.31

40. El *avix*, una apetitosa ave del tiempo de las cavernas, desarrolló por un proceso de evolución, una coraza en la parte inferior de su cuerpo de manera que los trogloditas no podían cazarlas con arcos y flechas.

Ogú, un ingenioso troglodita, desarrolló un método para cazarla aprovechando que el ave no tiene coraza sobre el dorso. El disparaba flechas que impactaran al avix por arriba.

Dados la velocidad del ave v_{ave} , la altura h a la que vuela, la velocidad v_0 con que la flecha es impulsada por el arco y el ángulo θ (respecto a la horizontal) con que el troglodita dispara la flecha, calcular:

- a) El tiempo que le toma a la flecha pasar por la altura h la segunda vez.
- b) El valor de la distancia d entre el ave y la vertical por el punto de lanzamiento, en el instante del lanzamiento, para que la flecha impacte al ave.

Figura 3.32

- 41. Se lanzan dos proyectiles A y B de modo que tienen igual alcance horizontal L. A se lanza horizontalmente desde una altura h, que es igual a la altura máxima que alcanza B durante su vuelo (ver figura 3.33)
 - a) Calcule la razón entre los tiempos de vuelo de A y B.
 - b) Calcule la razón entre las componentes horizontales de la velocidad de los proyectiles.
 - c) ¿Cuál es la rapidez (magnitud de la velocidad) de cada uno de ellos al llegar al suelo?

Figura 3.33

3.5. Solución a algunos de los problemas

Solución al problema 18.

Coloquemos el origen en el lugar en que está ubicado el cañón y sean \hat{x} y \hat{z} los ejes horizontal y vertical, respectivamente. La posición de la bala (siendo t = 0 el instante del disparo) vendrá dada por las coordenadas

у

$$x(t) = v_0 \cos \theta_0 t$$
$$z(t) = v_0 \sin \theta_0 t - \frac{1}{2}gt^2$$

La componente vertical de la velocidad de la bala será

$$v_z(t) = v_0 \sin \theta_0 - gt \, .$$

Se
a t^\ast el instante en que la bala penetra por la ventana. En es
e instante deben cumplirse las relaciones

у

$$v_0 \cos \theta_0 \ t^* = D$$

 $v_0 \sin \theta_0 \ t^* - \frac{1}{2}gt^{*2} = h$.

La condición de que la bala penetre en forma horizontal por la ventana exige que en t^* la velocidad vertical de la bala sea nula. O sea, además de las dos relaciones anteriores, debe cumplirse que

$$v_0 \sin \theta_0 - gt^* = 0.$$

Despejando t^* de la última relación y reemplazándola en las dos anteriores se obtiene

$$v_0^2 \sin \theta_0 \, \cos \theta_0 = Dg \tag{1}$$

у

$$v_0^2 \sin^2 \theta_0 = 2hg . \tag{2}$$

Dividiéndo la última por la antepenúltima se encuentra

$$\tan \theta_0 = \frac{2h}{D} \; .$$

Esta relación permite encontrar el ángulo de elevación del disparo θ_0 . Para determinar el valor de v_0 elevamos al cuadrado la ecuación (1):

$$v_0^4 \sin^2 \theta_0 \ (1 - \sin^2 \theta_0) = D^2 g^2 .$$

Despejando $\sin^2\theta_0$ de (2), sustituyéndolo en la última ecuación se encuentra para v_0 la expresión

$$v_0^2 = \frac{(D^2 + 4h^2)g}{2h} \; .$$

Solución al problema 30.

Sea xy el plano en que se mueven los proyectiles, \hat{z} el eje que apunta hacia arriba y coloquemos el origen en el lugar en que se encuentra el cañón.

Sea t el tiempo transcurrido desde el disparo de la bala # 1. La posición de esa bala viene dada por $\int (-\infty, t) = -v_{1} \sin \theta_{1} t - \frac{1}{2} dt^{2}$

$$\begin{cases} z_1(t) = v_0 \sin \theta_1 t - \frac{1}{2}gt^2 \\ x_1(t) = v_0 \cos \theta_1 t . \end{cases}$$

Se
at'el tiempo transcurrido desde el disparo de la bal
a#2. La posición de la segunda bala viene, análogamente, dada por

$$\begin{cases} z_2(t') = v_0 \sin \theta_2 t' - \frac{1}{2} g t'^2 \\ x_2(t') = v_0 \cos \theta_2 t'. \end{cases}$$

Para que las balas choquen deben coincidir las dos coordenadas de ambas balas, o sea, debe cumplirse

$$\cos\theta_1 t = \cos\theta_2 t' \tag{3.3}$$

у

$$v_0 \sin \theta_1 t - \frac{1}{2}gt^2 = v_0 \sin \theta_2 t' - \frac{1}{2}gt'^2 . \qquad (3.4)$$

Despejando t' de la primera de estas ecuaciones y reemplazándola en la segunda se obtiene

$$v_0 \sin \theta_1 t - \frac{1}{2}gt^2 = v_0 \sin \theta_2 \frac{\cos \theta_1}{\cos \theta_2} t - \frac{1}{2}g \frac{\cos^2 \theta_1}{\cos^2 \theta_2} t^2$$

Luego dividimos por t, multiplicamos por $\cos \theta_2$ y reordenamos los términos:

$$v_0\left(\cos\theta_2\sin\theta_1 - \sin\theta_2\cos\theta_1\right) = \frac{gt}{2\cos\theta_2}\left(\cos^2\theta_2 - \cos^2\theta_1\right).$$
(3.5)

Sea Δt el tiempo entre ambos disparos. Se tiene entonces que $t' = t - \Delta t$. Sustituyendo esto en (5.3) se encuentra que

$$t = \left(\frac{\cos\theta_2}{\cos\theta_2 - \cos\theta_1}\right) \Delta t .$$
(3.6)

Sustituyendo esta relación a su vez en (5.6), se obtiene:

$$v_0 \left(\cos \theta_2 \sin \theta_1 - \sin \theta_2 \cos \theta_1\right) = \frac{g}{2} \frac{\left(\cos^2 \theta_2 - \cos^2 \theta_1\right)}{\cos \theta_2 - \cos \theta_1} \Delta t ,$$

o sea,

$$\Delta t = \frac{2v_0}{g} \frac{\sin(\theta_1 - \theta_2)}{\cos\theta_1 + \cos\theta_2} \simeq 11 \text{ s}.$$

Solución al problema 33.

Sea $\vec{r}(t) = x(t)\hat{x} + y(t)\hat{y}$ la posición de la partícula. Derivando respecto al tiempo se encuentra su velocidad:

$$\vec{v}(t) = \dot{x}(t)\,\hat{x} + \dot{y}(t)\,\hat{y} \;.$$

Por otra parte, de acuerdo al enunciado, sabemos que

$$\vec{v}(t) = a\,\hat{x} + bx(t)\,\hat{y}$$

Igualando ambas expresiones, componente a componente, obtenemos

$$\dot{x}(t) = a$$

у

$$\dot{y}(t) = bx(t)$$
.

La primera de estas expresiones indica que, para la componente a lo largo del eje \hat{x} , el movimiento es uniforme, o sea,

$$x(t) = x(0) + at .$$

Pero, de acuerdo al enunciado, x(0) = 0, luego x(t) = at. Sustituyendo esto en la ecuación para $\dot{y}(t)$ se encuentra

$$\dot{y}(t) = bat$$
.

De aquí se deduce que el movimiento a lo largo del eje \hat{y} es uniformemente acelerado, luego

$$y(t) = y(0) + \frac{1}{2}bat^2 = \frac{1}{2}bat^2$$
.

De esta manera hemos encontrado que las coordenadas $x \in y$ de la partícula, en función del tiempo, vienen dadas por

$$x = at$$
$$y = \frac{ab}{2}t^2 .$$

Despejando t de la primera de estas ecuaciones y reemplazándolo en la segunda, se obtiene finalmente la ecuación de la trayectoria

$$y = y(x) = \frac{b}{2a}x^2 \,.$$

Solución al problema 36.

a) Se
a v_0 la velocidad del globo respecto a un observador fijo en la Tierra. La velocidad vertical y horizontal serán

$$v_z = v_0 \cos 30^\circ = \frac{v_0 \sqrt{3}}{2}$$

 $v_x = v_0 \sin 30^\circ = \frac{v_0}{2}$,

у

respectivamente. La componente horizontal de la velocidad del globo debe coincidir con la del viento, o sea, $v_x = v_0/2 = v_v$. De aquí se deduce que $v_0 = 2v_v = 20$ km/h.

La componente vertical de la velocidad del globo es precisamente la velocidad con que éste se mueve respecto al aire (su movimiento horizontal se debe al viento). Esta velocidad vertical viene dada por $v_z = v_0\sqrt{3}/2 = 17, 3...$ km/h.

b) Conociendo v_z es fácil evaluar el tiemp
o t^\ast que demora el globo en alcanzar una altura d
eh=1 km. Este viene dado por

$$t^* = \frac{h}{v_z} \simeq \frac{1}{17,3}$$
 [h] $\simeq 3,46$ [minutos].

Solución al problema 37.

Sea ω_0 la velocidad angular de la rueda antes de ser frenada: $\omega_0 = 2\pi \text{ s}^{-1}$. Sea α la aceleración angular que sufre la rueda al ser frenada. Si t = 0 es el instante en que se aplica el freno, se tiene que la velocidad angular vendrá dada por

$$\omega(t) = \omega_0 + \alpha t \; \; , \qquad$$

mientras que el ángulo que rotará la rueda será

$$\theta(t) = \theta(0) + \omega_0 t + \frac{1}{2}\alpha t^2 = \omega_0 t + \frac{1}{2}\alpha t^2$$
.

Sea t^* el tiempo que tarda la rueda en quedar en reposo. De acuerdo al enunciado del problema, debe cumplirse que $\omega(t^*) = 0$ y $\theta(t^*) = \pi$, o sea,

$$\pi = \omega_0 t^* + \frac{1}{2} \alpha t^{*2} \quad y \quad \omega_0 + \alpha t^* = 0.$$

De estas ecuaciones podemos despejar t^* y $\alpha.$ En particular para la aceleración angular se obtiene

$$lpha = -rac{\omega_0^2}{2\pi} = -2\pi ~[\mathrm{s}^{-2}]$$
 .

La magnitud de la aceleración tangencial y centrípeta (ver sección 3.3) vienen dadas por $a_t = R\alpha$ y $a_c = -R\omega^2$. Usando estas expresiones con R = 0,25 [m] y $\omega = \omega_0 = 2\pi$ s⁻¹ se encuentra que la aceleraciones tangencial y centrípeta de un punto fijo en el borde de la rueda, cuando ésta comienza a ser frenada, son $a_t = -1,57$ [m/s²] y $a_c = 9,87$ [m/s²].

Solución al problema 41.

a) Lo que A tarda en llegar hasta el suelo es igual a lo que demora B desde su punto máximo (ambos ahí tienen una velocidad vertical nula). B demora lo mismo en subir que en bajar, luego la razón entre los tiempos de vuelo de A y B es

$$\frac{t_A}{t_B} = \frac{1}{2} \; .$$

b) La velocidad horizontal de ambos proyectiles es constante. Ambos recorren la misma distancia horizontal y como B para ello demora el doble que A, se deduce que la velocidad horizontal de B debe ser la mitad de la de A.

c) La velocidad vertical con que $A ext{ y } B$ llegan al suelo es la misma (la de una caída libre de una altura h). Esta es $v_v = \sqrt{2gh}$. El tiempo de caída de A es $t^* = \sqrt{(2h/g)}$. En ese tiempo A avanza en dirección horizontal una distancia horizontal L. Como la velocidad horizontal es uniforme se deduce que ésta (para la partícula A) debe ser $v_h = L/t^* = L\sqrt{g/(2h)}$. La rapidez de A cuando llega al suelo es, por lo tanto,

$$|\vec{v}_A(t^*)| = \sqrt{v_v^2 + v_h^2} = \sqrt{2gh + \frac{L^2g}{2h}} \; .$$

Para la partícula B la componente vertical de la velocidad es la misma, mientras que la componente horizontal es la mitad de la de A, o sea,

$$|\vec{v}_B(t^*)| = \sqrt{v_v^2 + (v_h/2)^2} = \sqrt{2gh + \frac{L^2g}{8h}}$$
.

Capítulo 4

Las leyes de Newton

En el presente capítulo enunciaremos y analizaremos las así llamadas *Leyes de Newton*. Recurrir a estas leyes para formular la *mecánica clásica* presenta algunos inconvenientes, pues permite que se le hagan objeciones desde un punto de vista lógico. A pesar de estas dificultades persistiremos en este camino, es decir, tomaremos las leyes de Newton como el punto de partida para el desarrollo de la mecánica. Las razones para ello son dos: por una parte esta forma de proceder corresponde más de cerca al desarrollo histórico y, por otra, tiene la ventaja de ser una formulación menos abstracta que las otras alternativas.

Antes de enunciar las famosas leyes de Newton, debemos discutir algunos conceptos preliminares.

4.1. Espacio y tiempo

En la *Mecánica de Newtoniana* se supone que las partículas, como también los observadores, "viven" en un espacio *euclideano tridimensional*. Eso significa, entre otras cosas, que la suma de los ángulos interiores de cualquier triángulo que imaginemos en este espacio, es siempre 180°. Otra característica de un espacio euclideano es, por ejemplo, que la suma de dos vectores de desplazamiento es conmutativa.

Para darse cuenta como estos conceptos fracasan cuando el espacio es no-euclideano es útil considerar el espacio bi-dimensional formado por la superficie de una esfera. Tal espacio es no-euclideano y en él se presentan varias situaciones curiosas. Por ejemplo, al viajar en línea recta en ese espacio, en algún instante uno vuelve al punto de partida. La suma de los ángulos interiores de un triángulo dibujado sobre tal esfera es mayor a 180^{o} y también la suma de dos vectores es no conmutativa.

El *espacio* que Newton usa para desarrollar la mecánica no sólo es euclideano sino que también homogéneo e isótropo. Esto significa que todos los lugares del espacio son equivalentes y que el espacio tiene las mismas propiedades en todas las direcciones.

Para desarrollar la mecánica también es indispensable decir algo sobre el concepto de tiempo. Newton usó la suposición de que: "*El tiempo matemático, absoluto y verdadero fluye,* debido a su propia naturaleza, parejamente y en forma independiente a cualquier agente externo". Si bien la mayoría de las personas sienten simpatía por esta concepción del tiempo, hay que darse cuenta de que desde el punto de vista estrictamente lógico esta concepción es insatisfactoria ya que sin el concepto tiempo la palabra parejamente no tiene significado. No es fácil decir algo sobre la noción tiempo que sea mejor o que clarifique lo expresado por Newton, consecuentemente, no intentaremos hacerlo aquí. Más bien apelaremos a nuestra intuición, experiencia y conocimiento sobre lo que es el tiempo: es algo que permea a todo el espacio y avanza en forma homogénea y continua, independiente de la posición, del observador, de la velocidad — independiente de cualquier cosa.

El tiempo se mide usando relojes. Generalmente un reloj posee alguna característica que hace que éste se comporte en forma periódica. Con la suposición de que el tiempo transcurrido entre dos repeticiones es siempre el mismo, podemos usar ese movimiento periódico como reloj. Por ejemplo, el movimiento rotatorio de la tierra en torno al sol se usa para definir la unidad de tiempo llamada año; el movimiento de la tierra en torno a su propio eje puede usarse para definir día solar. Un péndulo, o una masa colgada de un resorte, también puede usarse como reloj.

Supongamos que un observador O tiene numerosos relojes idénticos a su disposición, que los ha sincronizado y que tales relojes no modifican su ritmo si se los aleja, cada uno de los demás. De esta manera el observador O puede tener en todos los lugares del espacio relojes sincronizados con el que él posee. Para el observador O, dos eventos que ocurren en lugares distintos, serán *simultáneos* si los relojes ubicados en los dos lugares marcan la misma hora al ocurrir los eventos. Una consecuencia de la concepción newtoniana del tiempo es que si dos eventos son simultáneos para un observador, también lo serán para todos los demás observadores. En la mecánica newtoniana el concepto *simultaneidad* tiene una validez absoluta.

Al comenzar con el estudio de la física es difícil argumentar a favor o en contra de esta concepción newtoniana del tiempo. Las experiencias vividas por la gran mayoría de las personas, sugieren aceptar esta concepción como válida (o al menos plausible).

Señalamos, sin embargo, que más adelante (en futuros cursos) nos veremos forzados a abandonar este concepto intuitivo del tiempo. Y no solamente del tiempo; en algún momento nos veremos obligados a revisar muchos otros conceptos que ya creíamos tener claramente establecidos.

Pasamos a enunciar las *leyes de Newton*. Sin embargo, deseamos hacer notar desde la partida que las leyes de Newton sólo serán aplicables a fenómenos que usualmente observamos en nuestro mundo macroscópico; no son aplicables ni en el mundo microscópico, ni a fenómenos que ocurren a escalas cosmológicas. Las leyes de Newton también fracasan estrepitosamente al describir con ellas sistemas en que algunas (o todas) de las partículas se desplazan a velocidades comparables a la velocidad de la luz.

4.2. Las leyes de Newton

Presentamos a continuación los postulados fundamentales de la mecánica que Isaac Newton publicó en su libro "*Principia*" en 1687.

Primera ley:

Cada cuerpo material persiste en su estado de reposo o de movimiento uniforme en línea recta, a menos que una fuerza, que actúa sobre el cuerpo, lo conmine a cambiar de estado.

¿Qué realmente quiere decir esta ley, que se conoce también con el nombre de ley de inercia? En su redacción aparece la palabra fuerza, luego para interpretar la ley de inercia debemos apelar a nuestro conocimiento intuitivo sobre qué es una fuerza: una fuerza es lo que hacemos, por ejemplo, al usar nuestros músculos para empujar un objeto. La primera ley entonces establece que cualquier cuerpo material, al que nadie ni nada empuja o tira, se trasladará con una velocidad constante (es decir, se moverá en línea recta con una rapidez uniforme). Si la velocidad es cero, o sea, el cuerpo está en reposo, continuará en reposo. Consideremos ahora un observador O que observa una partícula sobre la cual no actúan fuerzas. Si el observador O, mientras observa, realiza saltos mortales, la partícula no le parecerá estar moviéndose con velocidad constante. Sólo si el sistema de referencia que usa O para observar a la partícula satisface ciertas condiciones, el cuerpo se moverá (para O) con velocidad constante. O sea, la primera ley de Newton es válida sólo si el movimiento del cuerpo se observa desde ciertos sistemas de referencia bien particulares. Tales sistemas de referencia se llaman *inerciales*. En otras palabras, la primera ley de Newton en realidad no es otra cosa que la definición de un *sistema inercial*.

Para enunciar la segunda ley debemos definir previamente el concepto de *cantidad de movimiento* o *momentum* de una partícula. El momentum de una partícula es el producto de la masa de la partícula por su velocidad. Como el producto de un escalar (la masa) por un vector (la velocidad), es un vector, el momentum de una partícula es un vector:

$$\vec{p} = m\vec{v}$$
 .

La masa m de un cuerpo será una magnitud que es proporcional a su *peso*, es decir, proporcional al esfuerzo que es necesario realizar para levantarlo o suspenderlo. Si un cuerpo pesa más que otro, esto se debe a que el primero tiene una masa mayor que el segundo.

La unidad de masa en el sistema internacional de unidades SI es el *kilógramo*, y corresponde a la masa del *kilógramo patrón* guardado en una oficina en París. Sin embargo, para la mayoría de los efectos prácticos podemos definir a un kilógramo como la cantidad de masa que posee un litro de agua dulce.

Una hipótesis que se hace en la mecánica newtoniana es que la cantidad de materia no cambia. Efectivamente, nuestra experiencia nos muestra que, por ejemplo, si hacemos colisionar dos relojes de manera que ellos se desintegren, la masa de todos los fragmentos y partes seguirá siendo igual a la de los dos relojes originales. Otro ejemplo, al agregarle un litro de agua a un balde de arena seca encontraremos que la arena mojada pesará ahora un kilógramo más que cuando la arena estaba seca. Esta hipótesis, de que la masa de un sistema cerrado no cambia, pareciera estar bien fundamentada por numerosas observaciones. Pasamos a enunciar la segunda ley de Newton.

Segunda ley:

El cambio de momentum $\Delta \vec{p}$ de una partícula es proporcional a la fuerza neta que actúa sobre el cuerpo, como también al intervalo Δt durante el cual ella se aplica, y apunta en la dirección y sentido de esta fuerza, o sea,

$$\Delta \vec{p} = \vec{F} \, \Delta t$$
 .

Como primer comentario es necesario decir que esta ley sólo es válida si la fuerza \vec{F} es constante durante el intervalo Δt y si las magnitudes son observadas desde un sistema de referencia inercial.

La segunda ley debemos considerarla como definición del concepto fuerza. Si sobre una partícula actúa una fuerza durante un cierto intervalo de tiempo Δt , necesariamente cambiará su velocidad (y por consiguiente también su momentum). La fuerza media que actúa sobre la partícula durante el intervalo Δt es el cuociente entre el cambio de momentum y el intervalo de tiempo:

$$\langle \vec{F} \rangle = \frac{\Delta \vec{p}}{\Delta t}$$

La fuerza instantánea se obtiene en el límite $\Delta t \longrightarrow 0$, o sea, viene dada por

$$\vec{F} \equiv \frac{d\vec{p}}{dt}$$
 .

Note que la fuerza también es una magnitud vectorial.

Si la masa de una partícula no varía a medida que transcurre el tiempo, entonces

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v}\,)}{dt} = m\,\frac{d\,\vec{v}}{dt} = m\,\vec{a}~.$$

En palabras, la fuerza neta que actúa sobre una partícula es igual al producto de su masa y su aceleración.

Si la masa se mide en kg y la aceleración en (m/s^2) , entonces la fuerza viene dada en Newtons (N). O sea, por definición, en el sistema de unidades SI

$$1 \ \mathrm{N} \equiv 1 \ \mathrm{kg} \cdot 1 \ \frac{\mathrm{m}}{\mathrm{s}^2} \ .$$

Tercera ley:

Si un cuerpo \mathbf{A} ejerce una fuerza sobre otro \mathbf{B} , entonces este último ejercerá sobre \mathbf{A} una fuerza de igual magnitud y en la misma dirección, pero en sentido opuesto.

De acuerdo a la tercera ley, una fuerza nunca aparece en forma solitaria, sino que siempre vendrá acompañada de otras fuerzas, de manera que la suma vectorial de todas ellas sea nula. Es importante señalar que estas fuerzas, denominadas de *acción y reacción*, actúan siempre sobre objetos diferentes. O sea, la suma vectorial de todas las fuerzas que actúan

sobre un cuerpo no necesariamente tiene que ser nula. Para que sobre un cuerpo pueda actuar una fuerza neta no nula es necesario que exista al menos un segundo cuerpo. A pesar de que no se menciona explícitamente, al aplicar la tercera ley se supone que la acción y reacción aparecen en forma simultánea. Como dos cuerpos pueden interactuar a distancia (por ejemplo, a través de la interacción gravitacional), el último comentario implica que en la mecánica newtoniana debe existir una manera de transmitir la información de un cuerpo a otro con una velocidad infinita. En la naturaleza tales velocidades infinitas no existen; hoy en día sabemos que la velocidad de la luz en el vacío es un límite superior para las velocidades con que se puede trasladar algo material o información de un lugar a otro. Por esta razón, la tercera ley es generalmente una muy buena aproximación, pero no tiene una validez universal; por ejemplo, en colisiones atómicas no es siempre aplicable.

4.3. Uso de las leyes de Newton

Para aprender a manejar las leyes de Newton y comprender su significado, lo mejor es ilustrar su uso en algunas situaciones concretas.

Ejemplos:

1. Analicemos las fuerzas que actúan sobre un cuerpo que cae.

Debido a la atracción gravitatoria, todo objeto sufrirá una fuerza que apunta hacia el centro de la tierra. Es esta fuerza la que acelera al cuerpo durante su caída.

¿Cuál es el tamaño de esta fuerza? Sabemos que al realizar experimentos con cuerpos sobre la superficie terrestre, al soltarlos todos ellos caen con la misma aceleración hacia la superficie. Esta aceleración constante, llamada *aceleración de la gravedad*, se denota por g, y su valor es aproximadamente $g = 9,81 \text{ m/s}^2$. (En realidad, al realizar estos experimentos hay que asegurarse de que los efectos de la densidad y viscosidad de la atmósfera sean despreciables. Más aún, el experimento debe realizarse sin alejarse demasiado—a lo más unas pocas decenas de kilómetros—de la superficie terrestre.)

Conociendo la aceleración del cuerpo y su masa m podemos (usando la segunda ley de Newton) establecer cuál es la fuerza gravitacional que actúa sobre el cuerpo. Definiendo al vector unitario \hat{z} como un vector que apunta hacia arriba, el vector aceleración del cuerpo vendrá dado por $\vec{a} = -g\hat{z}$. La fuerza sobre el cuerpo es entonces

$$\vec{F} = m\left(-g\,\hat{z}
ight) = -mg\hat{z}$$
 .

A la magnitud de esta fuerza gravitacional es lo que se llama peso del objeto. Usando la letra W para denotar al peso se tiene

$$|F| \equiv W = m g = \text{peso del objeto}$$
.

2. Analicemos las fuerzas que actúan sobre un libro de masa M, en reposo sobre una mesa (superficie horizontal).

Ya sabemos que sobre el libro actúa una fuerza, debido a la gravedad terrestre, que es

$$\dot{W} = -Mg\hat{z}$$
 .

Por otra parte, debido a que el libro se encuentra (y se mantiene) en reposo, la fuerza neta sobre el libro debe ser nula. ¿Quién o qué ejerce otra fuerza, igual a $-\vec{W}$, sobre el libro? La respuesta es: la mesa. Efectivamente, el libro se apoya sobre la mesa y la superficie de ella ejerce sobre el libro una fuerza hacia arriba, llamada *reacción*, cuya magnitud es igual al peso del libro.

Introduzcamos los así llamados diagramas de cuerpo libre:

Al analizar las fuerzas que se ejercen sobre un cuerpo es conveniente aislarlo del resto de los objetos que interactúan con él. Para ello cada objeto que interactúa con este cuerpo es sustituido por una fuerza que cumple con la tercera ley de Newton. El resultado de esta operación es el así llamado diagrama de cuerpo libre del objeto.

Para el caso del libro, la interacción de éste con la tierra se reemplaza por el vector \vec{W} que apunta hacia abajo y cuya magnitud coincide con el peso del libro; el efecto de la mesa sobre el libro se reemplaza por el vector \vec{R} , (ver figura 4.1). Si el libro se mantiene en reposo, la segunda ley de Newton requiere que $\vec{W} + \vec{R} = 0$.

Figura 4.1

3. Consideremos un objeto de masa m que cuelga del techo sujetado por una cuerda ideal (ver figura 4.2). ¿Cuál es la fuerza que la cuerda ejerce sobre el gancho en el techo y cuál es la tensión de la cuerda?

Una *cuerda ideal* es una cuerda que, a menos que se especifique lo contrario, no tiene masa, es perfectamente flexible y no es extensible. Que una cuerda sea perfectamente flexible quiere decir que sólo es capaz de transmitir una fuerza a lo largo de ella; no puede ejercer fuerzas transversales.

Sobre el objeto actúan dos fuerzas; una es el peso $\vec{W} = -mg\hat{z}$ y la otra es la fuerza $\vec{F_1}$ ejercida por la cuerda. Como el objeto no acelera, la fuerza neta (es decir, la suma de todas las fuerzas que actúan sobre él) debe ser nula. Por consiguiente, $\vec{F_1} = -\vec{W}$.

Denotemos por \vec{F}'_1 a la fuerza ejercida por el objeto sobre la cuerda. Debido al principio de acción y reacción, $\vec{F}'_1 = -\vec{F}_1$. La cuerda por otra parte ejerce una fuerza \vec{F}_2 sobre el gancho (la dirección de esta fuerza es hacia abajo). A su vez, el gancho ejercerá una fuerza \vec{F}'_2 sobre la cuerda. Nuevamente debido al principio de acción y reacción, $\vec{F}'_2 = -\vec{F}_2$.

Ahora, debido a que la cuerda no tiene masa, las únicas fuerzas que actúan sobre ella serán \vec{F}'_1 y \vec{F}'_2 . Al estar en equilibrio (la cuerda no acelera), la suma de ambas fuerzas debe ser cero, luego $\vec{F}'_2 = -\vec{F}'_1$. Resumiendo, tenemos que

$$-mg\hat{z}=\vec{W}=-\vec{F}_1=\vec{F}_1'=-\vec{F}_2'=\vec{F}_2\;,$$

o sea, la fuerza \vec{F}_2 que la cuerda ejerce sobre el gancho es igual al peso $-mg\hat{z}$.

Cada uno de los extremos de la cuerda ejerce una fuerza sobre los objetos a los cuales está unida. Cuando la masa de la cuerda es nula, la magnitud de esa fuerza es la misma. A esta magnitud se le llama *tensión* de la cuerda. A lo largo de una cuerda ideal, que no tiene masa, la tensión no varía. Para la cuerda del presente problema, la tensión es $\tau = mq$. La tensión es un escalar.

4. Máquina de Atwood.

Consideremos dos masas m_1 y m_2 unidas por una cuerda ideal sin masa que pasa sobre una polea ideal (ver figura 4.3). Deseamos encontrar la aceleración de las masas y las tensiones de las cuerdas.

Con la expresión *polea ideal* nos estamos refiriendo a una polea que no tiene masa y gira sin roce. El objetivo de la polea es simplemente cambiar la dirección de la cuerda y, por lo tanto, de la fuerza (que actúa siempre a lo largo de la cuerda). La tensión a la que está sometida una cuerda no se modifica al pasar por una polea ideal.

Sea τ la tensión de la cuerda que une ambas masas y $\vec{a}_1 = a_0 \hat{z}$ la aceleración que sufrirá la masa 1. La fuerza neta que actúa sobre la masa 1 es $(-m_1g + \tau)\hat{z}$, luego, de acuerdo a la segunda ley de Newton

$$(-m_1g+\tau)\hat{z} = m_1\vec{a}_1 = m_1a_0\hat{z}$$
.

Figura 4.3

Debido a que la cuerda es inextensible, la aceleración que sufrirá la masa 2 es la opuesta a la de la masa 1, o sea, $\vec{a}_2 = -a_0\hat{z}$. Aplicando la segunda ley de Newton a la segunda masa se obtiene la expresión

$$\tau - m_2 g = -m_2 a_0 . \tag{4.2}$$

De las ecuaciones (4.1) y (4.2) podemos despejar las dos incógnitas a_0 y τ :

$$\tau = 2 \frac{m_1 m_2}{m_1 + m_2} g$$
$$a_0 = -\frac{m_1 - m_2}{m_1 + m_2} g .$$

у

Como la polea no tiene masa y ésta no sufre aceleraciones, la tensión de la cuerda que la sujeta deberá ser igual a 2τ .

Casos particulares:

Si $m_1 = m_2$, entonces $a_0 = 0$ y $\tau = m_1 g = m_2 g$. Tal como era de esperarse, si las masas son iguales, ninguna de ellas acelera.

Si $m_1 > m_2$ entonces a_0 resulta ser una magnitud negativa. Esto quiere decir que $\vec{a}_1 = a_0 \hat{z}$ es una aceleración que apunta hacia abajo; tal como debe ser, la masa 1 baja, mientras que la masa 2 sube.

Si m_1 es muy parecida a m_2 , entonces $|a_0| \ll g$. O sea, cada una de las masas realizará un movimiento uniformemente acelerado, pero con una aceleración mucho menor que g.

Si $m_1 = 0$, entonces $a_0 = g$ y $\tau = 0$. En este caso la cuerda deja de tener tensión, y por consiguiente la partícula 2 caerá con aceleración g.

5. Considere una cuerda flexible de masa M que cuelga entre dos paredes, siendo α el ángulo que forma la cuerda con la pared (ver figura 4.4). Se desea encontrar la tensión que la cuerda tiene en el punto mínimo.

Para resolver el problema consideremos como nuestro sistema sólo la mitad derecha de la cuerda. Hay tres fuerzas que actúan sobre ese sistema:

- i) El peso $\vec{W} = -\frac{1}{2}Mg\hat{z}$.
- ii) La fuerza $\vec{F_1}$ ejercida por la parte izquierda de la cuerda. La magnitud de esta fuerza es igual a la tensión de la cuerda en el mínimo, que llamaremos τ_0 . Se tiene que $\vec{F_1} = -\tau_0 \hat{x}$.

Figura 4.4

iii) La fuerza que ejerce el gancho sobre la cuerda. Como la cuerda es flexible la fuerza necesariamente es a lo largo de la tangente de la cuerda. Si a la magnitud de esta fuerza la llamamos f_0 , se tiene que $\vec{F_2} = f_0 \cos \alpha \ \hat{z} + f_0 \sin \alpha \ \hat{x}$.

Como nuestro sistema está en equilibrio (no acelera), la suma de las tres fuerzas debe ser nula:

$$\vec{W} + \vec{F}_1 + \vec{F}_2 = -\frac{1}{2}Mg\hat{z} - \tau_0\hat{x} + f_0\cos\alpha \,\hat{z} + f_0\sin\alpha \,\hat{x} = 0$$

Pero para que un vector sea cero es necesario que cada una de sus componentes sea nula. Este hecho nos da las siguientes ecuaciones:

componente z:
$$-\frac{1}{2}Mg + f_0 \cos \alpha = 0$$

у

у

componente x:
$$-\tau_0 + f_0 \sin \alpha = 0$$

De estas dos ecuaciones podemos despejar τ_0 y f_0 , obteniéndose

$$\tau_0 = \frac{1}{2} M g \tan \alpha$$
$$f_0 = \sqrt{\tau_0^2 + \left(\frac{Mg}{2}\right)^2} .$$

Notemos cómo para $\alpha \longrightarrow 90^{\circ}$, o sea, a medida que la cuerda se cuelga en forma más "tirante", la tensión de la cuerda tiende a infinito.

6. Consideremos una masa m que gira en el plano x, y, en un círculo de radio R y con una velocidad angular constante, ω_0 . Encontremos la fuerza neta a la que está sometida la masa.

En la sección 3.3 ya analizamos el movimiento circular y demsotramos que la aceleración de la masa m viene dada por $\vec{a}(t) = -R\omega_0^2 \hat{r}$. De acuerdo a la tercera ley de Newton, el hecho que la masa m esté acelerada implica que sobre ella está actuando una fuerza neta

Figura 4.5

$$\vec{F} = m\vec{a} = -Rm\omega_0^2 \,\hat{r}$$

Esta fuerza (de magnitud constante) apunta hacia el origen y por esta razón se le denomina *fuerza centrípeta*.

Debido a la importancia de este resultado lo reiteramos: Una masa m que realiza un movimiento circular uniforme, está sometida a una fuerza que apunta hacia el centro de giro. La magnitud de esta fuerza centrípeta es

$$F_{\rm cent} = mR\omega_0^2 = \frac{mv^2}{R} \,,$$

donde R es el radio del círculo, ω_0 la velocidad angular y $v = \omega_0 R$ el módulo de la velocidad de la partícula.

4.4. Roce cinético y estático

Si un cuerpo se desliza sobre otro, tarde o temprano se detendrá a menos que exista una fuerza externa que perpetúe el movimiento. La fuerza que se opone al deslizamiento relativo entre los dos cuerpos se denomina *fuerza de roce cinético*. Se origina en la interacción de ambas superficies en contacto.

La fuerza de roce no sólo aparece cuando dos cuerpos están en movimiento relativo, sino que también puede estar presente cuando los dos cuerpos se encuentran en reposo relativo. En efecto, si, por ejemplo, intentamos deslizar una mesa por el piso, notamos que aparece una fuerza que impide que este deslizamiento comience. A esta fuerza se le denomina *fuerza de roce estático*.

También existen otras fuerzas de roce que aparecen en diversas circunstancias (por ejemplo, el *roce rodante*, el *roce viscoso*, etc), sin embargo, en el presente capítulo centraremos nuestro interés en las fuerzas de roce cinético y estático.

Se sabe relativamente poco acerca de ambos y es difícil cuantificarlos porque dependen de la naturaleza de los materiales y de propiedades de la superficie como el pulido, la existencia de óxidos en la interfase, etc. Lo que dificulta aún más la cuantificación de la fuerza de roce es su dependencia de la historia de las superficies: el paso del roce estático al roce dinámico depende de si las superficies se han deslizado previamente o no.

Las fuerzas de roce tienen un origen microscópico. Dos superficies, por suaves que parezcan, a nivel microscópico tienen irregularidades. Estas protuberancias forman, en algunos casos, microsoldaduras, y son el origen de la fuerza adicional que uno debe aplicar para poder iniciar un movimiento relativo entre los cuerpos. Una vez que éstos están en movimiento, estas aristas microscópicas se "enganchan" unas con otras y dan origen al *roce cinético* (también a veces llamado "*roce cinemático*" o *roce dinámico*").

A continuación presentamos algunos resultados fenomenológicos y cualitativos sobre del roce. Estos resultados no son "leyes fundamentales de la naturaleza", sino sólo conclusiones generales que fueron obtenidas después de numerosos estudios experimentales.

Consideremos un bloque de masa M que descansa sobre una superficie, el cual intentamos deslizar aplicando sobre él una fuerza horizontal \vec{F} , que incrementamos paulatinamente. Designemos por \vec{f} a la fuerza de roce que aparece debido a la fricción entre las dos superficies y describamos la forma en que típicamente varía esta fuerza.

a) Mientras la fuerza horizontal externa $F = |\vec{F}|$ varía desde 0 hasta un cierto valor $f_e^{(max)}$, el bloque M no se deplazará. Como no hay aceleración, la fuerza neta hori-

zontal sobre el cuerpo debe ser nula, o sea, debe haber otra fuerza horizontal sobre el bloque que exactamente cancele a la fuerza \vec{F} . Esta es la fuerza de roce estática \vec{f} . Se tiene, por lo tanto, que $\vec{f} = -\vec{F}$.

b) Cuando la fuerza horizontal externa F sobrepasa cierto valor $f_e^{(max)}$, la fuerza de roce no sigue aumentando. Como ahora la componente horizontal de la fuerza neta no es nula, el bloque comenzará a acelerar. Tan pronto como los cuerpos se deslizan con cierta velocidad relativa, la fuerza de roce se vuelve constante, siendo su magnitud algún valor f_c (menor que f_e^{max}) y su sentido opuesto al movimiento relativo.

De ahí en adelante, si se desea mantener el bloque deslizándose con una velocidad constante, debe aplicarse una fuerza horizontal de exactamente la magnitud f_c , en la dirección de movimiento.

Este comportamiento fenomenológico recién descrito, que muestra la fuerza de roce, se muestra en la figura 4.6. Empíricamente se ha observado que, para dos superficies (secas) en contacto, tanto la fuerza de fricción dinámica f_c como el máximo de la fricción estática $f_e^{(max)}$, son proporcionales a la fuerza normal entre ambas superficies, o sea,

 $f_c = \mu_c F_N$

 $f_e^{(max)} = \mu_e F_N \; .$

у

 \vec{F}_N es la fuerza normal entre las superficies (es decir, perpendicular a la interfase formada por las dos superficies) y μ_c y μ_e son los *coeficientes de fricción*. Los coeficientes de fricción de alguna manera engloban nuestra ignorancia de los distintos parámetros que intervienen en el problema. Siempre se tiene que el coeficiente de roce cinemático es menor al coeficiente de roce dinámico: $\mu_c < \mu_e$. Ambas fuerzas de roce actúan en la dirección paralela a las superficies. El sentido de la fuerza de roce estático es opuesto a la fuerza horizontal neta que actúa sobre el cuerpo, mientras que el sentido de la fuerza de roce dinámico es siempre opuesto al movimiento relativo (y no a la fuerza) entre las dos superficies.

Ilustremos los conceptos anteriores con un ejemplo.

Problema:

Considere el montaje experimental mostrado en la figura 4.7. Supongamos que los coeficientes de fricción estático y cinemático entre la masa M=4 Kg y el plano inclinado son $\mu_e = 0.4$ y $\mu_c = 0.3$, respectivamente.

 $_{i}$ Qué rango de valores puede tener m para que el sistema se encuentre en equilibrio estático? Si la masa m justo sobrepasa ese máximo, icon qué aceleración se moverá el bloque sobre el plano?

Solución:

Resolvamos primero el problema estático. La figura 4.8 muestra el diagrama de cuerpo libre del bloque que se encuentra sobre el plano inclinado. A priori no sabemos en que sentido apunta la fuerza de roce f_r . La hemos dibujado apuntando a lo largo del plano hacia abajo; si después de realizar el cálculo f_r resulta tener un valor negativo entonces la fuerza de roce en realidad apunta en el sentido opuesto al mostrado en la figura. Sea Mq el peso, τ la fuerza ejercida por la tensión de la cuerda y F_N la fuerza normal que ejerce el plano inclinado sobre el bloque. Debido al principio de acción y reacción, F_N también coincide con la magnitud de la fuerza que el bloque ejerce sobre el plano.

Figura 4.7

Figura 4.8

Introduzcamos un sistema de coordenadas cartesianas en que el eje \hat{x} es paralelo y el eje \hat{y} normal al plano inclinado (ver figura 4.8). Como el bloque está en reposo, la fuerza neta sobre el bloque debe ser nula, esto es, tanto la fuerza total a lo largo del eje \hat{x} como a lo largo del eje \hat{y} . Esto nos da las siguientes ecuaciones:

eje
$$\hat{x}$$
:
 $\tau - Mg\sin\alpha - f_r = 0$
eje \hat{y} :
 $F_N - Mg\cos\alpha = 0$,

donde α es el ángulo de elevación del plano inclinado. Como la masa m no acelera, la tensión de la cuerda debe ser $\tau = mg$. Luego, de la primera ecuación se deduce que

$$f_r = mg - Mg\sin\alpha$$
 .

Recordemos que f_r puede ser positivo o negativo: f_r es positivo si $m > M \sin \alpha$ y negativo si $m < M \sin \alpha$. También se tiene que

$$|f_r| \le \mu_e F_N = \mu_e Mg \, \cos \alpha$$

De las ecuaciones anteriores se deduce que

$$mg - Mg\sin\alpha = +f_r \le \mu_e F_N = \mu_e Mg\cos\alpha \qquad \text{si} \quad m > M\sin\alpha$$
$$-mg + Mg\sin\alpha = -f_r \le \mu_e F_N = \mu_e Mg\cos\alpha \qquad \text{si} \quad m < M\sin\alpha.$$

o sea el bloque de masa M no se desliza sobre el plano inclinado si

- i) para $M \sin \alpha < m$, se cumple que $m \leq M(\mu_e \cos \alpha + \sin \alpha)$,
- ii) para $M \sin \alpha > m$, se cumple que $m \ge M(\sin \alpha \mu_e \cos \alpha)$.

Para los valores numéricos del enunciado, el bloque no se deslizará por el plano si 0.61 kg < $m < 3.4~{\rm kg}.$

Analicemos ahora lo que sucede si m sobrepasa (en una magnitud infinitesimal) al valor $M(\mu_e \cos \alpha + \sin \alpha)$. En ese caso, el bloque comenzará a deslizarse hacia arriba. La fuerza de roce, por lo tanto, será

$$\vec{f_r} = -\mu_c M g \cos \alpha \ \hat{x}$$
 .

La fuerza neta sobre el bloque y su aceleración, en la dirección \hat{x} , vendrán dados por

$$F_x = \tau - f_r - Mg\sin\alpha = \tau - \mu_c Mg\cos\alpha - Mg\sin\alpha$$

у

$$a_x = \frac{F_x}{M} = \frac{\tau}{M} - g(\mu_c \cos \alpha + \sin \alpha) \;.$$

Por otra parte, la fuerza neta sobre la mas
amy su aceleración en la dirección vertical, serán

$$F' = au - mg$$
 .

у

$$a' = \frac{F'}{m} = \frac{\tau}{m} - g = -a_x \, .$$

La última igualdad en la ecuación anterior se debe a que la cuerda es inextensible; por consiguiente, cuando el bloque acelera hacia arriba, la masa m acelerará con la misma magnitud, pero hacia abajo. De las ecuaciones anteriores se deduce que

$$a_x = g \left[\frac{\left(\frac{m}{M} - \mu_c \cos \alpha - \sin \alpha\right)}{\frac{m}{M} + 1} \right]$$

Este resultado también lo podemos escribir de otra manera. Recordemos que m sobrepasa en una magnitud infinitesimal al valor $M(\mu_e \cos \alpha + \sin \alpha)$, luego

$$m = M \left(\mu_e \, \cos \alpha + \sin \alpha \right) \,,$$

o sea,

$$\frac{m}{M} = \mu_e \, \cos \alpha + \sin \alpha \; .$$

Sutituyendo esto en la expresión para a_x se obtiene

$$a_x = g \; \frac{(\mu_e - \mu_c) \cos \alpha}{1 + \mu_e \cos \alpha + \sin \alpha} \; .$$

Con los valores numéricos del enunciado se obtiene $a_x \simeq 0.047 g$.

Note que la tensión de la cuerda es distinta en el caso estacionario que en el caso dinámico. En el primer caso es $\tau = mg$, mientras que en el segundo viene dada por $\tau = m(g - a_x)$.

4.5. Problemas

- 1. Un automóvil de 2000 kg moviéndose a 80 km/h puede llevarse al reposo en 75 m mediante una fuerza de frenado constante:
 - a) ¿Cuánto tiempo tardará en detenerse?
 - b) ¿Cuál es la fuerza necesaria para detener el coche en esa distancia? ¿Quién o qué ejerce esa fuerza horizontal que detiene al coche?
- 2. Una carga de 2 toneladas se levanta mediante una grúa.
 - a) Inicialmente, durante cierto intervalo de tiempo, la carga sube con una aceleración $a = 1,3 \text{ m/s}^2$. ¿Cuál es la tensión del cable que la soporta?
 - b) Después de un breve período de aceleración, la carga sigue elevándose con una velocidad constante. ¿Cuál es la tensión del cable en ese caso?
- 3. Dos bloques unidos por una cuerda que pasa por una polea sin rozamiento, descansan sobre planos lisos como se muestra en la figura 4.9.
 - a) ¿En qué sentido se moverá el sistema?
 - b) ¿Cuál es la aceleración de los bloques?
 - c) ¿Cuál es la tensión de la cuerda?

Figura 4.9

- 4. Una pelota de 2 kg cae libremente llegando, en cierto instante, a tener una rapidez de 6 m/s. ¿Qué fuerza vertical constante se debe aplicar para detenerla en los próximos 5 m? ¿Qué fuerza vertical constante se debe aplicar para detenerla en los próximos 5 s?
- 5. ¿Qué fuerza \vec{F} debe aplicarse al carro de masa M (ver figura adjunta) para que el carro de masa m_2 no suba ni baje?

Figura 4.10

6. Considere un péndulo que consiste en una masa m colgada de un hilo de largo ℓ . En presencia de un campo gravitacional constante, al sacar el péndulo de su posición de equilibrio y soltarlo, éste oscilará. Encuentre la aceleración de la masa m en el instante en que el péndulo forma un ángulo θ con la normal.

$$\frac{d^2\theta(t)}{dt^2} + \omega_0^2\,\theta(t) = 0 \ ,$$

 $\operatorname{con} \ \omega_0 = \sqrt{g/\ell}.$

m

7. Considere una masa m adosada a un resorte de constante de restitución k. Sea x = 0 la posición de equilibrio del sistema. De acuerdo a la *Ley de Hook*, al desplazar la masa m una distancia x desde su posición de equilibrio, la fuerza ejercida por el resorte sobre la masa es F = -kx. Demuestre que

$$\frac{d^2 x(t)}{dt^2} + \omega_0^2 x(t) = 0 \; ,$$

con $\omega_0 = \sqrt{k/m}$. Compare este resultado con el del problema anterior.

- 8. Un cuerpo de 500 g desliza por un plano inclinado liso. El cuerpo parte del reposo y durante el tercer segundo recorre una distancia de 120 cm. Encuentre el ángulo de inclinación del plano.
- 9. Una esfera de masa m es mantenida en la posición **A** por dos cuerdas (ver figura 4.12). Sea T_A la tensión de la cuerda indicada. Se corta la cuerda horizontal y el péndulo oscila hasta la posición **B**. ¿Cuál es la razón de las tensiones T_B/T_A ?

Respuesta: $T_B/T_A = \cos^2 \alpha$.

Figura 4.12

10. Considere el montaje mostrado en la figura 4.13, con M=1,650 kg, m=0,150 kg y $d_0=4$ m. El sistema está en reposo cuando $d = d_0 = 4$ m. ¿Cuánto tiempo transcurrirá antes de que la masa m llegue a la base de M?

11. Un objeto se encuentra sobre un plano liso sin roce y es sometido a una fuerza \vec{F} que varía en función del tiempo de acuerdo al gráfico que se acompaña. Si la masa del objeto es m, obtenga y grafique las siguientes magnitudes:

- a) Aceleración del objeto en función del tiempo.
- b) Velocidad del objeto, si éste parte del reposo.
- c) Posición del objeto en función del tiempo.
- 12. Una pesa calibrada en Newtons se coloca sobre una plataforma móvil y se hace deslizar con una rapidez constante de 14 [m/s] sobre un terreno ondulado (ver figura 4.15). Sobre la pesa se coloca una caja que pesa 500 [N].
 - a) Cuando la plataforma pasa sobre la cresta de una colina con radio de curvatura de 100 [m], ¿cuál es la lectura de la pesa?
 - b) Cuando la plataforma pasa por la parte inferior de una hondonada con radio de curvatura de 80 [m], ¿cuál es la lectura de la pesa?

Figura 4.15

Respuesta: (parte b) $\simeq 625$ [N].

- 13. Un bloque de masa M es tirado hacia una muralla vertical mediante el uso de una cuerda y poleas como se muestra en la figura. El bloque se desliza sin roce sobre la superficie. La fuerza con que se tira la cuerda es F, el largo de la cuerda es 2Ly la separación inicial entre el bloque y la muralla es L. Determine el tiempo que transcurre hasta que se encuentren la punta de la cuerda y el bloque.
- 14. Un plato cónico de ángulo característico α gira uniformemente entorno a su eje, el cual se mantiene en posición vertical. Una piedrecilla de masa m rota solidariamente con el plato. Suponiendo que no hay roce entre la piedrecilla y la superficie del plato, calcule el radio de la órbita circular que describe la piedrecilla.

Figura 4.17

- 15. Una persona se para sobre una balanza dentro del ascensor y observa que ésta registra un peso igual a un 70 % de su peso normal. Si el ascensor y el pasajero tienen masas M y m respectivamente, calcule la tensión a la que está sometido el cable que sujeta el ascensor. Compare esta tensión con la que se produciría si el ascensor acelera con la misma magnitud pero en sentido opuesto.
- 16. Considere el montaje mostrado en la figura 4.18. Suponga que las masas de la polea y del hilo, así como el rozamiento son despreciables. Se conocen las masas m, M y el ángulo de la cuña. Encuentre la aceleración de la cuña.

 $a = \frac{mg\sin\alpha}{M + 2m(1 - \cos\alpha)}$

m M a

Respuesta:

17. Dos masas $m \neq M$ se encuentran unidas por una cuerda de masa despreciable y largo ℓ . En estas condiciones ambas realizan un movimiento circular uniforme (en un plano horizontal) en torno al así llamado *centro de masas* del sistema. Suponga que el período del movimiento rotatorio es T. Encuentre la distancia entre la masa $m \neq$ el centro de giro (para resolver esta parte del problema no es necesario conocer la definición de centro de masas). Calcule la tensión de la cuerda que une ambas masas.
Respuesta:

$$\tau = \frac{mM}{m+M} \ell \left(\frac{2\pi}{T}\right)^2$$

- 18. Una cuña lisa de masa M se desliza bajo la acción de una fuerza horizontal F. Sobre ella se coloca un bloque de masa m.
 - a) Dibuje todas las fuerzas que actúan sobre cada una de las masas.
 - b) Determine el valor de F para que el bloque más pequeño no resbale sobre la cuña.
- 19. Dos bloques idénticos y de masa m posan sobre una superficie horizontal pulida. Uno de ellos es tirado mediante una cuerda en cuyo extremo libre se aplica una fuerza horizontal igual a Mg. El otro bloque es también tirado horizontalmente mediante una cuerda pero en cuyo extremo libre cuelga una bola de masa M. Determine cual de los bloques se mueve más rápido si ambos parten del reposo simultáneamente.
- 20. Un pintor que pesa 900 Newtons trabaja en una silla colgante en un edificio de altura. Al terminar su turno debe volver al último piso para bajar a la calle. Para subir con la silla tira de la cuerda de tal forma que la fuerza que él ejerce sobre el asiento de la silla es de 500 Newtons. La silla misma pesa 300 Newtons.
 - a) ¿Cuál es la aceleración del pintor y de la silla?
 - b) ¿Cuál es la fuerza total sobre el soporte de la polea?

Respuestas: a) a = 2g/3; b) $F_{tot} = 2000\tilde{N}$.

Figura 4.19

Figura 4.21

4.5 Problemas

21. Considere el montaje mostrado en la figura 4.22. La masa del cuerpo # 1 es n = 4 veces mayor que la del cuerpo # 2. Suponga que las masas de las poleas y de los hilos, así como el rozamiento son despreciables por su pequeñez. Cuando el cuerpo # 2 se suelta, la masa # 1 se encuentra a una altura h. ¿Cuál es la aceleración de la masa # 2 mientras m_1 baja? ¿Cuál es la altura máxima del suelo H a la que subirá la masa # 2? (¡La altura máxima no es 2h!)

Respuesta: H = 6hn/(n+4).

22. Una masa m se encuentra apoyada sobre una cuña de masa M y ángulo de elevación α . La cuña se puede desplazar horizontalmente sin roce sobre un plano. Dos guías restringen el movimiento de la masa m de manera que sea sólo en dirección vertical. No hay roce entre la masa m y la cuña como tampoco entre las guías y la masa m.

Figura 4.23

 $\mu = 0$

- a) Encuentre la relación que existe entre la aceleración vertical a_m de la masa m y la aceleración horizontal a_M de la cuña.
- b) Haga los diagramas de cuerpo libre de la masa m y de la cuña M.
- c) Encuentre la aceleración a_M de la cuña.
- d) Si entre la cuña y el suelo hay roce ¿cuánto es el valor mínimo que debe valer el coeficiente de roce estático μ_e para que la cuña no acelere?

Figura 4.22

guía

23. Considere dos masas $M \ge m$ unidas por un hilo que pasa por una polea ideal tal como se muestra en la figura adjunta. Inicialmente la masa M se sujeta con un hilo auxiliar (que no se muestra en la figura) y el sistema se encuentra en reposo. En cierto instante el hilo auxiliar se corta. Demuestre que la aceleración de la masa M es (con el eje \hat{z} apuntando hacia arriba):

$$\vec{a} = -\frac{4M+2m}{4M+m}g\hat{z}$$

Demuestre que esta expresión da el valor correcto en los límites $M \gg m$ y $m \gg M$.

24. Dos objetos 1 y 2, de igual masa, están atados a los extremos de una cuerda ideal de largo L. El conjunto descansa sobre un disco que gira en un plano horizontal con velocidad angular constante, en torno a su centro (ver figura). Suponga que no existe fricción entre el disco y el objeto 1, pero existe fricción entre el objeto 2 y la superficie del disco. Los coeficientes de fricción estético y cinético entre la masa 2 y el disco son μ_e y μ_c , respectivamente.

Figura 4.25

Se observa que cuando el disco gira con velocidad angular ω_0 , la cuerda se mantiene tensa y alineada en la dirección radial. En esta condición el objeto 2 está en reposo a una distancia R del eje de rotación. Cuando la velocidad angular es mayor que ω_0 el objeto 2 (y también el 1) resbala sobre el disco. Calcule el valor de ω_0 . 25. Tal como el campo gravitacional ejerce sobre una masa m una fuerza, un campo eléctrico \vec{E} ejerce una fuerza sobre una carga q. Esta última viene dada por

$$\vec{F} = q \vec{E}$$

(En el sistema internacional de unidades SI, la unidad para la carga es el *Coulomb* [C] y la del campo electrico *Volt/metro= Newton/Coulomb*, siendo las abreviaciones [V/m]=[N/C]. Un campo de 1 [V/m] ejerce sobre una carga de 1 [C] una fuerza de 1 [N].)

Considere un electrón, inicialmente en reposo, que es acelerado entre dos placas (un condensador) separadas por una distancia de 1 cm. En el espacio entre las dos placas hay un campo eléctrico de 900 Volt/cm.

- a) ¿Cuál es su velocidad terminal (la velocidad con que emerge del primer condensador)?
- b) Suponga ahora que el electrón de la parte a), después de ser acelerado y emerger (por un pequeño agujero) del espacio entre las dos placas, ingresa a una región de largo L = 3cm en que existe un campo eléctrico transversal de magnitud $|\vec{E}_{\perp}| =$ 30 Volt/cm. ¿Cuál será el ángulo de deflexión θ con que emergerá el electrón del segundo condensador? (Ver figura 4.26). (En este problema Usted puede despreciar la interacción gravitatoria, es decir, puede suponer que g = 0. La carga de un electrón (universalmente denotada con la letra e) es $e = -1, 60 \cdot 10^{-19}$ [C] y su masa $m_e = 9, 11 \cdot 10^{-31}$ [Kg].)

Figura 4.26

26. Un pulso de iones de Cs⁺ (simplemente ionizados) que han sido acelerados desde el reposo por un campo eléctrico de 1 (statvolt/cm) a lo largo de 0,33 cm, tarda un tiempo $\Delta t = 87 \cdot 10^{-9}$ s para recorrer 1 mm después del proceso de aceleración (ver figura 4.27).

- a) Encuentre la masa del Cs^+ .
- b) Si en lugar de Cs⁺ se realiza el experimento con deuterones, ¿cuánto sería el tiempo de travesía Δt ?
- c) Suponiendo que los protones y los neutrones tienen la misma masa, encuentre la masa de un neutrón.
- d) Con este dispositivo experimental, ¿será posible distinguir entre deuterones y partículas α ?

(Un deuterón es un núcleo atómico formado por un protón y un neutrón; una partícula α es equivalente a un núcleo de un átomo de He y consiste en dos protones y dos neutrones. El núcleo de cesio consta de 58 protones y 84 neutrones, el ión Cs⁺ corresponde a un átomo de cesio que ha perdido un electrón).

27. Considere una carga q que en el instante t = 0 se encuentra en el origen y en reposo. A partir de t = 0 se le aplica un campo eléctrico alterno de la forma

$$\vec{E} = E_0 \sin\left(\omega t\right) \hat{x}$$
 .

Encuentre la *ecuación diferencial* que describe el movimiento de la carga y encuentre la expresión más general para la posición x(t).

28. Un bloque de masa M sube por un plano inclinado cuyo ángulo de elevación es α . Los coeficientes de roce estático y cinético entre la masa M y el plano son μ_e y μ_c , respectivamente.

Figura 4.28

- a) ¿Cuál es la altura máxima que alcanza el bloque, si parte con velocidad v_0 desde la base del plano?
- b) ¿Qué condición debe satisfacerse para que el bloque vuelva a descender?
- c) En caso de cumplirse la condición anterior, ¿con qué velocidad llegará a la base del plano inclinado?

29. Una masa de 100 kg se empuja a lo largo de una superficie en la cual el roce es despreciable mediante una fuerza \vec{F} , de modo que su aceleración es de 6 m/s^2 (ver figura). Una masa de 20 kg desliza a lo largo de la parte superior de la masa de 100 kg y tiene una aceleración de 4 m/s² (por lo tanto desliza hacia atrás respecto a la masa de 100 kg).

Figura 4.29

- a) ¿Qué fuerza de rozamiento ejerce la masa de 100 kg sobre la masa de 20 kg?
- b) ¿Cuál es la fuerza neta sobre la masa de 100 kg? ¿Cuál es la fuerza \vec{F} ?
- c) Una vez que la masa de 20 kg se cae de la masa de 100 kg, ¿cuál es la aceleración de la masa de 100 kg?
- 30. Sea μ el coeficiente de roce estático entre la masa m y el carro. ¿Cuál es la fuerza mínima que debe aplicarse al carro para que la masa m no caiga?

Respuesta: $F^{min} = (M+m)g/\mu$.

- 31. Las masas $A ext{ y } B$ son de 10 y 5 Kg respectivamente. El coeficiente de roce de A con la mesa es $\mu = 0,2$. Encuentre el mínimo valor de la masa C que impide el movimiento de A. Encuentre la aceleración de A si se saca C.
- 32. Una carretera está peraltada de modo que un automóvil, desplazándose a 80 Km/h, puede tomar la curva de 30 m de radio, incluso si existe una capa de hielo equivalente a un coeficiente de fricción aproximadamente cero.

Figura 4.30

Figura 4.31

Figura 4.32

Determinar el intervalo de velocidades a que un automóvil puede tomar esta curva sin patinar, si los coeficientes de fricción estática y cinemática, entre la carretera y las ruedas, son $\mu_e = 0.3$ y $\mu_c = 0.26$, respectivamente.

33. ¿Cuál es el máximo valor que puede tener m_3 para que m_1 no se caiga si el coeficiente de fricción estático entre m_1 y m_2 es μ_e , y el de fricción cinemática entre m_2 y la mesa es μ_c ? Respuesta:

- 34. Un bloque de masa M, inicialmente en reposo, resbala por un plano inclinado cuyo ángulo de elevación es θ . Después de recorrer una distancia D el cuerpo lleva una velocidad igual al 50% de la velocidad que habría adquirido en ausencia de roce. Encuentre una expresión para el coeficiente de roce cinemático μ entre el plano y el bloque.
- Sea μ_c el coeficiente de roce cinéti-35.co entre un escobillón, cuya masa es m, y el piso. Un hombre ejerce una fuerza \vec{F} a lo largo del palo del escobillón. Encuentre $|\vec{F}|$ en función de θ . Existe una solución para todo θ entre 0° y 90° ? (El barrendero avanza con velocidad uniforme.)
- 36. Una partícula de masa M descansa sobre un plano inclinado que forma un ángulo α con la horizontal. Si el coeficiente de roce estático es μ_e , encuentre la mínima fuerza horizontal \vec{F}_{min} transversal a la pendiente del plano, que se requiere para que la partícula comience a moverse.

Figura 4.34

Figura 4.35

Respuesta:

$$F_{min} = \begin{cases} Mg \sqrt{\mu_e^2 \cos^2 \alpha - \sin^2 \alpha} & \text{si} \quad \mu_e > \tan \alpha \\ 0 & \text{si} \quad \mu_e < \tan \alpha \end{cases}$$

4.5 Problemas

37. Considere un paquete, de masa m, que se mueve sin roce y con rapidez v_0 sobre una superficie de hielo. En cierto instante el paquete entra en contacto con el tablero horizontal de un trineo de masa M, que a su vez puede deslizarse sin roce sobre el hielo.

Figura 4.36

Suponga que el coeficiente de roce entre el paquete y el trineo es μ y que el paquete se desliza sobre el trineo hasta finalmente quedar en reposo con respecto a éste.

- a) Una vez que el paquete queda en reposo con respecto al trineo, ¿cuál es la velocidad del trineo?
- b) ¿Cuánto tiempo demora el paquete en quedar en reposo con respecto al trineo?
- c) Evalúe el momento lineal del paquete antes de que entre en contacto con el trineo y compárelo con el momento lineal del conjunto (trineo más paquete) una vez que el paquete está en reposo respecto al trineo.

(El momento lineal de un objeto es el producto de su masa y velocidad).

38. Con dos bloques A y B se arman las configuraciones I y II que se indican en la figura adjunta. Suponga que las cuerdas y poleas tienen masas despreciables y el coeficiente de roce μ es constante y es el mismo entre todas las superficies en contacto. El valor de las fuerzas aplicadas F_I y F_{II} es tal que el bloque A se mueve con velocidad constante en ambas situaciones. Calcule el cuociente entre el módulo de F_I y F_{II}

Figura 4.37

39. Considere un cuerpo que cae en la atmósfera. El aire se opone al movimiento con una fuerza que es proporcional al cuadrado de la velocidad, es decir

$$F_{roce} = -kv\vec{v} \quad , \qquad \qquad v = |\vec{v}| \; .$$

Encuentre la velocidad terminal.

40. Cuando un cuerpo cae en un líquido y el flujo es laminar (es decir, no es turbulento), el fluído se opone al movimiento con una fuerza que es proporcional a la velocidad, es decir

$$\vec{F}_{roce} = -\eta \vec{v}$$
 , $v = |\vec{v}|$.

Encuentre la velocidad terminal. (El coeficiente η depende del fluído y de la forma del objeto).

- 41. Sea μ el coeficiente de roce cinemático que actúa entre las superficies de la masa m y las cuñas (ver figura adjunta). Entre las cuñas y el suelo el roce es nulo. Suponga que el valor del roce μ es tal que el sistema no se encuentra en equilibrio (es decir, las cuñas se separan y el bloque baja). Sea θ el ángulo, M la masa de las cuñas y m la masa del bloque. Determine la aceleración del bloque m.
- 42. Sobre un plano inclinado liso, que forma un ángulo θ con la horizontal, se desliza un bloque partiendo del reposo. Después de recorrer una distancia D, el bloque entra en un tramo rugoso. El bloque se detiene luego de recorrer una distancia D en dicho tramo. Calcule el coeficiente de roce cinético entre el bloque y la superficie rugosa.

Figura 4.38

Figura 4.39

4.6. Solución a algunos de los problemas

Solución al problema 12a

Al pasar la plataforma por la cresta de la colina hay dos fuerzas actuando sobre la caja:

- i) El peso, $\vec{W} = -Mg\hat{z}$. (Hemos elegido al eje \hat{z} apuntando hacia arriba, M es la masa de la caja.)
- ii) La reacción de la pesa sobre la caja: $\vec{F_r} = F_r \hat{z}$.

La fuerza neta es, por lo tanto,

$$\vec{F}_{neta} = (F_r - Mg) \hat{z}$$

Por otra parte, sabemos que la caja está realizando un movimiento circular de radio R con rapidez constante, o sea, hay una fuerza neta sobre la caja que act'ua hacia el centro del círculo (la fuerza centrípeta), que es

$$\vec{F}_{\text{cent}} = -\frac{Mv^2}{R}\hat{z}$$
.

La fuerza centrípeta y la fuerza neta deben ser iguales, es decir, se tiene que

$$F_r - Mg = -\frac{Mv^2}{R} \; .$$

Despejando F_r se obtiene

$$F_r = Mg \left(1 - \frac{v^2}{gR}\right)$$

= 500N $\left(1 - \frac{14^2}{9,81 \cdot 100}\right) \simeq 400$ N .

Solución al problema 16

Observe primero que, al moverse la cuña hacia la derecha, el bloque m se moverá en diagonal (hacia la derecha y hacia abajo). Sea \vec{r}_m el vector de traslación de m cuando la cuña se traslada en una magnitud s. Se tiene (ver figura 4.40) que

$$\vec{r}_m = s(1 - \cos \alpha) \, \hat{x} - s \sin \alpha \, \hat{y} \, .$$

Figura 4.40

Por supuesto que la aceleración de la cuña My del bloque mestán relacionados. Si la aceleración de la cuña es

$$\ddot{\vec{r}}_M = a \ \hat{x} \ ,$$

entonces

$$\ddot{\vec{r}}_m = a \left(1 - \cos\alpha\right) \hat{x} - a \sin\alpha \, \hat{z} \,. \tag{4.3}$$

Sea τ la tensión de la cuerda y \vec{R} la fuerza que la cuña ejerce sobre el bloque m. Debido a que no hay roce entre las superfiecies, esta fuerza de reacción \vec{R} es normal al plano inclinado.

La figura 4.41 muestra el diagrama de cuerpo libre para la masa m. Las componentes horizontal y vertical de la fuerza neta que actúa sobre el bloque m son

$$F_x^{(m)} = \tau \cos \alpha - R \sin \alpha \qquad (4.4)$$

у

$$F_z^{(m)} = -mg + \tau \sin \alpha + R \cos \alpha , \quad (4.5)$$

 \hat{z}

Figura 4.41

respectivamente.

Usando la segunda ley de Newton y las ecuaciones (4.3), (4.4) y (4.5), se encuentran las relaciones

$$\tau \cos \alpha - R \sin \alpha = m a \left(1 - \cos \alpha \right) \tag{4.6}$$

у

$$-mg + \tau \sin \alpha + R \cos \alpha = -m a \sin \alpha \tag{4.7}$$

Sobre la cuña actúan 4 fuerzas:

- i) El peso $-Mg\hat{z}$.
- ii) Una fuerza (de reacción) \vec{R} que el suelo ejerce sobre la cuña. Esta fuerza, cuya magnitud no nos interesará, actúa en la dirección $+\hat{z}$.
- iii) Una fuerza que el bloque m ejerce sobre la cuña. Por el principio de acción esta fuerza es $-\vec{R}$, o sea, las componentes horizontal y vertical son $R \sin \alpha$ y $-R \cos \alpha$, respectivamente.
- iv) La fuerza ejercida por la roldana sobre la cuña (que es igual a la fuerza ejercida por la cuerda sobre la roldana). De la figura 4.42 se deduce que la fuerza total que ejerce la cuerda sobre la roldana es

 $\vec{F}_c = \tau (1 - \cos \alpha) \hat{x} - \tau \sin \alpha \hat{z}$.

Figura 4.42

La cuña sólo se mueve a lo largo de la horizontal; por eso sólo nos interesa esa componente de la fuerza neta. Usando la segunda ley de Newton se obtiene

$$R\sin\alpha + \tau(1 - \cos\alpha) = Ma . \tag{4.8}$$

Las tres ecuaciones de movimiento (4.6), (4.7) y (4.8) con las tres incógnitas $a, \tau y R$, permiten resolver el problema. Sumando (4.6) y (4.8) se obtiene

$$\tau = ma(1\cos\alpha) + Ma \tag{4.9}$$

Multiplicando (4.6) por $\cos \alpha$ y (4.7) por $\sin \alpha$ y sumando ambas ecuaciones se obtiene

$$\tau = mq\sin\alpha + ma(\cos\alpha - 1) \tag{4.10}$$

De (4.9) y (4.10) se deduce finalmente que

$$a = \frac{mg\sin\alpha}{M + 2m(1 - \cos\alpha)}$$

Solución al problema 22

La relación entre las aceleraciones es $a_m = a_M \tan \alpha$. Los diagramas de cuerpo libre de la masa m y de la cuña se muestran en la figura 4.43. F_N es la fuerza entre la masa m y la cuña.

Figura 4.43

Debido a que no hay roce esta fuerza es normal al plano incliado de la cuña. F_r es la fuerza que la guía ejerce sobre el bloque m (tal fuerza es perpendicular a la guía.) F_p es la fuerza que el piso ejerce sobre la cuña; en ausencia de roce esta fuerza es perpendicular al piso.

Las ecuaciones de movimiento para la masa m y la cuña son:

$$mg - F_N \cos \alpha = ma_m$$

у

$$F_N \sin \alpha = M a_M$$
.

Usando la relación entre las aceleraciones a_m y a_M , podemos despejar a_M , obteniéndose

$$a_M = g \, \frac{m \, \tan \alpha}{M + m \, \tan^2 \alpha}$$

Si, debido al roce entre el suelo y la cuña el sistema está en equilibrio, entonces la suma de las fuerzas sobre m debe ser nula. Esto permite evaluar F_N de inmediato:

$$F_N \cos \alpha = mg$$
.

Al diagrama de cuerpo libre de la cuña hay que agregar una fuerza de roce f_r horizontal (apuntando hacia la izquierda). Que la suma de las fuerzas horizontales sobre la cuña sean nulas nos da la relación

$$F_N \sin \alpha = f_r$$
,

o sea,

$$mg \tan \alpha = f_r$$

Por otra parte, la fuerza de roce debe satisfacer la relación

$$f_r \le \mu_e F_p = \mu_e (Mg + F_N \cos \alpha) = \mu_e (M + m)g.$$

De las relaciones anteriores se desprende que

$$mg \tan \alpha = \mu_e^{\min} \left(M + m \right) g$$

o sea,

$$\mu_e^{\min} = \frac{m}{m+M} \tan \alpha$$

Solución al problema 24

Del hecho que la velocidad angular es constante y las masas $1 \ge 2$ siguen trayectorias circulares, se deduce que la fuerza neta que actúa sobre ellas es

$$\vec{F_1} = -m\omega_0^2 \ (R+L) \ \hat{r}$$

у

$$\vec{F}_2 = -m\omega_0^2 R \hat{r} ,$$

respectivamente. Aquí m es la masa de cada una de partículas y \hat{r} es un vector unitario que apunta en la dirección radial.

La única fuerza radial real que actúa sobre la masa 1 es la que ejerce la cuerda, luego

$$\tau = m\,\omega_0^2\,(R+L)\,,$$

donde τ es la tensión de la cuerda.

Sobre la partícula 2 actúan dos fuerzas radiales: la tensión de la cuerda $\tau \hat{r}$ y la fuerza de roce $-f_r \hat{r}$. Se tiene

$$\tau - f_r = -m\omega_0^2 R$$

o sea,

$$f_r = \tau + m\omega_0^2 R = m\omega_0^2 (2R + L)$$

Para que las masas no se deslicen la fuerza de roce debe satisfacer la desigualdad $f_r \leq \mu_e mg$. De las dos últimas ecuaciones se deduce que

$$m\omega_0^2 (2R+L) \le \mu_e mg \; .$$

La velocidad angular límite a partir de la cual las masas comienzan a deslizarse es, por lo tanto,

$$\omega_0 = \sqrt{\frac{\mu_e g}{2R+L}} \; .$$

Solución al problema 26

Sea M la masa, a la aceleración y t_* el tiempo que tardan las partículas de Cs⁺ en atravesar el condensador. La carga de cada ión de cesio es q = -e, donde $e = -1, 60 \cdot 10^{-19}$ [C] es la carga de un electrón (ver problema 25). Durante el proceso de aceleración, la fuerza que actúa sobre cada ión es $F = qE_0$. Usando la segunda ley de Newton se obtiene que $qE_0 =$ Ma. La aceleración del átomo de cesio (mientras se mueve al interior del condensador) es, por lo tanto, $a = q/(ME_0)$. El movimiento es uniformemente acelerado.

Durante el intervalo de tiempo $[0, t_*]$ el ión alcanza a recorrer una distancia

$$s_1 = \frac{1}{2}at_*^2 = 0,33$$
 cm,

siendo la velocidad con que emerge del condensador $v_1 = at_*$. A continuación los iones de cesio atraviesan con esa velocidad constante una región de ancho $s_2 = 0, 1$ cm, tardando para ello un tiempo $\Delta t = 87 \cdot 10^{-9}$ s. Se tiene que

$$v_1 \,\Delta t = a t_* \,\Delta t = s_2 \;,$$

o sea

$$t_* = \frac{s_2}{a\Delta t} \; .$$

Por otra parte

$$t_*^2 = \frac{2s_1}{a} \; .$$

Eliminando t_* de las dos últimas ecuaciones se encuentra

$$a = \frac{s_2^2}{2s_1(\Delta t)^2} \; .$$

Igualando las dos expresiones que tenemos para la aceleración podemos despejar M (la masa de cada ión de cesio):

$$M = \frac{2|e|E_0 s_1(\Delta t)^2}{s_2^2} = 2, 4 \cdot 10^{-25} \text{ Kg}.$$

Cada ión de Cs⁺ está formado por 58 protones, 84 neutrones y 57 electrones. La masa de los electrones es despreciable frente al de los protones y neutrones y por consiguiente, lo ignoraremos. La masa de un neutrón es muy parecida a la de un protón y, en primera aproximación, podemos suponer que son iguales. En lo que a masa respecta, el ión de cesio lo podemos pensar como un aglomerado de 58+84=142 nucleones. (Nucleones es el nombre genérico que se le da a los protones y neutrones). Dividiendo la masa del ión de cesio por 142 se encuentra que la masa de un nucleón es aproximadamente $1,69 \cdot 10^{-27}$ Kg, valor que difiere en ~ 1% del valor medido usando otros métodos.

Al acelerar deuterones (un protón + un neutrón) en lugar de iones de cesio, sólo cambia la masa ya que, igual que en el caso del cesio, la carga neta del deuterón es +|e| (o sea, la fuerza que actúa sobre la partícula acelerada en ambos casos es la misma). El tiempo de travesía Δt es proporcional a \sqrt{M} luego, al usar deuterones en lugar de iones de cesio, el tiempo de travesía será

$$\Delta t_d = \Delta t_{Cs} \sqrt{\frac{142}{2}} \simeq 10^{-8} \ s$$

El dispositivo experimental no es capaz de distinguir entre deuterones y partículas α . La partícula α (2 protones + 2 neutrones) tiene el doble de la masa del deuterón y también el doble de la carga neta. Estas dos modificaciones se cancelen en cuanto a la aceleración respecta, siendo por consiguiente ambas iguales.

Solución al problema 27

La fuerza que actúa sobre la carga (ver problema 25) es

$$\vec{F}(t) = q\vec{E}(t) = E_0 \sin(\omega t) \hat{x}$$
.

Usando la segunda ley de Newton obtenemos las ecuaciones de movimiento:

$$m\ddot{x}(t) = qE_0\sin(\omega t)$$

 $m\ddot{y}(t) = 0$

 $m \ddot{z}(t) = 0.$

у

De las dos últimas, usando las condiciones iniciales se deduce que

$$y(t) = z(t) = 0 \quad \forall t \; ,$$

o sea, el movimiento sólo ocurre a lo largo del eje x.

Integremos la primera ecuación de movimiento. Se tiene

$$\dot{x}(t) = \dot{x}(0) + \int_0^t \frac{qE_0}{m} \sin(\omega t) dt$$
$$= 0 - \frac{qE_0}{m\omega} \cos(\omega t) \Big|_0^t$$
$$= \frac{qE_0}{m\omega} (1 - \cos(\omega t)) .$$

La posición de la carga en función del tiempo se obtiene integrando la última ecuación:

$$\begin{aligned} x(t) &= x_0 + \frac{qE_0}{m\omega} \int_0^t (1 - \cos(\omega t)) dt \\ &= 0 + \frac{qE_0}{m\omega} \left(t - \frac{1}{\omega} \sin(\omega t) \right) \Big|_0^t \\ &= \frac{qE_0}{m\omega^2} \left(\omega t - \sin(\omega t) \right) \,. \end{aligned}$$

Figura 4.44

La figura 4.44 muestra un gráfico de la fuerza, la velocidad y la posición de la carga en función del tiempo.

Solución al problema 32

De acuerdo con el enunciado, si la rapidez del coche es $v_0 = 80$ km/h, no actuará ninguna fuerza de roce. Como la trayectoria del automóvil es circular, se tiene que el movimiento es acelerado y, por lo tanto, sobre el coche actúa una fuerza neta hacia el centro de giro 0 (la fuerza centrípeta):

$$\vec{F_c} = -\frac{mv_0^2}{R}\,\hat{r} \; .$$

Figura 4.45

Las fuerzas "reales" que actúan sobre el auto (y cuya suma dan origen a la fuerza centrípeta) son la fuerza de gravedad

$$\vec{F}_q = -mg\,\hat{z}$$

y la fuerza normal que la carretera ejerce sobre el coche:

$$\vec{F}_N = F_N \cos \theta \ \hat{z} - F_N \sin \theta \ \hat{r}$$
.

Por supesto que

$$\vec{F}_c = \vec{F}_g + \vec{F}_N \; ,$$

o sea,

$$-\frac{mv_0^2}{R}\,\hat{r} = -mg\,\hat{z} + F_N\,\cos\theta\,\,\hat{z} - F_N\,\sin\theta\,\,\hat{r}\,\,.$$

Igualando las componentes se deduce que

$$F_N \cos \theta = mg$$

у

$$F_N \sin \theta = \frac{m v_0^2}{R} \; .$$

Tomando el cuociente entre estas ecuaciones se encuentra una expresión que nos permite encontrar el ángulo del peralte de la cerretera θ :

$$\tan \theta = \frac{v_0^2}{Rg}.$$

Sea v_1 la máxima velocidad que el automóvil puede tener sin que se deslize lateralmente por la carretera. Si el automóvil avanza von rapidez v_1 , entonces además de la fuerza de gravedad y la fuerza normal, actuará también una fuerza de roce estática $\vec{F_r}$:

$$\vec{F}_r = -F_r \cos \theta \, \hat{r} - F_r \sin \theta \, \hat{z}$$

Cuando el automóvil avanza con velocidad máxima v_1 , el valor de la fuerza de roce tomará el valor máximo posible $F_r = \mu_e F_N$. (observe que el coeficiente de roce que debe usarse es el estático y no el cinemático). Se tiene

$$\vec{F}_c = -\frac{mv_1^2}{R}\,\hat{r} = -mg\hat{z} + F_N\,\cos\theta\,\hat{z} - F_N\,\sin\theta\,\hat{r} - F_r\,\cos\theta\,\hat{r} - F_r\,\sin\theta\,\hat{z} \;,$$

o sea

$$-\frac{mv_1^2}{R} = -F_N \,\sin\theta - F_r \,\cos\theta$$

у

$$0 = -mg + F_N \cos\theta - F_r \sin\theta$$

Con $F_r = \mu_e F_N$ se encuentra

$$\frac{mv_1^2}{R} = F_N \left(\sin\theta + \mu_e \,\cos\theta\right)$$

у

$$mg = F_N \left(\cos \theta - \mu_e \sin \theta\right)$$

Eliminando F_N y despajando v_1 de las dos últimas ecuaciones se obtiende finalmente

$$v_1^2 = Rg\left(\frac{v_0^2 + Rg\mu_e}{Rg - \mu_e v_0^2}\right)$$

Este resultado es válido mientras $Rg > \mu_e v_0^2$. Cuando $Rg < \mu_e v_0^2$, el coche nunca se deslizará lateralmente hacia afuera y la velocidad máxima a la que se puede transitar por la carretera, en ese caso, es infinita.

Sea v_2 la mínima velocidad con que se puede transitar sobre la carretera sin deslizarse lateralmente hacia el interior. El análisis en este caso es análogo al anterior, excepto que la fuerza de roce estática ahora actúa en la dirección opuesta. Para v_2 se encuentra

$$v_2^2 = Rg\left(\frac{v_0^2 - Rg\mu_e}{Rg + \mu_e v_0^2}\right)$$

Este resultado es válido mientras $Rg\mu_e < v_0^2$. Cuando $Rg\mu_e > v_0^2$, el coche nunca se deslizará lateralmente hacia el interior, pudiendo permanecer incluso en reposo (siendo, en ese caso, $v_2 = 0$).

Para los valores numéricos del enunciado las velocidades máxima y mínima con que se puede transitar por la carretera son $v_1 = 123 \text{ km/h}$ y $v_2 = 59 \text{ km/h}$.

Solución al problema 39

Sea v_* la velocidad terminal que un cuerpo adquiere al caer en la atmósfera. Al caer con la velocidad terminal el cuerpo se moverá con velocidad constante. O sea, la aceleración y la

fuerza neta sobre el cuerpo deben ser nulas. Las únicas fuerzas que actúan sobre el cuerpo son la fuerza de gravedad $\vec{F_g} = -mg\hat{z}$ y la fuerza de roce $\vec{F_{roce}} = -kv_* \vec{v}_* = kv_*^2 \hat{z}$. Se tiene

$$\vec{F}_g + \vec{F}_{roce} = -mg\hat{z} + kv_*^2\,\hat{z} = 0$$
,

o sea,

$$v_* = \sqrt{\frac{mg}{k}}$$

Solución al problema 41

Denotemos por $\vec{a} = -a \hat{z}$ la aceleración del bloque m. Las fuerzas verticales sobre el bloque m nos dan la ecuación de movimiento

$$-mg+2F_N\cos\theta+2F_r\sin\theta=-ma$$
.

Como los bloques están en movimiento relativo, la fuerza de roce es de origen cinemático y se tiene que

$$F_r = \mu F_N$$
.

Figura 4.46

La fuerza que el bloque *m* ejerce sobre la cuña viene dada por $-\vec{F}_N - \vec{F}_r$. La componente horizontal de esta fuerza nos entrega la ecuación de movimiento

$$-F_r \cos \theta + F_N \sin \theta = Mb$$

donde b es la magnitud de la aceleración de las cuñas. Las dos aceleraciones no son independientes sino que están relacionadas por

$$\frac{a}{b} = \tan \theta \; .$$

Tenemos cuatro ecuaciones con cuatro incógnitas. Despejando la aceleración a obtenemos

$$a = g \left(1 + 2\frac{M}{m} \cdot \frac{\cos\theta}{\sin\theta} \cdot \frac{\cos\theta + \mu\sin\theta}{\sin\theta - \mu\cos\theta} \right)^{-1}$$

Para $\mu = \tan \theta$, la aceleración es nula.

Solución al problema 42

Durante el primer tramo de largo D la partícula acelera uniformemente y después desacelera uniformemente quedando en reposo después de recorrer otro tramo de largo D. Es evidente que la aceleración durante el segundo tramo debe tener la misma magnitud que en el

primero, siendo el signo el opuesto. En otras palabras, la fuerza neta F_1 que actúa sobre la masa en el tramo 1 debe ser la opuesta de la fuerza neta en el tramo 2, F_2 .

En el primer tramo la única fuerza a lo largo del plano inclinado es la componente en esa dirección del peso, esto es, $F_1 = mg \sin \theta$.

En el segundo tramo aparece adicionalmente la fuerza de roc
e $f_r.$ Esta, para dar una fuerza neta $F_2=-F_1$ de
be ser

$$f_r = -2 F_1 = -2mg\sin\theta \; .$$

Por otra parte, la fuerza de roce (cinemática) es

$$f_r = -\mu_c \, mg \cos\theta$$

Igualando las dos expresiones para f_r y despejando μ_c se obtiene, finalmente,

$$\mu = 2 \tan \theta$$
.

Capítulo 5

Trabajo y Energía

5.1. Trabajo y energía para movimientos en una dimensión

Consideremos una partícula de masa m, restringida a moverse a lo largo del eje \hat{z} , siendo $z(t) \neq v(t)$ la posición y velocidad de la partícula a medida que transcurre el tiempo. En particular, sean $z_i \neq v_i$ la posición y velocidad de la partícula en el instante t_i , y $z_f \neq v_f$ la las mismas magnitudes en el instante t_f . Supongamos además que, a medida que la partícula se traslada, ejercemos sobre ella una fuerza F(z), fuerza que podría depender de la posición z.

Analicemos varios casos:

a) Si la partícula, excepto por la fuerza que le estamos aplicando, es libre, entonces acelerará. Si la fuerza $F(z) = F_0$ es constante (es decir, no depende de la posición), entonces la aceleración también lo será, teniéndose $F_0 = ma_0$. De acuerdo a la cinemática de un objeto uniformemente acelerado, en el intervalo de tiempo $[t, t + \Delta t]$, la posición y velocidad de la partícula cambiarán de acuerdo a las relaciones

$$\Delta z = z(t + \Delta t) - z(t) = v(t) \Delta t + \frac{1}{2}a_0 (\Delta t)^2$$

у

$$\Delta v = v(t + \Delta t) - v(t) = a_0 \,\Delta t \;.$$

Multipliquemos ahora la primera ecuación por F_0 , y usemos, consecutivamente, la segunda ley de Newton y la segunda ecuación. De esta manera se obtiene

$$F_0 \Delta z = F_0 v(t) \Delta t + \frac{1}{2} F_0 a_0 (\Delta t)^2$$

= $m a_0 v(t) \Delta t + \frac{1}{2} m (a_0 \Delta t)^2$
= $m v(t) [v(t + \Delta t) - v(t)] + \frac{1}{2} m [v(t + \Delta t) - v(t)]^2$
= $\frac{1}{2} m v^2 (t + \Delta t) - \frac{1}{2} m v^2 (t)$.

Las ecuaciones anteriores son válidas para cualquier Δt , en particular para $t = t_i$ y $t + \Delta t = t_f$, en cuyo caso

$$F_0 \cdot (z_f - z_i) = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \; .$$

La combinación $\frac{1}{2}mv^2$ aparece en la mecánica con mucha frecuencia, siendo útil bautizarla y designarla con un símbolo: se le llama *energía cinética* y se suele denotar con la letra K o T. La última ecuación nos indica que el cambio de energía cinética de una partícula libre (excepto por la fuerza que se le está aplicando) es igual al producto de esa fuerza y el desplazamiento que realiza. A este producto (entre la fuerza y el desplazamiento) se le llama *trabajo*; para denotarlo es usual usar la letra W. O sea, tenemos

$$W_{z_i \longrightarrow z_f} = K_f - K_i$$
.

b) Si la fuerza no es constante, entonces subdividamos la trayectoria de la partícula en N intervalos de tamaño Δz . Denotemos las distintas posiciones por z_1, z_2, z_3, \ldots , z_N, z_{N+1} , siendo $z_i = z_1$ y $z_f = z_{N+1}$. Si en cada intervalo j la fuerza se mantiene relativamente constante, podemos usar el resultado de la parte a), o sea,

$$W_{z_j \to z_{j+1}} = F(z_j) \cdot (z_{j+1} - z_j) = F(z_j) \cdot \Delta z = K_{j+1} - K_j.$$

Sumando la contribución de todos los intervalos se obtiene

$$\sum_{j=1}^{N} F(z_j) \cdot \Delta z = (K_2 - K_1) + (K_3 - K_2) + (K_4 - K_3) + \dots + (K_{N+1} - K_N)$$
$$= K_{N+1} - K_1 ,$$

o sea,

$$W_{z_i \longrightarrow z_f} = \sum_{j=1}^N F(z_j) \cdot \Delta z = K_f - K_i$$

La expresión anterior es exacta en el límite $N \longrightarrow \infty$, de modo que el tamaño de los intervalos Δz se torna infinitesimalmente pequeño (en cuyo caso se denota por dz). En ese límite la sumatoria se remplaza por una "S" estilizada (llamada *integral*), teniéndose

$$W_{z_i \longrightarrow z_f} = \int_i^f F(z) \cdot dz = K_f - K_i$$

c) Supongamos ahora que la partícula no es libre, sino que está inmersa en un campo gravitacional constante $\vec{g} = -g\hat{z}$. Levantemos la partícula desde z_i hasta z_f , partiendo desde el reposo y volviendo a dejarla en reposo. Elevamos la partícula aplicando una fuerza de manera que ésta suba con una velocidad constante. Mientras la partícula va subiendo, su aceleración es nula, luego también la fuerza neta que actúa sobre ella. De lo anterior se desprende que la fuerza que debemos ejercer para elevar la partícula es F(z) = +mg. El trabajo que nosotros realizamos es, por lo tanto,

$$W_{z_i \longrightarrow z_f} = +mg \cdot (z_f - z_i)$$
.

En este caso, el trabajo realizado por nosotros sobre la partícula no se manifiesta en un cambio de su energía cinética. Lo que cambia es la "potencialidad" de la partícula para realizar trabajo o de adquirir energía cinética.

En efecto, al dejar caer la partícula sin restricciones desde z_f hasta z_i , adquirirá una velocidad que, de acuerdo a las ecuaciones de la cinemática de la caída libre, es $v_f = \sqrt{2g(z_f - z_i)}$. Para esta velocidad, la energía cinética es

$$K = \frac{1}{2}mv_f^2 = \frac{1}{2}m \cdot 2g(z_f - z_i) = mgz_f - mgz_i ,$$

resultado que coincide con el obtenido mas arriba.

Otra forma en que puede manifestarse esta "potencialidad" de la partícula consiste en hacer que ella realice trabajo, por ejemplo, permitiendo que ella "baje" al punto inicial z_i de manera que, por medio de un sistema de poleas, eleve otra masa.

De acuerdo a lo desarrollado más arriba, también en este ejemplo podemos expresar el trabajo $W_{z_i \longrightarrow z_f}$ como una diferencia de cierta magnitud evaluada en el punto final menos la misma magnitud evaluada en el punto de partida:

$$W_{z_i \longrightarrow z_f} = U(z_f) - U(z_i)$$
,

donde la energía potencial para la partícula m en el campo gravitacional constante $\vec{g} = -g\hat{z}$, viene dada por

$$U(z) = U_0 + mgz .$$

 U_0 es una constante y corresponde a la energía potencial de la partícula cuando ésta se encuentra en z = 0. En la mecánica clásica el valor de U_0 no tiene mayor importancia, ya que lo único relevante resultan ser diferencias de energía potencial entre dos puntos. Esto permite elegir $U_0 = 0$, si eso resulta conveniente y simplifica las ecuaciones.

Resumiendo: En el presente ejemplo, al elevar la masa en presencia de un campo gravitacional (y sin modificar su energía cinética), el trabajo realizado se transforma en un cambio de *energía potencial*. La energía potencial se designa usualmente con la letra U o V.

d) Consideremos un resorte de constante de restitución k, acostado sobre una superficie horizontal sin roce y con un extremo empotrado en una pared (ver figura 5.1). Supongamos además que el sistema inicialmente se encuentra en reposo, con el resorte teniendo su largo natural.

Figura 5.1

Evaluemos el trabajo que debemos realizar para alargar (lentamente) el resorte en una magnitud x_0 . La fuerza que debemos aplicar para lograr nuestro objetivo ahora no es constante, sino que aumenta a medida que el resorte se estira:

$$\vec{F}(x) = kx \ \hat{x}$$

(Esta fuerza es la opuesta a la que el resorte ejerce sobre la masa, que, de acuerdo a la Ley de Hooke, es $-kx\hat{x}$). El trabajo que debemos realizar para alargar el resorte, desde x = 0 hasta $x = x_0$, viene dado por

$$W_{0 \longrightarrow x_{0}} = \int_{x=0}^{x=x_{0}} F(x) \cdot dx = \int_{0}^{x_{0}} kx \, dx = k \int_{0}^{x_{0}} x \, dx \quad .$$

Ya sabemos que la integral $\int f(x) dx$ no es otra cosa que el área bajo la curva del gráfico de la función f(x). Para el presente caso, la función corresponde a una recta que pasa por el origen (ver figura 5.2), siendo el área bajo la curva $\frac{1}{2}x_0^2$.

Luego, el trabajo que debe realizarse para expandir el resorte hasta x_0 es

$$W_{0\longrightarrow x_0} = \frac{1}{2} k x_0^2$$

(Se obtiene el mismo resultado si, en lugar de alargarlo, el resorte se comprime en una magnitud x_0).

También en este ejemplo, el trabajo realizado por nosotros sobre la partícula no se manifiesta en un cambio de su energía cinética, sino lo que cambia es el estado del sistema. En el nuevo estado, el sistema tiene la "potencialidad" (al permitir que el resorte vuelva a su largo natural) de realizar trabajo, o de entregarle a la partícula adosada al resorte una energía cinética.

Si la energía potencial de un resorte la definimos por

$$U(x) = U_0 + \frac{1}{2}kx^2 ,$$

donde x = 0 corresponde a la posición de equilibrio del resorte y x es la magnitud en que éste se comprime o se alarga, entonces nuevamente

$$W_{0\longrightarrow z_0} = U(z_0) - U(0) \quad .$$

(La constante aditiva U_0 en la expresión para la energía potencial nuevamente no aparece en el resultado final; la podríamos haber elegido igual a cero.) La figura 5.3 muestra el gráfico U(x) correspondiente a la energía potencial de un resorte.

Figura 5.3

e) Consideremos ahora una partícula que se mueve a lo largo de una recta (el eje \hat{x}) sobre una mesa y supongamos que, además de la fuerza que nosotros ejercemos sobre ella, la única otra fuerza se debe al roce (cinético). La fuerza de roce es $f_r = mg\mu_c$ (pero note que ésta aparece sólo cuando la partícula se está moviendo y observe además que la dirección en que apunta siempre es contraria a la dirección de movimiento). El trabajo que debemos realizar para empujar la partícula, partiendo desde el reposo desde x_i , hasta x_f (donde nuevamente la dejamos en reposo), es

$$W = f_r \cdot (x_f - x_i) = (mg\mu_c) \cdot (x_f - x_i) \quad .$$

En este caso, sin embargo, el trabajo que realizamos no se manifiesta en un cambio de algo que podríamos denominar energía potencial.

Hay dos problemas que aparecen cuando hay roce y que hace que la situación sea distinta que en los dos últimos casos:

- i) En primer lugar, el trabajo que debe hacerse para llevar la partícula desde x_i hasta x_f , cuando hay roce, depende del "camino" que uno elija para ello y, por lo tanto, el trabajo no se puede escribir como una magnitud que sólo dependa del punto inicial y final. En efecto, supongamos que x_f está a la derecha de x_i . Ya vimos que, al llevar la partícula directamente desde x_i a x_f , el trabajo que debemos realizar es $W = mg\mu_c \cdot (x_f x_i)$. Pero si antes la empujamos hacia la izquierda en una distancia L, y recién desde ahí la empujamos al punto final x_f , el trabajo sería $W = mg\mu_c \cdot (2L + x_f x_i)$. O sea, el trabajo no sólo depende del punto inicial y final sinó que también del camino.
- ii) Otra característica del trabajo que se hace contra el roce es que éste no es recuperable como energía mecánica sin una máquina térmica. Mas aún, en caso de tener una, la recuperación del trabajo realizado sólo es parcial. El trabajo realizado por nosotros contra la fuerza de roce se transforma y se disipa como calor.

Los ejemplos unidimensionales anteriores sugieren lo siguiente:

Definición: El trabajo realizado por una fuerza F(z) que actúa sobre alguna partícula es

$$W = \sum_{j} F(z_{j}) \cdot (z_{j+1} - z_{j}) = \int F(z) \, dz \; \; ,$$

donde la suma (o integral) se realiza a lo largo de la trayectoria que recorre la partícula.

El trabajo W que se entrega a un sistema, cuando no hay roce, se manifiesta en un cambio de la energía del sistema. Hasta el momento hemos identificado las siguientes formas de energía:

a) Energía cinética de una partícula de masa m. Esta viene dada por

$$K = \frac{1}{2}mv^2$$

y se debe al movimiento de la partícula. Cuando la partícula está en reposo, su energía cinética es cero.

- b) Energía potencial. Esta es una energía que se debe a la posición de la partícula. La energía potencial sólo aparece cuando la partícula no es libre, sino que está sometida a un *campo de fuerzas*. La expresión para la energía potencial depende del campo de fuerzas. Hasta el momento hemos analizado dos casos:
 - i) Campo gravitacional uniforme, $\vec{F}(z)=m\vec{g}=-mg\hat{z},$ en cuyo caso la energía potencial es

$$U(z) = mg \cdot (z - z_0) ,$$

donde z_0 es un lugar que arbitrariamente hemos fijado como el cero de la energía potencial.

ii) Campo de fuerzas de un resorte, $\vec{F}(x) = -kx\hat{x}$, en cuyo caso la energía potencial es

$$U(x) = \frac{1}{2}kx^2$$

Cuando hay roce, parte (o toda) la energía entregada al sistema (por medio del trabajo), puede disiparse. Esta energía se manifiesta en un aumento de la temperatura de las superficies que rozan entre sí. En este caso, el trabajo W se transforma en calor Q.

Conservación de la energía:

Al entregarle a una partícula un trabajo W, entonces

$$W = (K_f - K_i) + (U_f - U_i) + Q , \qquad (5.1)$$

o sea, el cambio de la energía cinética, más el cambio de la energía potencial, más la energía disipada como calor es igual al trabajo (energía) aplicado al sistema.

La ecuación de conservación de la energía hay que manejarla con precaución, pues no se puede estar seguro de que uno haya identificado todas las posibles formas de energía. De hecho, a medida que avancemos en el estudio de la física, en varias oportunidades nos veremos forzados a reinterpretar esa ecuación o agregarle términos adicionales.

La ecuación (5.1) también se puede reescribir de la siguiente manera:

$$K_f + U_f = K_i + U_i + W - Q$$

A la suma K + U suele llamarse *energía mecánica* y denotarse con la letra E.

5.2. Trabajo para un movimiento en tres dimensiones

Consideremos ahora una partícula libre de masa m que se mueve en el espacio tridimensional y cuya posición y velocidad en el instante $t \operatorname{son} \vec{r} \operatorname{y} \vec{v}$, respectivamente. Apliquemos sobre esa partícula, durante un intervalo de tiempo infinitesimal dt, una fuerza \vec{F} .

De acuerdo a la segunda ley de Newton,

$$\vec{F} = m\vec{a}$$

Durante el intervalo de tiempo infinitesimal dt, la partícula se desplaza una distancia

$$d\vec{r} = \vec{v} dt$$

Haciendo el producto punto de los vectores que aparecen en las dos últimas ecuaciones, se obtiene

$$\vec{F} \cdot d\vec{r} = m\vec{v} \cdot \vec{a} \, dt$$

Evaluemos la velocidad al cuadrado en el instante t + dt. Se tiene

$$\begin{aligned} v^2(t+dt) &= \vec{v}(t+dt) \cdot \vec{v}(t+dt) \\ &= (\vec{v}(t) + \vec{a}(t) \, dt) \cdot (\vec{v}(t) + \vec{a}(t) \, dt) \\ &= \vec{v}(t) \cdot \vec{v}(t) + \vec{v}(t) \cdot \vec{a}(t) \, dt + \vec{a}(t) \cdot \vec{v}(t) + \vec{a}(t) \cdot \vec{a}(t) \, (dt)^2 \\ &= v^2(t) + 2\vec{v}(t) \cdot \vec{a}(t) \, dt + (\text{términos del orden de } (dt)^2) , \end{aligned}$$

o sea,

$$\vec{v}(t) \cdot \vec{a}(t) dt = \frac{1}{2}v^2(t+dt) - \frac{1}{2}v^2(t)$$
 .

Con este resultado y la expresión deducida más arriba, obtenemos que

$$\vec{F} \cdot d\vec{r} = \frac{1}{2}mv^2(t+dt) - \frac{1}{2}mv^2(t)$$
.

La última ecuación nos indica que el cambio de energía cinética de una partícula sobre la cual actúa una fuerza durante el intervalo de tiempo [t, t + dt] (pero por lo demás es libre), es igual al producto punto de esa fuerza y el desplazamiento realizado por la partícula en ese mismo intervalo. Lo anterior sugiere definir el *trabajo*, en el caso tridimensional, como el producto punto del vector fuerza y el vector desplazamiento.

Si el movimiento no ocurre durante un intervalo de tiempo infinitesimal, sino entre dos instantes t_i y t_f , podemos usar la ecuación anterior siempre que el intervalo se divida en muchos intervalos pequeños y luego se sumen los trabajos y los cambios en la energía cinética de cada uno de los intervalos. De esta manera se obtiene

$$W = \int_{i}^{f} \vec{F}(\vec{r}) \cdot d\vec{r} = \frac{1}{2}mv^{2}(t_{f}) - \frac{1}{2}mv^{2}(t_{i}) \quad .$$

Este resultado es el análogo tridimensional de la situación considerada en la sección anterior, en las partes a) y b), para el movimiento unidimensional.

Definición: El trabajo realizado por una fuerza $\vec{F}(\vec{r})$ que actúa sobre alguna partícula viene dado por

$$W = \int \vec{F}(\vec{r}) \, \cdot \, d\vec{r}$$

donde la integral se evalúa a lo largo del camino recorrido por la partícula.

Volvamos a analizar el concepto *energía* potencial para una partícula inmersa en un campo gravitatorio uniforme. Consideremos un objeto de masa m, en un campo gravitatorio constante $\vec{g} = -g\hat{z}$ (el eje \hat{z} apuntando hacia arriba), y evaluemos el trabajo que debemos realizar para trasladarlo (lentamente) desde el origen hasta el punto P: (x_0, z_0) (ver figura 5.4).

Figura 5.4

Para llevar a cabo nuestro cometido podemos usar distintos caminos. Supongamos que usamos el camino Γ_1 , o sea, primero elevamos el objeto desde z = 0 hasta $z = z_0$ y luego lo trasladamos hacia el lado, hasta llegar al punto P. Durante el primer tramo la fuerza que debemos realizar para elevar el objeto (con velocidad uniforme) es $\vec{F} = mg\hat{z}$, siendo el desplazamiento también a lo largo del eje \hat{z} , es decir, $d\vec{r} = dz \hat{z}$. Luego, para este primer tramo, el trabajo que debemos realizar es

$$W_{0\to Q} = \int_{z=0}^{z=z_0} mg \ dz = mg \int_{z=0}^{z=z_0} dz = mg \ z_0 \ .$$

Para el segundo tramo la fuerza sigue siendo $\vec{F} = mg\hat{z}$; el desplazamiento, sin embargo, ahora es a lo largo del eje \hat{x} , es decir, $d\vec{r} = dx \hat{x}$. El producto punto entre la fuerza y el desplazamiento es cero (por ser uno ortogonal al otro). Luego, para trasladar el objeto desde Q a P no se requiere realizar ningún trabajo. Concluimos que el trabajo total, a lo largo del camino Γ_1 , es

$$W_{\Gamma_1} = \int_{\Gamma_1} \vec{F}(\vec{r}) \cdot d\vec{r} = mgz_0$$
.

Evaluemos ahora el trabajo que debemos realizar para llevar el mismo objeto desde el origen al punto P a lo largo del camino Γ_2 . La fuerza que debemos aplicar sigue siendo $\vec{F} = mg\hat{z}$; el desplazamiento, sin embargo, es a lo largo de la dirección del vector unitario \hat{s} , o sea, $d\vec{r} = ds \hat{s}$. Luego se tiene que

$$\vec{F} \cdot d\vec{r} = (mg \ \hat{z}) \cdot (ds \ \hat{s}) = mg \sin \alpha \ ds$$

Concluimos que el trabajo total, a lo largo del camino Γ_2 , viene dado por

$$W_{\Gamma_2} = \int_{\Gamma_1} \vec{F}(\vec{r}) \cdot d\vec{r} = mg(\sin\alpha) \int_{\Gamma_2} ds = mgL\sin\alpha \ ,$$

donde L es el largo del camino. Pero $L\sin\alpha = z_0$, luego los trabajos a lo largo del los caminos Γ_1 y Γ_2 son iguales.

No es difícil demostrar que también el trabajo que se debe realizar para llevar el objeto desde el origen al punto P a lo largo del camino Γ_3 es igual a mgz_0 . En efecto, para trasladar el objeto a lo largo de tramos horizontales no se requiere hacer trabajo, mientras que para los tramos verticales el trabajo siempre es mgh, donde h es la diferencia de altura del tramo vertical.

Eligiendo el cero de la energía potencial de la partícula cuando ésta se encuentra en el origen, su energía potencial cuando se encuentre a una altura z será

$$U(x,z) = mgz$$
,

siendo ésta independiente del valor x.

Cuando un *campo de fuerza* tiene la propiedad de que el trabajo realizado para llevar (lentamente) una partícula entre dos puntos cualesquiera, es independiente del camino usado para unir tales puntos, entonces el campo de fuerzas se dice que es *conservativo*. El campo gravitacional es un ejemplo de un campo conservativo.

La fuerza de roce es un ejemplo de una fuerza no conservativa. Al empujar un cajón de masa M por el suelo de una habitación de un lugar a otro, el trabajo realizado será proporcional al largo L del camino que para ello se elige, siendo $W = \mu_c MgL$. Al no ser el roce una fuerza conservativa, no se puede introducir una energía potencial para esta fuerza (ya que no existe una función que sólo dependa de los puntos final e inicial, y cuya diferencia sea igual al trabajo). El trabajo que se realiza contra la fuerza de roce se transforma en calor. La reconversión de energía calórica a energía mecánica puede hacerse sólo recurriendo a alguna máquina y, aun así, no en forma completa.

Unidades

En el sistema internacional de unidades SI, la unidad del trabajo (o, lo que es lo mismo, de la energía) es el *Joule*, que se abrevia como [J]:

$$1 \text{ Joule} = 1 \text{ Newton} \cdot \text{metro}$$

o sea,

$$1 J = 1 N \cdot m = 1 \frac{\text{kg m}^2}{s^2}$$
.

Al trabajo por unidad de tiempo se denomina potencia. En el sistema SI, la unidad de la potencia se denomina watt [W] y corresponde a 1 Joule por segundo, es decir,

$$1 \ \mathrm{W} = 1 \frac{\mathrm{J}}{\mathrm{s}} \ .$$

Ejemplo: Considere un motor eléctrico de 0.4 KW (esto corresponde a aproximadamente al motor de una juguera). ¿Cuánto tiempo tardaría tal motor, mediante un sistema de poleas, en levantar un automóvil de 600 kg en un metro?

Solución: El trabajo requerido para levantar el automóvil es

$$W = m g h = 600 \cdot 9.81 \cdot 1 \frac{\text{kg m}^2}{\text{s}^2} \sim 6000 \text{ J}$$

El motor es capaz de entregar 400 J por segundo (estamos suponiendo una eficiencia de un 100%), luego, para realizar un trabajo de 6000 J tardará 6000/400 = 15 s.

5.3. Ejemplos

A continuación ilustremos los conceptos anteriores aplicándolos en algunos problemas concretos.

Ejemplo 1

Considere un bloque de masa M que incide con velocidad v_0 sobre un resorte (ver figura 5.5) y lo comprime. ¿Cuál será la máxima compresión que en algún instante llega a tener el resorte?

El bloque, al comprimir el resorte, realiza trabajo. Este trabajo, que se transforma en energía potencial del resorte, lo hace a costa de su energía cinética. La máxima compresión se logra cuando el bloque llega a estar en reposo. En ese caso, toda la energía cinética se habrá transformado en energía potencial, o sea,

$$\frac{1}{2}Mv_0^2 = \frac{1}{2}kx_0^2$$

En la ecuación anterior, x_0 es la máxima compresión que llega a tener el resorte. Despejando x_0 se encuentra que

$$x_0 = \sqrt{\frac{M}{k}} v_0$$

Ejemplo 2

Un bloque de masa m resbala por un plano inclinado, partiendo del reposo desde una altura h. Sea α el ángulo de elevación y μ el coeficiente de roce cinemático entre el bloque y el plano. ¿Con qué velocidad llegará el bloque al pie del plano inclinado?

Inicialmente el bloque tiene sólo una energía potencial U = mgh (el cero de la energía potencial lo hemos elegido en la base del plano inclinado). Al llegar el bloque abajo, éste tiene sólo energía cinética $K = mv_f^2/2$. Usando el principio de conservación de la energía

se tiene que la energía cinética final debe ser igual a la energía potencial inicial menos la energía disipada por el roce. Esta última es $Q = \mu m g (\cos \alpha) L = \mu m g h / \tan \alpha$. Se tiene

$$\frac{1}{2}mv_f^2 = mgh - \mu mgh/\tan\alpha \ ,$$

o sea,

$$v_f^2 = 2gh\left(1 - \frac{\mu}{\tan\alpha}\right)$$
 .

La ecuación anterior es válida si $\mu \leq \mu_e \leq \tan \alpha$. Si la condición anterior no se cumple la partícula no resbala. Observe cómo, en el límite $\alpha = 90^{\circ}$, la velocidad v_f tiende al resultado de la caída libre.

Ejemplo 3

Suponga que la energía potencial de una partícula de masa m viene dada por la expresión

$$U(z) = a \left[\frac{1}{3}z^3 - b^2 z\right] ,$$

donde a y b son ciertas constantes positivas. Encuentre el campo de fuerza F(z) que da origen a tal energía potencial.

Sea F(z) la fuerza que el campo ejerce sobre la partícula. Para llevar lentamente la partícula desde el origen al punto z deberemos ejercer sobre la partícula una fuerza de igual magnitud pero sentido opuesto. Por consiguiente, el trabajo que debemos realizar es

$$W(z) = -\int_0^z F(z) \, dz \quad .$$

Este trabajo es igual a la diferencia de la energía potencial entre el origen y el lugar z, o sea, U(z) - U(0). Como U(0) = 0, podemos igualar W(z) con U(z), obteniéndose

$$U(z) = -\int_0^z F(z) \, dz = a \, \left[\frac{1}{3} \, z^3 - b^2 \, z \right] \quad .$$

Como el proceso de integración es el "inverso" del proceso de derivación (ver figura 5.7), se tiene que la fuerza debe ser *menos la derivada de la energía potencial*, o sea,

$$F(z) = -\frac{dU(z)}{dz} \quad . \tag{5.2}$$

Usando esta relación se encuentra que para el presente problema, el campo de fuerzas es

$$F(z) = a \left[b^2 - z^2 \right] \; .$$

Es importante señalar que siempre la derivada de la energía potencial es (menos) la fuerza que el campo conservativo ejerce sobre la partícula.

Figura 5.7

Ejemplo 4

Una partícula en un campo de fuerzas se dice que se encuentra *en equilibrio* si la fuerza sobre ella es nula. Para una partícula cuya energía potencial es (la misma del ejemplo anterior)

$$U(z) = a \left[\frac{1}{3}z^3 - b^2 z\right] ,$$

la fuerza F(z) es nula cuando $z = \pm b$. Note que esos puntos siempre correponden a máximos o mínimos de la energía potencial (ver figura 5.8).

Se dice que un sistema en equilibrio es *es-table* si al alejarlo levemente del punto de equilibrio la fuerza que aparece lo acelera nuevamente hacia dicho punto. De lo contrario, el equilibrio es inestable.

Figura 5.8

Para el caso mostrado en la figura 5.8, la partícula se encontrará en equilibrio estable si está en reposo en el lugar z = b, e inestable si se encuentra en z = -b.

Supongamos que la partícula de masa m se encuentra en el punto de equilibrio estable y que en cierto instante la sacamos levemente de su punto de equilibrio, para dejar que luego se mueva en el campo de fuerza. Demostremos que la fuerza que el *campo* ejerce sobre la partícula es en magnitud proporcional al desplazamiento pero en sentido opuesto. Efectivamente, si alejamos la partícula una distancia $+\Delta$ desde el punto de equilibrio estable z = b, (con $\Delta \ll b$), entonces la fuerza que aparece es

$$F(b+\Delta) = a \left[b^2 - (b+\Delta)^2 \right] = -a(2b\Delta + \Delta^2) \simeq -2ab\Delta$$

Notemos que la fuerza asociada al potencial en la vecindad del mínimo actúa en forma análoga a la ley de Hooke que gobierna el comportamiento de un resorte: al alejar la partícula

de la posición de equilibrio aparece una fuerza que es proporcional al desplazamiento, pero en el sentido contrario. Al soltar la partícula (desde el reposo) en el lugar $z = b + \Delta$, la partícula oscilará en torno al punto de equilibrio igual como si estuviera adosada a un resorte. El período de oscilación de una masa adosada a un resorte con constante de restitución k es $T = (2\pi)\sqrt{m/k}$. En el presente ejemplo, 2*ab* juega el papel del coeficiente de restitución k, luego el período de las oscilaciones será

$$T = 2\pi \sqrt{\frac{m}{2ab}} \ .$$

5.4. Problemas

 Una masa de 2 kg se lleva desde un punto A al punto B. Los vectores de posición de los puntos A y B son:

$$\vec{x}_A = (\hat{x} + 3\hat{z})$$
 m

$$\vec{x}_B = 5\hat{x}$$
 m

Todo el sistema está inmerso en un campo gravitatorio constante $-g\hat{z}$. Encuentre el trabajo realizado por la gravedad a lo largo de cada uno de los tres caminos indicados en la figura adjunta.

Figura 5.9

2. Una bomba de agua debe elevar 200 litros de agua por minuto desde un pozo, cuyo nivel de agua está a 6 m de profundidad, para luego lanzarla con una velocidad de 9 m/s. Suponiendo que no hay pérdidas de energía de ningún tipo, ¿qué trabajo por minuto debe realizar el motor que acciona la bomba? ¿Cuál es la potencia del motor?

(Una máquina que realiza un trabajo de 1 Joule = 1 kg m²/s² por segundo, tiene una potencia de 1 Watt = 1 [W].)

- 3. Sobre una partícula de masa m = 0.25 kg, que se mueve a lo largo del eje \hat{x} , actúa una fuerza $\vec{F} = F(x) \hat{x}$, donde la magnitud F(x) depende de la posición x del modo indicado en la figura 5.10.
 - a) Determine el trabajo realizado por esta fuerza sobre la partícula si ella se traslada desde x = 0 a x = 3 m.
 - b) Si la partícula en el instante t = 0 se encuentra en reposo en x = 2 m, ¿qué velocidad tendrá al llegar a x = 6 m?

Figura 5.10

Respuestas: a) 4 J; b) v=4 m/s.

- 4. El sistema mostrado en la figura adjunta se "abandona", partiendo del reposo, cuando el bloque de masa m_1 está a una distancia d por encima del suelo. Desprecie el roce.
 - a) Encuentre la aceleración de la masa mayor. $(m_1 > m_2.)$
 - b) Usando el resultado de la parte (a), encuentre la velocidad con que la masa mayor llega al suelo.
 - c) Suponiendo que todo el trabajo realizado sobre el sistema se transforma en energía cinética, calcule la velocidad de la masa mayor justo antes de que choque contra el suelo.

Figura 5.11

5. Considere un cuerpo compuesto de N masas m_j , situados en los lugares $\vec{r_j}$, con $j = 1, 2, 3, \ldots, N$. Demuestre que la energía potencial de tal cuerpo, en un campo gravitacional constante, se puede evaluar suponiendo que toda su masa $M = m_1 + m_2 + \cdots + m_N$ está concentrada en su *centro de masas*, dado por

$$\vec{r}_{\rm cm} \equiv \frac{1}{M} \left(m_1 \vec{r}_1 + m_2 \vec{r}_2 + \ldots + m_N \vec{r}_N \right)$$

- 6. Un bloque cuya masa es m = 6 kg se desliza hacia abajo por un plano inclinado rugoso, partiendo del reposo. El ángulo de elevación del plano es $\alpha = 60^{\circ}$ y los coeficientes de roce estático y cinemático son 0.2 y 0.18, respectivamente.
 - a) Describa todas las fuerzas que actúan sobre el bloque y determine el trabajo realizado por cada una de ellas, si el bloque se desliza 2 m (a lo largo del plano).

- b) ¿Cuál es el trabajo neto realizado sobre el bloque?
- c) iCuál es la velocidad del bloque después de recorrer una distancia de 2 m?

Resuelva el problema dos veces: la primera suponga que el *sistema* consiste sólo del bloque y, por lo tanto, las fuerzas de roce son parte de las fuerzas externas; la segunda vez suponga que el sistema consiste del bloque y el plano inclinado, en cuyo caso la disipación de energía por las fuerzas de roce deben considerarse como calor.

- 7. Se desea levantar lentamente una masa M hasta una altura h, usando el sistema de poleas mostrado en la figura adjunta.
 - a) ¿Cuál es la fuerza que debe aplicarse?
 - b) \mathcal{L} Qué trabajo se realiza?
 - c) ¿Cuál es el cambio en energía potencial de la masa?

Figura 5.12

- 8. Un bloque de m = 5 kg se sujeta contra un resorte de constante k = 1000 N/m, comprimiéndolo en $d_0 = 8$ cm. Al dejar el bloque en libertad, el resorte al expandirse empuja el bloque a lo largo de una superficie horizontal rugosa con coeficiente de roce cinemático $\mu = 0,2$.
 - a) ¿Cuál es el trabajo realizado por el resorte sobre el bloque mientras el resorte se extiende desde la posición comprimida hasta la posición de equilibrio?
 - b) ¿Cuál es el trabajo realizado por el roce sobre el bloque cuando éste recorre los 8 cm hasta la posición de equilibrio?
 - c) ¿Cuál es la velocidad del bloque cuando el resorte pasa por su posición de equilibrio?
 - d) Si al pasar por la posición de equilibrio el bloque se despega del resorte, ¿qué distancia alcanzará a recorrer antes de detenerse?
 - e) Si el bloque se mantiene sujeto al resorte, ¿cuál es la extensión máxima que llegará a tener el resorte?
- 9. Un péndulo de masa *m* colgado de un hilo de largo ℓ , se eleva hasta formar un ángulo $\theta_0 = 90^\circ$ con la normal y luego se deja en libertad.
 - a) Encuentre la energía cinética de la masa pendular cuando el péndulo pasa por su posición de equilibrio.
 - b) Demuestre que la tensión de la cuerda, para $\theta = 0^{\circ}$, es 3 veces el peso de la masa pendular.

10. Considere el campo de fuerza dado por

$$\vec{F}(\vec{r}) = F_0 \hat{x} + F_0 \frac{x}{a} \hat{y}$$
 .

Evalúe el trabajo que debe realizarse para llevar una partícula de masa m desde el origen hasta el punto A a lo largo de los dos caminos indicados en la figura adjunta. El campo de fuerzas ¿es conservativo?

Figura 5.13

- 11. Una caja, de masa 10 Kg, descansa sobre la cubierta horizontal de una mesa. El coeficiente de fricción entre la caja y la superficie de la mesa es 0,4. En cierto instante se aplica sobre ella una fuerza $\vec{F} = F_0 \hat{x}$, adquiriendo la caja una aceleración constante $\vec{a} = 2 \hat{x} \, [\text{m/s}^2]$.
 - a) Determine F_0 .
 - b) Determine el trabajo realizado por la fuerza \vec{F} cuando la caja se ha trasladado una distancia de 5 m.
 - c) Evalúe la diferencia entre el trabajo realizado sobre la partícula y el calor Q disipado por el roce. Demuestre que esta diferencia coincide con la energía cinética final de la caja.
- 12. Una masa *m* resbala, sin roce y debido a la gravedad, por la superficie de una semiesfera de radio *R*. La masa parte desde la cúspide sin velocidad inicial. Sea *P* el punto en el cual la masa se separa de la semiesfera. Encuentre el ángulo de elevación θ_0 del punto *P*.

Figura 5.14

13. Sobre una cinta transportadora caen 5 kg de material por segundo ($\Lambda = dm/dt = 5 \text{ kg/s}$). Suponiendo que no hay pérdidas de energía de ningún tipo en todo el sistema que impulsa la cinta transportadora, encuentre la fuerza F que debe aplicarse para mantener la cinta trasladándose con una velocidad constante $v_0 = 3 \text{ m/s}$. ¿Cuál es la mínima potencia que debe tener el motor para hacer avanzar la cinta transportadora?

Respuesta: $\sin \theta_0 = 2/3$.

Figura 5.15

Respuesta:

$$P = \frac{dW}{dt} = \Lambda v_0^2 = 45 \text{ W}.$$

14. Considere dos masas m unidas por una varilla de largo L que no tiene peso. Inicialmente el sistema está apoyado en una pared, formando un ángulo θ_0 con la normal (vea figura 5.16). El sistema comienza a resbalar sin roce debido a la gravedad. ¿A qué altura la masa # 1 se separa de la pared vertical?

Respuesta: $h = 2h_0/3$, donde $h_0 = L \sin \theta_0$ es la altura inicial.

15. Una moneda se desliza sobre un tramo horizontal pulido. Luego entra en un tramo cilíndrico convexo de radio R=1 m. La moneda pierde contacto con la superficie cilíndrica a un ángulo de 30° con respecto a la vertical medido desde el vértice del cilindro. Calcule la rapidez con que se desplazaba la moneda en el tramo horizontal.

Figura 5.17

16. La fuerza electrostática que ejerce una carga eléctrica Q sobre otra carga q viene dada por la así llamada *Ley de Coulomb*:

$$\vec{F} = rac{qQ}{r^2} \hat{r}$$
 ,

donde $\vec{r} = r \hat{r}$ es el vector de posición de q respecto a Q. Notemos que si las dos cargas tienen el mismo signo la fuerza entre las cargas es repulsiva. Considere una carga Q fija en el origen y una carga q, que inicialmente se encuentra en el lugar \vec{r}_0 .

a) Encuentre el trabajo que debe realizarse para trasladarla desde $\vec{r_0}$ hasta $\vec{r_1}$.
- b) Repita la parte a) para varios caminos simples y demuestre que siempre obtiene el mismo resultado (en otras palabras, el campo de fuerzas es conservativo).
- c) Demuestre que la energía potencial (electrostática) de la carga q viene dada por

$$U(r) = +\frac{qQ}{r}$$

¿En qué lugar se ha elegido el cero para la energía potencial?

17. Considere una carga Q fija en el origen y otra carga q, del mismo signo, que se acerca a Q a lo largo de la recta que las une. Si q tiene una energía cinética K cuando la separación entre las cargas es muy grande (infinita), encuentre la mínima distancia a la que q se acercará a Q.

Para resolver este problema use el resultado para la energía potencial obtenido en el problema anterior.

18. Considere la configuración de cargas mostrada en la figura 5.18. Las cargas +Q están fijas en los lugares $x = \pm a, \ y = z = 0$ mientras que la carga +q puede deslizarse sólo a lo largo del eje \hat{x} .

- a) Encuentre una expresión para la fuerza F(x) que actúa sobre la carga +q.
- b) Encuentre la energía potencial U(x) y grafíquela. (Especifique claramente dónde eligió el cero para la energía potencial.)
- c) ¿Se comportará este sistema como un oscilador armónico para pequeños desplazamientos de q en torno al origen? (Un sistema se comporta como un oscilador armónico si, al desplazar el sistema de su posición de equilibrio, aparece una fuerza proporcional al desplazamiento pero de sentido contrario —ejemplo, ley de Hooke.)
- 19. Considere una partícula de masa my carga -q restringida a moverse a lo largo del eje \hat{x} . Además, dos cargas +Q se ubican fijamente sobre el eje \hat{y} a una distancia a del origen, tal como lo muestra la figura 5.19.
 - a) Encuentre la energía potencial U(x) del sistema de cargas en función de x.

(b) Encuentre la fuerza electrostática F(x) que actúa sobre la carga -q.

- (c) Evalúe la derivada -dU(x)/dx y demuestre que ésta coincide con F(x).
- (d) ¿Con qué velocidad pasará la partícula por el origen si parte desde el infinito con velocidad cero?
- (e) ¿Se comportará este sistema como un oscilador armónico para pequeños desplazamientos de q en torno al origen? Si su respuesta es afirmativa, encuentre el período del movimiento periódico.

Respuestas:

a)
$$U(x) = \frac{-2Qq}{\sqrt{a^2 + x^2}}$$
; b) $\vec{F}(x) = -\frac{2Qqx}{(a^2 + x^2)^{3/2}}\hat{x}$; d) $v = \sqrt{\frac{4Qq}{ma}}$

- 20. Un bloque de 2 Kg, situado a una altura de 1 m, se desliza por una rampa curva y lisa, partiendo del reposo. Al terminarse la rampa, el bloque resbala 6 m sobre una superficie horizontal rugosa antes de llegar al reposo.
 - a) ¿Cuál es la velocidad del bloque en la parte inferior de la rampa?
 - b) ¿Cuál es el trabajo realizado por la fuerza de roce sobre el bloque?
 - c) ¿Cuánto vale el coeficiente de roce cinemático entre el bloque y la superficie horizontal?

Figura 5.20

- 21. En un parque de entretenciones un carro de masa m = 100 kg se desliza (sin roce) por una rampa desde una altura h, ingresando a un *loop* de radio R = 3 m. La altura h es la mínima que se requiere para que el carro no se salga de la vía. Emergiendo del *loop* el carro ingresa a la región de frenado, donde en un trayecto de largo L, el coeficiente de roce cinemático es $\mu_c = 0, 2$. Sin embargo, el carro no alcanza a detenerse durante la primera pasada sinó que pasa de largo y después de colisionar con un resorte de constante k = 500 m, vuelve a ingresar a la región de frenado quedando en reposo al centro de ella (o sea, en el punto C
 - a) Encuentre la velocidad del carro en el punto B.
 - b) Encuentre h.
 - c) Encuentre L.
 - d) Encuentre la máxima compresión que alcanza a tener el resorte.

Figura 5.21

- 22. Una partícula de masa m se mueve sobre una mesa rugosa a lo largo de un círculo de radio R. La partícula está amarrada a un extremo de un hilo de largo R, cuyo otro extremo está fijo al centro del círculo. La velocidad de la partícula inicialmente es v_0 . Debido al roce con la mesa, la partícula se irá frenando. Después de completar una vuelta, su velocidad es $v_0/2$.
 - a) Encuentre el trabajo realizado por la fricción durante una vuelta. Exprese el resultado en función de $m, v_0 \neq R$.
 - b) Encuentre el valor del coeficiente de roce cinemático.
 - c) ¿Cuántas vueltas dará la partícula antes de detenerse?
- 23. Una masa m se cuelga de dos resortes *en serie*, de constantes de restitución k_1 y k_2 , tal como se muestra en la figura 5.22a. Encuentre la frecuencia de oscilación para pequeñas vibraciones (verticales) de la masa m. Repita el cálculo para el caso en que los dos resortes están *en paralelo* (ver figura 5.22b).
- 24. Supongamos que la función energía potencial U(x) en función de x, para una partícula que sólo se puede mover a lo largo del eje \hat{x} , viene dada por el gráfico mostrado en la figura 5.23
 - a) Identifique los puntos de equilibrio e indique si son estables o inestables.
 - b) ¿Para qué valor de x la fuerza tiene su valor (módulo) máximo?
 - c) Describa en palabras el movimiento, a medida que transcurre el tiempo, de una partícula de energía total E_1 . (Especifique claramente las condiciones iniciales que está suponiendo.)

Figura 5.23

25. Suponga que la energía potencial entre dos átomos de una molécula diatómica viene aproximadamente dada por la expresión

$$U(r) = U_0 \left[\left(\frac{a}{r}\right)^{12} - 2\left(\frac{a}{r}\right)^6 \right]$$

donde r es la separación entre los átomos y a y U_0 son constantes.

- a) Grafique la energía potencial.
- b) ¿Para qué separación r los átomos estarán en equilibrio? ¿El equilibrio es estable o inestable?
- c) Suponga que los átomos tienen la misma masa m_0 . ¿Con qué frecuencia vibrará la molécula al alejar el sistema levemente de su posición de equilibrio?
- d) Si la molécula está en su estado de equilibrio, ¿cuál es la mínima energía que habría que entregarle a la molécula para disociarla, es decir, separarla en sus dos átomos constituyentes?
- 26. La fuerza gravitatoria entre dos masas m_1 y m_2 viene dada por

$$\vec{F} = -\frac{Gm_1m_2}{r^2}\hat{r} \quad ,$$

donde G es la así llamada constante gravitatoria y $\vec{r} = r\hat{r}$ es el vector que une los centros de masa de ambas masas. El valor experimental de G es

$$G = 6,6720 \cdot 10^{-11} \text{ m}^3/\text{ s}^2 \text{ kg}$$
 .

a) Demuestre que el trabajo que debe hacerse para alejar las dos masas desde una separación r_1 a una separación r_2 $(r_2 > r_1)$, viene dado por

$$W = Gm_1m_2 \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \;.$$

b) A partir del resultado anterior, demuestre que si el cero de la energía potencial se elige en $r = \infty$, entonces la energía potencial en función de la distancia entre las dos masas viene dada por

$$U(r) = -\frac{Gm_2m_1}{r}$$

- c) Suponga ahora que $m_1 = M_T$ es la masa de la tierra y $m_2 = m$ es la masa de un objeto pequeño. Si tal objeto se encuentra sobre la superficie terrestre y se eleva una pequeña distancia h, demuestre que la energía potencial cambia en $\Delta U = mgh$. Note que de esta manera usted ha encontrado una expresión para la aceleración de gravedad g en términos del radio de la tierra R_T , la masa M_T y la constante de gravitación G.
- d) Encuentre la masa de la tierra suponiendo que el radio de la tierra es aproximadamente 6380 km. (Ignore la rotación de la tierra.)
- e) Encuentre la velocidad de escape, es decir, la velocidad mínima que debe impartirse a una masa m (inicialmente en reposo sobre la superficie terrestre) para que ella pueda alejarse del campo gravitatorio de la tierra. (Ignore la rotación de la tierra.)
- f) ¿Hasta qué distancia máxima se podrá alejar el pequeño objeto si su velocidad inicial es la mitad de la velocidad de escape?

27. Un bloque de masa M se apoya sobre un platillo de masa m sujeto a un resorte vertical de constante k y largo natural ℓ_0 . Al colocar el platillo con la masa M sobre el resorte este se comprime teniendo, en equilibrio, un largo $\overline{\ell}$.

Comprimamos ahora el resorte otro poco de manera que inicialmente se encuentra contraído a un largo $\ell < \overline{\ell}$. En cierto instante se suelta el resorte, permitiendo que éste se expanda.

- a) Evalúe $\overline{\ell}$.
- b) Demuestre que el si el resorte en algún instante supera el largo natural ℓ_0 , entonces el bloque se separa del platillo.
- c) ¿Cuál es el mínimo valor de la contracción $(\ell_0 - \ell)$ que debe tener el resorte antes de soltarlo para que el bloque alcance a separarse del platillo?

Figura 5.24

d) Encuentre la altura máxima alcanzada por el bloque (en todos los casos, cuando se separa y cuando no se separa del platillo).

Respuesta: c) $(\ell_0 - \ell) = 2g(M + m)/k.$

- 28. En una feria de entretenciones hay un juego que consiste en que los participantes abordan un carro en el punto P (ver figura 5.25), caen en caída libre una altura hhasta el punto A, luego recorren un cuarto de circunferencia (AB) de 2 m de radio y una recta (BC) de 5 m, todo esto sin roce. En el punto C se ingresa a una zona de 8 m de largo con coeficiente de roce $\mu_c = 0.5$. Como zona de seguridad, hay una distancia (DE) de 5 m sin roce, concluyendo la pista en un gran resorte cuya constante elástica es $k = 6 \times 10^4 \text{ N/m}$. La masa del carro, con los pasajeros, es de 500 Kg.
 - a) Calcule hasta cuántos metros por sobre el punto A se puede dejar caer el carro para que éste se detenga en la zona de desaceleración CD.

Suponga ahora que el operador del juego sube el carro hasta 8 m sobre A y lo deja caer desde allí.

- b) Encuentre el lugar en que el carro quedará sin velocidad (por primera vez).
- c) Encuentre el lugar en que el carro quedará finalmente en reposo.
- d) Calcule el trabajo realizado por la fuerza elástica del resorte para detener el carro (por primera vez).
- e) Calcule la aceleración del carro en el instante en que el resorte lo detiene.

Figura 5.25

29. Considere el montaje mostrado en la figura adjunta. Suponga que las dos masas tienen el mismo valor y que ℓ_0 coincide con el largo natural del resorte cuya constante de restitución es $k = 5mg/\ell_0$. Suponga además que la masa desliza sin roce sobre la superficie y que en el instante mostrado en la figura el sistema se encuentra momentáneamente en reposo.

Figura 5.26

- a) Demuestre que cuando la masa que se deliza por la superficie se haya desplazado en una cantidad $x = 3\ell_0/4$ hacia la derecha, esta se levantará de la superficie.
- b) Demuestre que en el momento en que la masa se separa del plano la velocidad es $v = \sqrt{19g\ell_0/32}$.
- 30. Considere dos pequeñas masas iguales munidos mediante cuerdas ideales de longitud $\ell = 1, 5$ m, como se indica en la figura adjunta. El sistema rota con velocidad angular uniforme ω . El ángulo que la cuerda atada al brazo (de longitud L = 4 m) forma con la vertical es de 60°. Encuentre el ángulo ϕ que la otra cuerda hace con la vertical y encuentre la razón entre las tensiones de cada cuerda.

Figura 5.27

- 31. Dos cuerpos $A ext{ y } B$, de masas $m ext{ y } 2m$, repectivamente, se unen mediante una cuerda ideal. El cuerpo A posa sobre una mesa de superficie áspera (coeficiente de roce μ_c) mientras que B se deja caer como se muestra en la figura 5.28. No hay roce entre la cuerda y el punto de contacto con el borde de la mesa. Calcule el ángulo θ formado por la cuerda que sostiene la masa $B ext{ y }$ la horizontal cuando el bloque A comienza a resbalar. El largo de la cuerda entre el borde de la mesa y el cuerpo B es L.
- 32. Dos monos, llamados Patín y Logo, de igual masa m están agarrados de una cuerda que pasa por encima de una polea (sin roce), frente al Museo del Louvre. Habiendo escuchado el rumor de que en el museo hay una famosa pintura de una supuesta congénere con una enigmática sonrisa, el mono Patín decide subir por la cuerda hasta una posición que le permita mirarla por la ventana. Para ello debe remontar una altura h.

Figura 5.28

- a) Analice como el movimiento del mono Patín afecta la posición del mono Logo.
- b) Calcule el trabajo que debe realizar el mono Patín para llevar a cabo su propósito.
- 33. Considere dos masas m unidas por un hilo de largo 2L, que caen con el hilo estirado en forma horizontal. Después de caer una distancia L el centro del hilo choca con un clavo, correspondiendo de ahí en adelante la trayectoria de las dos masas a un movimiento circular. Si el hilo se corta cuando la tensión llega tener el valor $\tau_{max} = 7mg/2$, encuentre el ángulo ϕ que en ese instante forma el hilo con la horizontal (ver figura 5.30).

Figura 5.30

5.5. Solución a algunos de los problemas

Solución al problema 12

Cuando la masa m haya resbalado hasta formar un ángulo θ con la horizontal, la energía potencial (gravitatoria) habrá cambiado en

$$\Delta U_{\rm pot} = mg \,\Delta h = mg(R - R\sin\theta) \;.$$

Como no hay roce, este cambio de energía potencial debe coincidir con la energía cinética que adquiere la masa m, o sea, debe cumplirse la relación

$$\frac{1}{2}mv^2 = mgR\left(1 - \sin\theta\right)$$

Esto nos permite encontrar la velocidad v de la masa en función de θ :

$$v = \sqrt{2gR(1-\sin\theta)}$$
.

La masa m recorre un arco de círculo de radio R, luego la fuerza centrípeta (que apunta en la dirección $-\hat{r}$) es

$$\vec{F}_{\text{cent}} = -\frac{mv^2}{R}\hat{r}$$
.

(También hay una fuerza tangencial que, sin embargo, aquí no es necesario evaluar.) Las únicas fuerzas reales que actúan sobre m son la normal $N\hat{r}$ y el peso $-mg\hat{z}$. (Nuevamente hemos elegido al eje \hat{z} apuntando hacia arriba.) La componente radial de la fuerza neta es $(N - mg\sin\theta) \hat{r}$. Esta debe coincidir con la fuerza centrípeta, o sea,

$$-\frac{mv^2}{R} = N - mg\sin\theta \; .$$

Despejando N se obtiene

$$N = mg\sin\theta - \frac{mv^2}{R} = mg\sin\theta - \frac{1}{R}2mgR(1-\sin\theta)$$
$$= mg(3\sin\theta - 2)$$

La masa m inicia su movimiento en el ápice, en cuyo caso $\theta = 90^{\circ}$, siendo la fuerza normal que ejerce la semiesfera sobre la masa N = mg. A medida que transcurre el tiempo, θ disminuye y luego también N. Cuando sin $\theta = 2/3$, la fuerza normal se hace cero, siendo ese el lugar en que la masa m se separa de la semiesfera.

Solución al problema 14

Supongamos por un momento que la partícula 1 nunca se despega de la pared. Cuando la partícula 1 haya bajado desde h_0 hasta una altura y, entonces, por conservación de energía

$$mg(h_0 - y) = \frac{1}{2}m\dot{y}^2 + \frac{1}{2}m\dot{x}^2$$
.

Sabemos que $x^2 + y^2 = L^2$. Derivando esta relación se deduce que $2x\dot{x} + 2y\dot{y} = 0$, o sea,

$$\dot{y} = \dot{x}\frac{x}{y}$$
.

Sustituyendo esto en la ecuación de conservación de la energía se encuentra la relación

$$h_{\circ} \stackrel{\hat{y}}{\underbrace{}}_{\mu} \stackrel{L}{\underbrace{}}_{\mu} \stackrel{L}{$$

Figura 5.31

$$mg(h_0 - y) = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}m\dot{x}^2\frac{x^2}{y^2} = \frac{1}{2}\dot{x}^2\frac{L^2}{y^2}.$$

De esta última ecuación podemos despejar la velocidad de la partícula 2 en función de la altura a la que se encuentra la partícula 1:

$$\dot{x}^2 = \frac{2g}{L^2} (h_0 - y) y^2.$$

La velocidad de la partícula 2 depende de y. Observemos que la rapidez con que se mueve la partícula 2 es nula cuando $y = h_0$ y también cuando y = 0, luego en algún lugar entremedio debe tener un máximo.

Encontremos el valor y = h para el cual \dot{x} tiene su máximo. Para ello debemos encontrar el máximo de la función $f(y) = (h_0 - y)y^2$. Igualando la derivada de f(y) a cero se encuentra

$$2h_0 y - 3y^2 = 0 \; .$$

Despejando y se encuentra $y = h = 2h_0/3$. Es claro que cuando la partícula 1 llegue a esa altura, se desprenderá de la pared (si es que no hay un mecanismo que evite que eso ocurra). La razón es la siguiente: el único elemento que ejerce una fuerza horizontal sobre el sistema (las dos masas con la varilla) es la la pared vertical. Mientras y > h la partícula 2 acelera (la rapidez \dot{x} aumenta) en la dirección $+\hat{x}$, luego la pared debe ejercer sobre el sitema una fuerza en esa dirección. Cuando y < h entonces la partícula 2 desacelera (\dot{x} vuelve a disminuir); eso implica que la pared ejerce una fuerza en la dirección $-\hat{x}$ sobre el sistema, lo que a su vez sólo es posible si existe algún mecanismo que *sujete* a la partícula 1 a la pared vertical. Si tal mecanismo no existe, entonces la partícula 1 se separa de la pared.

Solución al problema 18

De acuerdo a la ley de Coulomb, las cargas Q de la izquierda y de la derecha ejercen sobre quna fuerza

$$\vec{F}_1 = \frac{qQ}{(a+x)^2}\hat{x}$$

у

$$\vec{F}_2 = -\frac{qQ}{(a-x)^2}\hat{x} ,$$

respectivamente. La fuerza total $\vec{F}(x)$ que actúa sobra la carga q es la suma vectorial de las dos fuerzas $\vec{F_1}$ y $\vec{F_2}$, por lo tanto,

$$\vec{F}(x) = \vec{F}_1 + \vec{F}_2 = qQ \left[\frac{1}{(a+x)^2} - \frac{1}{(a-x)^2} \right] \hat{x}.$$

Para encontrar la energía potencial también podemos evaluar primero la energía potencial de q con cada una de las cargas Q separadamente, para luego hacer la suma (escalar) de ellas. La energía potencial de una carga q a una distancia r de otra carga Q viene dada por (ver problema 14) U(r) = qQ/r. Usando esta expresión se encuentra que la energía potencial de la carga q, cuando ésta se encuentra en el lugar x, es:

$$U(x) = U_1(x) + U_2(x) = \frac{qQ}{|a+x|} + \frac{qQ}{|a-x|}$$

La energía potencial es cero cuando $x \longrightarrow \pm \infty$. La figura 5.32 muestra un gráfico de la función U(x).

De la figura se deduce que x = 0 es un punto de equilibrio estable del sistema. Para pequeños desplazamientos, o sea para $|x| \ll a$, se tiene

$$U(x) = qQ \left[\frac{1}{a+x} + \frac{1}{a-x} \right] = \frac{qQ}{a} \left[\left(1 + \frac{x}{a} \right)^{-1} + \left(1 - \frac{x}{a} \right)^{-1} \right]$$
$$\simeq \frac{qQ}{a} \left[\left(1 - \frac{x}{a} + \frac{x^2}{a^2} \right) + \left(1 + \frac{x}{a} + \frac{x^2}{a^2} \right) \right]$$
$$= \frac{2qQ}{a} + \frac{2qQ}{a^3} x^2 = U_0 + \frac{2qQ}{a^3} x^2 .$$

De la ecuación anterior se deduce que, para pequeños desplazamientos de q desde el origen, la energía potencial es cuadrática (es decir, similar a la expresión que se tenía para una masa adosada a un resorte).

La fuerza que actúa sobre q al desplazarla levemente de su posición de equilibrio es

$$F(x) = -\frac{dU(x)}{dx} = -\frac{4qQ}{a^3} x$$

Esta fuerza es análoga a la ley de Hooke: es proporcional y apunta en sentido contrario al desplazamiento. El papel de la constante de restitución k lo juega $4qQ/a^3$. Luego, al desplazar la carga q levemente de su punto de equilibrio, ésta oscilará *armónicamente* con un período

$$T = 2\pi \sqrt{\frac{ma^3}{4qQ}} \; ,$$

donde m es la masa de la carga q.

Solución al problema 25

La figura adjunta muestra el gráfico de la energía potencial. Para r > a la pendiende es positiva, para r = a es nula, mientras que para r < a es negativa. La fuerza entre los dos átomos de la molécula es -dU(r)/dr. Cuando la derivada es nula (para r = a), la fuerza también es nula, luego la separación r = a corresponde a un punto de equilibrio. Para r > a, dU(r)/dr > 0 y, por consiguiente, F(r) < 0. En palabras: si la separación de los dos átomos de la molécula es mayor que a, entonces la fuerza entre ellas será atractiva.

Lo contrario ocurre para r < a: en ese caso dU(r)/dr < 0 y por consigiente F(r) > 0, o sea, la fuerza que aparece tratará de alejar a los dos átomos (aumentar r). Resumiendo, cada vez que el sistema se desplaza de su posición de equilibrio, aparece una fuerza que trata de llevar al sistema nuevamente a su posición de equilibrio. (Es precisamente esto último lo que caracteriza a un punto de equilibrio estable.) Sea \vec{F}_{12} la fuerza que actúa sobre el átomo 1 debido al átomo 2 y \vec{F}_{21} la fuerza que actúa sobre el átomo 2 debido al átomo 1. Por supuesto que, de acuerdo al principio de acción y reacción (tercera ley de Newton) $\vec{F}_{12} = -\vec{F}_{21}$. Sea O un origen y \vec{r}_1 y \vec{r}_2 los vectores de posición de cada uno de los átomos (ver figura 5.34).

Las ecuaciones de movimiento, de acuerdo a la segunda ley de Newton, son:

$$m_0 \ddot{\vec{r}}_1 = \vec{F}_{12}$$

Figura 5.34

у

$$m_0 \,\ddot{\vec{r}}_2 = \vec{F}_{21}$$
 .

Restando una de la otra se obtiene

$$m_0 \left(\ddot{\vec{r}}_2 - \ddot{\vec{r}}_1 \right) = \vec{F}_{21} - \vec{F}_{12} = 2\vec{F}_{21} .$$
(5.3)

La fuerza que actúa sobre la partícula 2 debida a la partícula 1 es

$$\vec{F}_{21} = -\frac{dU(r)}{dr}\,\hat{r}\;,$$

donde $r = |\vec{r}| = |\vec{r}_2 - \vec{r}_1|$. Como estamos suponiendo que la molécula no rota, se tiene que el vector unitario \hat{r} , que apunta a lo largo de la línea que une a ambos átomos, no variará a medida que transcurre el tiempo. Se tiene entonces que

$$\vec{r} \equiv \vec{r}_2 - \vec{r}_1 = r\hat{r}$$

у

$$\ddot{\vec{r}} = \ddot{\vec{r}}_2 - \ddot{\vec{r}}_1 = \ddot{r} \hat{r}$$
.

Sustituyendo la última ecuación en (5.3) se obtiene

$$m_0 \ddot{r} \, \hat{r} = 2 F_{21} \, . \tag{5.4}$$

Evaluemos \vec{F}_{21} . Se tiene:

$$\vec{F}_{21} = -\frac{dU(r)}{dr}\hat{r}$$
$$= 12\frac{U_0}{a}\left[\left(\frac{a}{r}\right)^6 - 1\right]\left(\frac{a}{r}\right)^7\hat{r}.$$

Escribamos r de la forma r = a + s. De esta manera, s = 0 corresponderá a la molécula en su posición de equilibrio. Si los átomos se desplazan sólo levemente de su posición de

equilibrio, entonces $|s| \ll a$. En este caso

$$\vec{F}_{21} = 12 \frac{U_0}{a} \left[\left(\frac{a}{a+s} \right)^6 - 1 \right] \left(\frac{a}{a+s} \right)^7 \hat{r}
= 12 \frac{U_0}{a} \left[\left(1 + \frac{s}{a} \right)^{-6} - 1 \right] \left(1 + \frac{s}{a} \right)^{-7} \hat{r}
\simeq 12 \frac{U_0}{a} \left[1 - 6\frac{s}{a} - 1 \right] \left(1 - 7\frac{s}{a} \right) \hat{r}
\simeq -72 \frac{U_0}{a^2} s \, \hat{r} + o(s^2) \,.$$
(5.5)

Sutituyendo este resultado en (5.4), se obtiene

$$m_0 \ddot{r} \ \hat{r} = -72 \frac{U_0}{a} s \ \hat{r} \ .$$

Cancelando a ambos lados \hat{r} y usando el hecho que $\ddot{r} = \ddot{s}$, se tiene

$$\ddot{s} + \omega_0^2 s = 0 , \qquad (5.6)$$

 con

$$\omega_0^2 = 72 \frac{U_0}{a^2 m_0}$$

La ecuación diferencial (5.6) corresponde a la de un oscilador armónico. Ya sabemos que en ese caso, la magnitud s (el alejamiento de un átomo de su posición de equilibrio) realizará oscilaciones armónicas, siendo el período de tales oscilaciones

$$T = \frac{2\pi}{\omega_0} = \pi \sqrt{\frac{a^2 m_0}{18 U_0}} \; .$$

De la figura 5.33 también se deduce que para disociar a la molécula, es decir, para separar los átomos a una distancia $r \longrightarrow \infty$, se debe entregar al sistema una energía al menos igual a U_0 .

Solución al problema 28

a) Si la masa m parte de una altur
ah,entonces su energía (antes de entrar a la región de desaceleración) es

$$E = \frac{1}{2}mv^2 = mgh \; .$$

Al atravezar toda la zona de desaceleración, la energía disipada en calor es $Q = \mu_c mg \overline{CD}$. Para que la masa m quede en reposo en D, toda su energía debe ser disipada como calor, o sea,

$$mgh = \mu_c mg \ \overline{CD}$$
.

Despejamos h:

$$h = \mu_c \overline{CD} = 0, 5 \cdot 8 \quad [m] = 4 \quad [m]$$

c) Ahora h = 8 [m]. La mitad de la energía se disipará durante la primera pasada por la región de desaceleración y el resto se disipará en la segunda pasada. El carro m quedará finalmente en reposo en el punto C.

b) Después de emerger de la región de desaceleración por primera vez, la energía del carro será $E_1 = mgh/2$. Esta tendrá que ser la energía potencial del resorte cuando esté comprimido con el carro detenido:

$$\frac{mgh}{2} = \frac{1}{2}kx_0^2 \; ,$$

donde x_0 es la compresión máxima del resorte. El carro se detendrá por primera vez a una distancia x_0 a la derecha del punto E. Despejando x_0 se encuentra (con $g = 10 \text{ [m/s^2]}$),

$$x_0 = \sqrt{\frac{mgh}{k}} = \sqrt{\frac{500 \cdot 10 \cdot 8}{6 \cdot 10^4}}$$
 [m] = 0,816 [m].

d) El trabajo realizado por la fuerza elástica del resorte para detener el carro es igual a la energía con que incidió sobre el resorte, $mgh/2 = 500 \cdot 10 \cdot 8/2$ [J]= 20000 [J]. También podemos encontrarla evaluando la integral

$$W = \int_0^{x_0} kx \, dx = \frac{1}{2} kx^2 \Big|_0^{x_0} = \frac{1}{2} kx_0^2 = \frac{1}{2} \, 6 \cdot 10^4 \cdot (0,816)^2 \, [\text{J}]$$

e) La fuerza que ejerce el resorte cuando está comprimido es $-kx_0 \hat{x}$, donde \hat{x} apunta hacia la derecha. La aceleración del carro, por lo tanto, será

$$\vec{a} = -\frac{kx_0}{m} \hat{x} = -97,92 \; [m/s^2] \; ,$$

aproximadamente 10 veces la aceleración de gravedad.

Solución al problema 33

Después de chocar el hilo con el clavo y al formar un ángulo ϕ con la horizontal, la energía potencial de cada masa habrá disminuído en $mgL(1 + \sin \phi)$. Esta será la energía cinética que tendrá cada masa, es decir,

$$\frac{1}{2}mv^2 = mgL\left(1 + \sin\phi\right)\,.$$

Esta relación nos permite encontrar la velocidad $v = v(\phi)$:

$$v^2 = 2gL\left(1 + \sin\phi\right) \,.$$

Como cada masa está recorriendo un círculo sabemos que la fuerza radial neta (la fuerza centrípeta) que se está ejerciendo sobre ella es

$$\vec{F}_{\text{cent}} = -\frac{mv^2}{L}\hat{r} = -2mg\left(1 + \sin\phi\right)\hat{r} .$$

Las únicas fuerzas *"reales"* que están siendo ejercidas sobre cada masa son la fuerza debido a la tensión del hilo y la fuerza de gravedad:

$$\vec{F}_{\text{real}} = -\tau \hat{r} - mg \, \hat{z} \; .$$

La componente radial de esta fuerza es $-\tau + mg\sin\phi.$ Esta debe coincidir con la fuerza centrípeta, o sea,

$$-\tau + mg\sin\phi = -2mg\left(1 + \sin\phi\right).$$

El hilo se corta si el ángulo ϕ es tal que $\tau=7mg/2.$ Llamando ϕ_0 a ese ángulo se tiene

$$-\frac{7}{2}mg + mg\sin\phi_0 = -2mg\left(1 + \sin\phi_0\right)\,.$$

A partir de esta relación se encuentra que $\sin\phi_0=0,5,$ o se
a, $\phi_0=30^\circ.$

Capítulo 6

Momento lineal y colisiones

6.1. Conservación del momento lineal

Consideremos N partículas, cuyas masas y vectores de posición vienen dados por $\{m_j\}_j$ y $\{\vec{r}_j\}_j$, con j = 1, 2, ..., N. Supongamos que sobre cada partícula j algún agente externo ejerce una fuerza \vec{F}_j . Supongamos además que las partículas interactúan entre sí, siendo \vec{f}_{ji} la fuerza que ejerce la partícula i sobre la partícula j. Por supuesto, debido al principio de acción y reacción, $\vec{f}_{ij} = -\vec{f}_{ji}$, o, en palabras, la fuerza que ejerce la partícula j sobre la i es la opuesta a la que la partícula i ejerce sobre la j.

Usando la segunda ley de Newton, podemos escribir la ecuación de movimiento de la partícula j. Se tiene

$$\vec{F}_j + \sum_{i=1}^N \vec{f}_{ji} = m_j \ddot{\vec{r}}_j$$

Al lado izquierdo se tiene la fuerza total que actúa sobre la partícula j, mientras que al lado derecho se tiene el producto de la masa por la aceleración de esa partícula. Sumando las ecuaciones de movimiento de todas las partículas (es decir, sumando sobre j), se obtiene

$$\sum_{j} \vec{F}_{j} + \sum_{i,j} \vec{f}_{ji} = \sum_{j} m_{j} \ddot{\vec{r}}_{j} \quad .$$
(6.1)

Note que, debido al principio de acción y reacción, $\sum_{ij} \vec{f}_{ji} = 0$, es decir, la suma de todas las fuerzas internas es nula. Definamos la magnitud

$$\vec{r}_{cm} \equiv \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \dots + m_N \vec{r}_N}{m_1 + m_2 + \dots + m_N} = \frac{1}{M} \sum_{j=1}^N m_j \vec{r}_j , \qquad (6.2)$$

donde $M \equiv m_1 + m_2 + \cdots + m_N$ es la masa total. Derivando la última ecuación dos veces respecto al tiempo, queda

$$M\ddot{\vec{r}}_{cm} = \sum_{j=1}^{N} m_j \ddot{\vec{r}}_j \quad .$$

Sustituyendo esta expresión en (7.1), y usando la relación $\sum_{ij} \vec{f}_{ji} = 0$, se obtiene

$$\sum_{j=1}^N \vec{F_j} = M \ddot{\vec{r}_{cm}} \ .$$

La suma $\sum_{j} \vec{F}_{j}$ corresponde a la fuerza externa total que actúa sobre las partículas, magnitud que denotaremos por \vec{F}_{tot} . De esta manera, finalmente

$$\vec{F}_{tot} = M\ddot{\vec{r}}_{cm} \quad . \tag{6.3}$$

Esta última ecuación no depende de las *fuerzas internas* que actúan entre las distintas partículas. Al vector \vec{r}_{cm} se le denomina *posición del centro de masas*. La ecuación (6.3) enseña que la suma de las fuerzas externas que actúan sobre un sistema de partículas acelera al centro de masas como si toda la masa del sistema estuviese centrada allí.

Si la fuerza (externa) total sobre el sistema de partículas es nula, o sea, si $\vec{F}_{tot} = \sum_j \vec{F}_j = 0$, entonces el centro de masas no acelera. En ese caso, la velocidad del centro de masas es constante (designemos por $\vec{v}_{cm}^{(0)}$ a tal velocidad). Por otra parte, la velocidad del centro de masas se puede obtener derivando la ecuación (6.2) respecto al tiempo:

$$\dot{\vec{r}}_{cm} = \frac{1}{M} \sum_{j=1}^{N} m_j \dot{\vec{r}}_j = \vec{v}_{cm}^{(0)}$$

Introduciendo la definición de momento lineal $\vec{p}_j = m_j \dot{\vec{r}_j}$ de cada partícula, la última ecuación se puede reescribir de la forma

$$\vec{P}_{tot} \equiv \vec{p}_1 + \vec{p}_2 + \dots + \vec{p}_N = M \vec{v}_{cm}^{(0)} \quad . \tag{6.4}$$

Esta ecuación se conoce con el nombre de *Principio de Conservación del Momento Lineal*. En palabras: cuando la fuerza externa total que actúa sobre un sistema de partículas es cero (observe que la fuerza no tiene por qué ser igual a cero individualmente sobre cada una de las partículas), entonces la suma de los momentos lineales de las distintas partículas (o sea, el momento lineal total) no varía en el tiempo, es decir, se mantiene constante (aun cuando las partículas interactúen entre sí). Cuando la fuerza externa total sobre un sistema de partículas es cero, entonces la suma de todos los momentos lineales de las partículas en todo instante será la misma.

Ilustremos los conceptos anteriores con un ejemplo.

Problema: Considere dos masas, $m = m_0$ y $M = 3m_0$, sobre las cuales no actúan fuerzas externas. Supongamos que en el instante t = 0, la partícula m se encuentra en el origen y en reposo, y que la partícula M se encuentra en $\vec{r}_M(0) = 2\hat{x}$ [m] moviéndose con una velocidad $\vec{v}_M(0) = 4\hat{y}$ [m/s]. Supongamos además que existe cierta interacción entre las partículas y, como consecuencia de ella, ambas aceleran. Si en el instante $t_0 = 5$ [s] la partícula m se encuentra en $\vec{r}_m(t_0) = (-2\hat{x} - 8\hat{y})$ [m], ¿en qué lugar se encontrará la otra masa?

Solución: Como no hay fuerzas externas, el centro de masas se mueve con velocidad constante. Encontremos primero la velocidad del centro de masas y la posición de éste en los instantes t = 0 y t = 5 [s]. En efecto

$$\vec{r}_{cm}(0) = \frac{m \cdot \vec{r}_m(0) + M \cdot \vec{r}_M(0)}{m + M} = \frac{3m_0 \cdot 2\hat{x}}{m_0 + 3m_0} = \frac{3}{2}\hat{x} \quad [m]$$

у

$$\vec{v}_{cm}(0) = \frac{m \cdot \vec{v}_m(0) + M \cdot \vec{v}_M(0)}{m + M} = \frac{3m_0 \cdot 4\hat{y}}{m_0 + 3m_0} = 3\hat{y} \ [m/s]$$

Como la velocidad del centro de masas es constante, en el instante $t_0 = 5$ [s] el centro de masas se encontrará en

$$\vec{r}_{cm}(t_0) = \vec{r}_{cm}(0) + \vec{v}_{cm}(0) \cdot t_0 = \left[\frac{3}{2}\hat{x} + 3 \cdot 5\hat{y}\right]$$
 [m]

Por otra parte, en el instante t_0 la posición del centro de masas viene dada por

$$\vec{r}_{cm}(t_0) = \frac{m\vec{r}_m(t_0) + M\vec{r}_M(t_0)}{m + M} \\ = \frac{m_0 \left(-2\hat{x} - 8\hat{y}\right) + 3 m_0 \vec{r}_M(t_0)}{m_0 + 3 m_0} = \frac{1}{4} \left(-2\hat{x} - 8\hat{y} + 3\vec{r}_M(t_0)\right) \quad [m] .$$

Igualando las dos ecuaciones para $\vec{r}_{cm}(t_0)$ podemos despejar $\vec{r}_M(t_0)$:

$$\frac{1}{4} \left(-2\hat{x} - 8\hat{y} + 3\vec{r}_M(t_0) \right) \quad [\mathbf{m}] = \left[\frac{3}{2}\hat{x} + 3 \cdot 5\hat{y} \right] \quad [\mathbf{m}] \ ,$$

de donde se deduce que

$$\vec{r}_M(t_0) = \frac{1}{3} (8\hat{x} + 68\hat{y})$$
 [m] .

'!Grafique en el plano (\hat{x}, \hat{y}) los vectores \vec{r}_m, \vec{r}_M y \vec{r}_{cm} en los instantes t = 0 y t = 5 s!

6.2. Colisiones

Analicemos primeramente colisiones en una dimensión. Considere dos partículas de masas m y M, restringidas a moverse (sin roce) a lo largo del eje \hat{x} y estudiemos algunos casos particulares.

a) Supongamos que la partícula M incide desde la izquierda con velocidad $+v_0$ y se mueve hacia la partícula m, que inicialmente se encuentra en reposo. Suponga que las dos partículas colisionan, quedando una adosada a la otra, formando una única partícula de masa (M + m). ¿Con qué velocidad \tilde{v} se moverá esta nueva partícula después de la colisión? Para resolver este problema usamos el principio de conservación del momento lineal. Sobre el sistema no hay fuerzas externas actuando, luego el momento lineal se conserva. El momento lineal total antes de la colisión es

$$P_{tot}^{(i)} = M v_0 + m \cdot 0 = M v_0 \quad ,$$

mientras que después de la colisión es

$$P_{tot}^{(f)} = (M+m)\,\tilde{v} \ .$$

Estas dos expresiones deben ser iguales, luego

$$\tilde{v} = \frac{M}{M+m} v_0$$

En el límite $M \gg m$ (el caso de una locomotora chocando con una mosca) la velocidad después de la colisión es $\tilde{v} \simeq v_0$ (la velocidad de la locomotora). En el límite $M \ll m$ (el caso de una mosca chocando contra una locomotora en reposo) la velocidad después de la colisión es $\tilde{v} \simeq 0$.

La energía cinética antes y después de la colisión no es la misma, siendo la diferencia

$$Q \equiv K_f - K_i = \frac{1}{2}(M+m)\tilde{v}^2 - \frac{1}{2}Mv_0^2$$
$$= -\frac{1}{2}Mv_0^2 \frac{m}{M+m} .$$

A esta diferencia se le suele llamar *el valor* Q *de la reacción*. Cuando, como en el presente ejemplo, $Q \neq 0$, la colisión se dice que es *inelástica*. Si Q < 0, la colisión es *endotérmica*—parte de la energía que el sistema tenía antes de la colisión se difunde a grados de libertad internos del sistema (por ejemplo, se "pierde" como calor). Si Q > 0 la colisión (o reacción) es *exotérmica*.

b) Consideremos ahora el caso de una colisión en que se conserva la energía cinética (o sea, una colisión con Q = 0) y además se conserva la identidad de las partículas (es decir, el número de ellas y sus masas). Tales colisiones se denominan *elásticas*. Nuevamente supongamos que la partícula M incide desde la izquierda, a lo largo del eje \hat{x} , con velocidad $+v_0$ y que choca con la partícula m, que inicialmente se encuentra en reposo. Encontremos la velocidad final \tilde{v}_m y \tilde{v}_M de cada una de las partículas. Para resolver este problema invocamos la conservación del momento lineal y de la energía (cinética). Se tiene

$$Mv_0 = m\tilde{v}_m + M\tilde{v}_M$$

у

$$\frac{1}{2}Mv_0^2 = \frac{1}{2}m\tilde{v}_m^2 + \frac{1}{2}M\tilde{v}_M^2$$
 .

De estas dos ecuaciones podemos despejar las dos incógnitas \tilde{v}_m y $\tilde{v}_M.$ Se obtiene

$$\tilde{v}_m = \frac{2M}{M+m} \, v_0$$

у

$$\tilde{v}_M = \frac{M-m}{M+m} v_0$$

Analicemos varios casos límites:

- i) $M \gg m$ (o sea, una locomotora con velocidad v_0 colisionando con una pelota de tenis en reposo). En este límite, $\tilde{v}_M = v_0$ y $\tilde{v}_m = 2v_0$ (es decir, la locomotora seguirá como si nada hubiese pasado mientras que la pelota de tenis sale disparada con una velocidad igual al doble de la velocidad de la locomotora).
- ii) $M \ll m$ (o sea, una pelota con velocidad v_0 colisionando con una locomotora en reposo). En este límite, $\tilde{v}_m \simeq 0$ y $\tilde{v}_M = -v_0$ (es decir, la locomotora prácticamente no se moverá y la pelota rebota con una rapidez igual a la incidente). Que la velocidad \tilde{v}_M en este caso sea negativa significa que la partícula se mueve en la dirección $-\hat{x}$.
- iii) M = m (o sea, la colisión central de dos bolas de billar de igual masa). En ese caso $\tilde{v}_m = v_0$ y $\tilde{v}_M = 0$ (es decir, la partícula incidente queda en reposo mientras que la otra partícula sale disparada con velocidad v_0).

Si la colisión no ocurre a lo largo de una línea recta, sino que ocurre en un plano, los conceptos involucrados son los mismos y lo único que cambia es que la ley de conservación del momento lineal, siendo una ecuación vectorial, nos dará una relación para cada una de las componentes. Demos un ejemplo.

Problema: Considere una masa m_1 que choca elásticamente contra una masa m_2 originalmente en reposo. Suponga que después del choque la masa incidente m_1 emerge en una dirección perpendicular a su dirección original (ver figura 6.1). Encuentre:

- a) El ángulo θ con que emerge m_2 , en función de m_1 y m_2 .
- b) La velocidad v_1 con que emerge m_1 .
- c) La velocidad v_2 con que emerge m_2 .

Figura 6.1

Solución: La energía y el momento lineal total, antes y después de la colisión son:

$$E_{i} = \frac{1}{2}m_{1}v_{0}^{2} ,$$

$$\vec{p}_{i} = m_{1}v_{0}\hat{x} ,$$

$$E_{f} = \frac{1}{2}m_{1}v_{1}^{2} + \frac{1}{2}m_{2}v_{2}^{2} ,$$

$$\vec{p}_{f} = m_{1}v_{1}\hat{z} + m_{2}v_{2}\cos\theta\hat{x} - m_{2}v_{2}\sin\theta\hat{z} .$$

Debido a que el choque es elástico, se conserva la energía total y el momento lineal total; esto nos da las ecuaciones:

$$m_1 v_0^2 = m_1 v_1^2 + m_2 v_2^2 ,$$

 $m_1 v_0 = m_2 v_2 \cos \theta$

у

 $m_1 v_1 - m_2 v_2 \sin \theta = 0 \; .$

Estas son tres ecuaciones con tres ingógnitas (las incógnitas son: v_1 , $v_2 \neq \theta$). Resolviendo este sistema de ecuaciones se encuentra:

$$v_1 = v_0 \sqrt{\frac{m_2 - m_1}{m_2 + m_1}} ,$$

$$v_2 = v_0 \sqrt{\frac{2m_1^2}{m_2(m_2 + m_1)}}$$

у

$$\tan \theta = \frac{v_1}{v_0} = \sqrt{\frac{m_2 - m_1}{m_2 + m_1}}$$

Note que el problema sólo tiene solución si $m_2 > m_1$.

En la sección 6.6 ilustramos los conceptos anteriores con otro ejemplo.

6.3. Impulso

De acuerdo a la segunda ley de Newton $\vec{F} = d\vec{p}/dt$. Multiplicando por dt e "integrando" se obtiene

$$\int_i^f \vec{F} \, dt = \int_i^f d\vec{p} = \vec{p}_f - \vec{p}_i \; ,$$

o sea, el cambio de momento que sufre una partícula en cierto intervalo de tiempo es igual a la integral de $\vec{F} dt$ durante ese intervalo. A la integral $\int \vec{F} dt$ se le llama *impulso*.

Cuando ocurre una colisión entre dos objetos, el tiempos de colisión puede ser muy pequeño, el momento transferido sin embargo puede ser grande. Por ejemplo, cuando una bolita de acero, al caer desde una altura h, rebota (elásticamente) por una superficie dura. Al llegar a la superficie la bolita tendrá la velocidad $-\sqrt{2gh}\hat{z}$ y justo después del rebote $\sqrt{2gh}\hat{z}$. El cambio de momento es, por lo tanto,

$$\Delta \vec{p} = \vec{p}_f - \vec{p}_i = 2m\sqrt{2gh}\,\hat{z}$$

Este cambio de momento debe ser igual al impulso transmitido por el suelo a la bolita, es decir,

$$\int_i^f \vec{F}(t) \, dt = 2 \sqrt{2gh} \, \hat{z} \; .$$

Durante la colisión, típicamente la fuerza que ejerce un cuerpo sobre tiene el comportamiento como el mostrado en la figura 6.2. Antes de la colisión la fuerza es nula. En el instante $t_0 - \epsilon_1$ los cuerpos entran en contacto, la fuerza aumenta rápidamente llegando a un máximo en cierto instante t_0 para luego decrecer nuevamente a cero (instante $t_0 + \epsilon_2$). Los cuerpos están en contacto durante un intervalo de tiempo $\epsilon_1 + \epsilon_2$.

El área bajo la curca F(t) es el impulso (momento) transmitido de un cuerpo al otro.

Típicamente el comportamiento F(t) puede ser representado por una parábola

$$F(t) = \begin{cases} F_0 \left[1 - \frac{1}{\epsilon^2} \left(t - t_0 \right)^2 \right] & \text{para } t_0 - \epsilon < t < t_0 + \epsilon \\ 0 & \text{para } t < t_0 - \epsilon & \text{y} \quad t > t_0 + \epsilon \end{cases}$$

En este caso los cuerpos se mantienen en contacto durante un tiempo 2ϵ , siendo en el instante $t = t_0$ la fuerza máxima (F_0) entre los cuerpos. El impulso transmitido es

$$\Delta p = \int_{t_0-\epsilon}^{t_0+\epsilon} F_0 \left[1 - \frac{1}{\epsilon^2} \left(t - t_0\right)^2\right] dt = \frac{4}{3} F_0 \epsilon .$$

Con este modelo para F(t), en el caso de la bolita obtenemos

$$2m\sqrt{2gh} = \frac{4}{3}F_0\epsilon \; .$$

De esta relación se deduce que la fuerza máxima entre la bolita y la superfie de la cual rebota depende del tiempo durante el cual los dos cuerpos se mantienen en contacto. Tanto menor es este intervalo de tiempo, tanto mayor resulta ser F_0 . Veamos un ejemplo numérico. Supongamos que una bolita de 50 g se hace caer desde una altura de 1 m. Supongamos además que el intervalo de tiempo durante el cual los dos cuerpos se mantienen en contacto es aproximadamente 5 ms, o sea, $2\epsilon = 5 \cdot 10^{-5}$ s. Con g = 10 m/s² se tiene:

$$F_0 = \frac{3}{2 \cdot 5 \cdot 10^{-5}} 0.05 \cdot \sqrt{2 \cdot 10 \cdot 1} \, [\text{N}] \simeq 67 \, [\text{N}] \, ,$$

fuerza que es más de cien veces mayor que el peso de la bolita. Si la bolita en lugar de acero es de goma, el tiempo de colisión aumenta considerablemente (en un orden de magnitud y más), siendo la fuerza F_0 , por lo tanto, menor en ese mismo factor. Esto explica por que es posible que si se lanza una bolita de acero y una bolita de goma de iguales masas y con la misma velocidad contra un vidrio, la bolita de acero rompe el vidrio mientras que la de goma rebota.

6.4. Problemas

1. Un muchacho de $m_1 = 40$ kg se encuentra sobre una plataforma móvil de $m_2 = 10$ kg junto a dos ladrillos de m = 5 kg. La plataforma puede desplazarse, sin roce, sobre un terreno horizontal. En cierto instante el muchacho lanza horizontalmente uno y después el otro ladrillo hacia atrás de la plataforma, con una velocidad $v_0 = 2$ m/s respecto a él mismo. ¿Qué velocidad v adquirirá la plataforma?

Respuesta:
$$v = v_0 \frac{m(2M+3m)}{(M+m)(M+2m)} = 0,348 \text{ m/s},$$

 $\operatorname{con} M \equiv m_1 + m_2.$

- 2. Se lanza un proyectil con una velocidad inicial de 20 m/s formando un ángulo de 30° respecto a la horizontal. En el transcurso de su vuelo, el proyectil explota rompiéndose en dos partes, una de las cuales tiene el doble de masa que la otra. Los dos fragmentos aterrizan simultáneamente. El fragmento más ligero aterriza a 20 m del punto de lanzamiento y en la dirección y sentido en que se disparó el proyectil. ¿Dónde aterrizará el otro fragmento?
- 3. Una partícula de masa m y velocidad v_0 choca contra otra idéntica en reposo. La partícula en reposo tiene un resorte de constante de restitución k, al cual queda adosada la partícula incidente (ver figura adjunta). Describa el movimiento del sistema después de la colisión lo más detalladamente posible.

Figura 6.3

- 4. Un bloque de madera de 1 kg se sujeta a un resorte de constante de restitución k = 200Ñ/m. El conjunto descansa sobre una superficie lisa, como se ve en la figura. Se dispara contra el bloque un proyectil de 20 g y el resorte se comprime 13.3 cm.
 - a) Encuentre la velocidad del proyectil antes del choque.
 - b) ¿Qué fracción de la energía mecánica inicial se pierde en el choque?

Figura 6.4

5. Una granada, que se encuentra en reposo, explota partiéndose en dos fragmentos. Sean m_1 y m_2 las masas de los dos fragmentos. Demuestre que las energías cinéticas de los fragmentos vienen dadas por

$$T_1 = \frac{m_2 Q}{m_1 + m_2}$$

у

$$T_2 = \frac{m_1 Q}{m_1 + m_2} \,,$$

donde Q es la diferencia entre la energía cinética total del sistema después y antes de la explosión. (Q es la energía liberada por la explosión de la granada.)

- 6. Un núcleo de ²³⁶U (masa=236 amu), inicialmente en reposo, se divide en dos fragmentos de masas 146 y 90 amu. El valor Q de la reacción es de 190 MeV. Encuentre la velocidad y energía (en MeV) de cada uno de los fragmentos. (1 amu=1.7 10^{-27} Kg, 1 MeV= $1.6 \cdot 10^{-13}$ J.)
- 7. Un ascensor sube en un pozo a razón de 2 m/s. En el instante en que el ascensor está 18 m del extremo superior del pozo, se deja caer una pelota desde la parte superior del pozo. La pelota rebota elásticamente sobre el techo del ascensor. ¿Hasta qué altura subirá la pelota en relación a la parte superior del pozo? Resuelva el mismo problema suponiendo que el elevador se mueve hacia abajo a 2 m/s.
- 8. Una partícula A que inicialmente tiene una velocidad v_0 choca contra otra que se encuentra en reposo, desviándose (la partícula incidente) en un ángulo ϕ . La velocidad de A después del choque es v. Por otra parte, la segunda partícula se desvía en un ángulo θ respecto a la dirección inicial de la primera partícula. Demuestre que

$$\tan \theta = \frac{v \sin \phi}{v_0 - v \cos \phi}$$

9. Considere una plataforma de ferrocarril de peso W que puede rodar sin fricción sobre una vía recta y horizontal (ver figura adjunta). Inicialmente la plataforma se mueve a la derecha con velocidad v_0 . Sobre la plataforma se encuentra de pie un hombre de peso W.

iCuál es el cambio de velocidad de la plataforma si el hombre corre a la izquierda, de modo que su velocidad con relación a la plataforma es u cuando está a punto de saltar del extremo izquierdo?

10. Un objeto de masa m = 5 kg, resbala por una rampa de masa M = 10 kg, partiendo desde una altura h = 2 m. La rampa puede deslizarse, sin roce, sobre el suelo. Una vez que la masa llega abajo, ¿con qué velocidad se mueve la rampa?

Figura 6.6

- 11. Un satélite, que se mueve en línea recta con una rapidez v respecto a algún sistema de referencia, recoge partículas (polvo) cósmicas (que, supondremos, se encuentran en reposo en el sistema de referencia en cuestión) a una tasa dM/dt = k v, donde k es una constante. Si en el instante t = 0 la velocidad del satélite es v_0 y su masa es M_0 , encuentre v(t).
- 12. Sobre una superficie horizontal sin fricción se encuentran en reposo N bloques de igual masa m colocados uno al lado del otro en línea recta separados por una pequeña distancia. (Los bloques están enumerados de izquierda a derecha como N, N 1, N 2, ..., 2, 1.) Desde la izquierda incide sobre ellos un bloque de masa M > m, con velocidad v_0 . Suponga que todos los choques son perfectamente elásticos.

Figura 6.7

- a) Calcule la velocidad final de cada bloque después que han ocurrido todos los choques.
- b) Muestre explícitamente (realizando los cálculos antes y después de todos los choques) que se conserva el momento lineal y la energía cinética del sistema.
- 13. Aldo y su hermano Pablo han ido a patinar a una laguna helada. Al mediodía Aldo se detiene para abrir el paquete del almuerzo, cuando observa que Pablo se aproxima directamente hacia él con una rapidez v. Antes del impacto Aldo le lanza a su hermano el paquete en dirección horizontal, el cual es atrapado en el aire por Pablo. Si ambos hermanos tienen la misma masa M, y la masa del paquete es m, calcule el valor mínimo de la rapidez con la cual Aldo debe lanzar el paquete para que su hermano no choque con él.

14. Considere un péndulo consistente de una masa m colgada de un hilo de largo L. Suponga que el péndulo inicialmente parte con el hilo en posición horizontal. Al llegar la masa al punto inferior (punto O de la figura 6.8), choca elásticamente con una masa M = 2m que se mueve con velocidad $-v_0\hat{x}$. El péndulo rebota (hacia atrás) llegando tener como amplitud máxima nuevamente la horizontal.

Figura 6.8

- a) Encuentre la rapidez inicial v_0 en función de $m, M, L \ge g$.
- b) ¿Cuál es la velocidad de M después del choque?
- 15. Considere la configuración mostrada en la figura adjunta. Suponga que en el instante t = 0 todas las masas están en reposo. La masa #1, después de avanzar una distancia h/2, colisiona inelásticamente con la masa m quedando adosada a ella. ¿Cuál es la velocidad de la masa #1 justo antes de la colisión? ¿Cuál es la velocidad de la masa #2 justo después de la colisión? ¿Con qué velocidad llega la masa #2 al suelo?
- 16. Un proyectil de masa m = 20 g, que se desplaza con velocidad v, choca contra un bloque de masa M =0,48 kg que se encuentra en reposo sobre una superficie lisa. El proyectil queda incrustado en el bloque.

Figura 6.10

A continuación, el sistema proyectil bloque resbala sobre una zona donde el coeficiente de roce cinético con el bloque es $\mu_c = 0, 3$. El sistema se detiene después de haber resbalado 10 m sobre esa zona rugosa. Encuentre la velocidad inicial del proyectil.

- 17. Sobre una plataforma horizontal lisa (sin roce) se colocan en línea recta 99 bloques de igual volumen y masas 2m, 3m, 4m, ..., 99m y 100m, separadas entre sí por una distancia a (ver figura 6.11). Desde la izquierda incide una partícula de masa m con velocidad v_0 . Todos los choques son perfectamente elásticos.
 - a) Calcule la velocidad de la partícula de masa 2m inmediatamente después de la primera colisión.

- b) Calcule la velocidad de la partícula de masa 2m inmediatamente después que experimenta el segundo choque.
- c) Después de un tiempo suficientemente largo se observa que ningún bloque permanece sobre la plataforma. ¿Cuántos bloque cayeron al lado izquierdo y cuántos al lado derecho?

18. Sobre un plano liso se encuentran tres discos iguales (de radio R y masa M). Al disco A, que incide con velocidad v_0 choca simultánea y elásticamente con los discos B y C, tal como se muestra en la figura 6.12. Los discos B y C inicialmente se encuentran en reposo con los centros separados en una distancia 2R+2a. Suponga que no hay roce entre los bordes de los discos cuando están en contacto. Encuentre la velocidad del disco A después de la colisión.

Figura 6.12

Respuesta:

$$v_f = v_0 \frac{\eta^2 - 2}{6 - \eta^2}$$
, con $\eta = \frac{R + a}{R}$

19. Un objeto de masa m resbala sobre la superficie lisa de una "cuña" M. La cuña reposa sobre una superficie también lisa (ver figura). Originalmente el objeto se encuentra en reposo a una altura h medida desde el tramo horizontal.

Figura 6.13

- a) Calcule las velocidades de la cuña y de la masa m una vez que m ha llegado al tramo horizontal de la cuña y se desplaza hacia la derecha.
- b) Posteriormente, la masa m choca elásticamente con la parte posterior de la cuña. Calcule la rapidez de m y M después del choque.

- 20. Una bola de goma se deja caer sobre una cúpula semiesférica de radio R. La bola se suelta a una altura H desde el suelo y a una distancia b con respecto a la vertical que pasa por el centro de la cúpula. La bola choca elásticamente con la cúpula. Calcule la altura h de rebote de la bola con respecto al suelo. Determine el valor máximo de b para que la respuesta tenga sentido.
- 21. En la figura se muestran las direcciones incidente y de rebote de un cuerpo que choca contra una pared sin roce. El cuerpo incide con rapidez v_0 y con una dirección que forma un ángulo θ con la normal de la pared. El cuerpo emerge con rapidez λv_0 (con $\lambda < 1$). Determine la dirección (ϕ en la figura) con que emerge el cuerpo y el vector impulso que la pared imprime al cuerpo.
- 22. Una bala de masa 5 gramos atravieza un saco de virutas de 1 kg de masa. El saco cuelga de un cordel de 2 m de largo. A consecuencia del impacto el saco entra en movimiento y se detiene cuando el cordel forma un ángulo de 12° con la vertical. Calcule la rapidez de la bala una vez que ha emergido del saco si su velocidad antes de la colisión es $v_0 = 1000$ m/s.

Figura 6.14

Figura 6.15

Figura 6.16

23. A y B son dos esferitas de igual masa m engarzadas en el eje horizontal. B está unida a un resorte ideal de largo natural l_0 y rigidez (constante de restitución) k. Inicialmente B está en reposo, el resorte en dirección vertical y sin deformación. A se desliza con velocidad v desconocida, choca con B y ambas permanecen unidas tras la colisión. Calcular v, si en el instante en que el conjunto se detiene el ángulo θ tiene un valor de 60°. Suponga que el roce es despreciable.

Figura 6.17

- 24. Dos carros $B ext{ y } C$, de masas $m ext{ y } 2m$ respectivamente, se encuentran inicialmente en reposo sobre una vía horizontal recta, separados por una distancia L. Un tercer carro A, de masa 2m, que se desplaza con velocidad v_0 hacia la derecha embiste al carro B desde la izquierda (ver figura). Suponga que todos los choques que ocurren son elásticos. En estas condiciones,
 - a) Demuestre que el carro B choca dos veces con el carro A.
 - b) Calcule el tiempo que media entre estos dos choques.

Figura 6.18

25. Una cuerda (flexible), de masa M y largo L se deja caer sobre una pesa. Inicialmente el extremo inferior de la cuerda justo toca la pesa y la cuerda se encuentra en reposo. Demuestre que la lectura de la pesa justo antes de que caiga sobre ella el último segmento de la cuerda, será W = 3Mg.

Figura 6.19

6.5. Solución a algunos de los problemas

Solución al problema 6

Las energías cinéticas totales antes y después del proceso de fisión son

$$K_i = 0$$

у

$$K_f = K_f^{(1)} + K_f^{(2)} = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$$
.

La reacción es exotérmica, es decir, la energía final es superior a la energía inicial en $Q=190~{\rm MeV}.$ Se tiene entonces que

$$K_f - K_i = K_f = K_f^{(1)} + K_f^{(2)} = Q$$
.

La conservación del momento lineal nos da la relación

$$m_1 v_1 = m_2 v_2$$
.

Usando esta relación se deduce que

$$\frac{K_f^{(1)}}{K_f^{(2)}} = \frac{\frac{1}{2}m_1v_1^2}{\frac{1}{2}m_2v_2^2} = \frac{m_2}{m_1}$$

De las relaciones

$$K_f^{(1)} + K_f^{(2)} = Q$$

у

$$\frac{K_f^{(1)}}{K_f^{(2)}} = \frac{m_2}{m_1}$$

se deduce que

$$K_f^{(1)} = \frac{m_2}{m_1 + m_2}Q = 117,5$$
 MeV

у

$$K_f^{(2)} = \frac{m_1}{m_1 + m_2} Q = 72,5$$
 MeV.

De la relación

$$K_f^{(1)} = \frac{1}{2}m_1v_1^2 = \frac{m_2}{m_1 + m_2}Q$$

se deduce que

$$v_1^2 = \frac{m_2}{m_1} \frac{2Q}{m_1 + m_2} = \frac{146}{90} \frac{2 \cdot 190 \cdot 1, 6 \cdot 10^{-13} \text{ J}}{236 \cdot 1, 7 \cdot 10^{-27} \text{ Kg}} \simeq 2,46 \cdot 10^{14} \left(\frac{\text{m}}{\text{s}}\right)^2,$$

o sea,

$$v_1 = 1,57 \cdot 10^7 \frac{\mathrm{m}}{\mathrm{s}}$$
.

Para la velocidad del fragmento mas pesado se obtiene

$$v_2 = \frac{m_1}{m_2} v_1 = 0,97 \cdot 10^7 \frac{\mathrm{m}}{\mathrm{s}}$$

Solución al problema 11

Sea v(t) la velocidad y M(t) la masa del cohete (incluyendo la del polvo recolectado). La conservación del momento lineal nos da la relación

$$M(t)v(t) = M(t+dt)v(t+dt) .$$

Para un intervalo de tiempo dt infinitesimal se tiene que

$$M(t+dt) = M(t) + \frac{dM}{dt} dt$$

у

$$v(t+dt) = v(t) + \frac{dv}{dt} dt .$$

Usando estas relaciones se obtiene

$$M(t)v(t) = M(t+dt)v(t+dt)$$

= $\left(M(t) + \frac{dM}{dt}dt\right) \cdot \left(v(t) + \frac{dv}{dt}dt\right)$
= $M(t)v(t) + M(t)\frac{dv}{dt}dt + v(t)\frac{dM}{dt}dt + \frac{dM}{dt}\frac{dv}{dt}(dt)^2$

Despreciando el término de orden $(dt)^2$, se obtiene

$$M(t) dv = -\frac{dM}{dt} v(t) dt .$$

Pero dM/dt = kv, luego

$$M(t) \, dv = -kv^2 \, dt \, .$$

Multiplicando esta relación por v = v(t) se obtiene

$$M(t)v(t) dv = -kv^3 dt .$$

Pero como el momento lineal se conserva, se tiene que $M(t)v(t) = M_0v_0$, donde M_0 y v_0 son la masa y velocidad del satélite en el instante t = 0. Usando esto, la última ecuación queda

$$\frac{dv}{v^3} = -\left(\frac{k}{M_0 v_0}\right) dt \,.$$

Integrando la última ecuación desde el instante t = 0 (en que la velocidad es v_0) hasta el instante t (en que la velocidad es v(t)) se obtiene

$$\int_{v_0}^{v} \frac{1}{v^3} dv = -\left(\frac{k}{M_0 v_0}\right) \int_0^t dt$$
$$-\frac{1}{2v^2}\Big|_{v_0}^{v} = -\left(\frac{k}{M_0 v_0}\right) t\Big|_0^t$$
$$\frac{1}{2}\left(\frac{1}{v^2} - \frac{1}{v_0^2}\right) = \frac{k}{M_0 v_0} t$$

Despejando v(t) se obtiene finalmente

$$v(t) = rac{v_0}{\sqrt{1 + rac{2kv_0t}{M_0}}}$$

Solución al problema 14

Para que el péndulo vuelva a su posición inicial, el choque elástico en la parte inferior debe ocurrir con momentum total nulo. Luego, después de la colisión la masa M tendrá una velocidad $v_0 \hat{x}$.

La velocidad v_1 con que la masa m llega abajo, se obtiene de la relación (conservación de energía):

$$mgL = \frac{1}{2}mv_1^2 \; , \qquad$$

de donde

$$v_1 = \sqrt{2gL}$$
.

Para que la colisión ocurra con momento lineal cero la rapidez de la masa M debe satisfacer la relación

$$mv_1 = Mv_0$$
,

de donde se obtiene para v_0 el resultado

$$v_0 = \frac{m}{M} v_0 = \frac{m}{M} \sqrt{2gL} \; .$$

Solución al problema 15

En todo instante la partícula #2 se mueva con la mitad de la velocidad de #1. Justo antes del choque la velocidad v_i de la masa #1 viene dada por (conservación de la energía):

 $Mg\frac{h}{4} = \frac{1}{2}(M)v_i^2 + \frac{1}{2}M\left(\frac{v_i}{2}\right)^2 = \frac{5}{8}Mv_i^2 ,$

o sea,

$$v_i^2 = \frac{2gh}{5} \; .$$

Mientras ocurre el choque (o sea, durante un brevísimo intervalo de tiempo $[0, \epsilon]$) la cuerda ejerce una gran fuerza sobre la masa #1 y #2 transmitiendo un cambio de momento lineal Δp :

$$\Delta p = \int_0^\epsilon \tau(t) \, dt \;\; ,$$

donde $\tau(t)$ es la tensión de la cuerda en función del tiempo. Este *impulso* aumenta el momento lineal de la masa #1 en la magnitud Δp y disminuye el momento lineal de la masa #2 en el doble de esa misma magnitud. Si v_f es la velocidad de la masa #1 justo después de la colisión, entonces la ecuación de conservación del momento lineal para la partícula #1 (junto con la masa m) da la relación

$$Mv_i = (M+m)v_f + \Delta p$$
.

Para la

$$M\frac{v_i}{2} = M\frac{v_f}{2} - 2\Delta p$$

Despejando v_2 se obtiene

$$v_2 = v_1 \frac{5M}{5M + 4m}$$

Para encontrar la velocidad \tilde{v} con que la masa #2 llega al suelo usamos nuevamente el principio de conservación de la energía:

$$\frac{1}{2}(M+m)v_f^2 + \frac{1}{2}M\left(\frac{v_f}{2}\right)^2 + Mg\frac{3h}{4} = \frac{1}{2}(M+m)(2\tilde{v})^2 + \frac{1}{2}M\tilde{v}^2.$$

Despejando \tilde{v} y usando las expresiones para v_2 y v_1 se obtiene

$$\tilde{v}^2 = gh \; \frac{2M(5M+3m)}{(5M+4m)^2}$$

Ejercicio: Verifique que tanto para m = 0 como para $m \longrightarrow \infty$, la última ecuación entrega el valor correcto para \tilde{v} .

Solución al problema 19

El momento lineal inicial es cero, y como no hay fuerza externa actuando sobre el sistema, será nulo siempre. Cuando m llega abajo (a la parte horizontal), sean v_m y v_M las velocidades de la masa m y de la cuña, respectivamente. La conservación del momento lineal y de la energía nos da las relaciones

$$mv_m + Mv_M = 0$$

у

$$mgh = \frac{1}{2}mv_m^2 + \frac{1}{2}Mv_M^2$$

Despejando v_m de estas dos ecuaciones (con las incógnitas v_m y v_M) se obtiene

$$v_m = \pm \sqrt{2gh\frac{M}{M+m}}$$

El signo + corresponde a la solución del problema antes de la colisión de m con la pared mientras que la con el signo - es la velocidad de m después del rebote. La velocidad de la cuña es

$$v_M = -\frac{m}{M}v_m = \mp \sqrt{2gh\frac{m}{M+m}}$$

Solución al problema 23

La colisión entre las dos esferitas es un proceso no elástico, por consiguiente, para el proceso de colisión sólo podemos usar la ley de conservación del momento lineal. Sea v_1 la velocidad de las dos masas unidas justo despues de la colisión. La conservación del momento lineal nos da la relación

$$mv = (2m)v_1$$

o sea, $v_1 = v/2$. Luego las dos masas permanecen unidas, el resorte se estira y el sistema queda en reposo cuando el resorte forma un ángulo θ con la normal (ver figura 6.17). Una vez ocurrida la colisión, la energía se conserva. Aplicando la ley de conservación de energía al sistema que consiste de las dos esferitas y el resorte se obtiene

$$\frac{1}{2}(2m)v_1^2 = \frac{1}{2}k \; (\Delta L)^2 \; ,$$

donde ΔL es el alargamiento que sufre el resorte. Este viene dado por

$$\Delta L = \sqrt{\ell_0^2 + (\ell_0 \, \tan \theta)^2} - \ell_0 = \ell_0 \left[\frac{1}{\cos \theta} - 1 \right] \,.$$

Despejamos v_1 de las dos últimas ecuaciones:

$$v_1 = \sqrt{\frac{k}{2m}} \ell_0 \left(\frac{1}{\cos\theta} - 1\right) \;.$$

Con $\cos \theta = \cos 60^\circ = 1/2$ se obtiene para v

$$v = 2v_1 = \ell_0 \sqrt{\frac{2k}{m}} \; .$$

Solución al problema 24

Usando las relaciones que se encontraron en la sección 6.2 para el choque elástico se deduce inmediatamente que, después de la primera colisión, el carro A (de masa 2m) tendrá la velocidad

$$v_A = \frac{2m - m}{2m + m} v_0 = \frac{v_0}{3}$$

mientras que la velocidad de Bserá

$$v_B = \frac{2(2m)}{2m+m} v_0 = \frac{4v_0}{3} \; .$$

El carro B tardará un tiempo

$$t_1 = \frac{L}{v_B} = \frac{3L}{4v_0} \; .$$

para colisionar con el carro C. Esta colisión también es elástica. Después de esta segunda colisión la velocidad de B será

$$\tilde{v}_B = \frac{m - 2m}{m + 2m} v_B = -\frac{v_B}{3} = -\frac{4v_0}{9}$$

El signo negativo indica que B ahora se mueve hacia la izquierda, y por consiguiente, necesariamente debe colisionar denuevo con el carro A (que siguió moviéndose hacia la derecha con velocidad v_A).

Cuando *B* colisiona con *C*, la separación entre *A* y *B* es $L' = L - v_A t_1 = L - L/4 = 3L/4$. De ahí en adelante *B* se mueve hacia la izquiera con velocidad $\tilde{v}_B = -4v_0/9$, mientras que *A* sigue moviéndose hacia la derecha con velocidad $v_A = v_0/3$. La rapidez relativa con que se acercan es $v_r = v_0(4/9 + 1/3) = 7v_0/9$. La distancia *L'* será cubierta en un tiempo

$$t_2 = \frac{L'}{v_r} = \frac{3L}{4} \cdot \frac{9}{7v_0} = \frac{27L}{28v_0}$$

El tiempo total que transcurre entre las dos colisiones de A con B es $t_1 + t_2$, es decir,

$$t_{\text{tot}} = t_1 + t_2 = \frac{12L}{7v_0}$$
.

6.6. Colisión de dos discos

Un disco de radio R y masa m, que incide con velocidad v_0 , colisiona elásticamente con un disco de masa M y radio R, que inicialmente se encuentra en reposo. La colisión ocurre con un parámetro de impacto b (ver figura 6.20). Encuentre el ángulo de dispersión θ del disco incidente. Suponga que no hay fricción entre los discos y la superficie sobre la que se deslizan, y que tampoco hay roce entre los bordes de los discos mientras estos colisionan. En el lado izquierdo de la figura 6.20 se muestra la situación (vista por un observador para el cual inicialmente la partícula M está en reposo) antes de la colisión y al lado derecho la situación que se tiene después de la colisión.

Figura 6.20

Solución analítica:

Al no haber roce entre los bordes de los dos discos mientras colisionan, la fuerza de interacción entre los discos necesariamente será perpendicular al perímetro, o sea, en la dirección radial. Sea \hat{z} la dirección definida por la velocidad del disco incidente. De la figura 6.21 se desprende que el disco M, que inicialmente está en reposo, después de la colisión se moverá formando un ángulo ϕ con respecto a \hat{z} , donde ϕ viene dado por

$$\sin\phi = \frac{b}{2R} \quad . \tag{6.5}$$

Figura 6.21

Sean v_m y v_M las rapideces de los dos discos después de la colisión. La conservación del momento lineal tanto en la dirección \hat{y} como en la dirección \hat{z} nos da las ecuaciones

$$M v_M \sin \phi = m v_m \sin \theta \tag{6.6}$$

у

$$mv_0 = M v_M \cos\phi + m v_m \cos\theta \quad . \tag{6.7}$$

El principio de la conservación de la energía (recordemos que el choque es elástico) nos entrega la relación

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv_m^2 + \frac{1}{2}Mv_M^2 \quad . \tag{6.8}$$

En las ecuaciones (11.2), (11.3) y (11.4), las incógnitas son v_m , v_M y θ .

Despejemos v_M de la ecuación (11.2) y sustituyámos
la en las ecuaciones (11.3) y (11.4). De esta manera se obtienen las relaciones

$$mv_0 = mv_m \cos\theta + \left(mv_m \frac{\sin\theta}{\sin\phi}\right) \cos\phi$$
, (6.9)

у

$$Mmv_0^2 = Mmv_m^2 + \left(mv_m \,\frac{\sin\theta}{\sin\phi}\right)^2 \quad , \tag{6.10}$$

respectivamente. Reordenando las dos últimas ecuaciones, éstas pueden escribirse de la forma

$$v_0 = v_m \left(\cos \theta + \sin \theta \, \frac{\cos \phi}{\sin \phi} \right) \quad , \tag{6.11}$$

у

$$v_0^2 = v_m^2 \left(1 + \frac{m}{M} \frac{\sin^2 \theta}{\sin^2 \phi} \right) \quad . \tag{6.12}$$

Elevando al cuadrado la penúltima ecuación y luego dividiéndola por la ecuación (11.7), se obtiene

$$\left(\cos\theta + \sin\theta \frac{\cos\phi}{\sin\phi}\right)^2 = 1 + \frac{m}{M} \frac{\sin^2\theta}{\sin^2\phi} \quad . \tag{6.13}$$

A partir de esta ecuación, usando relaciones trigonométricas elementales se obtiene

$$\cos^{2}\theta + 2\cos\theta\sin\theta\frac{\cos\phi}{\sin\phi} + \sin^{2}\theta\frac{\cos^{2}\phi}{\sin^{2}\phi} = 1 + \frac{m}{M}\frac{\sin^{2}\theta}{\sin^{2}\phi}$$
$$= \cos^{2}\theta + \sin^{2}\theta + \frac{m}{M}\frac{\sin^{2}\theta}{\sin^{2}\phi}$$
$$2\cos\theta\sin\theta\frac{\cos\phi}{\sin\theta} + \sin^{2}\theta\frac{\cos^{2}\phi}{\sin^{2}\theta} = \sin^{2}\theta + \frac{m}{M}\frac{\sin^{2}\theta}{\sin^{2}\theta}$$

$$2\cos\theta\sin\theta\frac{\cos\phi}{\sin\phi} + \sin^2\theta\frac{\cos\phi}{\sin^2\phi} = \sin^2\theta + \frac{m}{M}\frac{\sin^2\phi}{\sin^2\phi}$$

Multiplicando por $\sin^2 \phi$ y dividiendo por $\sin^2 \theta$ queda

$$2\cos\phi\sin\phi\frac{\cos\theta}{\sin\theta} + \cos^2\phi = \sin^2\phi + \frac{m}{M} ,$$
$$\frac{\sin(2\phi)}{\tan\theta} = -\cos(2\phi) + \frac{m}{M} ,$$

de donde finalmente

$$\tan \theta = \frac{\sin(2\phi)}{\frac{m}{M} - \cos(2\phi)} \quad . \tag{6.14}$$

La última ecuación da el ángulo de dispersión de la partícula incidente en función de ϕ , ángulo que a su vez está determinado si se conoce el parámetro de impacto b (ver ecuación (11.1)).

Analicemos brevemente dos casos límites:

i) Límite $M \longrightarrow \infty$.

Cuando la masa del "blanco" es extremadamente grande comparada con la masa del disco incidente, entonces el disco M no se moverá y la colisión será *especular*. Cuando la dispersión es especular, el ángulo de rebote del disco m respecto a la normal es igual al ángulo incidente. De la figura 6.21 se observa de inmediato que en ese caso la relación entre el ángulo de dispersión y el ángulo ϕ es

$$\theta = \pi - 2\phi \quad . \tag{6.15}$$

Figura 6.22

Demostremos que se obtiene el mismo resultado a partir de la ecuación (6.14). Para $M \longrightarrow \infty$ ésta queda

$$\tan \theta = -\tan(2\phi) \quad . \tag{6.16}$$

Pero

$$-\tan(2\phi) = \tan(\pi - 2\phi) ,$$

luego

$$\tan \theta = \tan(\pi - 2\phi) \quad . \tag{6.17}$$

De la última ecuación se desprende inmediatamente el resultado (6.15).

ii) Límite M = m.

Cuando M = m entonces la ecuación (6.14) queda

$$\tan \theta = \frac{\sin(2\phi)}{1 - \cos(2\phi)}$$
$$= \frac{2\sin\phi\cos\phi}{1 - \cos^2\phi + \sin^2\phi}$$
$$= \cot\phi \qquad (6.18)$$

De esta última relación se desprende que

$$\theta + \phi = \frac{\pi}{2} \quad . \tag{6.19}$$

Este es un resultado general: siempre que colisiona un objeto elásticamente con otro de igual masa que inicialmente está en reposo, la suma de los ángulos de dispersión de ambos objetos será de 90° .

Solución gráfica

Demostremos ahora el resultado dado por la ecuación (6.14) usando un método gráfico.

La figura 6.23 muestra los discos antes y después de la colisión vistos desde dos sistemas de referencia distintos: el sistema del laboratorio (en que M inicialmente está en reposo) y el sistema de coordenadas fijo al *centro de masas*. A pesar de que el concepto de *centro de masas* se estudiará recien en el siguiente capítulo, para resolver el presente problema basta con saber que el sistema de referencia del centro de masas corresponde al referencial de un observador que se mueve con velocidad uniforme respecto al laboratorio y para el cual el momento lineal total antes de la colisión es nulo. Tal sistema de referencia es igual al del laboratorio, un sistema de referencia inercial, es decir, en él también se cumplen las leyes de Newton.

Figura 6.23

Notación: Para hacer más transparente lo que sigue, a las magnitudes físicas, cuando éstas estén medidas (observadas) desde el sistema de referencia del centro de masas, le agregaremos una prima. A las magnitudes después de la colisión les agregaremos adicionalmente una tilde.

El momento lineal se conserva para ambos observadores. En particular, para el observador en el sistema de referencia del centro de masas, el momento total de las partículas siempre es nulo (en efecto, ésta será, como veremos en el siguiente capítulo, la definición del *sistema de referencia del centro de masas*).

Resolvamos primero el problema para el observador del centro de masas. Tal como se mencionó en el párrafo anterior, los momentos lineales de los discos, en todo instante, en particular antes y después de la colisión, deben ser de igual magnitud pero apuntar en sentidos contrarios. Si la colisión es elástica entonces, además, las magnitudes del momento lineal, antes y después de la colisión, deben ser iguales. O sea, medidos desde el CM, los momentos lineales de los dos discos, antes y después de la colisión, tienen todos la misma magnitud. Si los cuatro vectores tienen la misma magnitud, las puntas de estos vectores deben estar ubicados todos sobre un círculo (ver figura 6.24).

Figura 6.25

En el sistema de referencia del centro de masas es fácil determinar los ángulos de dispersión de los dos discos. Cuando no hay roce, la fuerza, y por consiguiente, el cambio de momento lineal de cada disco, debe ser perpendicular a la superficie de contacto. De la afirmación anterior es fácil deducir que la colisión (vista desde el CM) será especular (ver figura 6.25). De las figuras 6.24 y 6.25 se deduce que el ángulo de dispersión de m viene dado por

$$\theta' = \pi - 2\phi \quad , \tag{6.20}$$

donde $\sin \phi = b/(2R)$.

Volvamos al sistema de referencia del laboratorio. Para pasar del sistema de referencia del centro de masas al del laboratorio, debemos sumar a todas las velocidades la velocidad del movimiento relativo entre los dos observadores (esto es, la velocidad del centro de masas). Para realizar esto gráficamente debemos primero transformar la figura 6.24, que es un gráfico de momentos lineales, a una de velocidades. Pero, para transformar momentos lineales en velocidades basta con dividir a los vectores momento lineal correspondientes a cada partícula por su masa. Si los dos discos no tienen la misma masa, entonces los vectores de velocidad de las partículas ya no quedarán sobre el mismo círculo. Supongamos que M es mayor que m, entonces los vectores velocidad correspondientes a la masa M serán menores que los del disco m y, en este caso, se obtiene una representación gráfica como la mostrada en la figura 6.26).

Figura 6.26

Figura 6.27

Elijamos como unidad de magnitud para medir las rapideces a la rapidez que la partícula m tiene en el sistema de referencia del centro de masas, o sea, la rapidez (medida desde el sistema de referencia del centro de masas) de la partícula m, tanto antes como después de la colisión, es 1. La rapidez de la partícula M, en esas unidades, es m/M.

Como ya hemos mencionado, para pasar del sistema de referencia del centro de masas al sistema del laboratorio, debemos sumarle a todos los vectores velocidad del diagrama 6.26, la velocidad relativa de los dos observadores (que es $-\vec{v}'_M$).

En lugar de sumar un vector constante a todos los vectores de un gráfico resulta más cómodo simplemente mover el origen en la dirección contraria en esa misma magnitud. Trasladándo el origen en la cantida \vec{v}'_M se obtiene la figura 6.27. Cuando los vectores velocidad se observan desde el sistema de centro de masas debe usarse el origen $O_{\rm cm}$, mientras que si ésto se realiza desde el sistema de referencia del laboratorio, hay que usar el origen $O_{\rm lab}$.

A partir de la figura 6.27 es fácil determinar el ángulo de dispersión θ . La figura 6.28 muestra el detalle del triángulo relevante. Se tiene:

$$a = \tilde{v}'_m \sin(2\phi) = \sin(2\phi)$$

$$b = v'_M - \tilde{v}'_m \cos(2\phi) = \frac{m}{M} - \cos(2\phi)$$

у

$$\tan \theta = \frac{a}{b} = \frac{\sin(2\phi)}{\frac{m}{M} - \cos(2\phi)} \; .$$

Figura 6.28

Figura 6.29

Esta última ecuación coincide con el resultado que habíamos obtenido anteriormente en forma analítica (ver ecuación (6.14)).

Si M < m, entonces el punto $O_{\rm cm}$ cae fuera del círculo original (ver figura 6.29). Note que en este caso el ángulo de dispersión θ siempre será menor que un valor máximo dado por

$$\sin\theta_{max} = \frac{M}{m} \; .$$

Problema:

Considere una partícula de masa m y velocidad v_0 que colisiona con otra partícula de masa m, inicialmente en reposo. La energía cinética de la partícula incidente es $E_0 = mv_0^2/2$. La partícula # 2 emerge de manera que su vector velocidad forma un ángulo de 45° (medido en el sistema de referencia del laboratorio) con respecto a la dirección incidente. Además de esta información se sabe que el choque es inelástico, siendo $Q = 0, 18 E_0$ la energía que desaparece del movimiento relativo (iéndose a los grados de libertad internos del sistema, transformándose, por ejemplo, en calor). Encuentre gráficamente los ángulos (hay dos soluciones) en que emerge la partícula # 1.

Capítulo 7

Torque, centro de masas y equilibrio

7.1. Producto vectorial

Para lo que sigue, necesitamos introducir una nueva operación entre dos vectores, llamada producto vectorial o producto cruz.

Definición:

Sean \vec{A} y \vec{B} dos vectores. Entonces definimos el vector \vec{C} , que es el producto vectorial de \vec{A} y \vec{B} , por:

$$\vec{C} = \vec{A} \times \vec{B} \equiv |\vec{A}| |\vec{B}| \sin \gamma \, \hat{C} \,, \tag{7.1}$$

donde γ es el ángulo (más pequeño) entre los dos vectores \vec{A} y \vec{B} , y \hat{C} es un vector unitario perpendicular al plano engendrado por los vectores \vec{A} y \vec{B} .

Hay dos vectores unitarios que son perpendiculares al plano engendrado por los vectores \vec{A} y \vec{B} . Por convención debe usarse el que se obtiene usando la *regla de la mano derecha*.

Regla de la mano derecha: Empuñe la mano y estire el dedo pulgar. Oriente los dedos empuñados de manera que apunten a lo largo del ángulo γ (desde \vec{A} hacia \vec{B}); entonces el pulgar indica la dirección y sentido del vector \hat{C} .

De la definición se desprende que el producto cruz de dos vectores es otro vector. Notemos que la definición del vector \vec{C} es independiente de cualquier sistema de coordenadas. Es inmediato que

$$\begin{aligned} \hat{x} \times \hat{x} &= \hat{y} \times \hat{y} = \hat{z} \times \hat{z} = 0 ,\\ \hat{x} \times \hat{y} &= -\hat{y} \times \hat{x} = \hat{z} ,\\ \hat{y} \times \hat{z} &= -\hat{z} \times \hat{y} = \hat{x} \end{aligned}$$

 $\hat{z} \times \hat{x} = -\hat{x} \times \hat{z} = \hat{y} \; .$

у

Una característica importante del producto cruz es que no es conmutativo, sino anticonmutativo; en efecto, de la definición se observa inmediatamente que:

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

El producto cruz es distributivo respecto a la suma de vectores:

$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

у

$$(\vec{A} + \vec{B}) \times \vec{C} = \vec{A} \times \vec{C} + \vec{B} \times \vec{C}$$
.

Evaluemos el producto cruz entre los dos vectores \vec{A} y \vec{B} en términos de sus coordenadas. Sean \vec{A} y \vec{B} dos vectores

$$A = (A_x, A_y, A_z) = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$
$$\vec{B} = (B_x, B_y, B_z) = B_x \hat{x} + B_y \hat{y} + B_z \hat{z},$$

entonces se tiene

$$\begin{aligned} \hat{A} \times \hat{B} &= (A_x \hat{x} + A_y \hat{y} + A_z \hat{z}) \times (B_x \hat{x} + B_y \hat{y} + B_z \hat{z}) \\ &= A_x B_x \hat{x} \times \hat{x} + A_x B_y \hat{x} \times \hat{y} + A_x B_z \hat{x} \times \hat{z} + A_y B_x \hat{y} \times \hat{x} + A_y B_y \hat{y} \times \hat{y} + A_y B_z \hat{y} \times \hat{z} + A_z B_x \hat{z} \times \hat{x} + A_z B_y \hat{z} \times \hat{y} + A_z B_z \hat{z} \times \hat{z} \\ &= (A_x B_y - A_y B_x) \hat{z} + (A_y B_z - A_z B_y) \hat{x} + (A_z B_x - A_x B_z) \hat{y} \end{aligned}$$

Considere el paralelógramo engendrado por dos vectores \vec{A} y \vec{B} (ver figura 7.1). El área de tal paralelógramo viene dado por

$$\text{Årea} = |\vec{A} \times \vec{B}|$$
.

Figura 7.1

Ilustremos el uso del producto cruz con dos problemas.

Problema 1: Sean $P_1 = (2,1,5)$, $P_2 = (5,2,8)$ y $P_3 = (4,8,2)$ las coordenadas de los vértices de un triángulo. Calcule su área.

Solución: El vector que une los puntos P_1 y P_2 es

$$\vec{A} = 3\hat{x} + \hat{y} + 3\hat{z} \; ,$$

mientras que el vector que une los puntos P_1 y P_3 es

$$\vec{B} = 2\hat{x} + 7\hat{y} - 3\hat{z} \; .$$

Ahora observe que el módulo del producto vectorial de los vectores \vec{A} y \vec{B} es igual al doble de área del triángulo, por lo tanto

Área del
$$\triangle = \frac{1}{2} |\vec{A} \times \vec{B}|$$

= $\frac{1}{2} |-24\hat{x} + 15\hat{y} + 19\hat{z}| \simeq 17,04$

Problema 2: Sean \vec{A} y \vec{B} dos vectores unitarios en el plano x, y, que forman ángulos $-\alpha$ y β con el eje \hat{x} , respectivamente (ver figura 7.2). Evalúe el producto cruz de estos vectores de dos maneras, una vez usando la definición y la segunda vez usando la expresión en términos de las coordenadas cartesianas, y de esta manera encuentre una expresión para $\sin(\alpha + \beta)$.

Figura 7.2

Solución: El ángulo entre los vectores \vec{A} y \vec{B} es $\alpha + \beta$, luego

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| |\sin(\alpha + \beta)| = \sin(\alpha + \beta)$$

Por otra parte

$$\begin{aligned} |\vec{A} \times \vec{B}| &= |(\cos \alpha \, \hat{x} - \sin \alpha \, \hat{y}) \times (\cos \beta \, \hat{x} + \sin \beta \, \hat{y}| \\ &= |(\cos \alpha \, \sin \beta + \sin \alpha \, \cos \beta) \, \hat{z}| = \cos \alpha \, \sin \beta + \sin \alpha \, \cos \beta \, . \end{aligned}$$

Igualando las dos expresiones anteriores concluimos que

$$\sin(\alpha + \beta) = \cos \alpha \, \sin \beta + \sin \alpha \, \cos \beta \, .$$

Ejercicios:

- 1. Encuentre un vector unitario \hat{A} que sea simultáneamente perpendicular a los vectores $\vec{u} = 2\hat{x} + \hat{y} \hat{z}$ y $\vec{v} = \hat{x} \hat{y} + \hat{z}$. ¿Cuántos vectores unitarios \hat{A} existen con esta propiedad?
- 2. Sea $\vec{A} = \hat{x} + 3\hat{z} 2\hat{y}$. Encuentre un vector en el plano \hat{x}, \hat{y} que sea perpendicular a \vec{A} .
- 3. Verifique la expansión del producto vectorial triple:

$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} \left(\vec{A} \cdot \vec{C} \right) - \vec{C} \left(\vec{A} \cdot \vec{B} \right)$$

por expansión directa en coordenadas cartesianas.

- 4. Considere los vectores $\vec{A} = \hat{x} + \hat{y}$, $\vec{B} = \hat{y} + \hat{z}$ y $\vec{C} = \hat{x} \hat{z}$.
 - a) Evalúe el producto escalar triple $\vec{A} \cdot (\vec{B} \times \vec{C})$.
 - b) Evalúe $\vec{A} \times (\vec{B} \times \vec{C})$.
- 5. Encuentre un vector que sea perpendicular al plano que pasa por los puntos $P_1 = (1, 1, 1), P_2 = (1, 2, 3)$ y $P_3 = (2, 3, 1).$

Respuesta: $\vec{C} = \alpha \left(-4\hat{x} = 2\hat{y} - \hat{z}\right) \quad \text{con } \alpha \text{ un número real no nulo.}$

6. Encuentre un vector que apunte a lo largo de la intersección de los planos engendrados por los vectores $\vec{A} = \hat{x} + 2\hat{y}$, $\vec{B} = \hat{x} - 3\hat{y}$ y $\vec{C} = \hat{z} + 2\hat{x} - \hat{y}$, $\vec{D} = \hat{y} + 2\hat{z}$, respectivamente.

7.2. Torque

Considere un objeto (por ejemplo, una barra) que en cierto instante se encuentra en reposo. Que la fuerza total sobre la barra sea nula, y por lo tanto (usando la segunda ley de Newton) su aceleración sea nula, no significa que ésta no empezará a moverse. Una situación de ese tipo se muestra en la figura 7.3. La fuerza total (es decir, la suma vectorial de la dos fuerzas aplicadas sobre la barra) es nula y efectivamente la barra como un todo no se trasladará; sin embargo, las dos fuerzas paulatinamente harán que la barra rote.

Consideremos ahora la palanca mostrada en la figura 7.4. Ignoremos por un momento el peso de la palanca. ¿Qué fuerza debemos hacer para mantener la palanca en equilibrio? Ya en la antigüedad los griegos conocían la respuesta:

$$F = Mg\frac{x}{L} \; .$$

La ley que describe los resultados empíricos de este tipo de situaciones, llamada *ley de las palancas*, se puede enunciar fácilmente si se introduce el concepto de torque.

Definición: El torque $\vec{\tau}$ que genera una fuerza \vec{F} respecto a un punto P es

$$\vec{\tau} \equiv \vec{r} \times \vec{F} \; ,$$

donde \vec{r} es el vector que va desde el punto P hasta el lugar donde se aplica la fuerza \vec{F} .

El torque es la magnitud responsable de hacer girar a los objetos. El torque apunta en la dirección del eje de giro y en el sentido dado por la regla de la mano derecha (si los dedos empuñados indican el sentido de la rotación entonces el pulgar extendido apunta a lo largo del eje de giro).

Note que el torque que ejerce una fuerza depende de la posición del punto Q donde ésta se aplica y del P respecto al cual estamos evaluando el torque. Una fuerza \vec{F} , respecto a puntos distintos, ejerce torques distintos.

En el objeto mostrado en la figura 7.5 se aplica una fuerza en el punto Q. La magnitud del torque se puede evaluar multiplicando el tamaño de la fuerza por el brazo. El brazo es la distancia entre el punto P y recta que indica la dirección de \vec{F} que pasa por el punto Q. Con respecto al punto P_1 el módulo del torque producido por la fuerza \vec{F} es Fa, donde $F = |\vec{F}|$ y a es el brazo. El vector $\vec{\tau}$ apunta normal a la hoja de papel en dirección del lector. Respecto al punto P_2 el torque generado por la fuerza \vec{F} es nulo, ya que el brazo es nulo.

Figura 7.5

El conocimiento empírico que se tiene sobre palancas, y en general, sobre objetos en equilibrio (es decir, objetos que no aceleran ni comienzan a rotar) permite enunciar la siguiente ley (que complementa a la primera ley de Newton):

Si el torque neto ejercido por las fuerzas que actúan sobre un cuerpo, respecto a un punto P, es nulo, entonces el cuerpo no cambiará su estado rotacional (o sea, si no estaba rotando en torno a P, no comenzará a rotar en torno a ese punto y si estaba rotando con cierta velocidad angular, seguirá rotando con la misma velocidad angular).

Ejercicio: Demuestre que para la situación mostrada en la figura 7.4, el torque neto, en torno al punto 0, ejercido por las tres fuerzas que actúan sobre la palanca, es nulo. (Ignore el peso de la palanca.)

7.3. Centro de masas

La evaluación del torque debido al peso de un objeto se simplifica considerablemente si se introduce el concepto de *centro de masas*, que ya mencionado en el capítulo anterior.

Consideremos dos masas m_1 y m_2 , unidas por una barra de masa despreciable, dentro de un campo gravitacional $\vec{g} = -g\hat{z}$. Evaluemos el torque neto debido al peso de las masas en torno al punto P.

Figura 7.6

Tenemos:

$$\begin{aligned} \vec{\tau} &= \vec{r}_1 \times (-m_1 g \hat{z}) + \vec{r}_2 \times (-m_2 g \hat{z}) \\ &= \frac{(m_1 \vec{r}_1 + m_2 \vec{r}_2)}{M} \times (-M g \hat{z}) \end{aligned}$$

Sea $M = m_1 + m_2$ y definamos

$$\vec{r}_{\rm cm} = \frac{1}{M} \left(m_1 \vec{r}_1 + m_2 \vec{r}_2 \right) \,,$$

entonces

$$\vec{\tau} = \vec{r}_{\rm CM} \times (-Mg\hat{z})$$
 .

O sea, una vez conocido el vector de posición del centro de masas \vec{r}_{cm} , podemos evaluar el torque debido a la fuerza de gravedad suponiendo que la masa total del objeto se encuentra en ese lugar.

El concepto *centro de masas* ha aperecido en varias oportunidades. Definámoslo y analicemos algunas de sus propiedades:

Para N masas discretas $\{m_j\}_j$ en los lugares $\{\vec{r}_j\}_j$, la posición del centro de masas viene dada por

$$\vec{r}_{\rm cm} = \frac{1}{M} \sum_{j=1}^{N} m_j \, \vec{r}_j \; ,$$

con $M = m_1 + m_2 + \cdots + m_N$. Para el caso de una lámina (en el plano x, y, con el origen en ese mismo plano) de densidad superficial $\sigma(x, y)$, la posición del centro de masas viene dada por

$$\vec{r}_{\rm cm} = \frac{1}{M} \int_{\rm lámina} (x\hat{x} + y\hat{y}) \sigma(x, y) \, dx \, dy$$

Para un cuerpo sólido de densidad $\rho(x, y, z)$, la posición del centro de masas viene dada por

$$\vec{r}_{\rm cm} = rac{1}{M} \int_{\rm cuerpo} \vec{r} \
ho(x,y,z) \ dx \ dy \ dz$$
 .

Los siguientes seis ejercicios se refieren a importantes propiedades del centro de masas.

Ejercicios:

1. A pesar de que el vector *centro de masas* \vec{r}_{cm} dependa del origen que se elija para evaluarlo, la posición del centro de masas es independiente de la elección del origen.

Sea $\vec{r}_{\rm cm}$ el vector posición del centro de masas de un objeto evaluado usando un sistema de referencia cuyo origen es O y $\vec{r}_{\rm cm}$ el resultado que se obtiene usando otro sistema de coordenadas cuyo origen es O'. Demuestre que

$$\vec{r}_{\rm cm} = \vec{r}'_{\rm cm} + \vec{a}' \,,$$

donde \vec{a} es el vector que une los dos orígenes.

Figura 7.7

2. Considere tres masas $m_1 = m_0$, $m_2 = 3m_0$ y $m_3 = 6m_0$, ubicadas en los lugares

respectivamente. Encuentre la posición del centro de masas usando los dos procedimientos siguientes:

a) Usando la fórmula

$$\vec{r}_{cm} = \frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{j} m_{j}}$$

- b) Encontrando primero el centro de masas del subsistema formado por las partículas 1 y 2 solamente y luego encontrando el centro de masas de este subsistema con la partícula # 3.
- c) Formule en palabras una generalización (importante) de este resultado.
- 3. Convénzase de que si un objeto tiene ejes y planos de simetría, entonces el centro de masas se ubica en tales planos y ejes. Por ejemplo, de acuerdo a este resultado, en una esfera, un cilindro recto, etc., el centro de masas se ubicará al centro de tales objetos.
- 4. Considere un cuerpo compuesto de N masas m_j , situados en los lugares $\vec{r_j}$, con $j = 1, 2, 3, \ldots, N$. Demuestre que la energía potencial de tal cuerpo, en un campo gravitacional constante, se puede evaluar suponiendo que toda su masa $M = m_1 + m_2 + \cdots + m_N$ está concentrada en su centro de masas.

- 5. Considere un cuerpo compuesto de N masas m_j , situados en los lugares $\vec{r_j}$, con $j = 1, 2, 3, \ldots, N$. Demuestre que para evaluar el torque total respecto a un punto P debido a la fuerza de gravedad (constante), basta suponer que toda la masa del cuerpo está concentrada en el centro de masas.
- 6. Considere un sistema que consiste de dos masas $m \ge M$ puntuales separadas por una distancia a. Demuestre que la posición del centro de masas del sistema se ubica sobre la recta que las une, encontrándose más cercano a la masa mayor.

7.4. Evaluación numérica del centro de masas de un semicírculo

Problema: Encontrar numéricamente el centro de masas de una lámina semicircular de radio R y densidad superficial uniforme σ_0 .

Solución: Dividamos el semicírculo en N franjas de ancho dz = R/N y luego aproximemos las franjas por rectángulos (ver figura 7.8). El centro de masa del rectángulo j se encontrará en el lugar

$$\vec{r}_j = \left(j \, dz - \frac{1}{2} \, dz\right) \, \hat{z} = \frac{R \, (j - 1/2)}{N} \, \hat{z} \qquad j = 1, \dots, N \quad .$$

El área del rectángulo j viene dada por

$$A_j = (ancho) \cdot (largo)$$

= $dz \ 2x_j$
= $2 \cdot \frac{R}{N} \cdot \sqrt{R^2 - R^2(j-1)^2/N^2}$
= $2 \left(\frac{R}{N}\right)^2 \sqrt{N^2 - (j-1)^2}$

Figura 7.8

Encontremos ahora el centro de masas de los centros de masas de todos los rectángulos. Se tiene:

$$\begin{split} \vec{R}_{cm} &= \frac{\sum_{j} \vec{r}_{j} \cdot (\text{masa de rectángulo } j)}{(\text{masa del semicírculo})} \\ &= \sum_{j} \left(\frac{R(j-1/2)}{N} \, \hat{z} \, \sigma_{0} \, 2 \, \left(\frac{R}{N}\right)^{2} \sqrt{N^{2} - (j-1)^{2}} \right) \, \frac{1}{\sigma_{0} \, \frac{1}{2} \, \pi \, R^{2}} \\ &= \frac{4R}{\pi N^{3}} \sum_{j=1}^{N} \left(\sqrt{N^{2} - (j-1)^{2}} \, (j-1/2) \right) \, \hat{z} \\ &= f(N) R \hat{z} \, , \end{split}$$

donde

$$f(N) \equiv \frac{4}{\pi N^3} \sum_{j=1}^{N} \left(\sqrt{N^2 - (j-1)^2} \ (j-1/2) \right)$$

.

El valor exacto para \vec{R}_{cm} se obtiene para valores grandes de N.

Para valores de N no demasiado grandes podemos evaluar f(N) con una calculadora (hágalo para N = 1 y N = 2 y compare su resultado con el de la tabla). Para valores grandes de N debemos hacer un pequeño programa y usar una computadora.

Un pequeño programa en BASIC que permite evaluar f(N) (para N = 500) es:

$$\begin{split} PI &= 3.1415926 \\ N &= 500 \\ S &= 0 \\ FOR J &= 1 \text{ TO N} \\ S &= S + SQR(N*N - (J - 1)*(J - 1)) * (J - 0.5) \\ NEXT J \\ F &= 4*S \ / \ (PI*N*N*N) \\ PRINT N \ , \ F \end{split}$$

N	f(N)	Error relativo $\%$	4.00
1	0.6366	50	104
2	0.5826	35	N. 1
3	0.5344	26	0 2
5	0.4972	17	\geq
10	0.4642	9.4	
20	0.4456	5.0	
50	0.4334	2.1	Ľ,
100	0.4390	1.1	
200	0.4268	0.56	
500	0.4254	0.24	
1000	0.42490	0.12	2
Exacto	0.4244		10-1
			10 10

Los resultados que arroja este programa para distintos valores de N, se presentan en la tabla adjunta. Recurriendo al cálculo integral, es posible encontrar el resultado exacto, es decir, el valor de $f(\infty)$; éste resulta ser $4/(3\pi) = 0.4244...$ En la figura 7.9 se muestra un gráfico del error relativo entre el valor númerico y el valor exacto en función de N. A partir de N = 100 el error es menor que un 1%.

Nota: El método numérico empleado aquí para resolver el problema no es el más eficiente. La bondad del método empleado radica en su simpleza.

Ejercicio: Use un procedimiento análogo para calcular la posición del centro de masas de una semiesfera de radio R y densidad de masa (uniforme) ρ_0 .

7.5. Equilibrio

Un cuerpo (objeto o sistema), que en cierto instante está en reposo, seguirá en reposo si la fuerza neta que actúan sobre él es nula y además el torque neto de estas fuerzas (respecto a cualquier punto), también es nulo. Un cuerpo que está en reposo y continúa en ese estado se dice que está en *equilibrio*.

Leyes de equilibrio:

Para que un cuerpo esté en equilibrio es necesario que se cumplan las siguientes dos condiciones:

- i) La fuerza neta sobre el objeto debe ser nula.
- ii) El torque neto sobre el objeto debe ser nulo.

Consideremos un objeto (cuerpo rígido) formado por N masas $\{m_j\}$ ubicadas en los lugares $\{\vec{r}_j\}$ (respecto a un origen O) y unidas por barras rígidas sin masas (ver figura 7.10). Sea \vec{F}_j la fuerza externa que actúa sobre cada una de las masas m_j .

A continuación, usando esta figura, demostraremos dos resultados importantes:

Figura 7.10

Si la fuerza neta sobre un cuerpo es cero entonces el torque neto es independiente del punto respecto del cual se evalúa. En particular, si el torque es nulo repecto a un punto, también lo será respecto a cualquier otro punto.

Demostración:

Sean $\{\vec{r}_j\}$ y $\{\vec{\bar{r}}_j\}$ los vectores de posición de las masas $\{m_j\}$ respecto a un origen O y \overline{O} , respectivamente. Sea además \vec{R} el vector que une los puntos O y \overline{O} . Entonces

$$\vec{\tau} = \sum_{j} \vec{r_j} \times \vec{F_j}$$

$$= \sum_{j} (\vec{R} + \vec{\bar{r}_j}) \times \vec{F_j}$$

$$= \sum_{j} \vec{R} \times \vec{F_j} + \sum_{j} \vec{\bar{r}_j} \times \vec{F_j}$$

$$= \vec{R} \times \sum_{j} \vec{F_j} + \vec{\tau} = \vec{R} \times \vec{0} + \vec{\tau} = \vec{\tau} .$$

El otro resultado importante es el siguiente:

Si la fuerza neta \vec{F}_{tot} que actúa sobre un cuerpo de masa M no es nula, entonces el punto del cuerpo que es acelerado de acuerdo a la segunda ley de Newton es el centro de masas. O sea, se tiene que:

$$\vec{F}_{tot} = M\ddot{\vec{r}}_{cm}$$
 .

Demostración:

En primer lugar notemos que las barras que unen las distintas masas en la figura 7.10 transmiten fuerzas. Sea \vec{F}_{ij} la fuerza que ejerce la masa m_j sobre la masa m_i . Debido al principio de acción y reacción $\vec{F}_{ji} = -\vec{F}_{ij}$.

La fuerza que ejercen todas las demás partículas sobre la masa m_i viene dada por $\sum_j F_{ij}$. Por lo tanto, la ecuación de movimiento para la partícula *i* viene dada por

$$m_i \, \ddot{\vec{r}_i} = \vec{F}_i + \sum_j \vec{F}_{ij} \; . \label{eq:minimized_states}$$

Sumando todas las ecuaciones (o sea, sumando sobre i) se obtiene

$$\sum_{i} m_i \ddot{\vec{r}}_i = \sum_{i} \vec{F}_i + \sum_{ij} \vec{F}_{ij} \; .$$

Debido al principio de acción y reacción, la última suma (sobre $i \neq j$) es nula, luego

$$M \; \frac{\sum_i m_i \vec{\vec{r}_i}}{M} = \sum_i \vec{F_i} = \vec{F_{\text{tot}}} \; .$$

Pero

$$\frac{\sum_i m_i \ddot{\vec{r}_i}}{M} = \ddot{\vec{r}}_{\rm cm} \; ,$$

luego

$$\vec{F}_{\rm tot} = M\ddot{\vec{r}}_{\rm cm}$$
 .

Debido a la importancia de este resultado lo reiteramos en palabras: La fuerza neta que actúa sobre un objeto acelera al objeto como un todo. El lugar geométrico que cumple con la segunda ley de Newton es el centro de masas. O sea, para analizar el movimiento traslacional, toda la masa se puede pensar como si estuviese concentrada en el centro de masas, siendo ése también el lugar en que se aplica la fuerza neta.

Corolario: Si la fuerza neta que actúa sobre un cuerpo es nula, entonces el centro de masas del cuerpo se traslada con velocidad uniforme (o nula).

Observe que no es necesario especificar el punto respecto al cual se está evaluando el torque neto, ya que, de acuerdo a los resultados expuestos anteriormente, si la fuerza neta es nula y el torque es nulo respecto a un punto, también lo será con respecto a cualquier otro punto.

Ilustremos el uso de las leyes del equilibrio resolviendo un problema.

Problema:

Una escalera de masa m y largo L se encuentra apoyada contra una pared lisa (o sea, no hay roce entre la escalera y la pared), formando un ángulo α con ella. Una persona de masa M se encuentra sobre la escalera. ¿Cuál es el mínimo coeficiente de roce estático que debe existir entre el suelo y la escalera para que la escalera no resbale, independientemente de la altura a la que se encuentra la persona? Solución: Introduzcamos el sistema de coordenadas mostrado en la figura adjunta. Para que el sistema se encuentre en equilibrio, la fuerza total sobre la escalera debe ser nula. Hay cuatro fuerzas actuando sobre la escalera:

- i) El peso de la escalera $-mg\hat{z}$; esta fuerza se aplica en el centro de masas de la escalera.
- ii) El peso de la persona $-Mg\hat{z}$.
- iii) La reacción que ejerce la pared sobre la escalera. Como la pared es lisa (no hay roce) tal fuerza es perpendicular a la pared: $\vec{F_p} = -F_p \hat{x}$.
- iv) La reacción del suelo sobre la escalera. Esta es $\vec{F}_s = F_N \hat{z} + f_r \hat{x}$, donde F_N es la fuerza normal y f_r es la fuerza de roce.

Figura 7.11

La condición de que la fuerza total sea nula nos da la relación:

$$-mg\hat{z} - Mg\hat{z} - F_p\hat{x} + F_N\hat{z} + f_r\hat{x} = \vec{0}$$

De aquí se deducen la ecuaciones

$$F_N = (m+M)g \tag{7.2}$$

у

$$f_r = F_p . (7.3)$$

Evaluemos el torque total en torno al origen. Como la escalera está en equilibrio, el torque neto debe ser nulo. Se tiene:

$$Mgx \ \hat{y} + mg\frac{L}{2}\sin\alpha \ \hat{y} - F_pL\cos\alpha \ \hat{y} = \vec{0} ,$$

o sea,

$$F_p = \frac{g(Mx + m\frac{L}{2}\sin\alpha)}{L\cos\alpha} .$$
(7.4)

De las ecuaciones (7.3) y (7.4) se encuentra que la fuerza de roce viene dada por

$$f_r = \frac{g(2Mx + mL\sin\alpha)}{2L\cos\alpha}$$

El valor máximo de la fuerza de roce se obtiene cuando la persona sube hasta la parte más alta de la escalera ($x = L \sin \alpha$). En ese caso la fuerza de roce es

$$f_r = g\left(M + \frac{m}{2}\right)\tan\alpha$$

La fuerza de roce f_r debe ser menor que el máximo posible, que es $\mu_e F_N$, o sea, se debe cumplir la relación

$$g\left(M+\frac{m}{2}\right)\tan\alpha \leq \mu_e F_N = \mu_e(M+m)g$$
.

De aquí se deduce que el menor valor posible que puede tener μ_e para que la escalera no resbale es

$$\mu_e^{\min} = \frac{2M+m}{2(M+m)} \,\tan\alpha \,.$$

7.6. Problemas

1. Al moverse una carga q con velocidad \vec{v} en presencia de un campo magnético \vec{B} , actúa sobre la partícula una fuerza (la así llamada *"Fuerza de Lorentz"*) dada por

$$\vec{F} = q \left(\vec{v} \times \vec{B} \right)$$
.

Supongamos que para determinar la dirección y magnitud de un campo magnético constante, un investigador realiza dos experimentos, midiendo en cada uno de ellos la fuerza que actúa sobre una carga:

- a) Primero hace pasar la carga q a través del campo magnético con velocidad $\vec{v} = v_0 \hat{x}$. El investigador mide una fuerza $\vec{F} = F_0 \cdot (2\hat{z} 4\hat{y})$.
- b) Luego hace pasar la carga q con velocidad $\vec{v} = v_0 \hat{z}$, midiendo una fuerza $\vec{F} = F_0 \cdot (\hat{y} 2\hat{x})$.

A partir de estos resultados encuentre el campo magnético \vec{B} (en función de v_0 , F_0 y q).

$$\vec{B} = \frac{F_0}{qv_0} \left(\hat{x} + 2\hat{y} + 4\hat{z} \right) \; .$$

- 2. Considere una partícula cuya carga eléctrica y masa es q y m, respectivamente. La partícula se mueve en un campo magnético homogéneo $\vec{B} = B_0 \hat{z}$. Si en el instante t = 0 la partícula se encuentra en el origen $(\vec{r}(0) = \vec{0})$ y su velocidad en ese instante es $\vec{v}(0) = v_0 \hat{x}$, encuentre el vector de posición $\vec{r}(t)$ en función del tiempo. (La fuerza que el campo magnético ejerce sobre la partícula viene dada por la *fuerza de Lorentz*; ver problema anterior.) Indicación: recuerde lo que sabe sobre el movimiento circular uniforme.
- 3. Demuestre que la posición del centro de masas de una lámina triangular de densidad uniforme se ubica en el lugar donde se cortan las tres transversales de gravedad del triángulo.

7.6 Problemas

- 4. En cinco de los seis vértices de un hexágono regular hay una masa m_0 . Encuentre la posición del centro de masas.
- 5. Encuentre la posición del centro de masas de una lámina de densidad (de masa) uniforme σ_0 y que tiene la forma indicada en la figura adjunta.

b

6. Encuentre la posición del centro de masas de un disco de densidad superficial σ_0 y que tiene un agujero circular como se indica en la figura adjunta.

Respuesta: El centro de masas del disco con agujero queda al lado opuesto de la perforación y a una distancia $a = r^2 d/(R^2 - r^2)$ del centro del disco de radio R.

- 7. Considere una estructura formada por dos barras uniformes de largos $a \ge b$, unidas de modo que forman un ángulo recto \ge que cuelga con hilo desde el cielo (ver figura adjunta). Determine el ángulo α de la estructura cuando ella se encuentra en equilibrio.
- 8. La figura muestra un letrero luminoso de masa m que cuelga de una barra (de masa despreciable) que se mantiene horizontal con la ayuda de una cuerda. Calcule la tensión de la cuerda y la fuerza ejercida por la barra contra la pared.

С

С

Figura 7.13

Figura 7.14

9. Describa un procedimiento que permita determinar experimentalmente la posición del centro de masas de una lámina plana irregular con densidad desconocida (y no necesariamente uniforme).

(Observe que al colgar un cuerpo de un punto P y estar éste en equilibrio, el centro de masas siempre debe estar sobre la normal que pasa por P.)

- 10. Una barra, cuya masa es de 10 Kg y tiene tres metros de largo, se dobla en 45° a 1 m de uno de los extremos y se cuelga como se indica en la figura adjunta. La estructura se encuentra en equilibrio gracias a una masa M que se cuelga en uno de los extremos.
 - a) Encuentre la tensión T y el valor de M. ¿El equilibrio es estable o inestable?
 - b) Conteste nuevamente las mismas preguntas de la parte a), pero asumiendo ahora que la barra al lado izquierdo, en lugar de estar doblada hacia abajo en 45°, está doblada hacia arriba en 45°.
- 11. Considere una lámina triangular uniforme, de masa M = 5 Kg, que está sujeta a una pared con una articulación y colgada del cielo con una cuerda, tal como se muestra en la figura adjunta. Encuentre la tensión T de la cuerda.
- 12. Encuentre la posición de equilibrio de una varilla de largo L colocada dentro de un pocillo. Considere al pocillo como una semiesfera de radio R y asuma que entre éste y la varilla no hay roce.
- 13. ¿Se podrá fomar una torre con ladrillos (sueltos), uno encima de otro (ver figura), de manera que el ladrillo de más arriba esté desplazado en más de una unidad con respecto al de más abajo, sin que la torre se desplome ?

Indicación: Comience el análisis con los ladrillos superiores.

Figura 7.17

Figura 7.18

Figura 7.19

14. Tres tambores del mismo radio están arrumbados como se indica en la figura adjunta. Encuentre el mínimo coeficiente de roce estático que debe existir entre los tambores y también entre los tambores y el suelo de manera que el sistema no se derrumbe.

Figura 7.20

- 15. Un triángulo equilátero, de lado a = 10 cm y masa M = 10 kg se sujeta en forma rígida a una polea de radio R = 4 cm. El triángulo actúa de contrapeso para mantener en equilibrio a una masa m = 1 kg que cuelga de un hilo enrollado en la polea (ver figura 7.18)
 - a) Encuentre el valor del ángulo β que mantiene el sistema en equilibrio. (β es el ángulo entre la normal y la altura del triángulo.)
 - b) ¿Cuál es el máximo valor de m para el cual el sistema se mantendrá en equilibrio?
- 16. De una pieza metálica cuadrada, de densidad superficial uniforme σ_0 , se recorta un triángulo isósceles de manera tal que la lámina resultante quede en equilibrio en cualquier posición si se sujeta desde el punto *P*. ¿Cuál es la altura del triángulo?

Figura 7.22

18. Considere un puente cuyo armazón consiste de 14 soportes de largo a. (En la figura se observan los 7 soportes de uno de los lados.) Asuma que los soportes sólo transmiten fuerzas a lo largo de ellos, o sea, en cada unión sólo se transmiten fuerzas y no torques. Encuentre la tensión adicional (al generado por el peso del puente) que debe soportar cada soporte si por el centro del puente pasa un camión de peso W.

Especifique en cada caso si la tensión es de compresión o de tracción.

- 19. Una cadena de masa M y largo Lse encuentra apoyada (en equilibrio) sobre un cono recto cuyo ángulo entre la normal y el manto es α . Encuentre la tensión de la cadena. Indicación: Aplique las leyes de equilibrio a un pequeño trozo (infinitesimal) de cadena.
- 20. Un objeto formado por tres láminas cuadradas de lada *a*, homogéneas y de igual densidad, descansa sobre una superficie horizontal apoyado en dos pivotes colocados en los vértices del cuadrado inferior (ver figura 7.26).
 - a) Encuentre la posición del centro de masas.
 - b) Calcule la razón de la magnitud de las fuerzas de reacción de cada pivote.
- 21. Una regla 'T' de masa M, largo a y barra transversal b posa sobre un plano horizontal pulido como se indica. Calcule las reacciones normales en cada punto de contacto con el suelo.

Figura 7.25

Figura 7.26

7.6 Problemas

- 22. Considere una semiesfera homogénea de radio R. Demuestre que el centro de masas de la semiesfera est'a ubicado sobre el eje de simetría y a una distancia b = 3R/8de la base.
- Considere semiesfera 23.una homogénea de radio R que se encuentre sobre un plano inclinado. Existe un roce estático que evita que la semiesfera se desliza por el plano. Determine el máximo ángulo de inclinación β que puede tener el plano para que la semiesfera no se "de vuelta".
- 24. Considere una semiesfera de radio R, hecha de un material de densidad ρ_0 , que se encuentra con la parte curva sobre una superficie horizontal (ver figura adjunta). El centro de masas de una semiesfera homogénea queda sobre el eje de simetría a una distancia b = 3R/8 de la base.

- a) Encuentre la magnitud y dirección del torque, respecto al punto de apoyo, ejercido por la fuerza de gravedad cuando la semiesfera se ladea en un ángulo β . Observe que el torque que aparece trata de hacer volver a la semiesfera a su posición de equilibrio (o sea, la posición de equilibrio es estable).
- b) Coloquemos ahora un cilindro homogéneo hecho del mismo material, del mismo radio R y altura h, sobre el cilindro. Determine la posición del centro de masas del sistema compuesto.
- c) Describa en palabras la condición que debe satisfacer la posición del centro de masas para que la posición de equilibrio del sistema compuesto siga siendo estable.
- d) Encuentre la altura límite del cilindro para la cual el sistema compuesto pierde su estabilidad.

25. Considere una semiesfera de radio R, hecha de un material de densidad ρ_0 , que se encuentra sobre una superficie horizontal y apoyada contra una pared tal como se muestra en la figura adjunta. El centro de masas de una semiesfera homogénea queda sobre el eje de simetría y a una distancia b = 3R/8 de la base. Suponga que, entre la semiesfera y el suelo el coeficiente de roce estático es $\mu = 3/16$, mientras que entre la pared y la semiesfera el roce es nulo.

- a) Haga un diagrama de cuerpo libre para la semiesfera.
- b) Encuentre la magnitud y dirección del torque, respecto al punto de apoyo P, ejercido por la fuerza de gravedad cuando la semiesfera está ladeada en un ángulo β .
- c) Encuentre la fuerza de roce entre la semiesfera y el suelo.
- d) Encuentre el ángulo de inclinación máximo β_{max} posible para que la esfera no resbale.
- e) Coloquemos ahora un cilindro homogéneo, hecho del mismo material, del mismo radio R y de altura h sobre el cilindro. Determine la posición del centro de masas del sistema compuesto. (1 punto)
- f) Encuentre la altura límite h_{max} del cilindro a partir de la cual, para $h > h_{\text{max}}$, el sistema compuesto se da vuelta (es decir, pierde su estabilidad).
- 26. Una semiesfera homogénea de masa M y radio R se ha cortado en dos mitades. El sistema se dispone con las dos mitades, cara a cara, y con la superficie de corte vertical. A fin de que las mitades no se separen, una cuerda sin roce y con masas iguales en sus extremos, es dispuesta como se indica en la figura. Determine las masas mínimas a atar en los extremos de la cuerda para que las mitades permanezcan juntas.

Figura 7.32

7.6 Problemas

- 27. En los extremos de una barra de masa despreciable se adhieren bolas de mas m y 2m, respectivamente. El sistema posa sobre un tiesto de fondo esférico resbaloso, de radio igual al largo de la barra. Calcule el ángulo que la barra forma con la vertical.
- 28. Un vaso cilíndrico (abierto por arriba), de radio basal a y altura b, hecho de un material de densidad superficial uniforme, posa sobre un plano inclinado y no resbala gracias a un tope fijo en el plano. Demuestre que el centro de masas se ubica a lo largo del eje y a una distancia $b^2/(a + 2b)$ de la base. Determine el ángulo de inclinación máximo del plano de modo que el vaso no vuelque.
- 29. En la figura se muestra un cilindro de masa M y radio R, el cual se ata a la muralla mediante una cuerda. Alrededor de un calado que se le ha hecho al cilindro se enrolla una cuerda ideal. De la cuerda cuelga una masa m por determinar. Si el coeficiente de roce entre el suelo y el cilindro es μ , determine la masa máxima a colgar para que el cilindro no rote.
- 30. Un semicilindro de radio R y peso W se encuentra en equilibrio estático sobre un plano horizontal, con un pequeño bloque de peso Q sobre él. El bloque está ligado mediente un resorte ideal de largo natural $\ell_0 = R$ y constante elástica k a un punto A en el borde (ver figura). Suponga que no hay roce entre la superficie del cilindro y la masa de peso Q. Determine el ángulo α de equilibrio. Considere conocida la distancia D a la que se encuentra el centro de masas del punto O. Analice con cuidado que pasa cuando Q es pequeño.

Figura 7.33

Figura 7.34

Figura 7.36

7.7. Solución a algunos de los problemas

Solución al problema 12

Elijamos el origen y los ejes tal como se muestra en la figura adjunta. Sea α el ángulo que la varilla forma con la horizontal, o sea, el ángulo ABO es α . Por ser AOB un triángulo isósceles, se tiene que el ángulo AOB también es α .

Figura 7.37

Como no hay roce entre las superficies de contacto, las fuerzas de reacción debe ser perpendiculares a las superficies de contacto. En otras palabras: la fuerza de reacción $\vec{F_1}$ en O será a lo largo del "radio" OA, mientras que la fuerza de reacción $\vec{F_2}$ en B será perpendicular a la varilla. Que la fuerza total horizontal sobre la varilla sea cero nos da la relación

$$F_1 \cos(2\alpha) = F_2 \sin \alpha . \tag{7.5}$$

La relación correspondiente para la componente vertical es

$$Mg = F_2 \,\cos\alpha + F_1 \,\sin(2\alpha) \,. \tag{7.6}$$

Para que la varilla esté en equilibrio también el torque total (respecto a O) debe ser nulo. La fuerza F_1 no ejerce torque (ya que su brazo es cero); el peso ejerce un torque $\vec{\tau}_g = Mg(L/2) \cos \alpha \hat{y}$, mientras que el torque generado por \vec{F}_2 es $\vec{\tau}_2 = -F_2 2R \cos \alpha \hat{y}$. De esta manera la condición de que el torque total sea nulo nos da la relación

$$Mg\frac{L}{2}\cos\alpha = 2F_2R\cos\alpha . \tag{7.7}$$

Tenemos tres ecuaciones con tres incógnitas. De la última ecuación se deduce inmediatamente que

$$F_2 = \frac{MgL}{4R} . \tag{7.8}$$

De la ecuación (7.5) se encuentra

$$F_1 = F_2 \frac{\sin \alpha}{2\cos^2 \alpha - 1} \,. \tag{7.9}$$

Usando (7.8) y (7.9) en (7.6), se tiene

$$Mg = \frac{MgL}{4R} \left[\cos \alpha + \frac{\sin 2\alpha \, \sin \alpha}{2 \cos^2 \alpha - 1} \right] \,,$$

o sea,

$$\Gamma \equiv \frac{4R}{L} = \cos \alpha + \frac{2\cos \alpha (1 - \cos^2 \alpha)}{2\cos^2 \alpha - 1} = \frac{\cos \alpha}{2\cos^2 \alpha - 1} \,.$$

La última relación es una ecuación de segundo grado para $\cos \alpha$; resolviéndola se encuentra finalmente

$$\cos \alpha = \frac{1 + \sqrt{1 + 8\Gamma^2}}{4\Gamma}$$

Solución al problema 14

La figura adjunta muestra las fuerzas que actúan sobre los tambores (las flechas con líneas llenas son fuerzas que actúan sobre el tambor inferior, mientras que las flechas con líneas segmentadas corresponden a fuerzas que actúan sobre el tambor superior). Observe que no hay una fuerza horizontal entre los dos tambores inferiores. Observe también que el ángulo α entre la horizontal y la recta que une a los centros de un tambor inferior con el tambor superior es de 60°, luego sin $\alpha = \sqrt{3}/2$ y cos $\alpha = 1/2$.

La únicas fuerzas que producen un torque sobre el tambor inferior (respecto a su centro) son las dos fuerzas de roce. Como el torque total sobre el tambor inferior debe ser nulo se deduce que ambas fuerzas de roce deben tener la misma magnitud; llamémosla f_r . La fuerza neta vertical sobre uno de los tambores inferiores debe ser nula; esto nos da la relación

$$F_1 - Mg - F_2 \frac{\sqrt{3}}{2} - f_r \frac{1}{2} = 0 \; .$$

La relación correspondiente a las fuerzas horizontales es

$$f_r + f_r \frac{\sqrt{3}}{2} - F_2 \frac{1}{2} = 0$$
.

Como $2F_1$ debe ser igual al peso total de los tres tambores se tiene

$$F_1 = \frac{3}{2}Mg \; .$$

Tenemos tres ecuaciones con tres incógnitas (en realidad la tercera ecuación ya es la solución de una de las incógnitas). Para las otras dos incógnitas f_r y F_2 se encuentra

$$f_r = \left(1 - \frac{\sqrt{3}}{2}\right) Mg$$

 $F_2 = \frac{1}{2}Mg \; .$

у

Si μ_1 es el coeficiente de roce estático entre el tambor inferior y el suelo, y μ_2 es el coeficiente de roce entre los tambores inferior y superior, entonces, para que el sistema no se derrumbe, debe cumplirse

$$f_r \leq \mu_1 F_1$$
 y $f_r \leq \mu_2 F_2$.

De estas desigualdades se deduce, finalmente, que

$$\mu_1 \ge \frac{2-\sqrt{3}}{3}$$
 y $\mu_2 \ge 2-\sqrt{3}$

Solución al problema 19

El radio del círculo que forma la cadena es

$$R = \frac{L}{2\pi} \; .$$

Consideremos un trozo de cadena de largo infinitesimal $R d\theta$. Debido a la curvatura, la tensión T ejerce sobre el pequeño trozo de cadena una fuerza neta F_T hacia el centro O(ver figura 7.39a):

$$\vec{F}_T = -2T \sin\left(\frac{d\theta}{2}\right) \hat{r} = -T d\theta \hat{r} .$$

No hay roce entre la cadena y el cono, luego la fuerza que el cono ejerce sobre la cadena es perpendicular al manto. Sea F_N la magnitud de esta fuerza. De la la figura 7.39b se desprende que

$$\vec{F}_N = F_N \cos \alpha \, \hat{r} + F_N \sin \alpha \, \hat{z} \, .$$

Por último, la otra fuerza que actúa sobre el trozo de cadena, debido a la gravedad, es

$$ec{F}_g = -rac{d heta}{2\pi} Mg \ \hat{z} \ .$$

Como el trozo de cuerda está en reposo, la suma de las tres fuerzas debe ser nula, es decir,

Igualando las componentes se obtienen las relaciones

$$T d\theta = F_N \cos \alpha$$

у

$$Mg \, \frac{d\theta}{2\pi} = F_N \, \sin \alpha$$

luogo

Despejando la tensión se encuentra, finalmente

$$T = \frac{Mg}{2\pi \, \tan \alpha} \, .$$

Solución al problema 22

Para evaluar la posición del centro de masas de la semiesfera, la colocamos con la cara plana sobre el plano x - y, haciendo coincidir el eje con \hat{z} , y luego la rebanamos en tajadas de ancho dz(ver figura).

Evaluemos primero la masa de la rebanada que se encuentra a la altura z. Su masa es $\rho_0 \pi (R^2 - z^2) dz$, donde ρ_0 es la densidad de masa de la semiesfera. El centro de masa de esta rebanada por supuesto que queda sobre el eje \hat{z} a la altura z.

El centro de masas de la semiesfera será la suma de los centros de masas de cada rebanada pesada con la masa de de cada rebanada, es decir,

$$z_{\rm cm} = \frac{1}{M} \int_0^R z \rho_0 \, \pi (R^2 - z^2) \, dz = \frac{\rho_0 \pi}{M} \int_0^R (zR^2 - z^3) \, dz$$
$$= \frac{\rho_0 \pi}{M} \left(\frac{1}{2} R^2 z^2 - \frac{1}{4} z^4 \right) \Big|_0^R = \frac{\rho_0 \pi}{M} \frac{1}{4} R^4 \, .$$

Pero $M = 2\rho_0 \pi R^3/3$, luego $z_{\rm cm} = 3R/8$. Solución al problema 24

a) La masa de la semiesfera es $M = 2\pi\rho_0 R^3/3$. El torque en torno al punto de contacto P viene dado por

$$\vec{\tau} = Mgb\sin\beta \,\hat{x} \;,$$

donde \hat{x} es un vector unitario que, para la situación mostrada en la figura adjunta, apunta hacia el lector.

Figura 7.41a

Figura 7.41.b

b) Al colocar sobre la semiesfera un cilindro de altura h la posición del centro de masas es

$$z_{\rm cm} = \frac{1}{M + M_c} \left[M \frac{5}{8} R + M_c \left(R + \frac{h}{2} \right) \right]$$

donde $M_c=\pi R^2 \; h \, \rho_0$ es la masa del cilindro. Reemplazando las masas de los cuerpos se obtiene

$$z_{\rm cm} = \frac{1}{\frac{2}{3}R+h} \left[\frac{5}{12}R^2 + hR + \frac{h^2}{2} \right]$$

- c) Mientras el la posición del centro de masas del sistema compuesto se encuentre por debajo del centro del semicirculo (punto A), el equilibrio será estable. (Es fácil convencesrse de que el torque que aparece al ladear el sistema trata de restituir al cuerpo a su posición de equilibrio). Por lo contrario, si el centro de masas del sistema compuesto se encuentra por encima del punto A, el equilibrio será inestable.
- d) La altura límite h_0 se obtiene cuando $z_{\rm cm} = R$. Se tiene

$$z_{\rm cm} = R = \frac{1}{\frac{2}{3}R + h_0} \left[\frac{5}{12}R^2 + h_0R + \frac{h_0^2}{2} \right] .$$

Despejando la altura límite se encuentra que ésta viene dada por

$$h_0 = \frac{R}{\sqrt{2}}$$

Solución al problema 25

a) El diagrama de cuerpo libre se muestra en la figura adjunta.

b) La masa de la semiesfera es $M = 2\pi\rho_0 R^3/3$. El torque en torno al punto de contacto P viene dado por

$$\vec{\tau} = Mgb\sin\beta \hat{x}$$
,

donde \hat{x} es un vector unitario que, para la situación mostrada en la figura adjunta, apunta hacia el lector.

Figura 7.42a

Figura 7.42.b

c) La fuerza F_p que ejerce la pared sobre la semiesfera es en la dirección horizontal $+\hat{y}$ y su magnitud es tal que el torque total respecto a P es nulo. Luego

$$ec{F}_p = rac{Mgh\sineta}{R} \ \hat{y} = rac{3}{8}Mg\sineta \ \hat{y}$$
 .

Como la fuerza horizontal total debe ser nula, y la única otra fuerza horizontal es la fuerza de roce, se tiene

$$\vec{F}_r = -\vec{F}_p = -\frac{Mgh\sin\beta}{R} \ \hat{y} = \frac{3}{8}Mg\sin\beta \ \hat{y} \ .$$

d) La fuerza de roce no debe sobrepasar el valor
 $\mu Mg,$ o sea,

$$\frac{3}{8}Mg\sin\beta \le \mu Mg = \frac{3}{16}Mg$$

de donde

$$\sin\beta \le \frac{1}{2} \; .$$

El ángulo crítico es, por lo tanto, $\beta_{\rm max} = 30^{\circ}$.

e) Al colocar sobre la semiesfera un cilindro de altura h la posición del centro de masas es

$$s_{\rm cm} = \frac{1}{M + M_c} \left[M \frac{5}{8} R + M_c \left(R + \frac{h}{2} \right) \right]$$

donde $M_c = \pi R^2 h \rho_0$ es la masa del cilindro. Reemplazando las masas de los cuerpos se obtiene

$$s_{\rm cm} = \frac{1}{\frac{2}{3}R+h} \left[\frac{5}{12}R^2 + hR + \frac{h^2}{2} \right] .$$

f) La altura límite h_{max} se obtiene cuando $s_{\text{cm}} = R$. Se tiene

$$s_{\rm cm} = R = \frac{1}{\frac{2}{3}R + h_{\rm max}} \left[\frac{5}{12}R^2 + h_{\rm max}R + \frac{h_{\rm max}^2}{2} \right]$$

Despejando la altura límite se encuentra que ésta viene dada por

$$h_{\max} = \frac{R}{\sqrt{2}}$$
.

Solución al problema 30

Las figuras 7.44a y 7.44b muestran los diagramas de cuerpo libre de la masa Q y el semicilindro, respectivamente. $F_r = kx$ es la fuerza ejercida por el resorte, W el peso del semicilindro y Q el peso del bloque que se encuentra a una distancia x de O. La distancia d entre el centro de masas y O la supondremos conocida.

Debido a que ambos objetos están en equilibrio se debe tener que la fuerza total sobre cada uno de ellos debe ser nula, y también el torque total sobre el semicilindro (en torno a cualquier origen). Para el bloque Q se obtiene la relación

$$\vec{F}_{\text{tot}} = (F_r \cos \theta \hat{x} + F_r \sin \theta \hat{z}) - Q \hat{z} + (N_1 \cos \theta \hat{z} - N_1 \sin \theta \hat{x}) = 0$$

Igualando las componentes de los vectores de la última igualdad y usando el hecho que $F_r = kx$, se obtienen las ecuaciones,

$$kr\,\cos\theta = N_1\,\sin\theta\tag{7.10}$$

у

$$kx\sin\theta = Q - N_1\,\cos\theta\,\,.\tag{7.11}$$

La fuerza total que actúa sobre el semicilindro (que también debe ser nula) es

$$-W\hat{z} + N\hat{z} + (-F_r\cos\theta\hat{x} - F_r\sin\theta\hat{z}) + (-N_1\cos\theta\hat{z} + N_1\sin\theta\hat{x}) = 0$$

Esto nos da las relaciones

$$-N_1 \cos \theta - kx \sin \theta - W + N = 0 \tag{7.12}$$

у

$$N_1 \sin \theta - kx \cos \theta = 0$$

Esta última ecuación no da información nueva ya que coincide con (7.10). Por último, evaluando el torque total (en torno al punto O) que actúa sobre el semicilindro, se obtiene:

$$N_1 x - W d \sin \theta = 0. \tag{7.13}$$

De las cuatro equaciones (7.10), (7.11), 11.28) y (7.13), con las cuatro incógnitas N, N_1 , x y θ , podemos despejar cos θ . Realizando el álgebra, se obtiene,

$$\cos\theta = \frac{Wdk}{Q^2} \; .$$

¿Que pasa cuando Q es pequeño? Es claro que la solución obtenida sólo tiene sentido si $Q^2 > Wkd$. Al analizar el problema (¡hágalo!) con más cuidado se encuentra que $\theta = 0$ (y, por lo tanto, x = 0) también (para todos los valores de Q) es una solución de este problema de equilibrio. También se encuentra que para $0 \le Q^2 < Wkd$, la solución $\theta = 0$ es la única, siendo estable. Para $Wdk < Q^2$, hay tres soluciones: $\theta = 0$ y $\theta = \pm A\cos(Wdk/Q^2)$; siendo la primera de éstas inestable, y estables las otras dos.

Para comprender mejor lo que está ocurriendo es útil analizar el problema también desde el punto de vista de la energía potencial. Definiendo el origen de la energia potencial gravitacioneal cuando $\theta = 0$, se encuentra que

$$U(\theta) = Wd (1 - \cos \theta) - Qx \sin \theta + \frac{1}{2}kx^2.$$

El primer término al lado derecho es el cambio de la energía potencial gravitacional del semicilindro, el segundo el cambio de la energía potencial gravitacional de la masa Q y el tercero la energía potencial del resorte. Con $kx = Q \sin \theta$ queda

$$U(\theta) = Wd(1 - \cos \theta) - \frac{Q^2}{2k} \sin^2 \theta .$$
Para hacer un estudio gráfico de esta relación introducimos el parámetro $\alpha \equiv Q^2/(kWd)$ y definimos $\overline{U}(\theta) \equiv U(\theta)/(Wd)$; de esta manera la última ecuación queda de la forma

$$\overline{U}(\theta) = (1 - \cos \theta) - \frac{\alpha}{2} \sin^2 \theta$$

La figura 7.45 muestra el gráfico para $\alpha = 0$; -0, 5; 1,0 y 2. Para $0 < \alpha < 1$, el gráfico tiene un sólo minimo, para $\alpha > 1$ el gráfico tiene dos mínimos (en $\pm \theta_0$) y un máximo (en $\theta = 0$). Para encontrar θ_0 debemos evaluar la derivada de $\overline{U}(\theta)$ respecto a θ e igualarla a cero:

$$\frac{d\overline{U}(\theta)}{d\theta} = \sin \theta - \frac{\alpha}{2} \cdot 2\sin \theta \, \cos \theta = 0 \,,$$

o sea,

$$\sin\theta \left(1 - \alpha\cos\theta\right) = 0 \ .$$

Esta ecuación se satisface si sin $\theta = 0$ o $(1 - \alpha \cos \theta) = 0$. La primera de estas condiciones nos da la solución $\theta = 0$ mientrs que la segunda entrega las soluciones $\theta_0 = \pm A\cos(1/\alpha)$, soluciones que existe sólo si $\alpha \ge 1$. Para $\alpha = 2$, se obtiene $\theta_0 = \pm 60^{\circ}$.

Capítulo 8

Momento angular

8.1. Momento angular de una partícula

Consideremos una partícula de masa m y cuya posición (respecto a algún sistema de referencia inercial) viene dada por el vector \vec{r} . Sea \vec{F} la fuerza neta que actúa sobre la partícula. Entonces, de acuerdo a la 2^a ley de Newton, la ecuación de movimiento es

$$\vec{F} = \frac{d\vec{p}}{dt}$$

Tomando el producto cruz con el vector \vec{r} se obtiene

$$\vec{r} \times \vec{F} = \vec{r} \times \frac{d\vec{p}}{dt} \,. \tag{8.1}$$

Observemos que

$$\frac{d}{dt}(\vec{r} \times \vec{p}) = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} = \vec{r} \times \frac{d\vec{p}}{dt} .$$
(8.2)

La última igualdad se deduce del hecho que los vectores $d\vec{r}/dt = \vec{v}$ y \vec{p} son paralelos. Usando (8.2) en (8.1) se obtiene

$$\vec{\tau} = \vec{r} \times \vec{F} = \frac{d}{dt} (\vec{r} \times \vec{p}) \; .$$

Definimos el momento angular de una partícula por

$$\vec{\ell} \equiv \vec{r} \times \vec{p} ,$$

entonces

$$\vec{\tau} = \frac{d\vec{\ell}}{dt} \, .$$

Igual que en el caso del torque, el momento angular de una partícula depende del origen que se use para evaluarlo. Si el torque que actúa sobre una partícula, medido respecto a cierto origen es nulo, entonces el momento angular de la partícula, respecto al mismo origen, no variará en el tiempo, es decir, se conservará. Evaluemos el momento angular de una partícula en movimiento.

Supongamos que una partícula de masa mse mueve en el plano x, y y sean $r(t), \theta(t)$ las coordenadas polares del vector de posición $\vec{r}(t)$. La posición de la partícula vendrá dada por

$$\vec{r} = r\hat{r}$$
,

donde

$$\hat{r} = \cos\theta \, \hat{x} + \sin\theta \, \hat{y} \, .$$

Derivando obtenemos la velocidad

$$\vec{v} = \dot{r}\,\hat{r} + r\,\dot{\hat{r}} \; .$$

Figura 8.1

Pero

$$\dot{\hat{r}} = \frac{d}{dt}(\cos\theta \ \hat{x} + \sin\theta \ \hat{y}) = -\sin(\theta) \ \dot{\theta} \ \hat{x} + \cos(\theta) \ \dot{\theta} \ \hat{y} \equiv \dot{\theta} \ \hat{\theta} ,$$

luego

$$\vec{v} = \dot{r}\,\hat{r} + r\dot{\theta}\,\hat{\theta} \;.$$

De esta manera, para el momento angular de la partícula se encuentra la expresión

$$\vec{\ell} = \vec{r} \times \vec{p} = m \, r \, \hat{r} \times \vec{v} = m r \dot{r} \, \hat{r} \times \hat{r} + m r^2 \dot{\theta} \, \hat{r} \times \hat{\theta} = m r^2 \dot{\theta} \, \hat{z} \; ,$$

donde \hat{z} es el vector unitario perpendicular al plano (x, y) (cuya dirección en que apunta se encuentra usando la *regla de la mano derecha*).

Observe que si la partícula se aleja en dirección radial (o sea, $\dot{\theta} = 0$ y $\dot{r} \neq 0$) entonces el momento angular es nulo. Sólo si el ángulo θ del vector de posición cambia a medida que transcurre el tiempo, el momento angular es no nulo. ¡El momento angular de una partícula está relacionado con el aspecto rotacional de su movimiento!

Ejemplo:

Consideremos una partícula que se mantiene en un movimiento circular uniforme (con velocidad angular ω_0) mediante un hilo.

Sea R el radio de círculo. El momento angular de la partícula (respecto al centro de la circunferencia) viene dado por

$$\vec{\ell} = m R^2 \omega_0 \ \hat{z} \ .$$

La dirección en que apunta ℓ es a lo largo del eje de giro, y en el sentido dado por la regla de la mano derecha (los dedos empuñados indicando el sentido de la rotación; el pulgar extendido da el sentido del momento angular).

Figura 8.2

El hilo ejerce una fuerza sobre la partícula (la fuerza centrípeta dada por $-mR\omega_0^2 \hat{r}$), pero esta fuerza no ejerce un torque respecto al origen ya que \vec{F} y \vec{r} son paralelos. Debido a que el torque es nulo, el momento angular de la partícula se conserva (o sea, a medida que transcurre el tiempo no cambia la magnitud ni la orientación del vector $\vec{\ell}$).

8.2. Momento angular de varias partículas

Consideremos ahora N masas $\{m_j\}$ ubicados en los lugares $\{\vec{r}_j\}$. Sean $\{\vec{F}_j\}$ la fuerza externa que actúa sobre cada partícula y $\{\vec{f}_{ji}\}$ la fuerza que la masa i ejerce sobre la masa j. Por supuesto que debido al tercer principio de Newton, $\vec{f}_{ji} = -\vec{f}_{ij}$. Supongamos además que la fuerza que una partícula i ejerce sobre otra partícula j es a lo largo de la línea que las une (o sea, que la interacción entre las partículas es central).

La ecuación de movimiento (2ª ley de Newton) para cada partícula es

$$\vec{F}_j + \sum_i \vec{f}_{ji} = \frac{d\vec{p}_j}{dt} \,.$$

Tomando el producto cruz con el vector $\vec{r_j}$ se obtiene

$$\vec{r_j} \times \left(\vec{F_j} + \sum_i \vec{f_{ji}}\right) = \vec{r_j} \times \frac{d\vec{p_j}}{dt} .$$

Por la misma razón discutida en la sección anterior

$$\vec{r}_j imes rac{d\vec{p}_j}{dt} = rac{d}{dt} \left(\vec{r}_j imes \vec{p}_j
ight) \; .$$

Usando esta relación y sumando sobre j, se obtiene

$$\sum_{j} \vec{r}_{j} \times \vec{F}_{j} + \sum_{ji} \vec{r}_{j} \times \vec{f}_{ji} = \sum_{j} \frac{d}{dt} (\vec{r}_{j} \times \vec{p}_{j}) = \frac{d}{dt} \sum_{j} \vec{r}_{j} \times \vec{p}_{j} .$$

Pero

$$\vec{r}_i \times \vec{f}_{ij} + \vec{r}_j \times \vec{f}_{ji} = (\vec{r}_i - \vec{r}_j) \times \vec{f}_{ij} = 0$$

ya que $(\vec{r_i} - \vec{r_j})$ es paralelo a $\vec{f_{ij}}$. Luego, la doble suma $\sum_{ji} \vec{r_j} \times \vec{F_{ji}}$ es nula. De esta manera, usando las definiciones de momento angular y torque, se obtiene

$$\sum_{j} \vec{\tau}_{j} = \frac{d}{dt} \sum_{j} \vec{\ell}_{j} .$$
(8.3)

Sea

у

$$ec{L}\equiv\sum_{j}ec{\ell_{j}}$$

 $\vec{\tau} \equiv \sum_{j} \vec{\tau}_{j}$

el torque y el momento angular total del sistema de partículas, entonces la ecuación (8.3) queda

$$\vec{\tau} = \frac{d\vec{L}}{dt} = \dot{\vec{L}} . \tag{8.4}$$

En palabras: Si el torque total que actúa sobre un sistema (respecto a un punto P) es nulo, entonces el momento angular del sistema (respecto al mismo punto) no cambiará. Lo anterior se conoce como la *ley de conservación del momento angular*. Las fuerzas internas de un sistema pueden cambiar el momento angular de las partículas que lo componen, pero no pueden modificar el vector momento angular total.

Ilustremos el uso de la ley de conservación de momento angular con algunos ejemplos

Ejemplo 1

Demuestre que un planeta, que se mueve alrededor del sol, barre áreas iguales en tiempos iguales, es decir, dA/dt =constante.

Coloquemos el origen de nuestro sistema de coordenadas en el lugar donde está el sol. La fuerza que el sol ejerce sobre los planetas es a lo largo de la dirección radial, por lo tanto, la fuerza atractiva de gravitación no ejerce torque sobre el planeta. De lo anterior se desprende que el momento angular del planeta debe ser en todos los instantes el mismo.

¿Cuál es el área ΔA que barre el planeta en un tiempo Δt ? La respuesta es

en un tiempo
$$\Delta t$$
: La respuesta es

$$\Delta A = \frac{1}{2} |\vec{r} \times (\vec{v} \,\Delta t)| = \frac{\Delta t}{2m} |\vec{r} \times \vec{p}| = \frac{\Delta t}{2m} \ell$$

Como $\ell = |\vec{\ell}|$ se conserva a lo largo de la trayectoria, se deduce que el área barrida en un tiempo Δt es independiente del punto de la trayectoria que se considere.

Figura 8.3

Ejemplo 2

Considere una masa M colgada de una varilla rígida, de masa despreciable y de largo L, que puede girar libremente en torno al punto O (ver figura adjunta). En el instante t = 0 la masa M explota y una parte M/2 sale disparada con velocidad v en una dirección que forma un ángulo θ con respecto a la horizontal. Encuentre la energía cinética de la parte que quedó adosada a la varilla en el instante inmediatamente posterior a la explosión.

Figura 8.4

Sobre el sistema (la varilla con la masa colgando) actúan las siguientes fuerzas: i) el peso $-Mg\hat{z}$, ii) una fuerza $\vec{F_0}$ que ejerce el eje de giro sobre la varilla y iii) fuerzas originadas por la explosión. En el instante t = 0 el peso no ejerce un torque sobre el sistema respecto a 0 ya que en ese instante los vectores \vec{r} y $-Mg\hat{z}$ son paralelos. La fuerza $\vec{F_0}$ tampoco ejerce un torque ya que el brazo para esta fuerza es nulo. Las fuerzas originadas por la explosión son fuerzas internas y por consiguiente no modifican el momento angular total del sistema. Concluimos que el momento angular total antes y justo después de la explosión deben ser iguales.

Inicialmente el momento angular es cero. Después de la explosión el momento angular del fragmento que sale disparado es

$$\vec{\ell_1} = -\frac{M}{2} L v \cos \theta \ \hat{y} \ .$$

Si la velocidad angular de la varilla en el instante posterior a la explosión es ω_0 , el momento angular de la masa que quedó adosada a la varilla es

$$\vec{\ell_2} = \frac{M}{2} L^2 \omega_0 \ \hat{y} \ .$$

Como la suma de los dos momentos angulares $\vec{\ell_1}$ y $\vec{\ell_2}$ debe ser nula, se tiene que

$$\frac{M}{2}Lv\cos\theta = \frac{M}{2}L^2\omega_0$$

Despejando ω_0 se encuentra

$$\omega_0 = \frac{v\cos\theta}{L} \; .$$

Finalmente, conociendo la velocidad angular ω_0 podemos evaluar la energía cinética del fragmento que quedó adosado a la varilla, en el instante inmediatamente posterior a la explosión:

$$K = \frac{1}{2} \frac{M}{2} L^2 \omega_0^2 = \frac{M}{4} v^2 \cos^2 \theta \; .$$

Antes de analizar un tercer ejemplo debemos demostrar una proposición importante.

Consideremos nuevamente N partículas con masas $\{m_j\}$ ubicadas en los lugares $\{\vec{r}_j\}$ y con velocidades $\{\vec{v}_j\}$. Sean \vec{R}_{cm} y \vec{V}_{cm} la posición y velocidad del ventro de masas. Denotemos por \vec{r}_j' y \vec{v}_j' los vectores de posición y velocidad de la partícula m_j respecto al centro de masas.

Entonces

Figura 8.5

$$\vec{L} = \sum_{j} \vec{\ell}_{j} = \sum_{j} \vec{r}_{j} \times \vec{p}_{j} = \sum_{j} m_{j} \left(\vec{r}_{j} \times \vec{v}_{j} \right) \; .$$

Por otra parte

$$\vec{r}_j = \vec{R}_{cm} + \vec{r}_j \,'$$

у

$$\vec{v}_j = \vec{V}_{cm} + \vec{v}_j \,' \,.$$

Sustituyendo estas relaciones en la ecuación anterior se obtiene

$$\vec{L} = \sum_{j} m_{j} \left(\vec{R}_{cm} + \vec{r}_{j}' \right) \times \left(\vec{V}_{cm} + \vec{v}_{j}' \right)$$

$$= \sum_{j} m_{j} \vec{R}_{cm} \times \vec{V}_{cm} + M \frac{\sum_{j} m_{j} \vec{r}_{j}'}{M} \times \vec{V}_{cm} + M \vec{R}_{cm} \times \frac{\sum_{j} m_{j} \vec{v}_{j}'}{M} + \sum_{j} m_{j} \vec{r}_{j}' \times \vec{v}_{j}'$$

Pero

$$\frac{\sum_{j} m_{j} \vec{r_{j}}'}{M} = \vec{R}_{cm}'$$

у

$$\frac{\sum_{j} m_{j} \vec{v_{j}}'}{M} = \vec{V}_{cm}'$$

son la posición y velocidad del centro de masas medidas desde el centro de masas — luego ambas sumatorias son nulas. De esta manera la ecuación anterior queda

Proposición:

$$\vec{L} = M \, \vec{R}_{cm} \times \vec{V}_{cm} + \sum_{j} \vec{\ell}' = \vec{R}_{cm} \times \vec{P}_{cm} + \vec{L}' \, .$$

En palabras: El momento angular respecto a cualquier punto O es igual al momento angular debido a la traslación del sistema como un todo, es decir, el movimiento del centro de masas con toda la masa concentrada en ese lugar, más el momento angular (rotacional intrínseco) del sistema visto desde el centro de masas.

Ejemplo 3

Considere dos partículas de masa m unidas por una barra de masa despreciable y largo L. Una tercera partícula, también de masa m, colisiona con las anteriores, quedando adosada a la # 2. Si la velocidad incidente de la masa # 3 es v_0 , y ésta incide como se muestra en la figura 8.6, encuentre la posición de la masa # 1 en función del tiempo.

Figura 8.6

Resolveremos el problema de dos maneras.

Primero elijeremos el sistema de coordenadas de manera que el eje \hat{x} coincida con la recta a lo largo de la cual se mueve el centro de masas del sistema (ver figura 8.7).

Si t = 0 corresponde al instante en que ocurre la colisión, entonces la posición del centro de masas del sistema total (es decir, de las tres masas), tanto antes como después de la colisión, vendrá dado por

$$\vec{r}_{cm}(t) = \frac{v_0}{3} t \,\hat{x}$$

Posterior a la colisión, la barra con masas 2m y m en sus extremos, rotará con cierta velocidad angular ω_0 en torno al centro de masas. Podemos evaluar ω_0 usando la ley de conservación del momento angular.

Antes de la colisión el momento angular del sistema es

$$\vec{L}_i = \left[\frac{L}{3} m v_0\right] \hat{z} \ .$$

Después de la colisión, para el sistema de referencia que estamos usando, la varilla con las masas sólo tiene un momento angular intrínseco:

Figura 8.7

Usando la ley de conservación del momento angular se encuentra que

$$\omega_0 = \frac{v_0}{2L} \ .$$

Volveremos a resolver el problema pero eligiendo ahora un sistema de coordenadas fijo en el laboratorio y con el origen coincidiendo con la la posición de la partícula # 2 antes de la colisión. Nuevamente elegimos el eje \hat{x} a lo largo de la velocidad de la partícula incidente y el eje \hat{y} a lo largo de la dirección que tiene la barra antes de la colisión.

En este sistema de coordenadas, el momento angular del sistema, antes de la colisión, es nulo. Después de a la colisión, el momento angular total de la barra con las tres masas, también deberá ser nulo. El momento angular de este sistema complejo que se aleja, se puede evaluar usando la proposición recién demostrada. Consta de dos partes: el momento angular del centro de masas y el momento angular rotacional intrínseco.

Como el centro de masas se mueve con velocidad $v_0/3$, la masa total es 3m y el brazo (distancia entre el origen y la tangente de la trayectoria del centro de masas) es L/3, el momento angular del centro de masas será

$$ec{R}_{cm} imes ec{P}_{cm} = -rac{L}{3} \; (3m) \; rac{v_0}{3} \; \hat{z}$$
 .

El momento angular intrínseco, igual que en el caso anterior, viene dado por

$$\vec{L}' = \frac{2}{3}m\omega_0 L^2 \ \hat{z} \ .$$

La condición que la suma de los dos momentos angulares anteriores sea nula, nos da la misma relación que ya habíamos encontrado:

$$\omega_0 = \frac{v_0}{2L}$$

Para la posición de la masa #1 se obtiene la expresión

$$\vec{r}_{1}(t) = \begin{cases} \frac{2L}{3}\hat{y} & \text{para } t < 0\\ \frac{v_{0}}{3}t\hat{x} + \frac{2L}{3}\left[\cos(\omega_{0}t)\hat{y} - \sin(\omega_{0}t)\hat{x}\right] & \text{para } t > 0 \end{cases}$$

8.3. Problemas

1. Consideremos un satélite artificial, de masa m, que gira en torno a la tierra a lo largo de una órbita elíptica y yas distancias máxima y mínima a la superficie de la tierra son 2555 km y 352 km, respectivamente. La velocidad máxima del satélite es de 29737 km/h. El radio terrestre es igual a 6382 km. ¿Cuáles serán las velocidades del satélite en el perigeo (r_{\min}) y apogeo (r_{\max}) , respectivamente?

- 2. Una bala de masa m y velocidad v pasa a través de la "lenteja" de un péndulo de masa M, y emerge con velocidad v/2. La lenteja del péndulo está colgada de una cuerda de longitud l. ¿Cuál debe ser el valor de v para que la lenteja del péndulo describa un círculo completo? ¿Cómo se modifica el problema si, en lugar de una cuerda, la lenteja está colgada de una varilla rígida sin masa?
- 3. Una partícula de masa m y velocidad v_0 incide sobre una barra de largo L y masa despreciable, que en cada uno de los extremos tiene una masa m, tal como se indica en la figura. Suponga que el choque entre las esferas # 1 y # 2 es elástico y central (frontal). ¿Se moverá la partícula # 1 después del choque? Si su respuesta es afirmativa evalue su dirección y magnitud.
- 4. Una masa m_1 se deja caer desde una altura *h* sobre un "balancín" (ver figura 8.10). El balancín puede girar libremente en torno a O en el sentido contrario al reloj. Sobre el otro extremo del balancín hay una masa m_2 . Al chocar la masa m_1 contra el balancín, ésta queda adosada a él. ¿Qué fracción de la energía total inicial se disipa en la colisión? Desprecie la masa del balancín.
- 5. Considere dos masas m, unidas por una varilla de largo L. Esta varilla está soldada en su centro a otra varilla, formando un ángulo α . El sistema anterior rota con una velocidad angular ω_0 en torno a la segunda varilla (ver figura adjunta). En cierto instante la soldadura se rompe, desacoplándose el movimiento de las dos varillas. Describa, de ahí en adelante, el movimiento de la varilla con las dos masas.

Figura 8.8

Figura 8.9

Figura 8.11

6. Una masa *m* realiza un movimiento circular, con radio R_0 , sobre una mesa (sin fricción), atada a un hilo (ver figura 8.12). Sea ω_0 la velocidad angular inicial. ¿Cuál es el trabajo que debe realizarse (tirando del hilo) para achicar el radio de giro desde R_0 a $R_0/2$?

Respuesta: $W = 3m\omega_0^2 R_0^2/2$.

Considere una varilla rígida, pero de ma-7.sa despreciable, cuyo largo es L y que tiene dos masas m, una adosada en uno de los extremos y la otra al centro (ver figura). La varilla puede girar libremente en el plano vertical alrededor de un eje que pasa por el extremo en que no tiene una masa adosada. Todo el sistema se encuentra en un campo gravitacional constante $\vec{g} = -g\hat{z}$. Suponga que este sistema inicialmente se encuentra en reposo en su posición de equilibrio inestable. Una leve perturbación hace que el sistema salga de su posición de equilibrio y paulatinamente comienza a "caer".

- a) Encuentre la velocidad angular $\omega = \dot{\theta}$ y la aceleración angular $\alpha = \ddot{\theta}$ de la varilla cuando ésta forme un ángulo θ con la vertical.
- b) Encuentre la fuerza que la varilla ejerce sobre el eje cuando la varilla pasa por la horizontal (es decir, cuando $\theta = \pi/2$).
- Dos masas m unidas por un hilo de largo L, caen con el hilo horizontal partiendo desde el reposo. Después de caer una distancia h, una de ellas choca elásticamente con una viga.
 - a) Determine la velocidad angular con que girarán las masas en torno a su centro de masas después de la colisión.
 - b) Encuentre la tensión a la que estará sometido del hilo después de que ha ocurrido la colisión.

Figura 8.14

8.3 Problemas

- 9. Considere un péndulo cónico (es decir, una masa m colgada de un hilo ideal de largo L), que gira en círculos formando un ángulo α_0 con la vertical.
 - a) ¿Con qué velocidad angular girará si el hilo se acorta lentamente hasta llegar a L/2?
 - b) ¿Que trabajo debe realizarse para acortar el hilo en esa magnitud?
- 10. Un alambre (de masa despreciable) de largo 2L se dobla al centro de manera que forma un ángulo α . En cada extremo el alambre tiene una masa m. Este dispositivo se "cuelga" de un eje tal como se muestra en la figura adjunta. Calcule el período de oscilación del sistema para pequeñas oscilaciones en torno a su posición de equilibrio estable. Verifique que la expresión general, en los límites $\alpha = 0$ y $\alpha = \pi$, da los resultados esperados.

Para resolver este problema suponga que el sistema esta oscilando (con pequeñas oscilaciones) y evalúe para un instante arbitrario el torque y el momento angular. Luego, usando la ecuación (8.4) demuestre que la variable $\alpha(t)$ satisface la ecuación diferencial de un oscilador armónico.

11. Considere una varilla de largo L que tiene dos masas M adosadas tal como se muestra en la figura. Un masa m que incide con velocidad v_0 , choca con el péndulo quedando adosada a él a una distancia h del eje. Determine el impulso trasmitido por el eje al péndulo durante la colisión. ¿A qué altura debe impactar m para que el impulso transmitido por el eje sea nulo? (en ese caso el eje no se percata de la colisión).

8.4. Solución a algunos de los problemas

Solución al problema 6

Debido al principio de conservación de la energía, la energía cinética que tiene el sistema cuando la varilla forma un ángulo θ con la normal debe ser igual al cambio de energía potencial, o sea, $\Delta K = \Delta U$, con

$$\Delta K = \frac{1}{2}m\left(\frac{L}{2}\omega\right)^2 + \frac{1}{2}m(L\omega)^2 = \frac{5}{8}mL^2\omega^2$$

у

$$\Delta U = mg(L - L\cos\theta) + mg\left(\frac{L}{2} - \frac{L}{2}\cos\theta\right) = \frac{3}{2}mgL\left(1 - \cos\theta\right).$$

De esta manera se deduce que

$$\omega^2(\theta) = \frac{12}{5} \frac{g}{L} (1 - \cos \theta) .$$

Derivando esta relación encontramos la aceleración angular, en efecto,

$$2\omega\dot{\omega} = \frac{12}{5}\frac{g}{L}\sin\theta \ \dot{\theta} \ .$$

Pero $\dot{\theta} = \omega$, luego

$$\alpha = \dot{\omega} = \frac{6}{5} \frac{g}{L} \sin \theta \; .$$

Demostremos que el mismo resultado se puede obtener usando la "ecuación de movimiento" $\tau = d\ell/dt$. Cuando la varilla forma un ángulo θ con la normal, el torque respecto a un origen ubicado en el eje es

$$\tau = mgL\sin\theta + mg\frac{L}{2}\sin\theta = \frac{3}{2}mgL\sin\theta$$
.

Para el momento angular tenemos

$$\ell = m(L\omega)L + m\left(\frac{L}{2}\omega\right)\frac{L}{2} = \frac{5}{4}mL^2\omega$$

Reemplazando estas expresiones en la ecuación de movimiento se obtiene

$$\frac{3}{2}mgL\sin\theta = \frac{5}{4}mL^2\dot{\omega} ,$$

de donde, nuevamente

$$\alpha = \dot{\omega} = \frac{6}{5} \frac{g}{L} \sin \theta \; .$$

Supongamos ahora que la varilla está pasando por la horizontal (es decir, $\theta = \pi/2$). En ese instante el centro de masas (que está ubicado a una distancia 3L/4 del eje) acelera con una aceleración

$$\vec{a}_{\rm cm} = -|a_t|\hat{z} - |a_c|\hat{x} = -\frac{3}{4}L\alpha\hat{z} - \omega^2 \left(\frac{3}{4}L\right)\hat{x} = -\frac{9}{10}g(\hat{z} + 2\hat{x}) \ .$$

(Observe que la componente \hat{z} de la aceleración de la partícula m que está en el extremo de la varilla, cuando ésta pasa por la horizontal, es 6g/5, o sea, mayor que g; convénzase de que así debía ser). La fuerza neta que actúa sobre la varilla (cuando pasa por la horizontal) es

$$\vec{F}_{\text{tot}} = \vec{F}_{\text{eje}} - 2mg\hat{z}$$
.

Pero $\vec{F}_{tot} = (2m)\vec{a}_{cm}$, luego

$$\vec{F}_{\rm eje} - 2mg\hat{z} = -2m\frac{9}{10}g(\hat{z} + 2\hat{x})$$

de donde se deduce que

$$\vec{F}_{\rm eje} = \frac{1}{5}mg \, (\hat{z} - 18\hat{x}) \; .$$

Solución al problema 8

Al chocar con la viga la velocidad de la masa $m \operatorname{será} \vec{v}_0 = -\sqrt{2gh}\hat{z}$. El choque con la viga es elástico y el hilo que une ambas masas (que no puede ejercer fuerzas transversales a su orientación) no interviene para nada en ese proceso. Luego la masa m rebotará con la velocidad $\sqrt{2mg}\hat{z}$. La otra masa no modifica su velocidad mientras ocurre el choque. Por lo tanto, justo después de la colisión, la velocidad del centro de masas (respecto a un observador junto a la viga) será nula.

Para un observador junto a la viga (en el lugar donde ocurrirá la colisión), el momento angular antes de la colisión es

$$\ell_i = Lm \sqrt{2gh}$$
 .

Después de la colisión será

$$\vec{\ell_f} = \vec{L}_{\rm cm} + \vec{\ell_f} \; ,$$

donde $\vec{L}_{\rm cm}$ es el momento angular debido a la traslación del centro de masas y $\vec{\ell}_f$ es el momento angular observado desde el centro de masas. Ya que justo después de la colisión el centro de masas está en reposo $\vec{L}_{\rm cm} = 0$. Denotemos por ω_0 la velocidad angular del hilo después de la colisión, entonces

$$\ell_f' = 2m\left(\frac{L}{2}\omega_0\right) \frac{L}{2} = \frac{mL^2}{2}\omega_0$$

Como el impulso que ejerce la viga no cambia el momento angular del sistema respecto al punto en que se aplica esa fuerza de percusión, se tiene que el momento angular debe conservarse. Luego

$$\frac{mL^2}{2}\omega_0 = Lm\sqrt{2gh} \; ,$$

de donde

$$\omega_0 = \frac{\sqrt{8gh}}{L}$$

En este problema el mismo resultado también se puede obtener usando la conservación de la energía. Después de la colisión, como el centro de masas está en reposo, toda la energía cinética se debe a la rotación, siendo ésta

$$K_r = 2 \cdot \frac{1}{2}m\left(\frac{L}{2}\omega_0\right)^2 = \frac{1}{4}mL^2\omega_0^2$$

Por otra parte, el cambio de energía potencial es

$$\Delta U = 2mgh \; .$$

Igualando ambas expresiones obtenemos nuevamente que

$$\omega_0 = \frac{\sqrt{8gh}}{L}$$

Después de ciertos momentos de reflexción, es claro que la caída de las dos masas en un campo gravitatorio constante, no afecta la tensión del hilo. Por lo tanto, la tensión de la cuerda se debe sólo al movimiento rotacional de las dos masas. El radio de giro de ellas es L/2. La magnitud de la fuerza centrípeta (que es igual a la tensión del hilo) es

$$F_{\rm cent} = m\omega_0^2 \frac{L}{2} = 4mg \frac{h}{L} \; .$$

Solución al problema 10

Denotemos por ϵ al ángulo que el péndulo hace respecto a su posición de equilibrio (ver figura 8.18).

El momento angular del péndulo será

$$\vec{\ell} = 2Lm(L\dot{\epsilon}) \hat{x} ,$$

donde $\dot{\epsilon}$ es la velocidad angular del péndulo (siendo positiva cuando gira en la dirección contraria a los punteros del reloj). Derivando respecto al tiempo se deduce que

$$\frac{d\ell}{dt} = 2mL^2\ddot{\epsilon}\,\hat{x}$$

Figura 8.18

El torque de la fuerza gravitacional (respecto a un origen en el eje) es

$$\vec{\tau} = mgL\sin(\alpha/2 - \epsilon) \hat{x} - mgL\sin(\alpha/2 + \epsilon) \hat{x}$$
$$= -2mgL\cos(\alpha/2) \sin \epsilon \hat{x}$$

Sustituyendo las dos relaciones anteriores en la ecuación de movimiento $\vec{\tau}=d\vec{\ell}/dt$ encontramos

$$-2mgL\cos(\alpha/2)\,\sin\epsilon = 2mL^2\ddot{\epsilon}\,.$$

Para pequeñas oscilaciones en torno de la posición de equilibrio podemos usar la aproximación sin $\epsilon\simeq\epsilon.$ De esta manera obtenemos

$$\ddot{\epsilon} + \left(\frac{g}{L}\cos(\alpha/2)\right) \epsilon = 0 \; .$$

Esta es la ecuación de movimiento de un oscilador armónico cuyo período es

$$T = 2\pi \left[\sqrt{\frac{g}{L} \cos\left(\frac{\alpha}{2}\right)} \right]^{-1}$$

Capítulo 9

Rotación de un cuerpo rígido

En este capítulo estudiaremos rotaciones de un cuerpo sólido. No consideraremos el caso general, que será materia de cursos más avanzados, sino que analizaremos sólo el caso en que el movimiento rotacional del sólido es en torno a un eje fijo (o que al menos no cambie su orientación a medida que transcurre el tiempo).

9.1. Las ecuaciones básicas

Consideremos un cuerpo sólido, que gira con velocidad angular ω_0 en torno a un eje fijo que elegiremos como el eje \hat{z} . El origen lo elegimos en algún lugar sobre el eje. Es usual definir un vector velocidad angular por

$$\vec{\omega}_0 = \pm \omega_0 \, \hat{z} \; ,$$

donde $\omega_0 = |\vec{\omega}_0|$ y el signo se elige usando la regla de la mano derecha: si los dedos curvados indican la dirección de rotación, entonces el pulgar muestra la dirección en que apunta $\vec{\omega}_0$.

Para ser concretos, supongamos que el sólido consta de N masas m_j , (j = 1, 2, ..., N), ubicadas en los puntos \vec{r}_j , unidas por varillas rígidas sin masa (ver figura 9.1).

El vector posición de cada partícula se puede descomponer como sigue:

$$\vec{r}_j = \vec{r}_{\perp j} + z_j \hat{z}$$

La magnitud $r_{\perp j} = |\vec{r}_{\perp j}|$ es la distancia de la masa m_j al eje de giro.

La velocidad de cada masa viene dada por

$$\vec{v_j} = \vec{\omega}_0 \times \vec{r_j}$$

Para la rapidez de la masa j se obtiene

Figura 9.1

$$v_j = r_{\perp j} \,\omega_0$$
.

Evaluemos la energía cinética del sólido y también la componente del momento angular que apunta a lo largo del eje de rotación.

La energía cinética (debido a la rotación del sólido) viene dada por la suma de las energías cinéticas de cada una de las masas, o sea:

$$K = \sum_{j=1}^{N} \frac{1}{2} m_j v_{\perp j}^2$$
$$= \frac{1}{2} \left(\sum_{j=1}^{N} m_j r_{\perp j}^2 \right) \omega_0^2$$

Observe que las coordenadas z_j de las distintas masas no intervienen en la expresión para la energía cinética. Algo similar ocurre al evaluar la componente z del momento angular (hagámoslo aquí para una partícula):

$$\vec{\ell} = m\vec{r} \times \vec{v}$$

$$= m\vec{r} \times (\vec{\omega}_0 \times \vec{r})$$

$$= m\vec{\omega}_0 r^2 - m\vec{r} (\vec{\omega}_0 \cdot \vec{r})$$

$$= m\omega_0 r^2 \hat{z} - m\vec{r} \omega_0 z$$

$$= m\omega_0 r^2 \hat{z} - m(z\hat{z} + \vec{r}_\perp) \omega_0 z$$

$$= m\omega_0 (r^2 - z^2) \hat{z} - m\omega_0 z \vec{r}_\perp$$

$$= m\omega_0 r_\perp^2 \hat{z} - m\omega_0 z \vec{r}_\perp .$$

Para la componente z del momento angular se tiene entonces

$$\ell_z = m r_\perp^2 \,\omega_0 \quad .$$

La componente z del momento angular de todas las partículas que componen el sólido es, por lo tanto,

$$L_z = \left(\sum_{j=1}^N m_j r_{\perp j}^2\right) \,\omega_0 \,.$$

En dos ocasiones ya nos ha aparecido la expresión $\sum_{j=1}^{N} m_j r_{\perp j}^2$. Es útil definir explícitamente este concepto: Definiremos el *momento de inercia* del sólido en torno a un eje por

$$I \equiv \sum_{j=1}^{N} m_j r_{\perp j}^2$$

De esta manera la energía cinética y la componente del momento angular paralela al eje de rotación vienen dadas por

$$K = \frac{1}{2}I\omega_0^2$$

у

 $\mathbf{230}$

$$L_z = I \,\omega_0 \; .$$

Si sobre un sistema aplicamos un torque en la dirección z, entonces cambiará la componente z de su momento angular de acuerdo a la relación

$$\tau_z = \frac{dL_z}{dt} = I \frac{d\omega_0}{dt} = I \dot{\omega}_0 \,,$$

o sea, conociendo el torque podemos evaluar su aceleración angular.

En el capítulo anterior demostramos que el momento angular de un sólido que se mueve en el espacio, respecto a un origen O se puede escribir como una suma de dos contribuciones: i) el momento angular debido a la traslación del sistema como un todo, es decir, el movimiento del centro de masas con toda la masa concentrada en ese lugar y, ii) el momento angular (rotacional intrínseco) del sistema, \vec{L}' , visto desde el centro de masas, es decir,

$$\vec{L} = \vec{R}_{cm} \times \vec{P}_{cm} + \vec{L}' \; .$$

Mostraremos a continuación que se tiene una expresión análoga para la energía cinética. Sea \vec{v}_j la velocidad de la partícula j medida desde un sistema de referencia O, \vec{v}_j' la velocidad de la misma partícula pero vista desde el sistema de referencia fijo al centro de masas y \vec{V}_{cm} la velocidad del centro de masas. Entonces se tiene que

$$\vec{v}_j = \vec{v}_j' + \vec{V}_{cm}$$

La energía cinética (para el observador O) es

$$K = \frac{1}{2} \sum_{j=1}^{N} m_j v_j^2 \; .$$

A partir de las dos últimas ecuaciones se encuentra que

$$K = \frac{1}{2} \sum_{j=1}^{N} m_j \, \vec{v_j} \cdot \vec{v_j}$$

$$= \frac{1}{2} \sum_{j=1}^{N} m_j \, (\vec{v_j}' + \vec{V_{cm}}) \cdot (\vec{v_j}' + \vec{V_{cm}})$$

$$= \frac{1}{2} \sum_{j=1}^{N} m_j \, \vec{v_j}'^2 + \sum_{j=1}^{N} m_j \, \vec{V_{cm}} \cdot \vec{v_j}' + \frac{1}{2} \sum_{j=1}^{N} m_j \, \vec{V_{cm}}$$

$$= \frac{1}{2} \sum_{j=1}^{N} m_j \, \vec{v_j}'^2 + \vec{V_{cm}} \cdot \left(\sum_{j=1}^{N} m_j \, \vec{v_j}'\right) + \frac{1}{2} M \vec{V_{cm}}$$
(9.1)

El primer término al lado derecho de la última ecuación es la energía cinética del sólido vista desde el centro de masas, o sea, corresponde a la energía cinética debido a la rotación

intrínseca del sólido. Como vimos al inicio de la presente sección, esta energía cinética la podemos escribir de la forma

$$K' = rac{1}{2} \sum_{j=1}^{N} m_j v_j'^2 = rac{1}{2} I \omega_0^2 \; .$$

El segundo término del lado derecho de la ecuación (11.16) es nulo ya que $(\sum m_j \vec{v}'_j)/M$ es la velocidad del centro de masas vista desde el centro de masas. Por último, el tercer término del lado derecho de la ecuación (11.16) es la energía cinética de traslación del sólido como un todo. Concluimos que la ecuación (11.16) se puede escribir de la forma

$$K = \frac{1}{2}M\vec{V}_{cm}^2 + \frac{1}{2}I\omega_0^2 \; .$$

9.2. Momento de inercia

De vital importancia para describir las rotaciones de un sólido es el concepto de momento de inercia. Para un sólido constituido de N masas discretas (unidas rígidamente con varillas sin peso), el momento de inercia viene dado por

$$I = \sum_{j=1}^N m_j r_{\perp j}^2 \, .$$

Para distribuciones de masa continua, la expresión anterior debe sustituirse por una con integrales que adecuadamente describa la situación. Por ejemplo: si un cuerpo sólido viene descrito por una densidad de masa $\rho(x, y, z) = \rho(\vec{r})$, entonces el momento de inercia en torno al eje \hat{z} viene dado por

$$I = \int_{\text{Sólido}} (x^2 + y^2) \rho(\vec{r}) \, dx \, dy \, dz \quad .$$

En la última expresión $(x^2 + y^2)$ es el cuadrado de la distancia al eje de la masa del volumen $d^3r = dx \, dy \, dz$ ubicado en el lugar \vec{r} .

Evaluemos algunos momentos de inercia importantes:

Ejemplo 1:

Evaluemos el momento de inercia de una varilla de largo L y masa M en torno a un eje que pasa perpendicularmente por uno de sus extremos (ver figura 9.2).

Figura 9.2

La densidad lineal de la varilla es $\lambda = M/L$. El trozo de varilla de largo dx que se encuentra a una distancia x del eje tiene una masa igual a λdx y su contribución al momento de inercia es $x^2 \lambda dx$. Sumando todas las contribuciones desde x = 0 hasta x = L se obtiene

$$I = \int_0^L \lambda x^2 \, dx = \lambda \left(\left. \frac{1}{3} x^3 \right|_0^L \right) = \frac{\lambda L^3}{3} \,,$$

o sea

$$I = \frac{ML^2}{3}$$

Ejemplo 2:

Evaluemos el momento de inercia de un anillo de radio R y masa M en torno a un eje que pasa perpendicularmente por el centro (ver figura 9.3).

Como toda la masa del anillo está a la distancia R del eje, el momento de inercia es simplemente

$$I = MR^2 .$$

Figura 9.3

Ejemplo 3:

Evaluemos el momento de inercia de un disco uniforme de radio R y masa M en torno a un eje que pasa perpendicularmente por el centro (ver figura 9.4). La densidad superficial del disco viene dada por $\sigma = M/(\pi R^2)$. Para encontrar el momento de inercia subdividiremos el disco en anillos infinitesimales.

El momento de inercia dI de un anillo de radio r y ancho dr viene dado por (ver ejemplo anterior)

$$dI = (\text{masa del anillo}) \cdot r^2$$
.

Pero la masa de tal anillo es

$$(\text{masa del anillo}) = \sigma \ 2\pi r \ dr \ ,$$

luego

$$dI = 2\pi\sigma r^3 dr .$$

0

Figura 9.4

Sumando la contribución de todos los anillos desde r = 0 hasta r = R se encuentra

$$I = \int dI = \int_{0}^{R} 2\pi\sigma r^{3} dr = 2\pi\sigma \left(\frac{r^{4}}{4}\Big|_{0}^{R}\right) = \frac{\pi\sigma}{2}R^{4}$$

Sustituyendo la expresión para σ se obtiene finalmente

$$I = \frac{MR^2}{2} \; .$$

Ejemplo 4:

Encontremos el momento de inercia de una esfera uniforme de radio R y masa M alrededor de un eje que pasa por el centro.

La densidad de masa de la esfera viene dada por

$$\rho_0 = \frac{M}{\frac{4}{3}\pi R^3}$$

Para encontrar el momento de inercia de una esfera supongamos que ella está constituida por numerosos discos infinitesimales de grosor dz (ver figura 9.5). El radio del disco infinitesimal que se encuentra a una altura z viene dado por $\sqrt{R^2 - z^2}$. El área de tal disco es por lo tanto

$$A = \pi (R^2 - z^2) \; .$$

Figura 9.5

Para la masa dM (que es el volumen del disco infinitesimal multiplicado por su densidad) se obtiene

$$dM = \rho_0 \pi (R^2 - z^2) dz$$

La contribución de tal disco al momento de inercia de la esfera es (ver ejemplo 3)

$$dI = \frac{1}{2} dM \left(R^2 - z^2 \right) = \frac{\rho_0 \pi}{2} \left(R^2 - z^2 \right)^2 dz \,.$$

Sumando la contribución de todos los discos desde z = -R hasta z = R se encuentra

$$\begin{split} I &= \int dI = \int_{-R}^{R} dI = \frac{\rho_{0}\pi}{2} \int_{-R}^{R} (R^{2} - z^{2})^{2} dz \\ &= \frac{\rho_{0}\pi}{2} \int_{-R}^{R} (R^{4} - 2R^{2}z^{2} + z^{4}) dz \\ &= \frac{\rho_{0}\pi}{2} \left(R^{4}z - \frac{2}{3}R^{2}z^{3} + \frac{1}{5}z^{5} \right) \Big|_{-R}^{R} \\ &= \frac{\rho_{0}\pi}{2} 2 \left(R^{5} - \frac{2}{3}R^{5} + \frac{1}{5}R^{5} \right) \\ &= \rho_{0}\pi R^{5} \frac{8}{15} \end{split}$$

Sustituyendo la expresión para ρ_0 se obtiene finalmente

$$I = \frac{2}{5}MR^2$$

Ejemplo 5:

Evaluemos el momento de inercia de una esfera hueca de radio interno R_i y radio externo R_e , hecha de un material de densidad uniforme ρ_0 , para un eje que pasa por el centro.

Es fácil resolver este problema si se observa que la esfera hueca se puede pensar como dos esferas concéntricas sobrepuestas: una de radio R_e con densidad ρ_0 y otra de radio R_i con densidad negativa $-\rho_0$.

El momento de inercia de esta superposición (que coincide con la de la esfera hueca) viene dado por (ver ejemplo 4)

$$I = \frac{8}{15}\pi\rho_0 R_e^5 + \frac{8}{15}\pi(-\rho_0) R_i^5 = \frac{8}{15}\pi\rho_0 \left(R_e^5 - R_i^5\right).$$

Expresemos el resultado también en términos de la masa de la esfera hueca, que es:

$$M = \frac{4}{3}\pi (R_e^3 - R_i^3) \rho_0 \; .$$

Sustituyendo esta relación en la expresión para el momento de inercia se encuentra

$$I = \frac{2}{5}M\frac{(R_e^5 - R_i^5)}{(R_e^3 - R_i^3)}$$

Para $R_i \longrightarrow 0$, se recupera, tal como debe ser, el resultado del ejemplo anterior.

Ejemplo 6:

Evaluemos el momento de inercia de una cáscara esférica de radio R y masa M, para un eje que pasa por el centro.

Para resolver este problema usamos el resultado del ejemplo anterior, evaluándolo en el límite $R_i \longrightarrow R_e$. Para encontrar este límite pongamos $R_i = R_e - \epsilon \operatorname{con} \epsilon$ muy pequeño. Se tiene:

$$\begin{aligned} R_{e}^{3} - R_{i}^{3} &= R_{e}^{3} - (R_{e} - \epsilon)^{3} \\ &= R_{e}^{3} - R_{e}^{3} \left(1 - \frac{\epsilon}{R_{e}}\right)^{3} \\ &\simeq R_{e}^{3} - R_{e}^{3} \left(1 - 3\frac{\epsilon}{R_{e}}\right) \\ &\simeq 3R_{e}^{2}\epsilon \;. \end{aligned}$$

De la misma manera se encuentra que

$$R_e^5 - R_i^5 = 5R_e^4\epsilon$$

Reemplazando estos resultados en la expresión para el momento de inercia, e igualando R_e con R, se encuentra (para el momento de inercia de una cáscara esférica)

$$I = \frac{2}{3}MR^2 \,.$$

Ejemplo 7:

Evaluemos el momento de inercia de un anillo de radio r y masa M en torno a un eje que coincide con un diámetro del anillo (ver figura 9.6).

Para resolver este problema subdividamos el anillo en numerosos sectores angulares infinitesimales. La densidad lineal del anillo es $\lambda = M/(2\pi R)$. La masa del anillo del sector comprendido entre $\phi \neq \phi + d\phi$ es $\lambda r d\phi$. Su contribución al momento de inercia del anillo es

Figura 9.6

$$dI = \lambda R \, d\phi \, (R \sin \phi)^2 \, .$$

Sumando la contribución de todos los sectores (desde $\phi = 0$ hasta $\phi = 2\pi$) se obtiene

$$I = \int dI = \int_0^{2\pi} \lambda R^3 \sin^2 \phi \, d\phi \, .$$

Pero

$$\int_0^{2\pi} \sin^2 \phi \; d\phi = \pi \; ,$$

luego

$$I = \lambda R^3 \pi = \frac{1}{2} M R^2 \; .$$

9.3. Problemas

1. (Teorema de Steiner o teorema de los ejes paralelos) Demuestre que el momento de inercia I para las rotaciones de un cuerpo sólido alrededor de un eje L es

$$I = I_0 + M R^2$$

donde I_0 es el momento de inercia para rotaciones del sólido alrededor del eje paralelo a L que pasa por el centro de masas y R es la distancia de separación de los dos ejes.

2. Encuentre el momento de inercia de las superficies, de densidad superficial uniforme σ_0 , mostrados en la figura 9.7 y en torno a los ejes ahí indicados.

Figura 9.7

- 3. Considere un sistema de dos masas m_1 y m_2 , separadas por una distancia r. Demuestre que el momento de inercia con respecto al eje que pasa por el centro de masas en forma perpendicular a la línea que los une, viene dado por μr^2 , donde $\mu = m_1 m_2/(m_1 + m_2)$ es la masa reducida del sistema.
- 4. Encuentre el momento de inercia de los alambres, de densidad lineal uniforme λ_0 , mostrados en la figura 9.8 y en torno a los ejes ahí indicados.

Figura 9.8

5. La molécula de metano consiste de un átomo de carbono localizado al centro de un tetraedro regular cuyos vértices están ocupados por 4 átomos de hidrógeno. La distancia C— H es de 1.08 Å. (1 Å= 10^8 cm). ¿Cuál es el momento de inercia de la molécula de metano para una rotación alrededor de un eje C— H? Las masas de los átomos de hidrógeno y carbono son: $m_H = 1.68 \ 10^{-27}$ Kg y $m_C = 19.9 \ 10^{-27}$ Kg, respectivamente.

- 6. Una esfera sube rodando un plano inclinado en 30°. Cuando la esfera se encuentra al pie del plano, su centro de masas se traslada con una velocidad de 5 m/s. ¿Hasta dónde subirá la esfera por el plano inclinado? ¿Cuánto tiempo tardará en regresar al punto de partida?
- 7. Se enrolla una cuerda alrededor de la plataforma de un carrusel de radio R = 2 m para echarlo andar. Durante 10 s se tira de la cuerda con una fuerza de 200Ñ. Durante ese tiempo el carrusel da una vuelta completa. ¿Cuál es el momento de inercia del carrusel?

Respuesta: $I = 3183 \text{ kg m}^2$.

Figura 9.10

9.3 Problemas

- 8. Los dos discos mostrados en la figura adjunta tienen masas m y radios R iguales. El disco superior puede rotar libremente alrededor de su eje. Una cuerda está enrollada alrededor de ambos discos. Encuentre:
 - a) La aceleración del centro de masas del disco inferior.
 - b) La tensión de la cuerda.
 - c) La aceleración angular de cada disco alrededor de su centro de masas.
- 9. Una esfera de densidad uniforme ρ_0 y radio r rueda sin deslizarse a lo largo de una vía que posee una vuelta circular de radio R (ver figura 9.12). La esfera inicia su movimiento partiendo, del reposo, desde una altura h. ¿Cuál es la mínima altura h requerida para que la esfera no deje la vía? ¿Cuál sería la altura h si la bola en lugar de rodar se desliza resbalando?

Respuesta: h = 27 (R - r)/10.

10. Una bola de palitroque, de radio R y masa M, se lanza de manera que inicialmente resbale (sin que ruede) con velocidad v_0 . Si el coeficiente de roce entre el suelo y la bola es μ , ¿qué distancia recorrerá la bola antes de que ruede sin resbalar? ¿Cuál es su velocidad final?

Respuesta: $v_f = 5v_0/7$.

11. Considere dos poleas (discos) de masas m_1, m_2 y radios R_1, R_2 , respectivamente. Con estas poleas se realiza el montaje mostrado en la figura adjunta (la cuerda está enrollada en torno a la polea # 2). Encuentre la aceleración de la masa M. Respuesta:

$$a = -g\frac{M+m_1}{M+\frac{3}{2}m_1+2m_2}$$

12. Una varilla de largo L y masa M puede rotar libremente alrededor de un pivote A. Una bala de masa m y velocidad v impacta contra la varilla en un punto P alejado una distancia a desde el pivote, quedando incrustada en ella.

Figura 9.12

- a) Encuentre el momento angular alrededor del punto A inmediatamente antes y después de la colisión.
- b) Determine el momento lineal del sistema inmediatemente antes y después de la colisión.
- c) ¿Cuál es el valor Q de la colisión, es decir, cuánta energía es disipada durante el proceso?

 a) ¿Cuál será la velocidad angular si cada niño se mueve una distancia d hacia el centro de la barra (sin tocar el suelo)?

Figura 9.15

- b) ¿En cuánto cambiará la energía cinética de rotación del sistema?
- 14. Una esfera, un disco y un aro, hechos de materiales homogéneos, tienen el mismo radio R y la misma masa M. Los tres objetos se dejan libres desde la parte superior de un plano inclinado. Los tres objetos parten desde el reposo y ruedan sin resbalar. El plano tiene un largo L y su inclinación respecto a la horizontal es α .
 - a) ¿Cuáles son sus velocidades al llegar al pie del plano inclinado?
 - b) Encuentre la fuerza de roce f_r en cada caso.
 - c) ¿Cuánto tarda cada uno de los objetos en llegar a la parte inferior?
- 15. Un aro circular de radio R oscila en torno a un eje horizontal que pasa por A (ver figura). El eje es normal al plano del aro.
 - a) ¿Cuál sería el largo de un péndulo simple con igual período de oscilación que el del aro? (Haga el análisis sólo para pequeñas oscilaciones.)
 - b) Se desea que el aro de una vuelta completa alrededor de A. ¿Cuál es la mínima velocidad angular que debe poseer el aro, en la parte inferior, para que esto sea posible?

Figura 9.16

Figura 9.14

- 16. Un aro circular de masa m y radio R descansa sobre una superficie horizontal sin roce (ver figura, vista desde arriba). Contra el aro se dispara tangencialmente una bala con velocidad $\vec{v_0}$, cuya masa también es m. La bala queda incrustada en el aro.
 - a) Describa el movimiento del sistema después del choque.
 - b) ¿Cuál es la velocidad del centro de masas del sistema antes y después del choque?
 - c) ¿Cuál es el momento angular del sistema respecto a su centro de masas antes del choque?
 - d) ¿Cuál es la velocidad angular con que gira el sistema después del choque?
 - e) ¿Cuánta energía cinética se pierde en el choque?
- 17. Un aro de masa M y radio r, rueda sin resbalar por la superficie interior de una cinta circular fija de radio R (ver figura 9.18). Encuentre el período de este movimiento para pequeñas oscilaciones alrededor de la vertical.

Respuesta:

$$T = (2\pi)/\omega_0$$
, con $\omega_0^2 = \frac{g}{2(R-r)}$.

18. Considere la máquina de Atwood mostrada en la figura adjunta. La polea consta de un disco uniforme de masa m (que coincide con el valor de la masa más pequeña colgada de la máquina) y radio R. El momento de inercia para rotaciones en torno al eje de un disco es $I = mR^2/2$. El roce entre la cuerda y la polea hace que esta última gire mientras las masas estén en movimiento. Suponga que la cuerda no tiene masas y que no desliza sobre la polea. La masa 2m parte del reposo desde una altura h.

Figura 9.17

Figura 9.18

Figura 9.19

- a) Usando el teorema de conservación de la energía, encuentre la velocidad de la masa 2m cuando ésta llega al suelo.
- b) Encuentre la tensión de la cuerda a ambos lados de la máquina de Atwood. Es decir, encuentre τ_1 y τ_2 en función de m, g y R. (Cuando el momento de inercia de la polea no se puede despreciar (lo que es el caso del presente problema) entonces la tensión de la cuerda no es la misma a ambos lados de la polea.)
- c) Encuentre la tensión de la cuerda que sujeta la polea mientras las masas están en movimiento.
- d) Encuentre la tensión de la cuerda que sujeta la polea después de que la masa 2m llegá al suelo (y todas las componentes de la máquina de Atwood están en reposo).
- 19. Considere dos poleas fijas unidas por una correa (o cadena) de transmisión tal como se muestra en la figura adjunta. Una masa M colgada por una cuerda enrollada en la polea #1 pone en movimiento el sistema. Suponga que las poleas son discos de radio R y tienen una masa también igual a M (es decir, el momento de inercia de las dos poleas coinciden, teniéndose $I = MR^2/2$). Note que una correa (o cadena) de transmisión sólo puede transmitir una fuerza de tracción. Para el presente problema sólo la parte superior de la correa transmite una fuerza entre las poleas.

Figura 9.20

- a) Encuentre la tensión T de la cuerda.
- b) Encuentre la aceleración angular de la polea #1.
- c) Usando la *ley de conservación de la energía*, encuentre la velocidad v que tiene la masa M después de haber bajado una distancia h. (La masa M parte desde el reposo).

20. Una barra uniforme de largo L apoyada contra la pared comienza a resbalar (sin roce). Inicialmente el ángulo que forma con la pared es θ_0 . Encuentre la altura zpara la cual el extremo A de la barra se separa de la pared vertical.

Respuesta: $z = \frac{2}{3}L\cos\theta_0$.

21. Una carretilla de hilo, formada de dos discos y un cilindro de las dimensiones indicadas en la figura 9.22a, se tira del hilo que tiene enrollado tal como se muestra en la figura 9.22b. Encuentre la aceleración de la carretilla de hilo si ésta rueda sin resbalar.

Figura 9.22

22. Considere un automóvil de masa M, cuya geometría se muestra en la figura adjunta, y que inicialmente se mueve con velocidad $-v_0hatx$. Suponga que en cierto instante el automóvil frena bloqueando las dos ruedas delanteras. Encuentre la distancia que el automóvil alcanza a recorrer durante el frenado si el coeficiente de roce cinemático entre el pavimento y las ruedas es μ_c . Asuma que durante el frenado, las ruedas traseras, en todo instante, están en contacto con el pavimento, situación que generalmente se da en la práctica.

Bajo ciertas condiciones extremas de frenado, el automóvil podría elevarse por la parte trasera y tumbarse. Encuentre la condición que debe satisfacerse para que el automóvil quede, en todo instante, con las cuatro ruedas sobre el pavimento.

Haga también un análisis del proceso de aceleración del automóvil.

23.Considere una varilla rígida (de masa despreciable), que en cada uno de sus extremos tiene adosada una masa m. La varilla se desplaza inicialmente sin rotar sobre el plano (x, y), con la velocidad del centro de masas $\vec{v} = v_0 \hat{x}$ y con la varilla orientada de manera de formar un ángulo α con el eje \hat{x} , (ver figura). En cierto lugar una de las masas choca elásticamente con una pared rígida, tal como se muestra en la figura. Después de la colisión (el centro de masas de) la varilla con las masas se trasladará uniformemente, rotando simultáneamente con velocidad angular constante.

1 19010 01.24

Desprecie el roce entre las masas m y el plano y suponga también que la pared está pulida, es decir, no hay fuerzas de roce entre la masa m y la pared cuando entran en contacto.

- a) Determine la velocidad angular de la varilla después de la colisión.
- b) Encuentre el impulso transmitido al sistema por la pared durante la colisión.
- c) Verifique que el resultado obtenido en la parte b) da los resultados correctos en los límites $\alpha = 0$ y $\alpha = \pi/2$.
- 24. Uno de los extremos de un resorte ideal de constante elástica k se fija a una pared. El otro extremo se fija al eje de una rueda cilíndrica de radio R y masa M. El resorte se comprime una distancia a, manteniendo su posición horizontal.

Figura 9.25

Estando el cilindro en contacto con el suelo (superficie rugosa) se suelta éste del reposo. Calcule la velocidad angular del cilindro cuando la elongación del resorte es nula. Suponga que el cilindro no resbala.

- 25. Cuatro bolitas idénticas, de masa m cada una, se unen mediante varillas de masa despreciable de largo a de tal forma que las bolas queden ubicadas en los vétices de un cuadrado.
 - a) Calcule el momento de inercia con respecto a un eje a lo largo de la diagonal del cuadrado.
 - b) Calcule el momento de inercia con respecto a un eje paralelo a uno de los lados y que pasa por el centro de éste.
 - c) Si los dos cuadrados se hacen rotar, cada uno entorno a los ejes descritos anteriormente y con la misma velocidad angular, determine cual de ellos (y en que porcentaje) tiene mayor energía cinética.

26. Un bloque rectangular y un cilindro se unen con una varilla como se muestra en la figura. El cilindro rueda sin resbalar mienmtras que el bloque desliza sobre el piso rugoso (μ_c) . Si la masa del cilindro y del bloque es la misma (M/2) y el radio del cilindro es R, calcule el tramo recorrido por el sistema desde aquel instante en que el sistema se desplaza con rapidez v_0 . Compare con el resultado que obtendría si el cilindro se mantiene fuera de contacto con el piso.

Figura 9.27

- 27. Considere un cubo de arista L y masa que se desliza von velocidad v_0 sobre un plano horizontal (sin roce). En cierto lugar el cubo se encuentra con un tope.
 - a) Demuestre que el momento de inercia del cubo respecto a un eje de rotación que coincide con una de sus aristas es $I = 2ML^2/3$.
 - b) ¿Cual es la mínima velocidad que debe tener el cubo para que se vuelque?

Figura 9.28

28. Una ardilla de masa m corre (aceleradamente) dentro de un cilindro hueco de radio R y masa M. La ardilla en ningún momento resbala y el cilindro posa sobre un plano rugoso horizontal (sobre el cual rueda sin resbalar). A consecuencia de su movimiento acelerado la ardilla se mantiene siempre a una altura h del suelo. Determinar la aceleración con que se traslada el centro de masas del cilindro (que es la misma con que se traslada la ardilla).

Figura 9.29

Figura 9.30

9.3 Problemas

- 30. Una varilla de masa M y longitud L cuelga con uno de sus extremos fijo al techo. La varilla puede rotar libremente entorno a este punto. Sobre el piso un cuerpo pequeño de masa m choca elásticamente con el extremo inferior de la varilla.
 - a) Determine la velocidad angular de la varilla inmediatamente después de la colisión.
 - b) Determine la masa de la varilla si a consecuencia del choque la masa incidente queda detenida.
- 31. Una cuerda se enrolla entorno a un cilindro. El cilindro se ubica sobre un plano horizontal rugoso (μ) y en contacto con una pared vertical del mismo material del piso (ver figura). La cuerda se tira con una fuerza F hacia abajo. Calcular la razón entre las fuerzas normales experimentadas en el suelo y la pared, respectivamente.
- 32. Considere la configuración experimental mostrada en la figura adjunta. Suponga que no hay roce entre la carretilla de hilo y el plano inclinado. Suponiendo conocidos el momento de inercia I de la carretilla para rotaciones alrededor de su eje, los radios R y r, el ángulo de inclinación α del plano inclinado, encuentre la aceleración adel eje de la carretilla.
- 33. Un mono se encuentra sobre una plataforma que puede rotar (sin roce) alrededor de un eje. Inicialmente la plataforma y el mono se encuentran en reposo. ¿Qué debe hacer el mono para alcanzar los plátanos que están al otro lado. No hay nada a la mano del mono y supondremos que con sólo soplar no es posible poner en movimiento la plataforma.

Figura 9.31

Figura 9.32

Figura 9.33

Figura 9.34
- 34. Considere un péndulo (físico) formado por una varilla de largo R y masa M en cuyo extremo está adosada una esfera de radio R y masa 2M. El péndulo cuelga de uno de los extremos de la varilla.
 - a) Determine el momento de inercia del péndulo para rotaciones entorno al punto de suspensión.
 - b) Determine el período de este péndulo para pequeñas oscilaciones.

Figura 9.35

- c) Determine la velocidad angular Ω_0 debe darse al péndulo para que éste logre llegar justo a la posición invertida.
- 35. Una rueda de bicicleta se sostiene del eje con un hilo (amarrado a un solo lado). El punto de amarre se ubica a D = 20 cm del centro de la rueda. El neumático y la llanta pesan M = 4 kg y tienen un radio R = 30 cm. La rueda se hace girar a 10 rev/s. El eje se orienta (inicialmente) de manera horizontal.
 - a) Demuestre que el eje de la rueda se mantendrá en posición horizontal y que esta realizará un movimiento circular (coincidiendo el eje de este movimiento con el hilo). Este movimiento se llama precesión.
- hilo figura 9.36
- b) Encuentre la velocidad angular de precesión.
- 36. Un cubo, de lado h y masa m, está colocado sobre una cinta transportadora en la orientación que se muestra en la figura adjunta. El coeficiente de roce estático entre el bloque y la cinta es $\mu_e = 0, 5$ y el coeficiente de roce cinético es $\mu_c = 0, 4$. En t = 0, la cinta comienza a moverse, aumentando linealmente su aceleración. En t = 20 s su aceleración es $\vec{a} = 3 \text{ m/s}^2 \hat{x}$ y en t = 60 alcanza 9 m/s² \hat{x} . Entre t = 0 y t = 60 s, se observa que el bloque se desplaza en la dirección \hat{x} manteniendo su orientación original (es decir, sin rotar con respecto a su centro de masa).

Figura 9.37

- a) Calcule la fuerza de roce que actúa sobre el bloque cuando la aceleración de la cinta transportadora es 3 m/s^2 .
- b) Haga un gráfico de la aceleración en función del tiempo.
- c) Considere un sistema de coordenadas solidario al bloque, con origen en su centro de masa y con el eje x paralelo a la dirección en que se mueve la cinta. ¿Cuál es la coordenada x del punto donde actúa la "fuerza normal efectiva" cuando la aceleración de la cinta transportadora es 6 m/s² \hat{x} ?

9.4. Solución a algunos de los problemas

Solución al problema 8

Definamos el eje \hat{z} apuntando hacia arriba y concentrémonos primeramente en el disco inferior. Sea $\vec{a} = -a\hat{z}$ (con a > 0) la aceleración lineal del disco inferior. Para tal disco, usando la segunda ley de Newton, se encuentra la ecuación de movimiento

$$\vec{F}_{tot} = -mg\hat{z} + T\hat{z} = m\vec{a} \; ,$$

o sea,

$$mg - T = ma \quad . \tag{9.2}$$

Sea $\alpha = \dot{\omega}$ la aceleración angular del disco inferior. El torque ejercido por el peso (respecto al centro de masas del disco) es nulo mientras que el torque ejercido por la cuerda es $\tau = TR$. Se tiene

$$au = TR = \frac{d\ell}{dt} = \frac{d}{dt}(I\omega) = I\dot{\omega} = I\alpha$$

Usando el valor del momento de inercia de un disco $I = mR^2/2$, se encuentra

$$T = \frac{1}{2}mR\alpha . (9.3)$$

Siendo los dos discos iguales y siendo que el torque sobre el disco superior (respecto a su centro de masas) es igual al del disco inferior, se concluye que ambos discos se *desenrollarán* con la misma aceleración y velocidad angular.

La aceleración lineal a y la aceleración angular α (que es la misma para ambos discos) no son magnitudes independientes, sino que están correlacionadas. En efecto, se tiene que

$$2\alpha R = a . (9.4)$$

A partir de las tres ecuaciones (9.2), (9.3) y (9.4), con las tres incógnitas T, a y α , se encuentra a = 4g/5, T = mg/5 y $\alpha = 2g/(5R)$.

Solución al problema 15

Para encontrar las ecuaciones de movimiento de un problema en que la energía se conserva, en muchas ocasiones el método más fácil consiste en escribir una expresión para la energía y derivar ésta respecto al tiempo.

Por ejemplo, para una masa que cae bajo el efecto de la gravedad: la energía total viene dada por

$$E = mgz + \frac{1}{2}m\dot{z}^2 \; .$$

Derivando esta expresión respecto al tiempo se encuentra

$$0=mg\dot{z}+\frac{1}{2}m2\dot{z}\ddot{z}$$

o sea, la ecuación de movimiento para la caída libre $\ddot{z} = -g$.

Usemos esta idea para resolver el presente problema. Si θ es el ángulo de desviación del anillo respecto a la normal y $\dot{\theta}$ es su velocidad angular, la energía total del sistema vendrá dada por

$$E = mgR(1 - \cos\theta) + \frac{1}{2}I\dot{\theta}^2. \qquad (9.5)$$

Aquí m es la masa del aro e I es el momento de inercia respecto al punto de suspención A. El primer término al lado derecho representa el cambio de energía potencial del aro (respecto a su posición de equilibrio) mientras que el segundo es la energía cinética rotacional en torno a A.

Derivando (9.5) respecto al tiempo se obtiene

$$0 = mqR\sin\theta\dot{\theta} + I\dot{\theta}\ddot{\theta} ,$$

o sea,

$$\ddot{\theta} + \frac{mgR}{I}\sin\theta \; .$$

Usando el teorema de Steiner y el resultado del ejemplo 2 de la segunda sección, deducimos que el momento de inercia del aro, en torno a A, es $I = 2mR^2$. Usando esta relación, y la aproximación sin $\theta \simeq \theta$ para ángulos pequeños, se obtiene

$$\ddot{\theta} + \frac{g}{2R}\theta = 0 \; .$$

Esta ecuación de movimiento para el aro corresponde a la de un oscilador armónico y coincide con la de un péndulo de largo L = 2R. El período de oscilación es

$$T = 2\pi \sqrt{\frac{2R}{g}} \; .$$

Para que el aro dé una vuelta completa la energía cinética en la parte inferior debe coincidir con 2mgR, que es la diferencia de energía potencial que el aro debe sobreponer. Si denotamos por ω_0 a la velocidad angular en el mínimo, se tiene

$$\frac{1}{2}I\omega_0^2 = 2mgR \; ,$$

o sea,

$$\omega_0 = \sqrt{\frac{2g}{R}} \; .$$

Solución al problema 18

a) El cambio de energía potencial debe ser igual a la energía cinética final. La masa 2m baja una distancia h mientras que la masa m sube una distancia h. Luego

$$\Delta U = mgh$$
.

Sea v_0 la rapidez final de la masa 2m, justo antes de chocar con el suelo. Entonces la energía cinética, en ese instante, es

$$K = \frac{1}{2}mv_0^2 + \frac{1}{2}(2m)v_0^2 + \frac{1}{2}I\omega_0^2 ,$$

donde $\omega_0 = v_0/R$ es la velocidad angular final de la polea. Usando el valor $I = mR^2/2$ para el momento de inercia se encuentra que

$$K = 2mv_0^2$$
.

Igualando K con ΔU se encuentra

$$v_0^2 = \frac{gh}{2} \,.$$

b) Los diagramas de cuerpo libre de las dos masas nos dan las ecuaciones de movimiento

$$\tau_1 - mg = ma$$

у

$$(2m)g - \tau_2 = (2m)a$$

donde a es la aceleración (hacia arriba) de la masa m. Sea $\ddot{\theta}_0$ la aceleración angular de la polea. El hecho de que la cuerda no resbale sobre la polea nos da la relación

$$\ddot{\theta}_0 R = a$$
.

Finalmente, evaluando el torque total que actúa sobre la polea se encuentra la ecuación de movimiento para la rotación

$$\tau_2 R - \tau_1 R = I \ddot{\theta}_0 \; .$$

Tenemos cuatro ecuaciones para las cuatro incognitas τ_1 , τ_2 , $a \neq \ddot{\theta}_0$. Resolviendo este sistema de ecuaciones se encuentra

$$a = \frac{2}{7}g ,$$

$$\tau_1 = \frac{9}{7}mg$$

$$\tau_2 = \frac{10}{7}mg .$$

c) Mientras las masas están cayendo, como la polea no se desplaza, la fuerza total sobre ella debe ser nula. Por lo tanto, la tensión de la cuerda que sujeta la polea debe ser

$$\tau = \tau_1 + \tau_2 = \frac{19}{7}mg$$
.

d) Consideremos la situación que se tiene cuando la masa 2m ha tocado el suelo y todo está detenido. El torque total sobre la polea es nulo y, por lo tanto, la tensión de la cuerda que pasa por la polea debe ser la misma a ambos lados, siendo su valor mg. Concluímos que la tensión de la cuerda que sujeta la polea, en este caso, es

$$\tau = 2mg$$
 .

Solución al problema 19

Sólo la parte superior de la correa de transmisión transmite fuerza. Denotemos ésta por F. La ecuación de movimiento para la rotación de la polea #2 es

$$FR = I\ddot{\theta}_2$$

Para la polea #1 ésta es

$$TR - F\frac{R}{2} = I\ddot{\theta}_1 \; .$$

El diagrama de cuerpo libre para la mas
a ${\cal M}$ nos da la ecuación

$$Mg - T = Ma$$
,

donde a es la aceleración (hacia abajo) de la masa M. Los ángulos de rotación de ambas poleas no son independientes sino que están relacionados por

$$\theta_1 \; \frac{R}{2} = \theta_2 \; R$$

Derivando dos veces respecto al tiempo y cancelando el radio R se obtiene

$$\ddot{\theta}_2 = 2\ddot{\theta}_2$$
 .

У

Finalmente, también la aceleración a está relacionada con $\ddot{\theta}_1$. En efecto, $a = R\ddot{\theta}_1$. De las ecuaciones anteriores podemos despejar las cinco incógnitas $a, T, F, \ddot{\theta}_1 y \ddot{\theta}_2$. De esta manera se encuentra

$$a = R\ddot{\theta}_1 = \frac{8}{13}g ,$$
$$T = \frac{5}{13}Mg$$

у

$$F = \frac{2}{13}Mg \; .$$

Después de bajar una distancia h la energía potencial disminuye en $\Delta U = Mgh$. Esta energía debe transformarse en energía cinética.

Si la velocidad de la masa M es v, entonces las velocidades angulares de las poleas #1 son $\omega_1 = v/R$ y $\omega_2 = v/(2R)$, respectivamente. La energía cinética es, por lo tanto,

$$K = \frac{1}{2}Mv^{2} + \frac{1}{2}I\omega_{1}^{2} + \frac{1}{2}I\omega_{2}^{2}$$

= $\frac{1}{2}Mv^{2} + \frac{1}{2}\left(\frac{1}{2}MR^{2}\right)(\omega_{1}^{2} + \omega_{2}^{2}) = \frac{13}{16}Mv^{2}$

Igualando esto con la diferencia de energía potencial se encuentra para v la expresión

$$v = \sqrt{\frac{16}{13} gh} \ .$$

Solución al problema 21

El momento de inercia de la carretilla, para rotaciones alrededor de su eje de simetría, es

$$I = 2\left(\frac{1}{2}m(2R)^2\right) + \frac{1}{2}(2m)R^2 = 5mR^2.$$
(9.6)

El diagrama de cuerpo libre para la mas
a ${\cal M}$ nos da la ecuación

$$Mg - T = Ma_M , (9.7)$$

donde T es la tensión de la cuerda y a_M la aceleración (hacia abajo) de la masa M. Aplicando la segunda ley de Newton para el movimiento traslacional horizontal de la carretilla se encuentra la ecuación

$$T - f_r = (4m)a_C$$
, (9.8)

donde f_r es el roce estático entre la carretilla y la mesa y a_C la aceleración de la carretilla. (Este roce es el responsable de hacer que la carretilla ruede sin resbalar). Sea α la aceleración angular de la carretilla. El torque neto sobre la carretilla debe ser igual al momento de inercia multiplicado por α , o sea,

$$f_r(2R) - TR = I\alpha . (9.9)$$

Por supuesto que hay una estrecha relación entre α y a_C , que viene dada por el hecho que la carretilla rueda sin resbalar. Esta relación es

$$2R\alpha = a_C . \tag{9.10}$$

También existe una relación que vincula A_M , $a_C \neq \alpha$: La cuerda es inextensible y por lo tanto la diferencia entre la aceleración de la carretilla y la masa M debe coincidir con la aceleración con que la cuerda se enrolla, es decir,

$$a_C - a_M = \alpha R . \tag{9.11}$$

Las ecuaciones (9.6), (9.7), (9.8), (9.9), (9.10) y (9.11) resuelven el problema. Para la aceleración de la carretilla se obtiene

$$a_c = g \; \frac{2M}{M+21m} \; .$$

Solución al problema 22

Introduzcamos el sistema de coordenadas mostrado en la figura 9.23. (El eje \hat{y} apunta hacia el interior del papel). Las distintas fuerzas que actúan sobre el automóvil durante el frenado son: Las fuerzas $\vec{F_1} = F_1 \hat{z}$ y $\vec{F_2} = F_2 \hat{z}$ que el pavimento ejerce sobre las ruedas delanteras y traseras, respectivamente; el peso $\vec{F_p} = -Mg\hat{z}$ y la fuerza de roce $\vec{f_r} = +\mu_c F_1 \hat{x}$.

Como el automóvil no se "eleva", la fuerza total en la dirección \hat{z} debe ser nula, es decir,

$$0 = (F_1 + F_2 - Mg)\hat{z} \quad . \tag{9.12}$$

Por otra parte, como el automóvil durante el frenado tampoco "gira" (en torno al eje \hat{y}), el torque total (respecto al centro de masas) debe ser nulo. Los torques que ejercen las cuatro fuerzas son:

$$\vec{\tau}_1 = +F_1 d\hat{y}$$
$$\vec{\tau}_2 = -F_2 b\hat{y}$$
$$\vec{\tau}_p = 0$$

у

$$\vec{\tau}_r = -f_r h \hat{y} = -F_1 \mu_c h \hat{y}$$

La suma de estos torques debe ser nulo, condición que nos entrega la relación

$$F_1 d - F_2 b - F_1 \mu_c h = 0. (9.13)$$

De las ecuaciones (9.12) y (9.13) se pueden despejar F_1 y F_2 , obteniéndose

$$F_1 = Mg \ \frac{b}{b+d-\mu_c h}$$

у

$$F_2 = Mg \; \frac{d - \mu_c h}{b + d - \mu_c h}$$

Las ecuaciones anteriores dejan de ser válidas si $\mu_c h > d$, ya que en ese caso, la fuerza F_2 se vuelve negativa, lo que significa que las ruedas traseras dejan de estar en contacto con el suelo. En otras palabras, las ecuaciones anteriores son válidas mientras $d > \mu_c h$, relación que favorece un diseño (del automóvil) en que el centro de masas se ubica en la parte trasera y cerca del suelo.

Conociendo F_1 podemos calcular la fuerza de roce f_r (que es la fuerza responsable de la (des)aceleración del automóvil). Para la la aceleración se obtiene

$$\vec{a} = \frac{f_r}{M} \hat{x} = \frac{F_1 \mu_c}{M} \hat{x} = g \frac{b \mu_c}{b + d - \mu_c h} \hat{x} = a_0 \hat{x} .$$

Finalmente, la distancia D que recorre el automóvil durante su frenado es

$$D = \frac{v_0^2}{2a_0} = v_0^2 \frac{b + d - \mu_c h}{2gb\mu_c}$$

Observe que en este problema la fuerza neta sobre el automóvil no es nula y, por lo tanto, el torque neto respecto a otro origen no es nulo aun cuando lo sea respecto al centro de masas. Confirme la aseveración anterior evaluando el torque respecto al punto de contacto de la rueda delantera con el suelo.

Reiteramos: Para determinar si cambiará el estado rotacional de un cuerpo acelerado, debe evaluarse el torque total **respecto al centro de masas** (ver también capítulo siguiente).

Analicemos ahora el proceso de aceleración. Sea ésta $\vec{a} = -a_0 \hat{x}$. Supongamos que el motor ejerce la fuerza sobre las ruedas traseras y que estas no resbalan. En ese caso la fuerza de roce (estática) $\vec{f_r} = -f_r \hat{x}$ actuará sobre las ruedas traseras y en dirección $-\hat{x}$). Mientras el automóvil está con las cuatro ruedas sobre el suelo, el torque total respecto al centro de masas debe ser nulo, o sea,

$$F_1d - F_2b + f_rh = 0 \; .$$

La fuerza que acelera el automóvil es la fuerza de roce, es decir,

$$\vec{f_r} = M \vec{a}$$
.

En la dirección vertical la suma de todas las fuerzas sobre el automóvil debe ser nula:

$$F_1 + F_2 = Mg \; .$$

Las tres últimas ecuaciones permiten determinar F_1 y F_2 :

$$F_1 = M \frac{gb - a_0h}{b+d} ,$$

$$F_2 = M \frac{gd + a_0h}{b+d} .$$

Observe que F_1 es mayor que cero sólo mientras $a_0 < gb/h$. Para aceleraciones mayores, las ruedas delanteras del automóvil pierden contacto con el suelo. La aceleración maxima (si el roce estático lo permite) viene dada por

$$a_{\max} = g \frac{b}{h}$$
.

Solución al problema 29

El momento angular total debe conservarse. Inicialmente el momento angular es

$$L_i = I_1 \omega_0 = \left(\frac{1}{2}mr^2\right) \,\omega_0 \,.$$

El momento angular una vez que el segundo disco este en reposo respecto al primero es

$$L_f = I\Omega$$
,

donde I es el momento de inercia de la configuración final para rotaciones alrededor del eje fijo. Se tiene

$$I = I_1 + I_2 = \frac{1}{2}MR^2 + \left(\frac{1}{2}mr^2 + mD^2\right) ,$$

donde para I_2 hemos usado el teorema de Steiner.

Igualando los dos momentos angulares se deduce

$$\frac{1}{2}mr^2\,\omega_0 = \left[\frac{1}{2}MR^2 + \left(\frac{1}{2}mr^2 + mD^2\right)\right]\,\Omega\;,$$

o sea,

$$\Omega = \frac{mr^2\omega_0}{mr^2 + MR^2 + 2mD^2} \,.$$

Solución al problema 35

En la figura 9.38 la rueda gira en el plano (x, z), moviéndose la parte superior de la rueda hacia el lector. El momento angular debido al giro de la rueda alrededor de su eje, por lo tanto, apunta en la dirección \hat{y} .

Suponiendo que toda la masa de la rueda está concentrado en la periferia, su momento de inercia para rotaciones alrededor de su eje será

$$I_0 = MR^2$$

El momento angular asociado a este movimiento (para el instante mostrado en la figura 9.38), respecto al origen O, será

$$\vec{L}_0 = I_0 \omega \, \hat{y}$$

donde ω es la velocidad angular con que gira la rueda alrededor de su eje (esto es, $\omega = 2\pi \cdot 10 \text{ s}^{-1}$).

El torque total repecto a O es

$$\vec{\tau} = -MgD\,\hat{x}$$

Pero, por otra parte,

$$\vec{\tau} = \frac{dL}{dt} \; ,$$

luego el cambio de momento angular (para la situación mostrada en la figura 9.38) será

$$\frac{d\hat{L}}{dt} = -MgD\ \hat{x}\ .$$

Observe que \vec{L} y $\frac{d\vec{L}}{dt}$ son perpendiculares (ver también figura 9.39). Como \vec{L} y $d\vec{L}$ están en el plano (x, y), el vector \vec{L} seguirá en ese plano, pero cambiará su orientación. En otras palabras, el eje de la rueda girará en el plano (x, y), manteniéndose horizontal. (visto desde arriba)

Figura 9.39

Para deducir la velocidad angular Ω con la cual el eje de la rueda gira alrededor del eje \hat{z} , recordemos algunos aspectos del movimiento circular uniforme: Sea \vec{r} un vector de largo R que gira en el plano (x, y) con velocidad angular uniforme. En ese caso $\vec{v} = d\vec{r}/dt$ es siempre perpendicular a \vec{r} . Si conocemos el radio de giro y la rapidez con que gira podemos determinar la celocidad angular:

$$\Omega = \frac{v}{R} = \frac{|d\vec{r}/dt|}{|\vec{r}|} \; .$$

Figura 9.38

La situación en el presente problema es análoga. Tenemos un vector \vec{L} que gira en el plano (x, y). Conocemos $L = |\vec{L}|$ y la rapidez $|d\vec{L}/dt|$, luego podemos encontrar la velocidad angular de presesión Ω con la que gira \vec{L} :

$$\Omega = \frac{|d\vec{L}/dt|}{|\vec{L}|} = \frac{MgD}{MR^2\omega} = \frac{gD}{R^2\omega} \; .$$

Tanto más rápido gira la rueda, tanto más lento es la precesión.

Capítulo 10 Fuerzas ficticias

Las fuerzas ficticias son fuerzas que deben incluirse en la descripción de un sistema físico cuando la observación se realiza desde un sistema de referencia no inercial y, a pesar de ello, se insiste en usar las leyes de Newton. O sea, la introducción de fuerzas ficticias hace posible la descripción de un sistema físico usando, por ejemplo, un sistema de referencia uniformemente acelerado o un sistema de referencia fijo a un cuerpo que rota uniformemente. En lo que sigue trataremos sólo estos dos casos.

10.1. Referencial uniformemente acelerado

Sea S : $(\hat{x}, \hat{y}, \hat{z})$ un sistema de referencia inercial y S' : $(\hat{x}', \hat{y}', \hat{z}')$ un sistema de referencia que acelera con aceleración constante \vec{a}_0 respecto a S. El vector que une los orígenes O y O' de ambos sistemas de referencia es

$$\vec{R}(t) = \vec{R}_0 + \vec{V}_0 t + \frac{1}{2} \vec{a}_0 t^2$$
 .

Sean $\vec{r}(t)$ y $\vec{r}'(t)$ los vectores de posición de una masa m en los sistemas de referencia S y S', respectivamente. La relación entre \vec{r} y \vec{r}' es

$$\vec{r} = \vec{R} + \vec{r}' \; .$$

Derivando dos veces respecto al tiempo se obtiene

$$\ddot{\vec{r}} = \ddot{\vec{R}} + \ddot{\vec{r}}' = \vec{a}_0 + \ddot{\vec{r}}',$$

$$m\ddot{\vec{r}}' = m\ddot{\vec{r}} - m\vec{a}_0.$$
(10.1)

o sea,

Sea
$$\vec{F}$$
 la fuerza real neta que actúa sobre la masa m , es decir, la fuerza que genera la aceleración \ddot{r} de la masa m observada desde un sistema de referencia inercial. En otras palabras

$$\vec{F} = m \, \ddot{\vec{r}}$$

Si se insiste en usar la segunda ley de Newton, pero con las magnitudes observadas desde un sistema de referencia acelerado, se tiene

$$\vec{F}' = m \, \ddot{\vec{r}}\,' \, ,$$

pero la fuerza $\vec{F}\,'$ ahora ya no es \vec{F} sino que, de acuerdo con la ecuación (10.1),

$$\vec{F}' = \vec{F} - m\vec{a}_0 \; .$$

El término $-m\vec{a}_0 = \vec{F}_{\text{fict}}$ es la fuerza ficticia que hay que agregar a la fuerza real \vec{F} para poder seguir usando la segunda ley de Newton desde un sistema acelerado con aceleración \vec{a} .

Observe que esta fuerza ficticia actúa como un campo gravitacional constante (adicional al campo gravitacional \vec{g} que pudiese estar presente).

Ejemplo: Consideremos un péndulo sobre un carro que acelera con aceleración constante $\vec{a} = a_0 \hat{x}$ (ver figura 10.1). Encontremos el ángulo α entre la normal y la posición de equilibrio del péndulo.

Resolveremos el problema de dos maneras: i) usando primero el sistema de referencia inercial del observador O y ii) el sistema de referencia acelerado fijo a O'.

Figura 10.1

i) En el sistema de referencia inercial el diagrama de cuerpo libre de la masa m se muestra en la figura 10.2a. La fuerza neta que actúa sobre la masa m es

$$\vec{F} = \vec{\tau} + \vec{F}_q = \tau \cos \alpha \ \hat{z} + \tau \ \sin \alpha \ \hat{x} - mg \ \hat{z}$$
.

En el sistema de referencia inercial la partícula acelera con una aceleración $\vec{a} = a \hat{x}$, luego

$$\vec{F} = \tau \cos \alpha \, \hat{z} + \tau \, \sin \alpha \, \hat{x} - mg \, \hat{z} = ma \hat{x}$$

Igualando las componentes de esta ecuación vectorial se obtiene

$$\tau \cos \alpha = mg$$

у

$$\tau \sin \alpha = ma$$
.

Dividiendo la segunda ecuación por la primera se deduce finalmente que

$$\tan \alpha = \frac{a}{g}.$$

ii) Para un observador sobre el carro la masa m no se mueve. Por eso, para O' la fuerza neta sobre la masa m debe ser nula. El diagrama de cuerpo libre en este caso se muestra en la figura 10.2b. Además de la fuerza ejercida por la tensión del hilo y de la gravedad, debemos agregar la fuerza ficticia $\vec{F}_{\text{fict}} = -ma \hat{x}$. Tenemos

$$\vec{F}' = \vec{\tau} + \vec{F}_g + \vec{F}_{\text{fict}} = 0 ,$$

o sea

$$0 = \tau \, \cos \alpha \, \hat{z} + \tau \, \sin \alpha \, \hat{x} - mg \, \hat{z} - ma \, \hat{x} \, .$$

Nuevamente, igualando las componentes de esta ecuación vectorial se deduce que

$$\tau \cos \alpha = mg$$

у

$$\tau \sin \alpha = ma$$

o sea, las mismas relaciones encontradas en la parte i).

Para el observador O' sobre el carro, también podríamos haber simplemente considerado un campo gravitacional efectivo (ver figura 10.3).

$$\vec{g}_{\text{eff}} = \vec{g} - \vec{a} = -g\,\hat{z} - a\,\hat{x}$$
.

Es evidente que el ángulo que $\vec{g}_{\rm eff}$ hace con la normal cumple con la relación tan $\alpha = a/g$. Si el péndulo realiza pequeñas oscilaciones en torno a su posición de equilibrio la frecuencia angular de las oscilaciones será

Figura 10.3

$$\omega = \sqrt{rac{g_{ ext{eff}}}{\ell}} = \sqrt{rac{\sqrt{g^2 + a^2}}{\ell}} \; ,$$

donde ℓ es el largo del péndulo.

10.2. Referencial en rotación uniforme

Sea S : $(\hat{x}, \hat{y}, \hat{z})$ un sistema de referencia inercial y S' : $(\hat{x}', \hat{y}', \hat{z}')$ un sistema de referencia que coincide con el sistema S en cierto instante (por ejemplo, en t = 0), pero que rota con velocidad angular $\vec{\Omega} = \Omega \hat{z}$ constante en torno al eje \hat{z} (ver figura 10.4).

Sea A un vector con componentes A_x, A_y, A_z en el sistema de referencia S y componentes A'_x, A'_y, A'_z en el sistema de referencia S', o sea,

$$\vec{A}(t) = A_x(t) \,\hat{x} + A_y(t) \,\hat{y} + A_z(t) \,\hat{z}$$
.

у

$$\vec{\mathbf{A}}(t) = A'_x(t)\,\hat{x}' + A'_u(t)\,\hat{y}' + A'_z(t)\,\hat{z}'\,.$$

Figura 10.4

Los vectores unitarios del sistema de referencia inercial $\hat{x}, \hat{y}, \hat{z}$ son fijos, sin embargo, los vectores unitarios del sistema de referencia rotatorio $\hat{x}', \hat{y}', \hat{z}'$ rotan, teniéndose

$$\hat{x}' = \cos(\Omega t) \,\hat{x} + \sin(\Omega t) \,\hat{y}$$
$$\hat{y}' = \sin(\Omega t) \,\hat{x} + \cos(\Omega t) \,\hat{y}$$
$$\hat{z}' = \hat{z} \,.$$

Derivando estos vectores respecto al tiempo se encuentra

$$\dot{\hat{x}}' = -\Omega \,\sin(\Omega t) \,\hat{x} + \Omega \,\cos(\Omega t) \,\hat{y} = \Omega \,\hat{y}'$$
$$\dot{\hat{y}}' = -\Omega \,\cos(\Omega t) \,\hat{x} - \Omega \,\sin(\Omega t) \,\hat{y} = -\Omega \hat{x}'$$
$$\dot{\hat{z}}' = 0$$

Evaluemos la derivada del vector \vec{A} en ambos sistemas de referencia. Por una parte se tiene

$$\vec{A} = \dot{A}_x \, \hat{x} + \dot{A}_y \, \hat{y} + \dot{A}_z \, \hat{z} \; ,$$

y por otra parte

$$\dot{\vec{A}} = \dot{A}'_x \, \hat{x} + A'_x \, \dot{\vec{x}}' + \dot{A}'_y \, \hat{y}' + A'_y \, \dot{\vec{y}} + \dot{A}'_z \, \hat{z}' + A'_z \, \dot{\vec{z}}' = (\dot{A}'_x \, \hat{x} + \dot{A}'_y \, \hat{y}' + \dot{A}'_z \, \hat{z}') + \Omega \, (A'_x \, \hat{y}' - A'_y \, \hat{x}') \, .$$

Usando las relaciones anteriores y el hecho que

$$\vec{\Omega} \times \vec{A} = \Omega \, \hat{z}' \, \times \, \left(A'_x(t) \, \hat{x}' + A'_y(t) \, \hat{y}' + A'_z(t) \, \hat{z}' \right) = \Omega \, \left(A'_x \, \hat{y}' - A'_y \, \hat{x}' \right) \,,$$

podemos escribir

$$\left(\dot{A}_x \, \hat{x} + \dot{A}_y \, \hat{y} + \dot{A}_z \, \hat{z} \right) = \left(\dot{A}'_x \, \hat{x}' + \dot{A}_y \, \hat{y}' + \dot{A}'_z \, \hat{z}' \right) + \vec{\Omega} \times \vec{A} ,$$

$$\left(\frac{d\vec{A}}{dt} \right)_S = \left(\frac{d\vec{A}}{dt} \right)_{S'} + \vec{\Omega} \times \vec{A} .$$

$$(10.2)$$

En la última expresión los ejes unitarios no aparecen explícitamente, por consiguiente, es una expresión que tiene una validez general (es decir, no sólo para rotaciones en torno al eje \hat{z}). La ecuación (10.2) relaciona la derivada temporal de cualquier vector en el sistema de referencia inercial S con la derivada temporal de ese mismo vector, pero observada desde un sistema de referencia S' que rota con velocidad angular $\vec{\Omega}$ respecto a S.

Apliquemos la ecuación (10.2) al vector posición \vec{r} de una partícula de masa m. Se tiene

$$\left(\frac{d\vec{r}}{dt}\right)_{S} = \left(\frac{d\vec{r}}{dt}\right)_{S'} + \vec{\Omega} \times \vec{r} ,$$

o sea,

o sea

$$ec{v}_{
m S} = ec{v}_{
m S'} + ec{\Omega} imes ec{r}$$
 .

Acá $\vec{v}_{\rm S}$ es la velocidad de la partícula *m* observada por el observador inercial *S* y $\vec{v}_{\rm S'}$ es la velocidad de la misma partícula, pero observada desde el sistema de referencia rotatorio. Apliquemos nuevamente la ecuación (10.2), pero ahora al vector $\vec{v}_{\rm S}$. Se tiene

$$\left(\frac{d\vec{v}_{\rm S}}{dt}\right)_{S} = \left(\frac{d\vec{v}_{\rm S}}{dt}\right)_{S'} + \vec{\Omega} \times \vec{v}_{S} . \tag{10.3}$$

Usando la ecuación (10.3), se obtiene

$$\begin{pmatrix} d\vec{v}_{\rm S} \\ dt \end{pmatrix}_{S} = \left(\frac{d(\vec{v}_{\rm S'} + \vec{\Omega} \times \vec{r})}{dt} \right)_{S'} + \vec{\Omega} \times (\vec{v}_{\rm S'} + \vec{\Omega} \times \vec{r})$$

$$= \left(\frac{d\vec{v}_{\rm S'}}{dt} \right)_{S'} + \left(\frac{d(\vec{\Omega} \times \vec{r})}{dt} \right)_{S'} + \vec{\Omega} \times \vec{v}_{\rm S'} + \vec{\Omega} \times (\vec{\Omega} \times \vec{r})$$

$$= \left(\frac{d\vec{v}_{\rm S'}}{dt} \right)_{S'} + 2\vec{\Omega} \times \vec{v}_{\rm S'} + \vec{\Omega} \times \left(\vec{\Omega} \times \vec{r} \right) .$$

El lado izquierdo de la última ecuación es la aceleración de la partícula observada por el observador inercial S, denotémosla por \vec{a}_S . El primer término al lado derecho es la aceleración de la misma partícula pero observada desde el sistema de referencia rotacional S', denotémosla por $\vec{a}_{S'}$. De esta manera obtenemos

$$m\vec{a}_{\rm S'} = m\vec{a}_{\rm S} - 2m\vec{\Omega} \times \vec{v}_{\rm S'} - m\vec{\Omega} \times \left(\vec{\Omega} \times \vec{r}\right) \,. \tag{10.4}$$

Sea \vec{F} la fuerza real neta que actúa sobre la masa m, es decir, la fuerza que genera la aceleración \vec{a}_S de la masa m observada desde un sistema de referencia inercial. En otras palabras

$$\vec{F} = m\vec{a}_S$$

Si se insiste en usar la segunda ley de Newton, pero con las magnitudes observadas desde un sistema de referencia acelerado, se tiene

$$\vec{F}' = m\vec{a}_{S'}$$

pero la fuerza \vec{F}' ahora ya no es \vec{F} sino que, de acuerdo con la ecuación (10.4),

$$\vec{F}' = \vec{F} - 2m\,\vec{\Omega} \times \vec{v}_{S'} - m\,\left(\vec{\Omega} \times \vec{r}\right) \,,$$

Los términos

$$\vec{F}_{\text{fict}} = -2m\,\vec{\Omega} \times \vec{v}_{S'} - m\vec{\Omega} \times \left(\vec{\Omega} \times \vec{r}\right) \tag{10.5}$$

son la fuerza ficticia que hay que agregar a la fuerza real \vec{F} para poder seguir usando la segunda ley de Newton desde un sistema de referencia que rota respecto a un sistema de referencia inercial con velocidad angular $\vec{\Omega}$.

El primer término de la fuerza ficticia dada por la ecuación (10.5) es la así llamada fuerza de Coriolis

$$\vec{F}_{\text{Coriolis}} = -2m\,\vec{\Omega} \times \vec{v}_{S'}$$

mientras el segundo término se llama fuerza centrífuga

$$ec{F}_{
m cent} = -m\,ec{\Omega} imes \left(ec{\Omega} imes ec{r}
ight) \;.$$

Lo interesante de la fuerza de Coriolis es que ella sólo aparece si, en el sistema de referencia rotacional S', la masa se mueve, y en ese caso, es perpendicular a la dirección de movimiento. Cuando m está en reposo (es decir, $\vec{v}_{S'} = 0$) entonces la única fuerza ficticia que hay que agregar a la fuerza que se observa en un sistema inercial, es la fuerza centrífuga.

Cuando realizamos experimentos en la tierra (laboratorio) siempre asumimos que un sistema fijo al laboratorio representa un sistema de referencia inercial. Sin embargo, la rotación de la tierra en torno a su propio eje (con una frecuencia $\Omega = 2\pi/(24 \cdot 3600) = 7,27 \cdot 10^{-5} \text{ s}^{-1}$ hace que el sistema de referencia no sea inercial y que, en la práctica, debamos en ocasiones agregar la fuerza ficticia (10.5) para obtener una descripción correcta del sistema. La fuerza de Coriolis es responsable de muchos efectos (a veces sorprendentes) que se observan a nuestro alrededor. Por ejemplo, es la responsable de la rotación de los ciclones y de las corrientes marinas o del giro del plano de oscilación de un péndulo.

10.3. Problemas

1. Demuestre que la fuerza centrífuga que actúa sobre una masa m (si ésta es observada desde un sistema de referencia rotacional que gira con velocidad angular Ω respecto a un sistema de referencia inercial) viene dada por

$$\vec{F}_{
m centrifuga} = m \,\Omega^2 \,\rho \,\hat{
ho}$$

donde ρ es la distancia entre el eje de rotación y la masa m y $\hat{\rho}$ es un vector unitario que apunta el eje hacia la masa m y es perpendicular al eje de giro (ver figura 10.5). Observe que la fuerza centrífuga tiene la misma magnitud y dirección de la fuerza centrípeta sólo que apunta en el sentido opuesto.

Figura 10.5

2. En un parque de diversiones, los participantes se sostienen contra la pared de un cilindro giratorio mientras el suelo se hunde. El radio del cilindro es R = 3m y el coeficiente de roce entre las personas y la pared del cilindro es $\mu_e = 0, 4$. Determine el número mínimo de revoluciones por minuto que se requiere para que el juego funcione.

Haga el cálculo de dos maneras distintas: i) usando un sistema de referencia inercial y ii) usando un sistema de referencia solidario al cilindro.

- 3. Considere el efecto de la rotación terrestre sobre el movimiento de un proyectil que se lanza desde la superficie terrestre con velocidad \vec{v}_0 . Suponga que el alcance del proyectil es tal que en todo instante se mueve en un campo gravitacional constante, es decir, $\vec{F}_q = m\vec{g}$.
 - a) Demuestre que la velocidad del proyectil viene dada por

$$\vec{v} = \vec{v}_0 + \vec{g} t - 2 \Omega \times \vec{r}$$
.

Todas las magnitudes están medidas respecto a un observador solidario con la tierra. Acá \vec{r} es el vector posición del proyectil medido desde el punto de lanzamiento y $\vec{\Omega}$ es el vector velocidad angular de la tierra.

Al resolver el problema no se debe incluir la fuerza centrífuga ya que ésta está incluida en el valor local de \vec{g} que se está usando. Al rotar la tierra no sólo se modifica la magnitud g sino que también su dirección. La fuerza centrífuga incluso modifica la forma de la tierra; de hecho, la normal a la superficie terrestre usualmente no pasa por el centro de la tierra.

b) Demuestre que, al despreciar términos del orden Ω^2 , para la aceleración se obtiene la ecuación

$$\vec{a} = \vec{g} - 2\,\vec{\Omega} \times \vec{g}\,t - 2\,\vec{\Omega} \times \vec{v}_0$$

(Nuevamente todas las magnitudes medidas desde un sistema de referencia solidario a la tierra). Integre la última ecuación y demuestre que

$$\vec{r}(t) = \vec{v}_0 t + \frac{1}{2}\,\vec{g}\,t^2 - \frac{1}{3}\,\vec{\Omega}\times\vec{g}\,t^3 - \vec{\Omega}\times\vec{v}_0\,t^2\;.$$

4. Desde un edificio de altura h = 100 m situado en el Ecuador terrestre, se suelta una piedra. Debido a la rotación terrestre, la piedra no caerá a lo largo de la normal sino que se desviará levemente de ella. Una vez que llega al suelo, encuentre la magnitud y dirección de la desviación. Desprecie efectos debido al roce viscoso con el aire. Indicación: use el resultado obtenido en el problema anterior.

Respuesta: La desviación es hacia el este y es de magnitud

$$\frac{2}{3} \Omega h \sqrt{\frac{2h}{g}} \simeq 2,19 \text{ cm}$$

Figura 10.6

5. Desde el Ecuador se lanza un proyectil con velocidad $v_0 = 500 \text{ m/s}$ en la dirección este-oeste, con un ángulo de elevación $\alpha = 10^{\circ}$. Encuentre como cambia el tiempo que el proyectil tarda en volver a chocar con la tierra y el alcance del proyectil debido a la rotación terrestre. Para resolver este problema no hay que incluir la fuerza centrífuga ya que el efecto de ella ya se incluyó en el vector la aceleración de gravedad \vec{g} , que supondremos constante en magnitud y dirección sobre toda la trayectoria. Ignore cualquier efecto debido al roce con el aire y desprecie correcciones del orden Ω^2 .

Respuesta: El alcance disminuye en

$$\Delta D = \frac{4v_0^3 \Omega}{g^2} \sin \alpha \left(\frac{1}{3} \sin \alpha - \cos^2 \alpha\right) \simeq 62,9 \text{ m}$$

¿Qué pasa si en lugar de dispararlo de este a oeste se dispara de oeste a este o de sur a norte?

6. Considere un canal de ancho *a* ubicado sobre la tierra a una latitud $\lambda > 0$. Por el canal fluye agua con una velocidad v_0 . Demuestre que el nivel del agua al lado derecho del canal es superior a la del lado izquierdo en una cantidad

$$\Delta h = \frac{2a\Omega v_0 \sin \lambda}{g} \;,$$

donde Ω es la velocidad angular de la tierra.

7. Un balde con agua gira en torno a su eje de simetría con velocidad angular Ω . Debido a la rotación, la superficie del agua no será plana. Encuentre su forma.

Figura 10.7

8. Considere un péndulo cónico de largo ℓ , cuya masa gira en el plano horizontal en un círculo de radio R. Si se ignora la fuerza de Coriolis, la frecuencia angular del péndulo cónico es $\omega_0 = \sqrt{g/\ell}$, siendo esta independiente del sentido del giro. Demuestre que al incluir la fuerza de Coriolis, las frecuencias en ambos sentidos ya no son iguales, teniéndose

$$\omega_1 = \sqrt{\frac{g}{\ell} + (\Omega \sin \lambda)^2} - \Omega \sin \lambda$$

у

$$\omega_2 = -\sqrt{\frac{g}{\ell} + (\Omega \sin \lambda)^2} - \Omega \sin \lambda ,$$

donde λ es la latitud del lugar en que se encuentra el péndulo.

9. (Péndulo de Foucault)

Al superponer (sumar) las dos soluciones de un péndulo cónico correspondientes al mismo radio de giro, pero rotando en sentidos opuestos, se obtiene la solución de un péndulo simple.

- a) Demuestre lo anterior en forma explícita para un péndulo cónico ignorando la fuerza de Coriolis.
- b) Al realizar el mismo cálculo, pero ahora incluyendo el efecto de Coriolis (ver problema anterior), se encuentra que debido a la rotación terrestre, el plano de oscilación del péndulo simple no se mantendrá invariante sino que girará paulatinamente. Demuestre que la velocidad angular con que gira el plano de oscilación del péndulo viene dado por $\omega_F = \Omega \sin \lambda$, donde Ω es la velocidad angular de la tierra en torno a su propio eje y λ es la latitud del lugar en que se encuentra el péndulo.

Foucault fue el primero en demostrar experimentalmente, con un péndulo muy largo, que el plazo de oscilación efectivamente gira a medida que transcurre el tiempo. Observe que en el Ecuador el plano de oscilación no gira, mientras que en los polos da una vuelta completa en 24 horas (después de 6 horas el plano de oscilación habrá girado en 90°).

10. Considere una cuña de masa M y ángulo de elevación α que puede deslizarse sobre un plano horizontal sin roce. Sobre el plano inclinado se encuentra otra masa m, que a su vez también puede deslizarse sobre el plano sin roce. Encuentre la aceleración del plano inclinado M.

Figura 10.8

10.4. Solución a algunos de los problemas

Solución al problema 3

Como la tierra está girando en torno a su propio eje, la fuerza *efectiva* que actúa sobre el proyectil será

$$\vec{F}_{\rm eff} = m\,\vec{g} - 2\,m\,\vec{\Omega}\times\vec{v}\;. \label{eq:eff_eff}$$

(La fuerza centrífuga $\vec{F}_{centrifuga} = m \vec{\Omega} \times (\vec{\Omega} \times \vec{r})$ no debe incluirse ya que su efecto está considerado en el valor local de la aceleración de gravedad \vec{g}). Todas las magnitudes en la ecuación anterior se refieren a variables medidas en un sistema fijo a la Tierra, es decir, respecto a un sistema de referencia que rota con velocidad angular $\vec{\Omega}$ respecto a un sistema de referencia inercial. ($\vec{\Omega}$ es la velocidad angular de la rotación de la Tierra alrededor de su propio eje). Al incluir la fuerza efectiva podemos seguir usando la segunda ley de Newton. Se tiene

$$\vec{F}_{\rm eff} = m \, \frac{d\vec{v}}{dt} = m \, \vec{g} - 2 \, m \, \vec{\Omega} \times \frac{d\vec{r}}{dt}$$

o sea,

$$m d\vec{v} = m \vec{g} dt - 2 m \vec{\Omega} \times d\vec{r}$$
.

Integrando (sumando) desde un instante inicial a uno final se obtiene

$$\int_i^f d\vec{v} = \int_i^f \vec{g} dt - 2\vec{\Omega} \times \int_i^f d\vec{r} \,.$$

Sea $t_i = 0, t_f = t, \vec{v_i} = \vec{v_0}, \vec{v_f} = \vec{v}, \vec{r_i} = 0$ y $\vec{r_f} = \vec{r}$. Entonces, evaluando las integrales de la última ecuación se obtiene

$$\vec{v} - \vec{v}_0 = \vec{g} t - 2 \vec{\Omega} \times \vec{r}$$
 (10.6)

Derivando esta ecuación respecto al tiempo se encuentra la aceleración

$$\vec{a} = \vec{g} - 2\,\vec{\Omega} \times \vec{v}$$

Reemplazemos \vec{v} en esta ecuación por la expresión dada por (10.6), entonces

$$\vec{a} = \vec{g} - 2\vec{\Omega} \times (\vec{v}_0 + \vec{g}t - 2\vec{\Omega} \times \vec{r}) = \vec{g} - 2\vec{\Omega} \times \vec{v}_0 - 2\left(\vec{\Omega} \times \vec{g}\right)t + o(\Omega^2)$$

Integrando estas expresiones respecto al tiempo se encuentra la velocidad y luego la posición en función de t:

$$\int_{i}^{f} \vec{a} \, dt = \int_{i}^{f} \vec{g} \, dt - 2\,\vec{\Omega} \times \vec{v}_{0} \int_{i}^{f} dt - 2\,\vec{\Omega} \times \vec{g} \int_{i}^{f} t \, dt$$
$$\vec{v} - \vec{v}_{0} = \vec{g} \, t - 2\,\vec{\Omega} \times \vec{v}_{0} \, t - \vec{\Omega} \times \vec{g} \, t^{2}$$
$$\int_{i}^{f} \vec{v} \, dt = \int_{i}^{f} \vec{v}_{0} \, dt + \int_{i}^{f} \vec{g} \, t \, dt - 2\,\vec{\Omega} \times \vec{v}_{0} \int_{i}^{f} t \, dt - \vec{\Omega} \times \vec{g} \int_{i}^{f} t^{2} \, dt$$
$$\vec{r}(t) = \vec{v}_{0} \, t + \frac{1}{2}\,\vec{g} \, t^{2} - (\vec{\Omega} \times \vec{v}_{0}) \, t^{2} - \frac{1}{3}\,(\vec{\Omega} \times \vec{g}) \, t^{3} \, . \tag{10.7}$$

Solución al problema 5

Definamos los ejes del sistema referencia solidario con la Tierra tal como se muestra en la figura adjunta. El proyectil se dispara desde P en la dirección este-oeste con un ángulo de elevación α , luego la velocidad inicial del proyectil viene dada por

$$\vec{v}_0 = -v_0 \, \cos \alpha \, \hat{y} + v_0 \, \sin \alpha \, \hat{x} \, .$$

Los vectores correspondientes a la aceleración de gravedad (local) y la velocidad angular de la Tierra vienen dados por

$$\vec{g} = -g \ \hat{g}$$

 $\vec{\Omega} = \Omega \ \hat{z}$.

у

Figura 10.9

Reemplazando estas relaciones en (10.7) se obtiene la posición del proyectil a medida que transcurre el tiempo (medido desde el lugar de lanzamiento):

$$\vec{r}(t) = -v_0 t \, \cos \alpha \, \hat{y} + v_0 t \, \sin \alpha \, \hat{x} - \frac{1}{2} g t^2 \, \hat{x} + \frac{1}{3} g \, t^3 \, \Omega \, \hat{y} - v_0 t^2 \, \Omega \, \cos \alpha \, \hat{x} - v_0 t^2 \, \Omega \, \sin \alpha \, \hat{y} \, .$$

Se
a t^{\ast} el instante en que el proyectil vuelve a caer sobre la Tierra. En es
e instante se tiene que

$$\vec{r}(t^*) = -D\,\hat{y} \; ,$$

donde D es el alcance del proyectil. Evaluando $\vec{r}(t)$ en el instante t^* e igualando el resultado con la expresión anterior, se puede despejar t^* y D obteniéndose

$$t^* = \frac{2 v_0 \sin \alpha}{g + 2 \Omega v_0 \sin \alpha} \simeq \frac{2 v_0}{g} \sin \alpha - \Omega \left(\frac{2 v_0}{g}\right)^2 \sin \alpha \cos \alpha + o(\Omega^2) \,.$$

(Estamos despreciando todas las correcciones del orden Ω^2). Para D se obtiene la expresión

$$D = v_o t^* \, \cos \alpha - \frac{1}{3} \, t^{*3} \, g \, \Omega + v_0 \, t^{*2} \, \Omega \, \sin \alpha \, .$$

Sustituyendo en esta ecuación la expresión para t^* se encuentra (despreciando nuevamente todos los términos de orden $o(\Omega^2)$) que

$$D = \frac{2v_0^2}{g} \sin \alpha \, \cos \alpha + 4 \, \frac{v_0^3 \,\Omega}{g^2} \, \sin \alpha \, \left(\frac{1}{3} \, \sin^2 \alpha - \cos^2 \alpha\right) \, .$$

El primer término del lado derecho de la última ecuación es el alcance del proyectil si se ignora la fuerza de Coriolis; el segundo término es la corrección (a primer orden en Ω), que sufre el alcance debido a la rotación terrestre.

Solución al problema 9

a) La posición en función del tiempo de un péndulo cónico de largo ℓ que recorre un circulo de radio R viene dada por

$$\vec{r}(t) = R \, \cos(\omega t) \, \hat{x} + R \, \sin(\omega t) \, \hat{y} \, ,$$

con $\omega = \sqrt{g/\ell}$. Esta solución corresponde a un péndulo cónico que gira en la dirección contraria al reloj. Una solución que gira en el mismo sentido que el reloj viene dada por

$$\vec{r}_2(t) = R \cos(\omega t) \hat{x} + R \sin(-\omega t) \hat{y}$$
.

Figura 10.10

Al ignorar la rotación de la Tierra (es decir, al despreciar la fuerza de Coriolis) las frecuencias angulares para ambos sentidos es la misma.

Al sumar las dos soluciones se obtiene la proyección sobre el plano x - -y de la solución correspondiente a un péndulo lineal. En efecto:

$$\vec{\rho}(t) = \vec{r}_1(t) + \vec{r}_2(t) = 2R \cos(\omega t) \hat{x}$$
.

El lado derecho corresponde al movimiento de un oscilador a lo largo del eje \hat{x} con amplitud 2R (esto es, la proyección de la posición del péndulo sobre el plano horizontal).

b) Al incluir el efecto de la fuerza de Coriolis, los vectores posición (en el plano x - -y) de los péndulos cónicos, a medida que transcurre el tiempo, vienen dados por

$$\vec{r}_1(t) = R \, \cos(\omega_1 t) \, \hat{x} + R \, \sin(\omega_1 t) \, \hat{y} \, ,$$

у

$$\vec{r}_2(t) = R \, \cos(\omega_2 t) \, \hat{x} + R \, \sin(\omega_2 t) \, \hat{y} \, ,$$

 con

$$\omega_1 = \sqrt{\frac{g}{\ell} + (\Omega \sin \lambda)^2} - \Omega \sin \lambda$$

у

у

$$\omega_2 = -\sqrt{\frac{g}{\ell} + (\Omega \sin \lambda)^2} - \Omega \sin \lambda ,$$

donde λ es la latitud del lugar en que se encuentra el péndulo (ver problema 10.8). Al sumar las dos soluciones y usar las relaciones

$$\cos(\omega_1 t) + \cos(\omega_2 t) = 2 \cos\left(\frac{1}{2}(\omega_1 - \omega_2)\right) \cos\left(\frac{1}{2}(\omega_1 + \omega_2)\right)$$
$$\sin(\omega_1 t) + \sin(\omega_2 t) = 2 \cos\left(\frac{1}{2}(\omega_1 - \omega_2)\right) \sin\left(\frac{1}{2}(\omega_1 + \omega_2)\right)$$

/ 1

se encuentra

$$\vec{\rho}(t) = \vec{r}_1(t) + \vec{r}_2(t) = 2R \, \cos\left(\sqrt{\Omega^2 \, \sin^2 \lambda + \frac{g}{\ell}} \, t\right) \cdot \left[\cos(\Omega t \, \sin \lambda) \, \hat{x} - \sin(\Omega t \sin \lambda) \, \hat{y}\right] \, .$$

La expresión delante del paréntesis cuadrado corresponde a un movimiento oscilatorio de amplitud 2R y con esencialmente la frecuencia $\sqrt{g/\ell}$. El término en paréntesis cuadrado es un vector unitario que indica la dirección de oscilación. Observe, sin embargo, que ese vector unitario rota lentamente en el plano x - y a medida que transcurre el tiempo. O sea, la dirección de oscilación de este oscilador (el plano de oscilación del péndulo) rotará a medida que avanza el tiempo, siendo la velocidad angular de rotación de este movimiento

$$\omega_F = \Omega \, \sin \lambda \, .$$

Figura 10.11

/ 1

 \mathbf{i}

Solución al problema 10

Resolvamos el problema usando un sistema solidario a la cuña. Sea $\vec{a} = -a\hat{x}$ la aceleración de la cuña. Al graficar los diagramas de cuerpo libre en el sistema de referencia acelerado, debemos agregar las fuerzas ficticias. Los diagramas de cuerpo libre de la masa m y de la cuña se muestran en la figura siguiente.

Figura 10.12a Figura 10.12b

En el sistema solidario a la cuña, la aceleración de la masa m es $\vec{a}_m = a_x \hat{x} - a_2 \hat{z}$, donde

$$\frac{a_z}{a_x} = \tan \alpha , \qquad (10.8)$$

y la aceleración de la cuña M es nula. De los diagramas de cuerpo libre se deducen las ecuaciones de movimiento

$$-mg\,\hat{z} + F_N\,\cos\alpha\,\hat{z} + F_N\,\sin\alpha\,\hat{x} + ma\,\hat{x} = m\,\vec{a}_m$$

у

$$-F_N \sin \alpha \, \hat{x} + Ma \, \hat{x} - Mg \, \hat{z} + F_N \, \hat{z} = 0$$

De la segunda ecuación se encuentra que $F_N = Ma/\sin \alpha$, y de la primera se obtienen las componentes a_z y a_x de la aceleración de m:

$$a_z = mg - F_N \cos \alpha$$

 $a_x = ma + F_N \sin \alpha$.

Usando estas relaciones y (10.8), se encuentra

$$\tan \alpha = \frac{mg - F_N \, \cos \alpha}{ma + F_N \, \sin \alpha} \, ,$$

de donde, finalmente,

$$a = \frac{mg}{M \cot g \,\alpha + (m+M) \,\tan \alpha} \,.$$

Capítulo 11

Gravitación

El presente capítulo tratará algunos aspectos de la teoría de gravitación de Newton. Comenzaremos este capítulo con un complemento matemático sobre elipses.

11.1. Elipses

Consideremos dos puntos, $f_1 ext{ y } f_2$ ubicados en un plano. Consideremos adicionalmente un tercer punto P (en el mismo plano), y denotemos por $r ext{ y } r'$ a las distancias de este punto y $f_1 ext{ y } f_2$, respectivamente. Por definición, una elipse es el lugar geométrico de todos los puntos del plano para los cuales r + r' = 2a, en que 2a es una constante (mayor que la separación entre $f_1 ext{ y } f_2$).

Introduzcamos un sistema de coordenadas cartesiano, con el origen en el centro de la figura geométrica y el eje \hat{x} a lo largo de la recta que une los dos *focos* f_1 y f_2 . Es claro que el *semi-eje mayor* de la elipse es *a*. Sea 2c la distancia entre los dos focos, entonces

semi–eje menor = $b = \sqrt{a^2 - c^2}$.

Figura 11.1

11.1.1. Elipse en coordenadas cartesianas

De la figura 11.1 se deduce que

$$\begin{array}{rcl} 2a & = & r+r'=\sqrt{(c+x)^2+y^2}+\sqrt{(c-x)^2+y^2} \\ & = & \sqrt{(c^2+x^2+y^2)+2cx}+\sqrt{(c^2+x^2+y^2)-2cx} \; . \end{array}$$

Elevando al cuadrado se obtiene

$$2(c^{2} + x^{2} + y^{2}) + 2\sqrt{(c^{2} + x^{2} + y^{2}) + 2cx} \cdot \sqrt{(c^{2} + x^{2} + y^{2}) - 2cx} = 4a^{2},$$

o sea,

$$\begin{array}{rcl} 2a^2 - (c^2 + x^2 + y^2) &=& \sqrt{(c^2 + x^2 + y^2) + 2cx} \cdot \sqrt{(c^2 + x^2 + y^2) - 2cx} \\ &=& \sqrt{(c^2 + x^2 + y^2)^2 - 4c^2x^2} \end{array}$$

Elevando nuevamente al cuadrado queda

$$4a^{4} - 4a^{2}(c^{2} + x^{2} + y^{2}) + (c^{2} + x^{2} + y^{2})^{2} = (c^{2} + x^{2} + y^{2})^{2} - 4c^{2}x^{2} ,$$

o sea,

$$-c^2x^2 = a^4 - a^2c^2 - a^2x^2 - a^2y^2$$

Usando la relación $c^2 = a^2 - b^2$ se deduce finalmente

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (11.1)$$

11.1.2. Elipse en coordenadas polares

,

Otra representación útil y común de la elipse es en términos de coordenadas polares (r, ϕ) , tomando como origen a uno de los focos (ver figura 11.2).

1

Se tiene que

$$x = r\cos\phi - c$$
$$y = r\sin\phi$$

у

$$y^2 = r^2 \left(1 - \cos^2 \phi \right)$$
.

Sustituyendo estas expresiones en la ecuación de la elipse en coordenadas cartesianas dada por la ecuación (11.1), se obtiene

Figura 11.2

$$b^{2} (r \cos \phi - c)^{2} + a^{2} r^{2} (1 - \cos^{2} \phi) = a^{2} b^{2} ,$$

$$b^{2} r^{2} \cos^{2} \phi - 2b^{2} r c \cos \phi + b^{2} c^{2} + a^{2} r^{2} - a^{2} r^{2} \cos^{2} \phi = a^{2} b^{2} ,$$

o sea,

$$\begin{aligned} a^2 r^2 &= (a^2 - c^2) b^2 + 2b^2 cr \, \cos \phi + (a^2 - b^2) r^2 \cos^2 \phi \\ &= b^4 + 2b^2 \sqrt{a^2 - b^2} r \cos \phi + (a^2 - b^2) r^2 \cos^2 \phi \\ &= \left[b^2 + \sqrt{a^2 - b^2} r \cos \phi \right]^2 . \end{aligned}$$

Extrayendo la raíz, se deduce que

$$ar = b^2 + \sqrt{a^2 - b^2} r \cos \phi .$$
 (11.2)

Introduzcamos los parámetros

$$r_0 \equiv \frac{b^2}{a} \tag{11.3}$$

у

$$\epsilon \equiv \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}$$
 (excentricidad) . (11.4)

Con estas definiciones la ecuación (11.2) se puede escribir de la forma

$$\frac{1}{r} = \frac{1}{r_0} \left(1 - \epsilon \, \cos \phi \,\right) \quad . \tag{11.5}$$

Resumen: Las dos formas más usuales para representar una elipse son:

i) Coordenadas cartesianas x, y (con el origen al centro):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 , \qquad (11.6)$$

donde los parámetros a y b representan a los semi-ejes mayor y menor, respectivamente.

ii) Coordenadas polares r, ϕ (con el origen en uno de los focos):

$$\frac{1}{r} = \frac{1}{r_0} \left(1 - \epsilon \, \cos \phi \, \right) \ . \tag{11.7}$$

Las ecuaciones (11.3) y (11.4) relacionan los parámetros a, b con r_0, ϵ .

Veamos algunas propiedades adicionales de las elipses.

Coloquemos el origen en uno de los focos y sea r_1 la distancia mínima (*perigeo*) y r_2 la distancia máxima (*apogeo*) entre el origen y la elipse. (¡No confundir el perigeo y apogeo con los semi–ejes menor y mayor de la elipse!) Se tienen las siguientes relaciones:

$$r_1 = a - c$$
$$r_2 = a + c ,$$

у

de donde se deduce que

$$r_1 + r_2 = 2 a$$

у

$$r_1 r_2 = a^2 - c^2 = b^2 \, .$$

En otras palabras, el semieje mayor es el promedio aritmético

$$a = \frac{r_1 + r_2}{2}$$

y el semieje menor el promedio geométrico

$$b = \sqrt{r_1 r_2}$$

del apogeo y perigeo.

La excentricidad, en términos de r_1 y r_2 , es

$$\epsilon = \frac{r_2 - r_1}{r_1 + r_2} \,.$$

Ejercicio: Conociendo el área de un círculo y las ecuaciones en coordenadas cartesianas de un círculo y de una elipse, demuestre que el área A de una elipse viene dada por

 $A = \pi a b ,$

donde $a \ge b$ son sus semiejes.

Mostraremos finalmente que si un rayo (por ejemplo, de luz) emerge de un foco y éste se refleja especularmente en la elipse, entonces tal rayo pasará necesariamente por el otro foco. Para demostrar esta propiedad consideremos dos puntos $P \ y \ P'$ sobre la elipse, infinitesimalmente cercanos. Sean $R_1 \ y \ R'_1$ los rayos que unen los puntos $P \ y \ P'$ con el foco f_1 y $R_2 \ y \ R'_2$ los rayos que unen los puntos $P \ y \ P'$ con el foco f_2 (ver figura 11.3). Como $R_1 + R_2 = R'_1 + R'_2 = 2a$, se deduce que $\overline{PA} = \overline{P'B}$. Los triángulos $PAP' \ y \ P'BP$ son equivalentes, luego los ángulos $\beta \ y \ \delta$ son iguales. Pero $\delta = \alpha$, luego $\beta = \alpha$. Esta última relación implica que los rayos $R_1 \ y \ R'_1$ corresponden a rayos reflejados en forma especular por la elipse.

Figura 11.3

Ejercicio: Considere la función siguiente (en coordenadas polares):

$$\frac{1}{r} = 1 - \epsilon \cos \phi.$$

Grafique $r(\phi)$ para $\epsilon = 0, 0.5, 1.0 \text{ y} 1.5.$

11.2. Las leyes de Kepler

Basándose en precisas mediciones de la posición de los planetas realizadas por Tycho Brahe, Johannes Kepler (1571–1630) pudo establecer las siguientes leyes para describir el movimiento de los planetas alrededor del Sol:

- 1. Los planetas se mueven alrededor del Sol en órbitas elípticas, estando el Sol en uno de los focos.
- 2. Cada planeta "barre" áreas iguales en tiempos iguales.
- 3. El cuadrado del período de un planeta alrededor del Sol es proporcional al cubo del semieje major de su trayectoria.

Estas leyes empíricas se conocen como Leyes de Kepler.

Comentarios:

- a) Por lo que sabemos, la primera ley de Kepler no puede ser completamente correcta. Si dos cuerpos son libres excepto por la fuerza de interacción que existe entre ellos, entonces éstos deben moverse de manera que el centro de masas se mantenga en reposo (o en movimiento uniforme). O sea, el Sol necesariamente también tiene que estar moviéndose. Sin embargo, siendo la masa del Sol muy superior a la de los planetas, el centro de masas Sol-planeta esencialmente coincide con la posición del Sol y en ese caso resulta ser una muy buena aproximación suponer que el Sol está en reposo en uno de los focos de la elipse. (La masa del Sol es de 1,99 · 10³⁰ kg mientras que la de la Tierra es de 5,98 · 10²⁴ kg.)
- b) Tal como se demostró en el ejemplo 1 de la sección 9.2, el hecho de que un planeta "barre" áreas iguales en tiempos iguales es equivalente a decir que el momento angular $\vec{\ell}$ no varía en función del tiempo. Esto a su vez implica que el torque ejercido por el Sol sobre el planeta es nulo, lo que a su vez implica que la fuerza entre los dos cuerpos debe ser a lo largo de la línea que los une. En otras palabras, la segunda ley de Kepler implica que la fuerza entre el Sol y el planeta debe ser radial. La fuerza gravitacional, por lo tanto, es de la forma

$$\vec{F}(\vec{r}) = -f(r)\,\hat{r} \; .$$

c) La tabla adjunta muestra algunos de los parámetros para los planetas pertenecientes al sistema solar.

Planeta	Semieje mayor u.a.	Período [s]	Excentricidad	Inclinación	$\begin{array}{c} \text{Masa} \\ \text{[kg]} \end{array}$
Mercurio	0,387	$7,60 \cdot 10^{6}$	0,205	$7^{\circ} 00'$	$3,28 \cdot 10^{23}$
Venus	0,723	$1,94\cdot 10^7$	0,006	$3^{\circ} 23'$	$4,83 \cdot 10^{24}$
Tierra	1,000	$3,16\cdot 10^7$	0,016		$5,98\cdot10^{24}$
Marte	1,523	$5,94\cdot 10^7$	0,093	$1^{\circ} 51'$	$6,37\cdot 10^{23}$
Júpiter	5,202	$3,74\cdot 10^8$	0,048	$1^{\circ} 18'$	$1,90\cdot 10^{27}$
Saturno	9,554	$9,30\cdot 10^8$	0,055	$2^{\circ} 29'$	$5,67 \cdot 10^{26}$
Urano	19,218	$2,66\cdot 10^9$	0,046	$0^{\circ} 46'$	$8,80\cdot 10^{25}$
Neptuno	30,109	$5,20 \cdot 10^{9}$	0,008	$1^{\circ} 46'$	$1,03 \cdot 10^{26}$
Plutón	$39,\!60$	$7,82\cdot 10^9$	0,246	$17^{\circ} 07'$	$5,4\cdot 10^{24}$

Los astrónomos, para medir distancias, frecuentemente usan la unidad astronómica u.a.. Una u.a. es igual al semieje mayor de la órbita terrestre. 1 u.a.= $1,495 \cdot 10^{11}$ m.

La excentricidad $\epsilon = (r_1 - r_2)/(r_1 + r_2)$ de la mayoría de los planetas es bastante pequeña, siendo sus órbitas, por lo tanto, casi circulares. (Al dibujar una elipse con una excentricidad $\epsilon = 0,05$ es difícil, sólo mirándola, darse cuenta de que difiere de un círculo.)

Si asumimos que, en primera aproximación, las órbitas de los planetas son circulares, entonces, a partir de la tercera ley de Kepler, podemos encontrar una expresión para la magnitud de la fuerza gravitacional. En efecto:

La tercera ley de Kepler dice que

$$T^2 = Kr^3 ,$$

donde K es una constante (la misma para todos los planetas) y r es el radio de la órbita "circular". El radio r de la órbita, la velocidad v y el período T están relacionados por

$$T = \frac{2\pi r}{v} \; .$$

Por otra parte la magnitud de la fuerza gravitacional debe coincidir con la fuerza centrípeta, o sea,

$$f(r) = \frac{mv^2}{r} \; ,$$

donde m es la masa del planeta. Usando estas tres ecuaciones, despejando v y T, se encuentra

$$f(r) = \frac{4\pi^2 m}{K} \frac{1}{r^2}$$

La constante K, de acuerdo a la tercera ley de Kepler, no depende de ninguna propiedad de los planetas, pero si podría depender de alguna propiedad del Sol. Es más o menos evidente, por razones de simetría, que si la fuerza gravitacional depende de la masa m del planeta, entonces debe tener la misma dependencia de la masa del Sol M. Esta última observación sugiere escribir

$$\frac{4\pi^2}{K} = GM \; ,$$

donde G es una nueva constante que ahora es independiente de las masas del Sol y del planeta. De esta manera se deduce que la fuerza gravitacional entre dos masas m y M, separadas por una distancia r, es

$$\vec{F}(\vec{r}) = -G\frac{mM}{r^2} \hat{r} .$$

La última ecuación precisamente es la ley de gravitación universal de Newton siendo G la asi llamada constante gravitacional. Usando una balanza de torsión (ver figura 11.4), Cavendish en el año 1798 midió G en el laboratorio. El dispositivo experimental fue el siguiente: dos masas m se colocan en los extremos de una barra rígida y se cuelgan desde el centro de un alambre (hilo de torsión) que se sujeta firmemente del cielo. El sistema puede girar libremente en el plano horizontal, pero tiene una orientación para la cual está en equilibrio.

Figura 11.4

Si las masas m se sacan del equilibrio, por ejemplo, dándoles una pequeña velocidad de rotación, entonces el sistema comenzará a oscilar teniéndose un *péndulo de torsión*. A partir del período de este movimiento oscilatorio se puede deducir la constante de restitución de torsión (o sea, el torque que ejerce el hilo de torsión cuando este se gira en una magnitud α).

La orientación del péndulo se dedecta con un rayo de luz que es reflejado por un pequeño espejo adosado a la varilla.

El experimento mismo se realiza en dos etapas. Primero se colocan dos masas M en las posiciones A y se registra la orientación de la varilla. Luego se rotan las masa M a las posiciones B y se vuelve a registrar la orientación de la varilla. A partir de la variación de la orientación de la varilla en estas dos mediciones se puede deducir la fuerza entre m y M.

El experimento es bastante difícil ya que la fuerza de atracción de las dos masas es muy pequeña. Por ejemplo, una masa m = 20 kg es atraída por otra de masa M = 150 kg con una fuerza de sólo $2, 3, 5 \cdot 10^{-5} \cdot g\tilde{N}$ (esto es, el peso de una masa de 23 milligramos) cuando la separación de sus centros es de 30 cm.

El valor actualmente aceptado para el valor de G es:

$$G = (6,673 \pm 0,003) \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}.$$

Ejercicio: Conocidos el período y el radio de la órbita terrestre alrededor del Sol y usando el valor de G recién dado, determine la masa del Sol.

11.3. Satélites

En esta sección analizaremos algunos aspectos del movimiento de satélites que orbitan gravitacionalmente entorno a un objeto masivo. Algo es un satélite si su masa m es mucho menor que la masa M del objeto alrededor del cual orbita. En particular, los resultados de la presente sección podrán aplicarse al movimiento de los planetas alrededor del Sol, de las lunas alrededor de los planetas y de los satélites artificales alrededor de la Tierra. Las trayectorias de todos estos objetos corresponden a elipses (y círculos), o sea, a cónicas con excentricidades $0 \le \epsilon < 1$.

En la sección 11.1 se relacionaron los parámetros r_0 y ϵ de una elipse con el semieje mayor a y el semieje menor b y también con el perigeo $r_1 = r_{\min}$ y el apogeo $r_2 = r_{\max}$ de ella. A continuación estudiaremos la dependencia de estos parámetros de las *constantes de movimiento* de la órbita; específicamente del momento angular orbital ℓ y de la energía total E.

La condición $m \ll M$ implica que la masa mayor esencialmente se matendrá en reposo en uno de los focos de la elipse, lugar en que ubicaremos el origen.

La fuerza sobre la partícula m (el satélite) viene dada por

$$\vec{F}(r) = -G \; \frac{mM}{r^2} \, \hat{r} \; .$$

Esta fuerza, que es conservativa, da origen a una energía potencial

$$U(r) = -G \; \frac{mM}{r}$$

Si en cierto instante la posición y velocidad de la partícula m es \vec{r} y \vec{v} , entonces la energía total del sistema será

$$E = K + U = \frac{1}{2}mv^2 - G\frac{mM}{r} \,.$$

Figura 11.1

Sean P_1 y P_2 los puntos correspondientes al perigeo y apogeo, respectivamente (ver figura 11.5). Como la energía total se conserva ésta debe ser igual a E tanto en el apogeo como en el perigeo, o sea,

$$E = \frac{1}{2}mv_1^2 - G\frac{mM}{r_1} = \frac{1}{2}mv_2^2 - G\frac{mM}{r_2} .$$
(11.8)

Como la fuerza que actúa sobre m es central se tiene que también el momento angular (respecto al origen) se conserva. Evaluando el momento angular en el apogeo y perigeo, se encuentra

$$\ell = mr_1 v_1 = mr_2 v_2 . (11.9)$$

De esta ecuación se obtiene

 $v_1 = \frac{\ell}{mr_1}$

у

$$v_2 = \frac{\ell}{mr_2} \; .$$

Sustituyendo esto en (11.8) se encuentra

$$E = \frac{1}{2m} \frac{\ell^2}{r_1^2} - G \frac{mM}{r_1} \tag{11.10}$$

у

$$E = \frac{1}{2m} \frac{\ell^2}{r_2^2} - G \frac{mM}{r_2} \,. \tag{11.11}$$

De estas dos ecuaciones se deduce

$$2mEr_1^2 = \ell^2 - 2Gm^2Mr_1$$

у

$$2mEr_2^2 = \ell^2 - 2Gm^2Mr_2$$
 .

Restándolas se obtiene

$$E(r_2 - r_1)(r_2 + r_1) = -GmM(r_2 - r_1)$$
$$E = -G\frac{mM}{r_1 + r_2} = -G\frac{mM}{2a} ,$$

o sea, el semieje mayor de la órbita viene determinado sólo por la energía E:

$$a = -G\frac{mM}{2E} . (11.12)$$

Encontremos ahora una relación entre b (el semieje menor de la órbita) y el momento angular y energía del satélite. Esta se obtiene restando las ecuaciones (11.11) de (11.10):

$$\begin{split} \frac{\ell^2}{2mr_1^2} &- \frac{\ell^2}{2mr_2^2} - G\frac{mM}{r_1} + G\frac{mM}{r_2} = 0\\ \ell^2 \left(\frac{1}{r_1^2} - \frac{1}{r_2^2}\right) &= 2Gm^2 M \left(\frac{1}{r_1} - \frac{1}{r_2}\right)\\ \ell^2 \left(\frac{r_2^2 - r_1^2}{r_1^2 r_2^2}\right) &= 2Gm^2 M \frac{r_1 - r_2}{r_1 r_2}\\ \ell^2 \left(\frac{r_2 + r_1}{r_1 r_2}\right) &= 2Gm^2 M \frac{r_1 - r_2}{r_1 r_2}\\ \ell^2 \left(\frac{r_2 + r_1}{r_1 r_2}\right) &= 2Gm^2 M\\ \ell^2 \left(\frac{r_2 - r_1^2}{r_2^2}\right) &= 2Gm^2 M \\ \ell^2 \left(\frac{r_2 - r_1^2}{r_2^2}\right) &= 2Gm^2 M \\ \ell^2 \left(\frac{r_2 - r_1^2}{r_1 r_2}\right) &= 2Gm^2 M \\ \ell^2 \left(\frac{r_2 - r_1^2}{r_1 r_2}\right) &= 2Gm^2 M \\ \ell^2 \left(\frac{r_1 - r_2}{r_1 r_2}\right) &= 2Gm^2 M \\$$

o sea,

$$b^2 = \frac{a\ell^2}{Gm^2M} = -\frac{\ell^2}{2Em} .$$
 (11.13)

La importancia de las ecuaciones (11.12) y (11.13) radica en que son éstas las que relacionan las constantes de movimiento de la órbita con su forma geométrica.

Otra relación importante se obtiene usando la segunda Ley de Kepler: como el momento angular se conserva se tiene que la partícula m "barre" áreas iguales en tiempos iguales. La cantidad de área que el satélite "barre" en un intervalo de tiempo dt lo podemos evaluar cuando éste se encuentra en el apogeo:

$$dA = \frac{1}{2}r_2v_2dt = \frac{\ell}{2m}\,dt\,.$$

De esta relación se deduce que el área total, $A = \pi ab$, la partícula m lo barre en un tiempo T dado por

$$\pi ab = \frac{\ell}{2m} T \; ,$$

es decir,

$$T^2 = \frac{4m^2\pi^2 a^2 b^2}{\ell^2} \; .$$

Usando (11.13) se obtiene, finalmente,

$$T^2 = \frac{4\pi^2}{GM} a^3 , \qquad (11.14)$$

resultado que no es otro que la tercera ley de Kepler. Pero observe que ahora conocemos la constante de proporcionalidad entre T^2 y a^3 .

Deseamos recalcar que las ecuaciones (11.13) y (11.14) son sólo válidas en el límite $m \ll M$. Cuando las dos masas son del mismo orden las ecuaciones deben corregirse).

Ilustremos el uso de las ecuaciones anteriores resolviendo un problema:

Problema:

Si la Tierra conservara su energía total, pero perdiera la mitad de su cantidad de momento angular respecto al Sol (por ejemplo, cambiándole bruscamente la dirección de su velocidad),

- a) ¿Qué tanto se acercaría al Sol?
- b) ¿Cuál sería la distancia de alejamiento máxima (apogeo) de la Tierra en su nueva órbita?
- c) ¿Cuál sería el largo del año en ese caso?
- d) ¿Cuál tendría que ser el ángulo en que se varía bruscamente la dirección de la Tierra?

Suponga que inicialmente la órbita es circular.

Solución:

Sea R el radio de la órbita circular en torno al Sol (estamos suponiendo que el centro de masas del sistema coincide con la posición del Sol). La órbita circular es un caso particular de elipse para la cual a = b = R. Sean $a' \ge b'$ los semiejes mayor y menor de la elipse final (después de haberle cambiado bruscamente su dirección).

Como la energía de la Tierra no cambia, se tiene que a' = a = R. De la ecuación (11.13) se deduce que el semieje menor disminuirá a la mitad, o sea, b' = b/2 = R/2. Para el perigeo y apogeo se encuentra

$$r_1 = a' - \sqrt{a'^2 - b'^2} = R - \sqrt{R^2 - R^2/4} = R \frac{2 - \sqrt{3}}{2}$$

у

$$r_2 = a' + \sqrt{a'^2 - b'^2} = R \frac{2 + \sqrt{3}}{2}.$$

Como el período sólo depende de a (tercera ley de Kepler) y a no cambia, se encuentra que el año de la Tierra en su nueva órbita seguiría siendo de 365 días.

La magnitud del momento angular viene dada por la magnitud del momento lineal por el brazo. Como el momento lineal no cambia, para disminuir el momento angular a la mitad debemos disminuir el brazo a la mitad. De la figura 11.6 se desprende inmediatamente que el ángulo debe ser $\alpha = 60^{\circ}$.

Figura 11.6

11.4. Potencial efectivo

Se
a \vec{r} el vector posición de m.La fuerza que actúa sobr
emes

$$\vec{F}(r) = -G \, \frac{mM}{r^2} \, \hat{r} \,,$$
 (11.15)

y la energía potencial asociada a esta fuerza es

$$U(r) = -G\frac{mM}{r} . (11.16)$$
A continuación mostraremos que cuando la energía potencial es central, es decir, sólo depende de la magnitud del vector \vec{r} y no de su dirección, entonces el problema de determinar la trayectoria del satélite se puede reducir a un problema unidimensional.

Es evidente que si la energía potencial de una partícula es central, entonces el campo de fuerzas generador del potencial, es radial. Por otra parte, una fuerza radial no ejerce torque respecto al origen. Si el torque respecto al origen es nulo, el momento angular ℓ de la partícula no puede alterarse, luego el momento angular (para una partícula moviéndose en un potencial central) es una constante de movimiento (igual que, por ejemplo, la energía total). Que el momento angular sea una constante de movimiento significa que ni la magnitud ni la dirección del momento angular cambian a medida que transcurre el tiempo. También sabemos que la velocidad de la partícula es siempre perpendicular al momento angular. Como la dirección del momento angular no cambia se concluye que el movimiento de la partícula necesariamente debe transcurrir en un plano.

Debido a la importancia de este resultado lo volvemos a remarcar:

En un potencial central la fuerza siempre es solamente radial. Un potencial central no ejerce un torque sobre la partícula respecto al origen, lo que a su vez implica que el momento angular de la partícula respecto a tal origen nunca varía (es una constante de movimiento). Una consecuencia de lo anterior es que el movimiento de una partícula en un potencial radial siempre trancurre en un plano.

El papel que juega el momento angular como constante de movimiento es similar al papel de constante de movimiento que juega la energía total; ambos son magnitudes que, de alguna manera, están determinadas por las condiciones iniciales del problema. Supongamos, por consiguiente, que conocemos la energía total E, la magnitud del momento angular ℓ del sistema y el plano en el que transcurre el movimiento.

Descompongamos la velocidad $\vec{v}(\vec{r})$ de la partícula, cuando ella se encuentra en el lugar \vec{r} , en una componente radial y una componente perpendicular a \hat{r} (ver figura 11.7):

$$\vec{v}(\vec{r}) = v_r \,\hat{r} + v_\phi \,\hat{\phi}$$
 . (11.17)

Acá \hat{r} y $\hat{\phi}$ son vectores unitarios; el primero en la dirección radial, el segundo perpendicular a \hat{r} , pero en el plano de la trayectoria.

Figura 11.7

El módulo del momento angular de la partícula es

$$\ell = r \, m \, v_\phi \ ,$$

o sea, una vez conocido ℓ la velocidad v_ϕ queda determinada por la distancia r de la partícula al centro:

$$v_{\phi}(r) = \frac{\ell}{mr} \quad . \tag{11.18}$$

De lo anterior concluimos que el problema queda esencialmente resuelto si logramos establecer cómo varía la distancia r en función del tiempo. Una vez conocido r(t), no sólo se conoce la velocidad radial $v_r = \dot{r}$, sino que también, usando la ecuación (11.18), la velocidad v_{ϕ} . A su vez, conocida la velocidad en función del tiempo podemos, integrando, obtener la posición $\vec{r}(t)$ de la partícula en todo instante.

De la discusión anterior se desprende que debemos centrar la atención en resolver el movimiento radial de la partícula de masa m.

Sabemos que la energía total es la suma de la energía cinética y la energía potencial:

$$E = K + U \quad . \tag{11.19}$$

Por otra parte, la energía cinética viene dada por

$$K = \frac{1}{2}m v^2 = \frac{1}{2}m \left(v_r^2 + v_{\phi}^2\right) \quad , \tag{11.20}$$

que, usando $\dot{r} = v_r$ y la ecuación (11.18), queda de la forma

$$K = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\dot{r}^2 + \frac{\ell^2}{m^2r^2}\right) \quad . \tag{11.21}$$

Sustituyendo este resultado en (11.19) se obtiene

$$E = \frac{1}{2}m\,\dot{r}^2 + \left(\frac{\ell^2}{2mr^2} + U(r)\right) \quad . \tag{11.22}$$

Esta es una ecuación que sólo depende del radio r, de la velocidad radial \dot{r} y constantes de movimiento. Esta ecuación, por lo tanto, se puede reinterpretar como la correspondiente al problema de una partícula de masa m y energía total E, que se mueve en una dimensión (dada por la coordenada r) en un potencial dado por

$$U_{\rm eff}(r) = U(r) + \frac{\ell^2}{2mr^2}$$
 (11.23)

De esta manera hemos reducido el problema original a un problema unidimensional: el de una partícula de masa m afectada por una fuerza

$$F_{\text{eff}}(r) = -\frac{dU_{\text{eff}}(r)}{dr} = -G\frac{mM}{r^2} + \frac{\ell^2}{mr^3} \quad . \tag{11.24}$$

 $U_{\text{eff}}(r)$ se llama el *potencial efectivo*, mientras que $\ell^2/(2mr^2)$ es el así llamado *potencial centrífugo*. Cuando el momento angular es cero, el potencial efectivo coincide con el potencial original.

La ecuación (11.22) podemos escribirla como

$$E = \frac{1}{2}m\dot{r}^2 + U_{\text{eff}}(r) \; . \label{eq:eff}$$

Derivándola respecto al tiempo se obtiene

$$0 = m \dot{r} \ddot{r} + \frac{dU_{\text{eff}}}{dr} \dot{r} \quad , \tag{11.25}$$

de donde, dividiendo por \dot{r} y usando (11.24), encontramos una ecuación de movimiento para r(t):

$$m\ddot{r} = -G\frac{mM}{r^2} + \frac{\ell^2}{mr^3} . (11.26)$$

Es esta la ecuación que resolveremos en la próxima sección para encontrar las trayectorias de los satélites.

De acuerdo a lo discutido más arriba, para establecer cómo se comporta el vector \vec{r} , debemos resolver el problema de una partícula de masa m moviéndose en el potencial dado por la ecuación (11.23):

$$U_{\rm eff}(r) = -\frac{GMm}{r} + \frac{\ell^2}{2mr^2} \quad . \tag{11.27}$$

La energía total E = K + U y el momento angular ℓ son constantes de movimiento, es decir, para un problema físico en particular, tienen valores fijos bien determinados.

a) Caso $\ell = 0$.

Consideremos brevemente el caso de momento angular $\ell = 0$. Este valor para el momento angular implica que la partícula nunca tiene una velocidad tangencial, o sea, la partícula siempre se mueve a lo largo de la recta que une M con m.

La figura 11.8 muestra el potencial $U_{\text{eff}}(r)$ que, en este caso, coincide con U(r). Si la energía de la partícula es E < 0, entonces la máxima distancia a la que se puede alejar es r_0 .

Figura 11.8 : Potencial efectivo para $\ell = 0$.

Si la partícula en un instante está en r_0 , entonces su energía total E coincide con la energía potencial $U(r_0)$ y la energía cinética, por lo tanto, es nula — la partícula se encuentra en reposo. Sin embargo, sobre la partícula actúa una fuerza ya que la pendiente de la energía potencial en r_0 no es nula. De hecho, la pendiente es positiva, luego sobre m actúa una fuerza negativa que la hace acelerar hacia el origen. A medida que transcurre el tiempo la distancia entre m y M disminuirá progresivamente. La energía cinética de m (y por consiguiente el módulo de la velocidad radial), como también la fuerza atractiva irán aumentando. Finalmente, después de transcurrido un tiempo finito, la masa m llegará al origen, teniendo una energía cinética infinita. (No debemos preocuparnos demasiado por este infinito que apareció. Obviamente ningún potencial físico es de la forma -GmM/r hasta r = 0. Todos los objetos físicos tienen un tamaño, y a más tardar cuando la distancia entre los objetos es menor que la suma de sus "radios", la interacción cambia de carácter.)

b) Caso $\ell \neq 0$.

La figura 11.9 muestra el potencial U(r), el potencial centrífugo $\ell^2/(2mr^2)$ y el potencial efectivo $U_{\text{eff}}(r)$ para dos valores del momento angular $(\ell_1 > \ell_2)$. Es este último, el potencial efectivo, él que es útil para analizar el comportamiento de la variable $r = |\vec{r}|$ en función del tiempo.

Figura 11.9: Potencial centrífugo y efectivo para dos valores del momento angular distintos (no nulos).

Consideremos nuevamente una partícula con energía E < 0 (ver figura 11.10). La partícula, en este caso, está restringida a moverse entre r_1 y r_2 . (Para el caso del movimiento de la tierra alrededor del sol el vector \vec{r} recorre una trayectoria elíptica y las magnitudes r_1 y r_2 corresponden a la distancia mínima y máxima de esa elipse). La energía cinética de la partícula es K = E - U(r), siendo $K_r = E - U_{\text{eff}}(r)$ la energía cinética radial y $K_t = U_{\text{eff}}(r) - U(r)$ la energía cinética tangencial. Cuando la partícula se encuentra en el perigeo r_1 o en el apogeo r_2 , ella no tiene energía cinética radial, pero sí tiene una energía cinética tangencial. Note que la energía cinética tangencial es mayor en el perigeo que en el apogeo.

Figura 11.10: Potencial efectivo para $\ell \neq 0$.

Si la energía es positiva (E > 0), entonces la partícula no está ligada; la partícula se acerca hasta una distancia mínima y luego se aleja indefinidamente, para no volver. (Estas trayectorias corresponden a las soluciones hiperbólicas del problema; los cometas que provienen de fuera del sistema solar son un ejemplo de tales trayectorias.) Cuando la energía total es exactamente cero, la trayectoria tampoco es acotada y la trayectoria, como veremos en la siguiente sección, corresponde a una parábola.

Cuando la energía total es igual al mínimo del potencial efectivo, entonces la partícula no tiene energía cinética radial, pero sí una energía cinética tangencial; tal trayectoria corresponde a la solución circular del problema gravitatorio.

11.5. Trayectorias de los satélites

En esta sección analizaremos las posibles trayectorias de un satélite de masa m cuando es atraído gravitacionalmente por un cuerpo masivo de masa M de acuerdo a la ley de gravitación universal.

Del analisis hecho en la sección anterior (ver ecuación 11.26) se desprende que debemos estudiar la ecuación de movimiento

$$m\ddot{r} = -G\frac{mM}{r^2} + \frac{\ell^2}{mr^3} . (11.28)$$

El momento angular ℓ es una constante de movimiento y viene determinada por las condiciones iniciales del problema, es decir, para un problema en particular no cambia su valor a medida que transcurre el tiempo.

Sabemos que al menos algunas de las soluciones de esta ecuación deben ser elipses. En coordenadas polares la ecuación de una elipse es

$$\frac{1}{r} = \frac{1}{r_0} \left(1 - \epsilon \, \cos \phi \, \right) \; .$$

Esto sugiere que, en lugar de analizar una ecuación para r en función de t, sería mejor buscar una ecuación para $w = w(\phi) \equiv 1/r$ en función de ϕ , pues tal ecuación probablemente sea simple.

Realicemos esos cambios de variable. Tenemos

$$\dot{r} = \frac{d}{dt} r = \frac{d}{dt} \frac{1}{w} = -\frac{1}{w^2} \frac{dw(\phi)}{dt} = -\frac{1}{w^2} \frac{dw}{d\phi} \frac{d\phi}{dt}$$

Pero

$$\frac{d\phi}{dt} = \dot{\phi} = \frac{\ell}{mr^2} = \frac{\ell w^2}{m} \; ,$$

luego

$$\dot{r} = -\frac{\ell}{m} \, \frac{dw}{d\phi}$$

Derivando nuevamente respecto al tiempo se obtiene

$$\ddot{r} = -\frac{\ell}{m} \left(\frac{d}{dt} \frac{dw}{d\phi} \right) = -\frac{\ell}{m} \left(\frac{d}{d\phi} \frac{dw}{d\phi} \right) \frac{d\phi}{dt} = -\frac{\ell}{m} \frac{d^2w}{d\phi^2} \frac{d\phi}{dt} = -\frac{\ell^2}{m^2} w^2 \frac{d^2w}{d\phi^2} \,.$$

Sustituyendo esta expresión en (11.28) y usando que w = 1/r, se obtiene

$$-rac{\ell^2}{m}w^2rac{d^2w}{d\phi^2} = -GmMw^2 + rac{\ell^2}{m}w^3$$
 ,

o sea,

$$\frac{d^2w}{d\phi^2} + w = \frac{1}{r_0} \ . \tag{11.29}$$

En la ecuación anterior se introdujo r_0 definido por

$$r_0 \equiv \frac{\ell^2}{GMm^2}$$

Tal como sospechábamos, la ecuación diferencial para w en función de ϕ , efectivamente es muy simple. Si el lado derecho fuese nulo, la solución sería

$$w(\phi) = A\cos(\phi) \; ,$$

donde A es una constante. (Elegir la función seno en lugar coseno sólo redefine el lugar desde el cual estamos midiendo los ángulos.) Es claro que al agregarle la constante $1/r_0$

a la última expresión, se encuentra una solución de (11.29). Por último, si en lugar de A introducimos ϵ dado por

$$\epsilon = -A r_0 ,$$

entonces la expresión para $r(\phi) = 1/w(\phi)$ que da de la forma

$$\frac{1}{r(\phi)} = \frac{1}{r_0} \left(1 - \epsilon \, \cos(\phi) \, \right) \,. \tag{11.30}$$

Hemos encontrado una expresión para la distancia r en función del ángulo polar. Como es usual para ecuaciones diferenciales de segundo grado, la solución general tiene dos constantes (en este caso $r_0 y \epsilon$) que deben determirse a partir de las condiciones iniciales. La ecuación (11.30), de acuerdo al valor de épsilon, corresponde a las distintas secciones

La ecuación (11.30), de acuerdo al valor de épsilon, corresponde a las distintas seccioncónicas:

 $\begin{array}{ll} \epsilon = 0 & \mbox{corresponde a un círculo} \\ 0 < \epsilon < 1 & \mbox{corresponde a una elipse} \\ \epsilon = 1 & \mbox{corresponde a una parábola} \\ 1 < \epsilon & \mbox{corresponde a una hipérbola} \end{array}$

11.6. El campo y potencial gravitacional

La ley de gravitación universal de Newton nos da la fuerza de atracción debido a la gravedad que actúa entre dos masas, en efecto,

$$\vec{F}(\vec{r}\,) = -G\frac{mM}{r^2}\,\hat{r}$$

es la fuerza que actúa sobre la masa m debido a la masa M donde r es la separación entre las masas y \hat{r} es un vector unitario que apunta de M a m.

Es conveniente introducir el concepto de campo gravitacional para describir el efecto que una masa M introduce en su entorno. Definimos el *campo gravitacional de la masa* M por

$$\vec{g}(\vec{r}) \equiv -G \frac{M}{r^2} \hat{r}$$
.

Si en el lugar \vec{r} de este campo gravitacional generado por la masa M colocamos una masa m, entonces sobre m actuará una fuerza

$$\vec{F} = m\vec{g}(\vec{r})$$
 .

Un campo es un ente que está definido en todos los puntos del espacio que nos interesa. Como \vec{g} es un vector, el campo gravitacional se dice que es un *campo vectorial*.

No sólo existen campos vectoriales, también existen campos escalares, tensoriales, etc.. Un ejemplo de un campo escalar es la temperatura. Supongamos que en todos los puntos de una pieza puedo medir la temperatura T, entonces $T(\vec{r})$ define un campo escalar (el campo

de temperatura) de la pieza. Que un campo sea vectorial significa que en cada punto no sólo tiene una magnitud sino que también una dirección.

El campo gravitacional satisface el principio de superposición: si distintas masas m_1, m_2, \ldots, m_N ubicados en los lugares $\vec{r_1}, \vec{r_2}, \ldots, \vec{r_N}$ generan campos gravitacionales $\vec{g_1}, \vec{g_2}, \ldots, \vec{g_N}$, entonces el campo gravitacional en el punto \vec{r} será

$$\vec{g}(\vec{r}) = \sum_{j} \vec{g_j}(\vec{r} - \vec{r_j}) = -G \sum_{j} \frac{m_j}{|\vec{r} - \vec{r_j}|^3} \left(\vec{r} - \vec{r_j}\right).$$

Cuando se tiene un campo de fuerzas conservativo, resulta muy conveniente introducir el concepto de energía potencial. El campo gravitacional es conservativo y en un capítulo anterior demostramos que la energía potencial de dos masas M y m, separadas por una distancia r, viene dado por

$$U(r) = -G\frac{mM}{r} \; .$$

La constante aditiva arbitraria se ha elegido de manera que la energía potencial sea nula cuando las dos masas están separadas por una distancia infinita $(r \longrightarrow \infty)$. La relación anterior sugiere definir otro campo, un campo escalar, por

$$\phi(r) = -G\frac{M}{r} \; .$$

 $\phi(\vec{r})$ se llama el *potencial gravitatorio* de la masa M. Si se coloca una masa m en el potencial gravitatorio ϕ de una masa M, entonces la energía potencial del sistema es

$$U(r) = m\phi(r) \; ,$$

donde r es la separación entre las masas m y M.

El potencial gravitacional también satisface el principio de superposición: si distintas masas m_1, m_2, \ldots, m_N ubicados en los lugares $\vec{r_1}, \vec{r_2}, \ldots, \vec{r_N}$ generan potenciales gravitacionales $\phi_1, \phi_2, \ldots, \phi_N$, entonces el potencial gravitacional total en el punto \vec{r} será

$$\phi(\vec{r}) = \sum_{j} \phi_{j}(\vec{r} - \vec{r}_{j}) = -G \sum_{j} \frac{m_{j}}{|\vec{r} - \vec{r}_{j}|} \,.$$

Ilustremos los conceptos anteriores con dos problemas.

Problema 1:

Considere dos masas, de valor $m \ge 2m$, que se encuentran separados por una distancia 2a (ver figura adjunta).

a) Calcule el valor de la energía potencial gravitacional de una masa m' ubicada en el punto medio entre las dos.

b) ¿Cuál es la fuerza gravitacional ejercida sobre m'?

c) ¿Cuál es la velocidad de escape v_e ? ¿Dependerá ésta de la dirección ?

Solución

La energía potencial de una masa m' ubicada en el punto central es

$$U = m'\phi = -G\frac{mm'}{a} - G\frac{2mm'}{a} = -G\frac{3mm'}{a}$$

La fuerza que actúa sobre m' es

$$\vec{F} = m'\vec{g} = m'\left[-G\frac{m}{a^2}\hat{x} + G\frac{2m}{a^2}\hat{x}\right] = -G\frac{mm'}{a^2}\hat{x}$$

La velocidad de escape es la mínima velocidad que debe darse a la partícula para que se aleje llegando hasta infinito (se escape del sistema). Para que la masa m' escape su energía debe ser no negativa. La mínima energía que debe tener es por lo tanto E = 0, o sea, la energía cinética debe ser de igual magnitud que la energía potencial pero de signo contrario:

$$K = \frac{1}{2}m'v_e^2 = G\frac{3mm'}{a}$$
.

Finalmente, para la velocidad de escape, que no depende de la dirección, se encuentra

$$v_e = \sqrt{\frac{6Gm}{a}} \; .$$

-a —≫— a —>

Figura 11.11

Problema 2:

Considere dos partículas, de masas m y M, que inicialmente están en reposo y separadas por una distancia muy grande (infinita). Demuestre que en cualquier instante su velocidad relativa de acercamiento atribuible a la atracción gravitacional es

$$v = \sqrt{\frac{2G(m+M)}{D}} \quad ,$$

donde D es la distancia que las separa.

Solución

Situémonos en el sistema del centro de masas. Si en cierto instante las velocidades de las dos masas (observadas desde el centro de masas) son \vec{v}_m y \vec{v}_M , estas cumplen con

$$m\vec{v}_m = -M\vec{v}_M$$
.

Para la energía cinética de ambas partículas se obtiene

$$K = \frac{1}{2}mv_m^2 + \frac{1}{2}Mv_M^2 = \frac{1}{2}mv_m^2\left(1 + \frac{m}{M}\right)$$

Inicialmente tanto la energía potencial (la separación es grande) como la cinética son nulas. Como la energía total se conserva, esta deberá ser nula en todo instante. Cuando las partículas están separadas por una distancia D la energía potencial es

$$U = -G\frac{mM}{D} ,$$

y, por lo tanto, la energía cinética debe ser de la misma magnitud pero de signo contrario:

$$K = \frac{1}{2}mv_m^2 \left(1 + \frac{m}{M}\right) = G\frac{mM}{D} \; .$$

Despejando v_m se obtiene

$$v_m^2 = \frac{2GM^2}{D(m+M)}$$

La velocidad relativa es igual a $v = v_m + v_M$, luego

$$v = \sqrt{\frac{2GM^2}{D(m+M)}} + \frac{m}{M}\sqrt{\frac{2GM^2}{D(m+M)}} = \sqrt{\frac{2G(m+M)}{D}}$$

11.7. El caso eléctrico: la ley de Coulomb

Resulta conveniente, en este punto, mostrar brevemente la gran analogía existente entre la fuerza de gravedad entre dos masas y la fuerza eléctrica entre dos cargas q_1 y q_2 .

у

Caso gravitatorio

La fuerza gravitatoria sobre la masa # 2, debido a la masa # 1 viene dada por la *ley universal de gravitación de Newton*:

$$\vec{F} = -G\frac{m_1m_2}{r^2}\hat{r}$$

donde \hat{r} es un vector unitario que apunta de la partícula # 1 a la # 2.

El campo y potencial gravitacional asociado a una mas
a ${\cal M}$ es

$$\vec{g}(\vec{r}\,) = -G\frac{M}{r^2}\hat{r}$$

у

$$\phi(\vec{r}) = -Grac{M}{r}$$
 .

La relación entre \vec{g} y ϕ es:

$$\phi(\vec{r}) = \phi(\vec{r}_0) - \int_{r_0}^r \vec{g}(\vec{r}) \cdot d\vec{r} \; .$$

Al colocar una masa m en el campo gravitacional de una masa M, entonces la fuerza sobre m y su energía potencial vienen dadas por

$$\vec{F}(\vec{r}\,)=m\vec{g}(\vec{r}\,)$$

у

 $U(\vec{r}) = m\phi(\vec{r}) \; .$

La fuerza electrostática sobre la carga # 2, debido a la carga # 1 viene dada por la *ley de Coulomb*:

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \, \frac{q_1 q_2}{r^2} \hat{r}$$

donde \hat{r} es un vector unitario que apunta de la partícula # 1 a la # 2.

El campo y potencial electrostático asociado a una carga Q es

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$$

$$\phi(\vec{r}\,) = \frac{1}{4\pi\epsilon_0}\;\frac{Q}{r}$$

La relación entre \vec{E} y ϕ es:

$$\phi(\vec{r}\,) = \phi(\vec{r}_0) - \int_{r_0}^r \vec{E}(\vec{r}\,) \cdot \vec{dr} \; .$$

Al colocar una carga q en el campo gravitacional de una carga Q, entonces la fuerza sobre q y su energía potencial vienen dadas por

$$\vec{F}(\vec{r}) = q\vec{E}(\vec{r})$$

$$U(\vec{r}) = q\phi(\vec{r})$$

Observaciones:

- a) Las ecuaciones electrostáticas se han dado en el sistema de unidades MKS. La unidad de la carga en este sistema de unidades es el *Coulomb* [C].
- b) En la electrostática el factor $1/(4\pi\epsilon_0)$ juega el rol que G juega en la gravitación.

у

- c) Una diferencia entre la gravitación y la electrostática es que la fuerza de gravitación entre dos masas iguales es atractiva mientras que la de dos cargas iguales es repulsiva. Esto se refleja en un cambio de signo en algunas de las ecuaciones.
- d) Otra diferencia importante e interesante es que en la electrostática las cargas pueden ser positivas y negativas. Este hecho da origen a numerosas situaciones y fenómenos interesantes que no pueden darse en el caso gravitatorio (por ejemplo, el concepto de *dipolo puntual*).

11.8. Campo gravitacional de una cáscara esférica

Ejercicio: Demuestre que

$$\frac{d}{dx} \left(\sqrt{a+bx} \right) = \frac{b}{2\sqrt{a+bx}}$$

donde $a \ge b$ son constantes. Como corolario de este ejercicio se tiene que

$$\int_{x_1}^{x_2} \frac{1}{\sqrt{a+bx}} \, dx = \frac{2}{b} \sqrt{a+bx} \Big|_{x_1}^{x_2} = \frac{2}{b} \left[\sqrt{a+bx_2} - \sqrt{a+bx_1} \right].$$

Considere una cáscara esférica de radio R de densidad de masa uniforme. Si la masa total de la cáscara es M, entonces su densidad superficial de masa será

$$\sigma = \frac{M}{4\pi R^2}$$

Dese
amos encontrar el potencial gravitacional ϕ en el punto
 P debido a la cáscara esférica. Para ello primero evaluamos
 la contribución de un anillo de ancho $R \, d\theta$ que forma un ángulo
theta con la línea que une P con el centro de la esfera. La masa del anillo es

$$dm = \sigma \left(2\pi R \sin \theta\right) R \, d\theta \; .$$

Figura 11.12

Todos los puntos del anillo están a la misma distancia $D = \sqrt{(R \sin \theta)^2 + (r - R \cos \theta)^2}$ del punto P, luego la contribución del anillo al potencial gravitatorio es

$$d\phi = -G\frac{dm}{D} = -2\pi G\sigma R^2 \frac{\sin\theta \ d\theta}{\sqrt{(R\sin\theta)^2 + (r - R\cos\theta)^2}}$$
$$= -2\pi G\sigma R^2 \frac{\sin\theta \ d\theta}{\sqrt{R^2 + r^2 - 2rR\cos\theta}} .$$

Sumando la contribución de todos los anillos obtenemos el potencial total:

$$\phi = \int_0^\pi d\phi = -2\pi G \sigma R^2 \int_0^\pi \frac{\sin\theta \, d\theta}{\sqrt{R^2 + r^2 - 2rR\cos\theta}} \, .$$

La integral la podemos evaluar con un cambio de variable. Denotemos $\cos \theta$ por s. Entonces

$$s = \cos \theta$$
$$\frac{ds}{d\theta} = -\sin \theta \; ,$$

o sea

$$\sin\theta \ d\theta = ds \ .$$

Observando que si $\theta = 0$ entonces s = 1 y si $\theta = \pi$, entonces s = -1, podemos reescribir la integral:

$$I = \int_0^{\pi} \frac{\sin \theta \, d\theta}{\sqrt{R^2 + r^2 - 2rR \cos \theta}} = -\int_1^{-1} \frac{ds}{\sqrt{R^2 + r^2 - 2rRs}} \, .$$

Usando ahora el resultado del ejercicio propuesto al iniciar la presente sección (con $a = R^2 + r^2$, b = -2rR, $x_1 = 1$ y $x_2 = -1$), se obtiene

$$I = -\int_{1}^{-1} \frac{ds}{\sqrt{R^{2} + r^{2} - 2rRs}}$$

= $-\frac{2}{-2rR} \left[\sqrt{R^{2} + r^{2} + (-2rR)(-1)} - \sqrt{R^{2} + r^{2} + (-2Rr) \cdot 1} \right]$
= $\frac{1}{rR} \left[(R+r) - |R-r| \right]$

Distinguiendo con cuidado los dos casos r > R y R < r, se obtiene que

$$I = \begin{cases} \frac{2}{R} & \text{si } r < R \\ \\ \frac{2}{r} & \text{si } r > R \end{cases}$$

De esta manera, para el potencial de una cáscara esférica de radio R y masa M se encuentra la expresión

$$\phi(r) = \begin{cases} -G\frac{M}{R} & \text{para } R > r \\ -G\frac{M}{r} & \text{para } r > R \end{cases}$$

Algunas observaciones importantes respecto a este resultado:

- a) Para r > R, o sea, cuando el punto P se encuentra fuera de la cáscara esférica, el potencial gravitacional que ésta ejerce es idéntica a la que se hubiese obtenido si toda la masa de la cáscara se ubica en el origen.
- b) Si el potencial afuera es el mismo al de una masa puntual, entonces también el campo gravitacional lo será, o sea, la fuerza que la cáscara esférica ejercerá sobre una masa m (si ésta se encuentra en el exterior) será

$$\vec{F} = -G\frac{mM}{r^2}\hat{r} \; .$$

c) En el interior de la cáscara esférica el potencial gravitacional es constante (no depende de la posición). Esto significa que el campo gravitacional ahí es nulo, o sea, si colocamos una masa m en el interior, sobre ella la cáscara esférica no ejercerá ninguna fuerza gravitacional.

Resumen:

Para una cáscara esférica de radio R y masa M se tiene

$$\vec{g}(\vec{r}) = \begin{cases} -\frac{GM}{r^2} \hat{r} & (\text{para } r > R) \\ 0 & (\text{para } r < R) \\ \\ \phi(\vec{r}) = \begin{cases} -\frac{GM}{r} & (\text{para } r > R) \\ -\frac{GM}{R} & (\text{para } r \le R) \end{cases}$$

La figura 11.13 muestra un gráfico de la intensidad del campo gravitacional y el potencial para una cáscara esférica.

A continuación presentaremos una demostración alternativa de que una cáscara esférica no ejerce ningún campo gravitacional al interior de ella.

Algunos preliminares: Al intersectar un ángulo (infinitesimal) $d\theta$ con un círculo de radio r, el largo del arco es $ds = r d\theta$ (ver figura 11.14). Si tal arco se "inclina" en un ángulo β , el largo del arco (línea segmentada) ahora es $ds = r d\theta / \cos \beta$.

Estos conceptos se pueden generalizar para ángulos sólidos en tres dimensiones. Para ellos tomemos una esfera de radio r y consideremos un área A (que puede tener forma irregular) sobre la superficie. Si unimos todos los puntos del perímetro del área con el centro obtenemos un ángulo sólido.

En forma análoga a lo que ocurre para ángulos en un plano, definimos el ángulo sólido por $\Omega \equiv A/r^2$. El ángulo sólido completo (en el espacio tridimensional) es, por lo tanto, 4π . A la inversa, si tenemos un ángulo sólido infinitesimal $d\Omega$ e interceptamos este con una esfera de radio r, el área definido por la intersección será dA = $r^2 d\Omega$. Si el área la inclinamos en un ángulo β , su área será $dA = r^2 d\Omega/\cos\beta$.

Volviendo a la cáscara esférica de radio Ry masa M, evaluemos el campo gravitacional en un punto P que se encuentra en su interior (ver figura 11.16).

Consideremos un ángulo sólido $d\Omega$ desde el punto P y hacia los dos lados. El ángulo sólido intersecta a la cáscara esférica en los lugares A y B (ver figura 11.16). La inclinaciónde las áreas en A y B es en el mismo ángulo β ya que ABO es un triángulo isósceles. El área que el ángulo sólido intersecta en A es $r_1^2 d\Omega / \cos \beta$ mientras que en B es $r_2^2 d\Omega / \cos \beta$. Sea σ la densidad superficial de masa de la cáscara esférica.

Figura 11.14

Figura 11.15

Figura 11.16

El campo gravitacional que el área A genera en P es

$$\vec{g}_A = \left[\sigma \frac{r_1^2 d\Omega}{\cos \beta}\right] \frac{1}{r_1^2} \hat{n} = \frac{\sigma d\Omega}{\cos \beta} \hat{n} .$$

Acá \hat{n} es un vector unitario que apunta de P a A. En forma análoga se obtiene que el campo gravitacional que el área B genera en P es

$$\vec{g}_B = \left[\sigma \frac{r_2^2 \, d\Omega}{\cos \beta}\right] \, \frac{1}{r_2^2} \, (-\hat{n}) = -\frac{\sigma \, d\Omega}{\cos \beta} \, \hat{n}.$$

Se observa que el campo gravitacional de las áreas $A ext{ y } B$ se cancela exactamente. Lo mismo ocurre con cualquier otro ángulo sólido. De la discusión anterior se concluye que al interior, el campo gravitacional generado por una cáscara es necesariamente nulo.

11.9. Campo gravitacional de una esférica sólida

Evaluemos el campo gravitacional en algún punto al exterior de una esfera sólida de masa M y radio R. Para ello es conveniente pensar que la esfera está compuesta de muchas cáscaras esféricas (como una cebolla). Ya sabemos que el campo gravitacional de cada cáscara es el mismo que el que se obtiene al concentrar toda la masa de la cáscara en el centro. La suma de todas las cáscaras (que es la esfera sólida), por lo tanto, generará un campo gravitacional igual al de una masa (equivalente a la suma de las masas de todas las cáscaras) concentrada en el centro. O sea, si el punto P está al exterior de la esfera, a una distancia r del centro, el campo gravitacional será

$$\vec{g}(r) = -G\frac{M}{r^2} \hat{r}$$

Un razonamiento análogo permite encontrar el potencial gravitacional (para un punto en el exterior): $\phi(r) = -GM/r$.

Μ

Si el punto P se encuentra al interior de la esfera se puede proceder de una manera parecida. Dividamos nuevamente la esfera en numerosas cáscaras esféricas. Todas las cáscaras esféricas con un radio mayor que r no contribuyen al campo gravitacional en P (pues P está al interior de ellas). Las capas con radio menor que r las podemos concentrar en el centro. El campo gravitacional por lo tanto será

$$\vec{g}(r) = -G\frac{m}{r^2} \hat{r} ,$$

donde m es la masa de las cáscaras interiores, esto es,

Figura 11.17

$$m = M \frac{r^3}{R^3}$$

De manera análoga se procede para encontrar el potencial gravitatorio al interior de una esfera sólida.

Resumen: Para una esfera sólida homogénea, de radio R y masa M, se tiene

$$\vec{g}(\vec{r}) = \begin{cases} -\frac{GM}{r^2} \hat{r} & (\text{para } r > R) \\ -\frac{GMr}{R^3} \hat{r} & (\text{para } r < R) \end{cases}$$
$$\phi(\vec{r}) = \begin{cases} -\frac{GM}{r} & (\text{para } r > R) \\ -\frac{GM}{2R} & (3 - \frac{r^2}{R^2}) & (\text{para } r \le R) \end{cases}$$

La figura 11.18 muestra un gráfico de la intensidad del campo gravitacional y el potencial para una cáscara esférica.

Figura 11.18

11.9.1. Densidad media de la Tierra

Problema: Determinar la densidad media de la Tierra suponiendo concocidos el valor de la constante de la gravitación G, la aceleración de la gravedad g y el radio terrestre R.

Solución: Sobre una masa m colocada en la superficie de la Tierra actúa una fuerza igual a mg. Por otra parte, el campo gravitacional de la Tierra para un punto sobre su superficie se puede evaluar suponiendo que toda la masa de la Tierra está en el centro, es decir,

$$|\vec{g}(R)| = \frac{GM}{R^2} \; ,$$

donde M es la masa total de la tierra. Conociendo el campo garvitacional podemos evaluar la fuerza que actúa sobre una masa m; esta es

$$m|\vec{g}(R)| = \frac{GMm}{R^2} \; .$$

Igualando las dos expresiones para la fuerza se obtiene para g la expresión

$$g = \frac{GM}{R^2} \; .$$

Esta ecuación relaciona la aceleración de la gravedad $g=9,81 \text{ m/s}^2$ con la constante gravitacional G y la masa y radio terrestre M y R, respectivamente.

La densidad media de la Tierra viene dada por

$$\rho = \frac{M}{V} = \frac{3M}{4\pi R^3} = \frac{3g}{4\pi GR}$$
$$= \frac{3 \cdot 981,0}{4\pi 6,67 \cdot 10^{-8} \, 6,4 \cdot 10^8} \simeq 5,5 \, \frac{g}{cm^3}$$

(Para referencia: la densidad del hierro, que es el principal elemento del núcleo terrestre, es de 7,86 g/cm³.)

11.10. Problemas

1. Júpiter tiene doce lunas conocidas, cuatro de las cuales fueron descubiertas por Galileo. Estos son los radios y períodos de las primeras cuatro:

R (Km)	T (días)
180.000	0,498
422.000	1,769
671.000	$3,\!551$
1.072.000	$7,\!155$

- a) ¿Obedecen estos cuatro satélites a la tercera ley de Kepler?
- b) Con estos datos y el valor de G, encuentre la masa de Júpiter.
- c) El diámetro de Júpiter es de 142.900 Km. ¿Cuál es su densidad media?
- 2. Las órbitas de dos satélites terrestres A y B son elípticas, siendo R y 4R, respectivamente, sus ejes mayores.
 - a) ¿Cuál es el cuociente entre sus energías mecánicas totales?
 - b) ¿Cuál es el cuociente entre sus períodos?
 - c) ¿Qué puede decirse del cuociente entre sus momentos angulares?
- 3. Un satélite artificial recorre una trayectoria circular 320 Km por encima de la superficie terrestre.
 - a) ¿Cuál será su velocidad?
 - b) ¿Con qué frecuencia girará alrededor de la Tierra?

4. Dos satélites artificiales de igual masa orbitan alrededor de un planeta. S_1 se mueve en una órbita circular de radio 10^8 [m] y período de 5 días, S_2 se mueve en una órbita elíptica de radios $r_{min} = 10^8$ [m] y $r_{max} = 2 \cdot 10^8$ [m].

a) A partir de los datos para la órbita circular, calcule la masa del planeta.

Figura 11.19

- b) Encuentre el período de S_2 .
- c) ¿Cuál satélite es más veloz al pasar por B? ¿Cuál tiene mayor energía?
- d) Calcule el cuociente entre las velocidades que S_2 tiene en B y en A.
- e) ¿Qué mani
obra debería ordenar el puesto de mando para poner S_2
en la órbita de $S_1?$
- 5. Un satélite es *geoestacionario* si para un observador fijo sobre la Tierra este no se mueve. La órbita de tal satélite necesariamente deberá coincidir con el plano del Ecuador terrestre. Determine el radio de la órbita del satélite.

Respuesta: $R \simeq 42,000$ km.

6. ¿A qué distancia de la Tierra debe colocarse un cuerpo en la línea dirigida hacia el Sol de tal manera que la atracción gravitacional solar contrarreste a la atracción de la Tierra? El Sol está a $15 \cdot 10^7$ Km de distancia y su masa es de $M_S = 3, 24 \cdot 10^5$ M_T (M_T es la masa de la Tierra = $5, 97 \cdot 10^{24}$ Kg). Analice el problema incluyendo el efecto introducido por la rotación de la Tierra alrededor del Sol (o sea, tanto la Tierra como el cuerpo giran alrededor del Sol una vez al año).

Para encontrar la solución (aproximada) use el hecho de que $M_T/M_S \ll 1$.

Respuesta:

$$r \simeq R \left(1 - \sqrt[3]{\frac{M_T}{3M_S}} \right)$$

es la solución que se tiene si el cuerpo se encuentra entre la Tierra y el Sol. Hay dos soluciones adicionales si se permite que r sea mayor que R. Convénzase de ésto y encuéntrelas.

7. Dos satélites A y B giran alrededor de la Tierra en la misma órbita circular (de radio R), pero uno al lado opuesto de la Tierra respecto al otro. Se desea interceptar el satélite B con un proyectil lanzado desde A. Estudie el problema e indique velocidad y dirección en que debe lanzarse el proyectil para lograr su objetivo. Dé al menos 3 soluciones distintas.

- 8. El perigeo, punto más próximo de la órbita de un satélite, se halla a 320 Km de la superficie terrestre, y el apogeo, punto más alejado, a 2400 Km.
 - a) ¿Cuál es el semieje mayor de la órbita del satélite?
 - b) ¿Cuál es la excentricidad de su órbita?
 - c) Si el satélite tiene una masa de 15 Kg, ¿cuál es su energía total?
 - d) ¿Cuál es su velocidad en el apogeo?
 - e) ¿Cuál es su velocidad en el perigeo?
 - f) ¿Cuál es su momento angular?
- 9. Una pequeña masa *m* cae hacia el Sol partiendo del reposo desde una distancia igual al radio de la órbita terrestre. Determine el tiempo de caída usando sólo las leyes de Kepler.
- 10. Se dice que la órbita de un satélite es *heliosincrónica* si pasa diariamente por los mismos lugares a la misma hora. Suponiendo que la altura mínima de un satélite es de 200 km por sobre la superficie terrestre, encuentre los radios de todas las orbitas heliosincrónicas circulares.
- 11. Considere la parábola $y = ax^2$.

a) Encuentre su foco.

b) Traslade el sistema de coordenadas de manera que el nuevo origen coincida con el foco calculado en la parte a).

c) Introduzca coordenadas polares (r, ϕ) , midiendo ϕ des
de el mínimo de la parábola y demuestre que la ecuación de la parábola que
da de la forma

$$\frac{1}{r} = \frac{1}{s}(1 - \epsilon \cos \phi)$$

 $\operatorname{con} \epsilon = 1$ y s algún valor constante.

- 12. Un satélite gira sobre el Ecuador, en el mismo sentido que la Tierra, en una trayectoria elíptica con $r_{min} = 200$ Km y $r_{max} = 500$ Km. Se desea poner este satélite en órbita geoestacionaria. El cohete del satélite es capaz de acelerarlo con una aceleración a = 50 m/s². En qué instantes y durante cuánto tiempo se deben prender los motores para lograr el propósito?
- 13. Calcule el período de rotación de la Luna entorno a la Tierra sabiendo que el radio de su órbita es 60,3 veces el radio de la Tierra.

14. Un cometa de masa αm se dirige ("cae") radialmente hacia el sol. Observaciones astronómicas permiten establecer que la energía mecánica total del cometa es nula, es decir, E = 0. El cometa se estrella contra Venus, cuya masa es m. Supongamos además que la trayectoria de Venus es circular, de radio R_0 . A consecuencia del choque, el cometa y Venus forman un solo astro que llamaremos Vennus.

Figura 11.20

- a) Calcule la rapidez v_0 y el período de Venus antes de la colisión.
- b) Calcule la energía mecánica de Venus en su órbita antes de chocar con el cometa.
- c) Calcule la velocidad radial y el momento angular de "Vennus" inmediatamente después de la colisión.
- d) Determine la energía mecánica de Vennus y exprésela en términos de $m, \alpha y v_0$.
- e) Demuestre que la órbita de Vennus es elíptica y determine el semieje mayor de la órbita.
- f) Determine si el año para los "venusianos" se ha acortado o alargado a causa del choque con el cometa.

Respuesta parte f): La razón del período de Vennus y Venus es

$$\frac{T'}{T} = \left[\frac{1+\alpha}{1+4\alpha}\right]^{3/2}$$

- 15. Un proyectil de masa m se lanza tangencialmente a la superficie de la Tierra. Suponiendo que no hay resistencia del aire (como en la Luna), calcular la rapidez v_0 con que el proyectil debeser lanzado para que orbite en forma circular y razante a la Tierra. Compare esta velocidad con la velocidad de escape. Calcule el momento angular y la energía del proyectil en esta situación.
- 16. El proyectil del problema anterior ahora es lanzado horizontalmente a la superficie de la Tierra con una rapidez αv_0 , con 1, $\alpha < \sqrt{2}$. Calcule la distancia radial del perigeo y apogeo y la excentricidad de la óbita.

- 17. Dos partículas de igual masa se unen mediante una cuerda ideal de longitud h. El par es atraído gravitacionalmente por un planeta de masa M. La distancia entre el planeta y la partícula mas cercana es R, con $h \ll R$.
 - a) Despreciando la fuerza de atracción entre las dos partículas, calcule la tensión de la cuerda si ellas caen sobre el planeta con la cuerda estirada y dispuesta radialmente.
 - b) Ahora tome en cuenta la atracción gravitacional entre las dos masas. Demuestre que para que la cuerda no esté tensa la masa de cada partícula debe ser $m = M(h/R)^3$.

- 18. Marte tiene un diámetro medio de 6.800 Km, la masa de Marte es 0.107 M_T . a) ¿Cuál es la densidad media de Marte comparada con la de la Tierra?
 - b) ¿Cuál es el valor de g en Marte?

de Sirio B?

- c) ¿Cuál es la velocidad de escape en Marte?
- 19. La estrella enana Sirio B tiene un radio que es 1/50 del radio solar, a pesar de tener aproximadamente la misma masa que el sol.
 a) ¿Cuál es el valor de g en la superficie de Sirio B? b) ¿Cuál será la densidad media
- 20. Una esfera uniforme de densidad ρ_o y radio R_1 tiene una cavidad esférica de radio R_2 . Encuentre el potencial en el punto \vec{r} (ver figura 11.22).
- 21. ¿Cuál sería el peso suyo si el radio de la Tierra doblara su valor,
 a) manteniéndose la masa de la Tierra igual a la actual?
 b) manteniéndose la densidad promedio de la Tierra igual a la actual?

Figura 11.22

22. Dos esferas de plomo, de 1 m de radio, están en contacto.

a) ¿Cuál es la magnitud de la fuerza de atracción mutua?

b) ¿Qué velocidad tendrían en el instante de contacto si partieran de posiciones muy separadas en el espacio y "cayeran" una contra la otra? ($\rho_{plomo} = 11.3 \text{ g/cm}^3$).

23. Un satélite de masa m = 5 kg es lanzado a una órbita circular cuyo período es de 120 minutos. Ignore la rotación de la Tierra y también cualquier efecto del roce viscoso

del satélite con el aire.

- a) Calcule la razón ewntre el radio de la órbita del satélite y el radio terrestre.
- b) Calcule la energía mínima requerida para poner al satélite en dicha óbita. De esta energía ¿qué fracción se uso para "subirlo" y que fracción para darle la velocidad requerida?
- 24. Una nave cósmica se dirige hacia la Luna a lo largo de una trayectoria parabólica que casi toca a la superficie lunar. En el momento de máxima aproximación un motor de frenado, en un breve lapso, modifica la velocidad de la nave de manera que esta entre en una órbita circular alrededor de la Luna. Encuentre la velocidad de la nave justo antes y después del frenado. La masa y el radio lunar son $M = 7,34 \cdot 10^{22}$ kg y $R = 1,74 \cdot 10^6$ m, respectivamente.

- 25. Se taladra un túnel liso y recto a través de un planeta esférico cuya densidad de masa ρ_o es constante. El túnel pasa por el centro del planeta y es perpendicular al eje de rotación del mismo. El planeta rota con una velocidad angular determinada de modo que los objetos dentro del túnel no tienen aceleración relativa al túnel. Hallar la relación entre ρ_o y ω para que esto sea cierto.
- 26. Demuestre que en un conducto excavado en la Tierra, siguiendo una cuerda cualquiera, (no siguiendo necesariamente un diámetro), el movimiento de un objeto será armónico simple. (Desprecie efectos de roce y de la rotación de la Tierra). Encuentre el período del movimiento.
- 27. Discuta el origen de las mareas. ¿Por qué se presentan dos mareas y no una sola?

28. Encuentre la órbita de una partícula que se mueve en un campo central que genera una fuerza

$$F(r) = -\frac{Gm_1 m_2}{r^2} + \frac{\alpha^2}{\mu r^3} .$$

Si α es pequeño con respecto al momento angular ℓ muestre que la órbita corresponde a una elipse cuya orientación precesa lentamente. Encuentre el ángulo $\Delta \Phi$ en que cambia la orientación del semi-eje mayor en un período. (Indicación: Repita lo hecho en la sección 11.5 pero con la nueva expresión para \vec{F}).

Figura 11.24

- 29. a) Demuestre que para escapar de la atmósfera de un planeta una condición que debe cumplir una molécula es que tenga una velocidad tal que v > √2GM/r, siendo M la masa del planeta y r la distancia de la molécula al centro del planeta.
 b) Determine la velocidad de escape para una partícula atmosférica a 1000 Km sobre la superficie de la Tierra.
 - c) Haga lo mismo para la Luna.
- 30. Considere una esfera de radio a y hecha de materia homogénea y que al interior tiene una cavidad esférica concéntrica de radio b.
 - a) Haga un gráfico de la fuerza de gravitación F ejercida por la esfera sobre una partícula de masa m, localizada a una distancia r del centro de la esfera.
 - b) Haga un gráfico de la energía potencial gravitacional U(r) de la masa m en función de r.
 - c) Demuestre que en el límite $b \longrightarrow a$ vuelve a obtener el resultado correspondiente a una cáscara esférica.
 - d) Demuestre que en el límite $b \longrightarrow 0$ vuelve a obtener el resultado correspondiente a una esfera sólida.
- 31. Considere un recipiente (cascarón) semiesférico. Demuestre que en cualquier punto del plano que pasa por el borde del recipiente (a modo de tapa, región punteada), el campo gravitatorio es perpendicular a dicho plano.

Figura 11.25

- 32. Considere una semiesfera sólida de masa M y radio R, fija. ¿Cuál es el trabajo que se debe realizar para llevar una pequeña masa m desde el centro de la base hasta el infinito?
- 33. Una partícula de masa m se encuentra situada sobre el eje de simetría de un anillo de masa M y radio R, a la distancia d del plano del anillo.
 - a) Encontrar la fuerza con que el anillo atrae a la masa m, en términos de G, M, m, $R \ge d$.
 - b) Discuta en particular los casos d = 0 y $d \longrightarrow \infty$, y convénzase de que se obtiene lo que uno espera intuitivamente.
 - c) Si la masa m se mueve a lo largo del eje y parte del infinito (desde una distancia muy grande) con velocidad nula, ¿con que velocidad pasará por el centro del anillo? (Suponga que el anillo no se mueve, es decir, hay una fuerza externa que lo mantiene fijo).
- 34. Considre un satélite de masa m que gira en una órbita circular de radio R an torno a un planeta de masa $M \gg m$.
 - a) Determine la velocidad del satélite.
 - b) Suponga que el satélite es interceptado por un proyectil, también de masa m, que se desplaza radialmente hacia el planeta. Sea $\vec{v}_1 = -v_1 \hat{r}$ la velocidad del proyectil justo antes del impacto. Suponga que el choque es completamente inelástico (es decir, el proyectil y el satélite forman un solo cuerpoo después de la colisión). Encuentre la velocidad que tiene el proyectil–satélite justo después del choque.
 - c) Determine la mínima rapidez v_1 que debe tener el proyectil justo antes del choque para que el cuerpo proyectil-satélite logre escapar del campo gravitacional del planeta.
- 35. Considere un casquete esférico fijo, muy delgado, de densidad uniforme, radio R y masa M, que posee dos orificions que lo perforan en posiciones diametralmente opuestas. Una masa puntual m se encuentra inicialmente en reposo a una distancia 3R de su centro sobre la línea que une las perforaciones. Encuentre el tiempo que tarda la masa m en cruzar el casquete de un extremo al otro.

Figura 11.26

- 36. Dos cáscaras esféricas del mismo radio R y masa M se encuentran separados (sus centros) por una distancia r.
 - a) Haga un gráfico esquemético de la energía potencial gravitatoria a lo largo de la recta A, B.
 - b) Si una partícula de masa mse suelta en reposo desde el centro de la esfera #1, ¿con qué velocidad llega a la superficie de la esfera #2?

Figura 11.27

(c) ¿Cuál es la máxima separación r a la que pueden estar las esferas para que la masa m llegue a la superficie de la cáscara esférica #2?

11.11. Solución a algunos de los problemas

Solución al problema 4

(a) La fuerza gravitacional debe coincidir con la fuerza centrípeta. Se
a ${\cal M}$ la masa del planeta ym la masa del satélite,
entonces

$$-G\frac{Mm}{R^2}\hat{r} = -\frac{mv^2}{R}\hat{r} ,$$

donde $v = 2\pi R/T$ es la velocidad del satélite en su órbita circular. De las ecuaciones anteriores se deduce que

$$M = \frac{4\pi^2 R^3}{GT^2} = \frac{4\pi^2 \cdot 10^{24}}{6,67 \cdot 10^{-11} \cdot (5 \cdot 24 \cdot 3600)^2} \text{ kg} \simeq 3, 2 \cdot 10^{24} \text{ kg}$$

(b) De acuerdo a la tercera ley de Kepler

$$\frac{T_1}{T_2} = \left(\frac{a_1}{a_2}\right)^{3/2} \;,$$

donde a_1 y a_2 son los semiejes mayores de las trayectorias elípticas de los satélites. De acuerdo al enunciado $a_1 = 10^8$ [m] y $a_2 = (r_{\min} + r_{\max})/2 = 1, 5 \cdot 10^8$ [m], luego $a_1/a_2 = 2/3$. Para T_2 se obtiene

$$T_2 = T_1 \left(\frac{a_2}{a_1}\right)^{3/2} = 5 \cdot (1,5)^1, 5 \text{ dias} \simeq 1, 19 \text{ dias}.$$

(c) La energía total y el semieje mayor de un satélite están relacionados por la ecuación

$$E = -G\frac{mM}{2a}$$

La energía es inversamente proporcional al semieje mayor, pero observe que debido al signo menos, la órbita que tiene el mayor a tiene también mayor energía (es menos negativa). Concluímos que el satélite S_2 es el que tiene mayor energía. En el punto Bambos satélites tienen la misma energía potencial, luego la energía cinética de S_2 es mayor que la de S_1 . El satélite S_2 es mas rápido que S_1 cuando pasan por B.

(d) Se tiene que (todo evaluado en el punto B)

$$\frac{E_2}{E_1} = \frac{a_1}{a_2} = \frac{2}{3} \; .$$

Por otra parte, para la órbita circular $U = -2K_1$, o sea,

$$E_1 = U + K_1 = U - \frac{U}{2} = \frac{U}{2} = -G\frac{Mm}{2R^2}$$

Se tiene

$$\frac{E_2}{E_1} = \frac{U + K_2}{U/2} = \frac{2}{3}$$

De aquí se deduce que $K_2 = -2U/3$. Luego

$$\frac{K_2}{K_1} = \frac{-2U/3}{-U/2} = \frac{4}{3} = \frac{v_2^2}{v_1^2} \,.$$

(e) Para pasar de la óbita elíptica a la circular, el satélite S_2 debe, cuando se encuentra pasando por el punto B, prender los motores y "frenar" hasta bajar la velocidad de v_2 a v_1 .

Solución al problema 9

La trayectoria de la masa m que cae hacia el Sol es el límite de una elipse en que el semieje menor b tiende a cero. En ese caso la trayectoria es una línea recta estando el Sol en uno de los extremos. El semieje mayor de tal elipse es a = R/2, donde $R = a_T$ es el radio (igual al semieje mayor) de la trayectoria circular de la Tierra. De acuerdo a la tercera ley de Kepler

$$\frac{T_m}{T_T} = \left(\frac{a}{a_T}\right)^{3/2} = 2^{-3/2} = 0,3536 \; .$$

El tiempo t_0 que demora la masa m en llegar al sol es la mitad del período de su órbita, o sea,

$$t_0 = \frac{T_m}{2} = \frac{T_T}{2} \cdot 0,3536 \simeq 64,5 \text{ días} .$$

Solución al problema 14

(a) Sea M la masa del Sol, entonces, igualando la fuerza gravitacional con la fuerza centrípeta

$$-\frac{GMm}{R_0^2}\hat{r} = -\frac{mv_0^2}{R_0}\hat{r}$$

se obtiene

$$v_0^2 = \frac{GM}{R_0}$$

(b) La energía meánica de Venus (antes de la colisión) es

$$E_i = -\frac{GMm^2}{R_0}^2 + \frac{1}{2}mv_0^2 = -\frac{GMm}{2R_0^2}$$

(c) Como el cometa (cuando está lejos) se mueve radialmente hacia el sol, no tiene momento angular (respecto al origen en el Sol). Luego el momento angular de Vennus es el mismo que el de Venus

$$L = R_0 m v_0 \; .$$

Esto nos permite encontrar la componente $\hat{\theta}$ de la velocidad de Vennus justo después de la colisión. El momento angular justo despues de la colisión es

$$L = R_0(m + \alpha m)v_\theta \; .$$

Como el momento angular se conserva se deduce que

$$v_{\theta} = \frac{v_0}{1+\alpha} \; .$$

La conservación del momento lineal en la dirección radial hay que darse cuenta que la interacción entre Venus y el cometa son fuerzas internas y, por lo tanto, para calcular

la velocidad del cometa podemos ignorar el efecto introducido por la interacción entre el cometa y Venus. El cometa tiene energía nula, luego,

$$K = -U = + \frac{GM\alpha m}{R_0} = \frac{1}{2}\alpha m v_C^2 \; . \label{eq:K}$$

 $(v_C \text{ es la velocidad del cometa justo antes de la colisión ignorando el efecto introducido por Venus). Se deduce que$

$$v_C^2 = \frac{2GM}{R_0}$$

Aplicamos ahora la conservación del momento lineal a lo largo de la dirección radial

$$\alpha m v_C = (m + \alpha m) v_r ,$$

donde v_r es la velocidad de Vennus justo después de la colisión. Se deduce que

$$v_r = \frac{\alpha}{1+\alpha} v_C \; .$$

(d) La energía mecánica de Vennus (la evaluamos justo después del choque) es

$$E_{f} = U + K = -\frac{GMm(1+\alpha)}{R_{0}} + \frac{1}{2}m(1+\alpha)(v_{\theta}^{2} + v_{r}^{2})$$

$$= -(1+\alpha)\frac{GMm}{R_{0}} + \frac{1}{2}(1+\alpha)\left[2\left(\frac{\alpha}{1+\alpha}\right)^{2} + \frac{1}{(1+\alpha)^{2}}\right]\frac{GMm}{R_{0}}$$

$$= -\frac{GMm}{2R_{0}}\left(\frac{1+4\alpha}{1+\alpha}\right) = E_{i}\left(\frac{1+4\alpha}{1+\alpha}\right).$$

(e) la órbita de Vennus obviamente ya no es un círculo. Como la energía es negativa debe, por lo tanto, ser elíptica. Se tiene que

$$\frac{E_i}{E_f} = \frac{a_f}{a_i} = \frac{a_f}{R_0}$$

Aquí a_i y a_f son los semiejes mayores de las órbitas de Venus y Vennus, respectivamente. Se deduce que

$$a_f = R_0 \frac{E_i}{E_f} = R_0 \frac{1+\alpha}{1+4\alpha} \; .$$

(f) Usando la tercera ley de Kepler podemos calcular la razón del período de Vennus y Venus:

$$\frac{T'}{T} = \left(\frac{a_f}{r_0}\right)^{3/2} = \left(\frac{1+\alpha}{1+4\alpha}\right)^{3/2} \,.$$

Solución al problema 17

(a) La fuerza neta que actúa sobre la partícula más cercana, llamémosla #1, es

$$\vec{F_1} = -\frac{GMm}{R^2}\hat{r} + T\hat{r} \; .$$

La fuerza neta que actúa sobre la otra partícula (#2) es

$$\vec{F}_2 = -\frac{GMm}{(R+h)^2}\hat{r} - T\hat{r} \; .$$

Como el hilo que las une es inextensible, ambas partículas aceleran con la misma aceleración $\vec{a} = -a\hat{r}$. Se tiene

$$\vec{F_1} = -ma\hat{r} = -\frac{GMm}{R^2}\hat{r} + T\hat{r} \; .$$

у

$$\vec{F}_2 = -ma\hat{r} = -\frac{GMm}{(R+h)^2}\hat{r} - T\hat{r}$$
.

Despejando la tensión del hilo T se encuentra que

$$T = \frac{GMm}{2} \left(\frac{1}{R^2} - \frac{1}{(R+h)^2} \right) \; . \label{eq:T}$$

Con $h \ll R$ se obtiene la expresión

$$T = \frac{GMmh}{R^3} \; .$$

(b) Para que la cuerda no que de tensa la fuerza gravitacional entre las partículas de be coincidir con T, o sea,

$$T = \frac{Gmm}{h^2}$$

Despejando m de las dos últimas ecuaciones se encuentra

$$m = M \left(\frac{h}{R}\right)^3$$
.

Solución al problema 32

El trabajo que debemos realizar es independiente del camino que elijamos para llevar la masa m del centro de la basa de la semiesfera hasta el infinito. Elijamos un camino

recto paralelo a la base. Sea éste el eje \hat{x} y denotemos por \hat{y} al eje que coincide con el eje de simetría de la semiesfera (ver figura).

Sea $\vec{F}(x)$ la fuerza gravitacional que actúa sobre la masa m cuando esta se encuentra sobre el eje \hat{x} en la posición x. Esta fuerza tendrá dos componentes

$$\vec{F}(x) = -F_x(x)\hat{x} + F_y(x)\hat{y} .$$

Figura 11.28

La componente y de la fuerza no nos interesa pues al evaluar el trabajo con la expresión

$$W = -\int_0^\infty \vec{F}(x) \cdot (dx\,\hat{x})$$

se observa que tal componente es perpendicular al desplazamiento y, por lo tanto, no figura al evaluar el producto punto. Para evaluar $F_x(x)$ coloquemos una segunda semiesfera idéntica en la parte inferior (ver figura línea punteada). Por simetría la fuerza que ejerce esta segunda esfera es

$$F'(x) = -F_x(x)\hat{x} - F_y(x)\hat{y} ,$$

o sea, la componente x es la misma, pero la componente y cambia de signo. El efecto de las dos semiesferas es

$$\vec{F} + \vec{F}' = -2F_x(x)\hat{x}$$

Pero, por otra parte, las dos semiesferas forman una esfera completa de masa 2M, y para ese caso sabemos que la fuerza es (ver sección 11.9)

$$m\vec{g}(\vec{x}\,) = \begin{cases} -\frac{G(2M)m}{x^2}\,\hat{x} & (\text{para } x > R) \\ \\ -\frac{G(2M)m}{R^3}\,\hat{x} & (\text{para } x < R) \end{cases}$$

Igualando las dos expresiones se encuentra que

$$F_x(x) = \begin{cases} \frac{GMm}{x^2} & \text{(para } x > R) \\ \frac{GMm}{R^3} & \text{(para } x < R) \end{cases}$$

Esto es exactamente el mismo resultado que se tendría para una esfera sólida completa de masa M y radio R. Podemos entonces usar los resultados que se encontraron en la sección 11.9 para la esfera sólida. El trabajo lo podemos evaluar usando el potencial gravitatorio ϕ . El potencial gravitatorio (con el cero del potencial en el infinito) al centro de una esfera sólida es

$$\phi(0) = -\frac{3GM}{2R} \; .$$

Luego el trabajo para llevar la masa m del origen al infinito es

$$W = m \frac{3GM}{2R} \; .$$

Solución al problema 35

Sobre la partícula m no se ejerce ninguna fuerza cuando se encuentra al interior del casquete. Si v_0 es la velocidad con que llega a la superficie, entonces el tiempo de travesía es $t_0 = 2R/v_0$. Para calcular la velocidad v_0 hacemos uso del hecho de que la energía debe conservarse. La energía de m en el punto de partida es

$$E_i = -\frac{GMm}{3R} \; , \qquad$$

mientras que cuando llega a la superficie es

$$E_f = -\frac{GMm}{R} + \frac{1}{2}mv_0^2 \; .$$

Igualando las dos expresiones se deduce que

$$v_0^2 = \frac{4GM}{3R}$$

Al interior del casquete no hay fuerzas sobre la masa m y, por lo tanto, su velocidad se mantiene contante. Para el tiempo de travesía se obtiene

$$t_0 = \sqrt{\frac{3R^3}{GM}} \; .$$

Capítulo 12

Fluidos

12.1. Conceptos Preliminares

Un fluido es una substancia incapaz de soportar fuerzas de cizalla. Es ésta la propiedad que distingue a un sólido de un fluido. En la figura 12.1 se muestra una placa, la cual se intenta deslizar hacia la derecha mediante la aplicación de una fuerza F. Un pasador sólido evita que esto ocurra. Sin embargo, cuando el pasador es sustituido por un líquido o un gas, la placa comenzaría a deslizarse (aun para fuerzas Fpequeñas). El fluido no es capaz de ejercer una fuerza de cizalla para mantener el equilibrio.

La densidad de una sustancia es la razón entre su masa y volumen: $\rho = m/V$. La densidad del agua, a 4°C, es 1.00 g/cm³ (es el valor máximo de la densidad del agua).

Los fluidos se dividen en dos subclases: los líquidos y los gases. Los líquidos se caracterizan por ocupar un volumen definido independiente del volumen del recipiente que lo contiene. Un gas, por otra parte, tiende a expandirse y a ocupar todo el volumen del recipiente que lo contiene. La compresibilidad del fluido es otra propiedad marcadamente distinta en los líquidos y en los gases. Un líquido es bastante incompresible y en la gran mayoría de las aplicaciones se puede suponer que su densidad es constante. Lo opuesto es cierto para los gases. Éstos son sustancias muy compresibles y generalmente no se puede suponer que su densidad sea constante.

A pesar de que los fluidos están constituidos por moléculas, en le presente capítulo se tratan como un medio continuo. El uso de los aspectos macroscópicos de un fluido está justificado cuando el *camino libre medio* (es decir, la distancia media que alcanza a recorrer una molécula del fluido antes de colisionar con otra) es mucho menor que las distancias involucradas del sistema bajo consideración.

Sea F una fuerza que actúa en forma perpendicular sobre un área A. Se define la *presión* P por la relación

$$P \equiv \frac{F}{A}$$

Considere un fluido en reposo (por ejemplo, un vaso de agua, una piscina o una lago). Al sumergir un objeto en el fluido, éste ejercerá una fuerza sobre las superficies del objeto. La fuerza por unidad de área (o presión) que ejerce un fluido sobre los objetos (o superficies) con las que está en contacto, tiene varias propiedades importantes:

- a) La fuerza que un fluido en reposo ejerce sobre una superficie es siempre perpendicular a ella. Esto está directamente relacionado con el hecho de que un fluido es incapaz de ejercer una fuerza de cizalla.
- b) Un fluido, en un punto particular, ejerce la misma presión en todas las direcciones (*Principio de Pascal*). En otras palabras, la presión es una magnitud *escalar*. Si sumergimos en el fluido un cubo infinitesimal, la fuerza sobre todas las caras del cubito será la misma, siendo su magnitud F = PA. Aquí A es el área de una de las caras del cubito y P es la presión del fluido en el lugar donde se encuentra el cubio (estamos despreciando variaciones de la presión sobre distancias del tamaño del cubito).
- c) Los lugares isobáricos (de igual presión) en un fluido en reposo (y de densidad constante) son los planos horizontales. En la figura 12.2, en los puntos A, B, C, D y Ela presión es la misma. También la presión es igual en los puntos $F, G, H \in I$. La presión es mayor en puntos ubicados a mayor profundidad. En el punto J la presión es menor que en el punto F.

Figura 12.2

12.2. La presión atmosférica P_0

La presión en la superficie de un fluido que se encuentra en un recipiente abierto a la atmósfera no es nula, sino igual a la presión atmosférica. Esta última se debe a que estamos inmersos en un fluido (compresible) constituido por el aire. La atmósfera de la Tierra ejerce una presión sobre todos los objetos con los que está en contacto, en particular sobre otros

fluidos. La presión atmosférica sobre la superficie terrestre la denotaremos por P_0 , y es igual a la presión ejercida por el peso de toda la columna de aire que está por encima.

 P_0 no es despreciable o insignificante como algunas personas suelen creer. Por el contrario, la presión atmosférica juega un papel importante en numerosos aparatos y máquinas de la vida diaria.

Antes de continuar digamos algo sobre las unidades de la presión:

En el sistema SI, la unidad de presión es el Pascal: 1 Pa = 1 N/m². A 10⁵ Pa se le suele llamar *bar*, o sea 1 bar = 10⁵ Pa. Observe que 1 bar es aproximadamente la presión que ejerce una masa de 1 kg si ésta está apoyada sobre un área de 1 cm². En efecto,

1 Kg/cm² =
$$\frac{9.81 \text{ N}}{0.0001 \text{ m}^2} = 0.981 \cdot 10^5 \text{ N/m}^2 = 0.981 \text{ bar.}$$

También observe que 1 kg es la masa de una columna de agua de 10 m de altura y 1 cm² de sección transversal.

Otra unidad frecuentemente usada para medir la presión es la *atmósfera* (atm). 1 atm corresponde a la presión promedio que ejerce la atmósfera terrestre a nivel del mar. Experimentalmente se encuentra que ésta es aproximadamente $1,013 \cdot 10^5 \text{ N/m}^2 = 1.013$ bar. Se define la *atmósfera estándar* por

$$1 \text{atm} = 1,0135 \cdot 10^5 \text{N/m}^2 = 1,0135 \text{bar}$$

O sea, y esto es útil recordar, 1 atm es aproximadamente igual a un bar e igual a la presión que ejerce el peso de una masa de 1 kg sobre 1 cm^2 , que a su vez es igual a la presión adicional ejercida por una columna de agua a 10 metros de altura.

La palma de una mano tiene un área de aproximadamente 100 cm^2 , luego la fuerza que ejerce la atmósfera sobre la palma extendida es aproximadamente igual a la que ejercería una masa de 100 kg apoyada sobre ella. La fuerza sobre la palma es balanceada por una fuerza igual y contraria aplicada sobre el dorso de la mano.

Considere un tubo de 1 m de largo y sección transversal A, cerrado por uno de los extremos. Llenemos el tubo con mercurio y coloquemos el tubo, con el extremo abierto hacia abajo, en un recipiente con mercurio. Observaremos que el nivel de mercurio se situará a aproximadamente 760 mm del nivel del recipiente (ver figura 12.3). El extremo superior del tubo queda al vacío.

Apliquemos la segunda ley de Newton a la columna de mercurio (que sobresale de la superficie del líquido en el recipiente). ¿Cuáles son las fuerzas que actúan sobre ella?

Figura 12.3
Hay sólo dos: por una parte está la presión que el fluido que está en el recipiente ejerce sobre el mercurio que está en el tubo: tal fuerza es $\vec{F_1} = P_0 A \hat{z}$; por otra, está el peso del mercurio al interior de la columna, $\vec{F_2} = -Ah\rho_{\text{Hg}}g\hat{z}$. Como el fluido está en reposo la fuerza neta debe ser nula, o sea

$$P_0 A = A h \rho_{\mathrm{Hg}} g$$
.

La densidad del mercurio es $\rho_{\rm Hg} = 13.6 \text{ g/cm}^3$. Con esto obtenemos par P_0 el valor

$$P_0 \simeq 1.014 \cdot 10^5 \text{ Pa} = 1 \text{ atm}$$
.

¡La fuerza que eleva l mercurio al interior del tubo es la presión atmosférica! El dispositivo que acabamos de describir es un *barómetro de mercurio*. La altura de la columna de mercurio mide la presión atmosférica. La presión atmosférica promedio a nivel del mar corresponde a 760 mm de mercurio.

Al repetir el mismo experimento, pero con una columna de agua, la altura será 13.6 veces mayor (recuerde que la densidad del mercurio es 13.6 g/cm³ y la del agua 1 g/cm³). Multiplicando los 76 cm por 13.6 se obtienen 10.34 m. Este dato es muy importante, ya que interviene en varias aplicaciones tecnológicas. Por ejemplo, al intentar elevar agua de un pozo (cuya superficie está en contacto con el aire que nos rodea) succionando por el extremo superior de un tubo largo, sólo se tendrá éxito si el nivel de agua no está a más de 10.34 metros de profundidad (en la práctica esta altura es menor ya que el agua comienza a hervir bastante antes de llegar a los 10.34 metros).

12.3. Principio de Arquímedes

Al sumergirnos en un fluido, la presión aumenta. Evaluemos este aumento de presión para un fluido incompresible (líquido) de densidad ρ . para ello consideremos el fluido contenido en un paralelepípedo imaginario de altura h y área A. Una de las caras de área A la ubicamos de manera que coincida con la superficie del líquido mientras que la otra queda a una profundidad h (ver figura 12.4). Por lo dicho en la sección anterior, la presión P = P(h) es sólo una función de la profundidad h.

Figura 12.4

Es claro que las fuerzas netas horizontales ejercidas por el fluido externo sobre el paralelepípedo son nulas, de lo contrario el fluido del paralelepípedo aceleraría —lo que estaría en contradicción con la suposición de que el fluido se encuentra en reposo.

Las fuerzas que actúan sobre el paralelepípedo en la dirección vertical son: i) la fuerza que el aire ejerce sobre la cara superior, que es $\vec{F_1} = -P_0A\hat{z}$, ii) la fuerza que el fluido (exterior) ejerce sobre la cara inferior, que es $\vec{F_2} = P(h)A\hat{z}$ y iii) la fuerza debida al peso del paralelepípedo con su fluido. Esta fuerza de gravedad es $\vec{F_3} = -(\rho Ah)g\hat{z}$. Como el paralelepípedo está en equilibrio, la fuerza total debe ser nula, es decir,

$$0 = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = (-P_0A + P(h)A - \rho Ahg)\hat{z} .$$

De la ecuación anterior se deduce que

$$P(h) = P_0 + \rho g h ,$$

donde P_0 es la presión atmosférica que actúa sobre la superficie del fluido. Observe que el aumento de la presión con la profundidad es igual a la presión ejercida por el peso de la columna del fluido que se encuentra por encima.

Estamos en condiciones de demostrar el Principio de Arquímedes:

Al sumergir un cuerpo parcial o totalmente en un fluido aparece una fuerza llamada empuje que actúa sobre el cuerpo y apunta en la dirección opuesta a la gravedad. La magnitud del empuje es $F_e = \rho gV$, donde ρ es la densidad del fluido y V es el volumen del fluido que fue desplazado por el cuerpo.

Para demostrar este principio observe primeramente que la fuerza que el líquido ejerce sobre cada parte de la superficie del cuerpo sumergido o parcialmente sumergido es independiente del material de que está hecho. Por lo tanto, en lo que a empuje respecta, podemos reemplazar la parte sumergida del cuerpo A por un líquido igual al líquido que lo rodea (ver figura 12.5). Si ρ es la densidad del líquido y V_s el volumen de la parte sumergida del cuerpo A, entonces el peso del cuerpo B es $\vec{W} = -\rho V_s g \hat{z}$. Por supuesto que el cuerpo B estará en equilibrio, por consiguiente la fuerza de empuje que el líquido exterior ejerce sobre B debe exactamente contrarrestar el peso. Luego la fuerza de empuje es $\vec{F}_e = \rho V_s g \hat{z}$.

Figura 12.5

Más aún, el cuerpo B está en equilibrio neutro (es decir, dentro del líquido lo podemos trasladar a cualquier punto y orientarlo en cualquier dirección, quedando en reposo), luego la fuerza de empuje debe estar actuando como si estuviera aplicada en el centro de gravedad de B. Esto es un dato de importancia para analizar el equilibrio de objetos flotantes o sumergidos.

Ejemplo: Considere tres cubos del mismo tamaño, adheridos tal como se muestra en la figura 12.6. El material del cual están hechos los dos cubos A y B es $\rho_1 = 0.5$ g/cm³, mientras que el cubo C está hecho de un material de densidad $\rho_2 = 2$ g/cm³. Observe que la densidad media de los tres cubos es igual a la del agua ($\rho = 1$ g/cm³) y, por lo tanto, al sumergirlo en agua, la fuerza de empuje exactamente cancela el peso. ¿Cuál será la orientación de equilibrio estable que el objeto adquirirá cuando está "flotando" rodeado de agua?

Figura 12.6

Las únicas fuerzas que están actuando sobre el objeto son el peso \vec{W} y el empuje $\vec{F_e}$. Ya sabemos que ambas fuerzas tienen la misma magnitud y apuntan en direcciones opuestas y, por lo tanto, la fuerza neta sobre el objeto es nula. Pero para que se encuentre en equilibrio también el torque neto debe ser nulo. Esto se logra sólo si ambas fuerzas son colineales (actúan a lo largo de la misma recta). Encontremos los puntos en que actúan las dos fuerzas.

La gravedad actúa en el centro de masas. El centro de masas de los cubos $A ext{ y } B$ se encuentra en $a ext{ y }$ el centro de masas de C se encuentra en b. El centro de masas del objeto completo se encontrará sobre la recta que une $a ext{ con } b$. Como el cubo C tiene el doble de masa de los dos cubos A + B juntos, el centro de masas del objeto completo se ubicará más cerca de b que de a. En la figura 12.7 hemos designado el centro de masas del objeto completo se ubicará más cerca de b que de a. En la figura 12.7 hemos designado el centro de masas del objeto completo se ubicará más cerca de b que de a. En la figura 12.7 hemos designado el centro de masas del objeto completo con el número 1. Se tiene que $\overline{b, 1} = \overline{a, b}/3$.

La fuerza de empuje, por otra parte, actúa en el centro de masas que se obtiene al sustituir los tres cubos por agua (en la figura lo hemos designado con el número 2).

Figura 12.7

Nuevamente el centro de masas de los cubos A+B se encuentra en a, mientras que el de C se encuentra en b. El centro de masas de los centros de masas nuevamente se encontrará sobre la recta $\overline{a, b}$. Pero ahora los cubos A+B pesan el doble de lo que pesa C, luego el centro de masas ahora estará más cerca de a que de b. De hecho, el centro de masas cuando los tres cubos están hechos de agua debe estar sobre el plano de simetría indicado en la figura con una línea punteada.

En resumen, la fuerza de gravedad actúa en 1 y el empuje actúa en 2. Para que no haya torque sobre el sistema la recta $\overline{a, b}$ debe orientarse a lo largo de la vertical. Concluimos que

el ángulo β de la figura 12.6 debe coincidir con el de la figura 12.7. Se deduce inmediatamente que tan $\beta = 1/2$. Convénzase de que el equilibrio es estable cuando el punto 2 está sobre el punto 1 e inestable cuando 1 está sobre 2.

12.4. La fórmula barométrica

Considere N moléculas de un gas confinadas en un volumen V y a una temperatura T. Si la ecuación de los gases ideales es aplicable se tiene que

$$PV = Nk_BT$$
.

Aquí P es la presión del gas y $k_B = 1,38 \cdot 10^{-16}$ erg/K es la constante de Boltzmann. Sea m la masa de cada molécula, entonces

$$P = \frac{Nm}{V} \frac{k_B T}{m} = \rho \frac{k_B T}{m} ,$$

donde ρ es la densidad de masa del gas. De esta relación se deduce que, mientras la temperatura se mantenga constante, la presión de un gas es proporcional a su densidad. En particular, si ρ_0 y P_0 son la densidad y presión de la atmósfera al nivel del mar (z = 0) y $\rho(z)$ y P(z) son las mismas magnitudes, pero a una altura z (por sobre el nivel del mar), entonces

$$\frac{P_0}{P(z)} = \frac{\rho_0}{\rho(z)} \; .$$

Por otra parte (ver figura 12.8), la presión a una altura z es la misma que la que hay a una altura z es la misma que la que hay a una altura z + dz más la presión ejercida por el peso del gas que hay entre las alturas z y z + dz, o sea,

$$P(z) = P(z + dz) + \rho(z)g dz .$$

Esta ecuación se puede reescribir de la forma

$$\frac{dP}{dz} = -\rho(z)g = -\frac{g\rho_0}{P_0}P(z) .$$
 (12.1)

Figura 12.8

Ésta es la *ecuación diferencial* que gobierna el comportamiento de la presión atmosférica (a temperatura constante). Para resolver esta ecuación debemos antes discutir la *función exponencial*.

La función exponencial

La ecuación diferencial del tipo

$$\dot{f}(t) = \frac{df(t)}{dt} = \Gamma f(t) , \qquad (12.2)$$

donde Γ es una constante (real o compleja), aparece frecuentemente en las ciencias naturales (y también en las ciencias económicas). Es muy importante discutir y analizar sus soluciones. Una ecuación diferencial es una ecuación que involucra una función y sus derivadas (primera, segunda, etc.). La derivada de más alto orden que aparece en la ecuación define el *orden* de la ecuación diferencial. La ecuación diferencial (12.2) es de primer orden.

Nos interesa encontrar la solución más general de (12.2). Un resultado importante de la teoría de ecuaciones diferencial (y que no demostraremos aquí) es que la solución general de una ecuación diferencial de orden n tiene n constantes arbitrarias. En otras palabras, sabremos que tenemos la solución general de la ecuación (12.2) si ésta tiene una constante que se puede elegir arbitrariamente. Una vez que se ha encontrado la solución general, la constante arbitraria se elige de manera que la solución corresponda a la solución del problema planteado (o sea, cumpla con las condiciones iniciales).

Ejemplo: Consideremos la ecuación diferencial $\ddot{z} = a_0$. Ésta es una ecuación diferencial de segundo orden. La solución general es $z(t) = z_0 + v_0 t + a_0 t^2/2$. La solución general tiene dos constantes arbitrarias $z_0 y v_0$, las que deben elegirse de manera que la solución corresponda a la situación física concreta que se está considerando.

Definamos la función $\exp(t)$ mediante la serie

$$\exp(t) = 1 + \frac{t}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots$$
 (12.3)

Es evidente que su derivada es igual a la función, es decir,

$$\frac{d}{dt}\exp(t) = \exp(t) \; .$$

Ejercicio: Demuestre que la función $f(t) = A \exp(\Gamma t)$, donde A es una constante arbitraria, es la solución general de la ecuación

$$f(t) = \Gamma f(t)$$
.

Como consecuencia del ejercicio anterior concluimos que la solución general de la ecuación (12.1) es

$$P(z) = A \exp\left(-\frac{g\rho_0}{P_0}z\right) \;,$$

donde la constante arbitraria A se determina exigiendo que la presión en z = 0 sea P_0 . Esto nos da la condición $A = P_0$. De esta manera obtenemos la *fórmula barométrica*

$$P(z) = P_0 \exp\left(-\frac{g\rho_0}{P_0}z\right)$$

Reiteramos que este resultado, que nos da la presión barométrica en función de la altura, es sólo aproximadamente correcto ya que, contrariamente a nuestra suposición, la temperatura de la atmósfera normalmente disminuye a medida que uno se eleva. **Ejercicio:** Demuestre que la función $f(t) = \exp(\Gamma_1 t) \exp(\Gamma_2 t)$ es una solución de la ecuación diferencial

$$\dot{f}(t) = (\Gamma_1 + \Gamma_2)f(t)$$
.

Por consiguiente, $f(t) = \exp(\Gamma_1 t) \exp(\Gamma_2 t)$ debe poder escribirse de la forma $f(t) = A \exp((\Gamma_1 + \Gamma_2)t)$. Demuestre que en ese caso A = 1, o sea

$$\exp(\Gamma_1 t) \exp(\Gamma_2 t) = \exp((\Gamma_1 + \Gamma_2)t) . \tag{12.4}$$

Observe que esta relación justifica la introducción de la notación

$$\exp(\Gamma t) = e^{\Gamma t}$$

La función $e^t = \exp(t)$ se llama función exponencial.

Ejercicio: Evaluando la serie (12.3) para t = 1, demuestre que e = 2,718...

Problemas (relacionados con la función exponencial)

- 1. Suponiendo que la atmósfera tiene una temperatura constante, determine la presión atmosférica a 10 km de altura. (La densidad del aire, en la vecindad de la superficie terrestre, a 20°C, es aproximadamente $\rho_0 = 1,29 \text{ kg/m}^3$.)
- 2. Considere un cilindro de radio R sobre el cual se apoya una cuerda. Sea μ_e el coeficiente de roce estático entre la cuerda y el cilindro. Suponga que en uno de los extremos de la cuerda está colgando una masa M. ¿Cuál es la mínima masa que debe colgarse en el otro extremo para que la cuerda no resbale?

Respuesta: $m = M e^{-\mu_e \pi}$.

3. La cantidad de núcleos de un elemento radiactivo que decae en un intervalo [t, t'] es proporcional al número de núcleos no decaídos que se tenía inicialmente (en el instante t). Demuestre que la afirmación anterior implica que

$$N(t) = N_0 e^{-\lambda t} ,$$

donde N(t) es el número de núcleos en el instante t que no ha decaído, N_0 la misma magnitud pero en el instante t = 0 y λ es una constante positiva (la así llamada constante de desintegración).

Para el caso en que $\lambda = 0.01 \text{ s}^{-1}$, determine el tiempo que debe transcurrir para que decaiga la mitad de los núcleos.

4. Suponga que cierto banco (en el país de las maravillas) para intereses a una tasa de 100 % anual sobre los depósitos, y más aún, los paga en forma continua, sumando los intereses al capital depositado. Si una persona deposita \$1000, ¿cuánto le devolverá el banco al cabo de un año?

Respuesta: $2718.28... = e \cdot 1000.$

12.5. Tensión superficial

Entre dos moléculas de un fluido actúan fuerzas. Estas fuerzas, llamadas *fuerzas de van der Waals* o *fuerzas cohesivas* son de origen eléctrico. Una de las características de estas fuerzas es que su alcance es muy pequeño (rápidamente se desvanecen cuando la distancia entre las moléculas es dos o tres veces su tamaño); otra característica es que mientras las moléculas no se traslapan, la fuerza es atractiva.

El efecto neto de las fuerzas de cohesión sobre una molécula que está en el interior del líquido es nulo, pero no así para una molécula que se encuentra en la superficie (ver figura 12.9). Para poner una molécula en la superficie hay que realizar un trabajo. O sea, la existencia de una superficie en un fluido introduce una energía potencial. Esta energía es proporcional a la superficie y se tiene que

Figura 12.9

$$dW = \sigma \, dA$$

Aquí σ es una constante que depende del fluido y se llama tensión superficial y dA es un elemento (infinitesimal) de superficie. En realidad la tensión superficial depende de las dos substancia que están en contacto. La siguiente tabla da valores de la tensión superficial para algunos casos.

Substancia	En contacto con	Temp. °C	σ [N/m]
Agua	aire	0	0.0756
Agua	aire	20	0.07275
Agua	aire	80	0.0626
Hg	vacío	20	0.475
Hg	aire	20	0.436
Alcohol metílico	aire	20	0.0227
Glicerol C ₃ H ₈ O ₃	aire	20	0.0634
Solución jabonosa	aire	20	$\simeq 0.025$

Para medir la tensión superficial se puede usar el dispositivo mostrado en la figura 12.10. Un alambre movible, inicialmente sumergido, se tira lentamente, extrayéndolo del líquido (con una película del líquido adosada). Midiendo la fuerza F se puede deducir σ . En efecto, al mover el alambre movible a una altura h a h+dh, el trabajo que se realiza es dW = F dh.

Figura 12.10

Por otra parte, la superficie de la película aumenta en dA = 2L dh (el factor 2 se debe a que la película tiene una superficie a cada lado). Se tiene

$$\sigma = \frac{dW}{dA} = \frac{F \, dh}{2L \, dh} = \frac{F}{2L} \, .$$

Problema: Deseamos encontrar la diferencia de presión entre el interior y exterior de una pompa de jabón de radio R = 1 cm.

Si, soplando con una pajita, aumentamos el radio de la pompa de R a R + dR, entonces la superficie aumenta en

$$dA = 2 \cdot (4\pi (R + dr)^2 - 4\pi R^2) = 16\pi R \, dR \; .$$

El factor 2 nuevamente se debe a que hay que considerar tanto la superficie interior como exterior de la pompa. El cambio de energía debido al aumento de la superficie es por lo tanto

$$dW = \sigma \, dA = 16 \sigma \pi R \, dR \; .$$

Por otra parte, podemos evaluar el trabajo directamente, multiplicando el desplazamiento dR por la fuerza $\Delta P \cdot 4\pi R^2$, es decir,

$$dW = \Delta P \cdot 4\pi R^2 \, dR \; .$$

Igualando las dos últimas expresiones se encuentra la diferencia de presión

$$\Delta P = \frac{4\sigma}{R} \; .$$

Con $\sigma = 0.025$ N/m y R = 0.01 m se obtiene $\Delta P = 10$ N/m². Si se deja de soplar por la pajita, la pompa se desinfla.

Observe que la presión al interior de una pompa de jabón es mayor tanto más pequeño es su radio. De esta observación se deduce que al juntarse una pompa de jabón grande con una pequeña, la pequeña inflará a la más grande. De esta manera la pompa grande aumentará su tamaño mientras que la pequeña disminuirá: en otras palabras, la más grande absorberá a la más pequeña.

12.6. Capilaridad

La fuerza entre moléculas de dos substancias distintas se llama *fuerza de adhesión*. Consideremos una pequeña cantidad de líquido (medio #2) en contacto con una superficie sólida plana(medio #3) y ambos en contacto con un gas (medio #1) (ver figura 12.11). Sea $\{\sigma_{i,j}\}$, con i, j = 1, 2, 3 las tensiones superficiales para las distintas interfases de la figura 12.11.

Si la fuerza de adhesión (entre el líquido y el sólido) es mucho mayor que la fuerza de cohesión (entre las moléculas del líquido), entonces el líquido tenderá a esparcirse sobre el sólido (ver figura 12.6a). En este caso se dice que el líquido *moja* al sólido.

Figura 12.11

Por otra parte, si la fuerza de adhesión es mucho menor que la fuerza de cohesión, entonces el líquido tenderá a concentrarse, adquiriendo una forma compacta tipo gota (ver figura 12.11 b).

Como resultado de esta competencia entre las distintas fuerzas de adhesión y cohesión, se forma un ángulo de contacto α bien característico entre el líquido y el sólido. Experimentalmente se determina que este ángulo de contacto para las substancias agua-vidrio es aproximadamente 0°, mientras que para mercurio-vidrio $\alpha = 140^{\circ}$.

Considere la línea Γ a lo largo de la cual conviven las tres fases. Conocemos la magnitud y la dirección de la fuerza sobre Γ proveniente de la tensión superficial del líquido. Por el principio de acción y reacción, el sólido ejercerá sobre el líquido una fuerza de la misma magnitud pero en dirección opuesta. Esta fuerza es la que hace subir un fluido por un capilar.

Consideremos un tubo fijo, de diámetro interior muy pequeño 2r y con un extremo inmerso verticalmente en un líquido cuya tensión superficial es σ . El largo de la línea Γ en este caso es $2\pi r$. La fuerza que el tubo ejerce sobre el líquido a través de la tensión superficial es

$$F = \sigma(2\pi r) \cos \alpha \; ,$$

donde α es el ángulo de contacto del líquido con el material del tubo. Esta fuerza debe compensarse exactamente con el peso del líquido (que está por sobre el nivel exterior).

Figura 12.12

El peso del líquido que subió por el tubo capilar es

$$F_q = \rho_0(\pi r^2 h)g \; ,$$

donde ρ_0 es la densidad del líquido. Igualando las dos fuerzas se obtiene para la altura máxima h a la que sube el líquido la expresión

$$h = \frac{2\sigma \cos \alpha}{\rho_0 g r}$$

Ejemplo: Los xilemas que trasportan los nutrientes en una plante típicamente tienen un radio de 10^{-3} cm. Evaluemos la altura máxima a la que podrán llegar los nutrientes. Supondremos que el ángulo de contacto $\alpha = 0$ y para la densidad y tensión superficial del líquido usaremos la del agua.

Usando la fórmula expuesta más arriba se encuentra que $h \simeq 1,5$ m. La capilaridad es efectivamente uno de los mecanismos que las plantas usan para elevar la savia, sin embargo, no puede ser el mecanismo responsable para elevar el agua de las raíces hasta la punta de los árboles grandes (cuya altura puede superar los 100 metros), ya que para ello los xilemas tendrían que tener un diámetro 100 veces menor.

12.7. Fluidos en movimiento

Consideraciones preliminares

Los fluidos en movimiento se pueden clasificar con respecto a varios aspectos. Uno de ellos es la compresibilidad. La *hidrodinámica* se preocupa de estudiar el flujo de fluidos incompresibles, mientras que la *aerodinámica* analiza los flujos de fluidos compresibles. Notamos, sin embargo, que incluso los gases pueden aproximadamente como incompresibles mientras su velocidad no supere a la tercera parte de la velocidad del sonido.

Otro aspecto clasificatorio se introduce respecto al roce interno. Se tiene el flujo de un *fluido ideal* si se ignoran todos los efectos debido al roce interno (es decir, se ignora la *viscosidad* del fluido). En caso contrario se estará considerando flujos de *líquidos y gases reales*.

La trayectoria de un pequeño elemento de fluido define una *línea de corriente* o *línea de flujo*. A su vez todo un haz de líneas de flujo define un *tubo de flujo* (ver figura 12.13) también podemos clasificar los fluidos en movimiento con respecto al comportamiento de sus líneas de corriente. Si éstas no varían a medida que transcurre el tiempo se tiene un *flujo estacionario* o *flujo laminar*; en caso contrario, el flujo es *turbulento*.

Figura 12.13

En un flujo laminar, dos líneas de corriente cercanas entre sí en cierto lugar, se mantendrán cercanas en todas partes. También dos líneas de corriente del fluido nunca se cruzan. Cuando el flujo es turbulento entonces elementos de fluido que inicialmente están infinitesimalmente cerca pueden llegar a estar separados por distancias macroscópicas a medida que transcurre el tiempo. El flujo del fluido en este caso es caótico y se forman remolinos erráticos (llamadas también *corrientes parásitas*).

Figura 12.14

La disipación de energía es mucho mayor cuando el flujo es turbulento que cuando es laminar.

Ecuación de continuidad

Consideremos un tubo de flujo como, por ejemplo, el que se muestra en la figura 12.7. Sean A_1 , ρ_1 y v_1 el área transversal del tubo, la densidad y velocidad del fluido en la entrada del tubo y A_2 , ρ_2 y v_2 las mismas magnitudes pero a la salida del tubo. Para un flujo estacionario, la cantidad de fluido que ingresa por el tubo durante un intervalo de tiempo dt debe coincidir con la que emerge en ese mismo intervalo por el otro extremo, luego

$$\rho_1 A_1 v_1 dt = \rho_2 A_2 v_2 dt$$

relación a la que se denomina *ecuación de continuidad*. Cuando el flujo es incompresible, la densidad no cambia (o sea, $\rho_1 = \rho_2$), luego, para fluidos incompresibles, la ecuación de continuidad es

$$A_1v_1 = A_2v_2 \ .$$

Ecuación de Bernoulli

En lo que sigue consideraremos el flujo estacionario de un fluido ideal incompresible. Sean P_1 y P_2 las presiones a la entrada y salida de un tubo de flujo, respectivamente. Evaluemos el trabajo neto en el punto de entrada realizado por la presión sobre el fluido que está al interior del tubo. En un tiempo dt la sección transversal inicial avanza una distancia $v_1 dt$, siendo el trabajo sobre el fluido

$$W_1 = F_1 v_1 dt = P_1 A_1 v_1 dt$$
.

Por otra parte, el fluido que emerge del tubo realiza un trabajo igual a

$$W_2 = F_2 v_2 dt = P_2 A_2 v_2 dt$$
.

La diferencia es el trabajo neto realizado sobre el fluido:

$$dW = W_1 - W_2 = (P_1 A_1 v_1 - P_2 A_2 v_2) dt .$$

Este trabajo neto hecho sobre el fluido debe ser igual al cambio de energía (potencial y cinética) del fluido:

$$dW = dU + dK \; .$$

Si z_1 es la altura del fluido a la entrada del tubo y z_2 la altura a la salida, el cambio de energía potencial es

$$dU = (\rho A_2 v_2 dt) z_2 g - (\rho A_1 v_1 dt) z_1 g .$$

El cambio de energía cinética es

$$dK = \frac{1}{2} (\rho A_2 v_2 \, dt) v_2^2 - \frac{1}{2} (\rho A_1 v_1 \, dt) v_1^2 \; .$$

De las ecuaciones anteriores se obtiene

$$(P_1A_1v_1 - P_2A_2v_2) dt = [(\rho A_2v_2 dt)z_2g - (\rho A_1v_1 dt)z_1g] + \frac{1}{2}(\rho A_2v_2 dt)v_2^2 - \frac{1}{2}(\rho A_1v_1 dt)v_1^2 .$$

Usando la ecuación de continuidad, se encuentra

$$P_1 - P_2 = \rho g(z_2 - z_1) - \frac{1}{2} \rho \left(v_2^2 - v_1^2 \right) ,$$

o sea, para cualquier punto a lo largo de un tubo de flujo,

$$P + \rho g z + \frac{1}{2} \rho v^2 = \text{constante} .$$

Esta última relación, consecuencia directa del teorema de conservación de la energía, se conoce con el nombre de *ecuación de Bernoulli*. Es importante recalcar que la ecuación de Bernoulli recién deducida es sólo válida para fluidos ideales, o sea aplicable sólo a situaciones en las cuales la viscosidad es despreciable.

12.8. Aplicaciones del principio de Bernoulli

Supondremos implícitamente que en todos los casos analizados en la presente sección que el fluido bajo consideración es ideal y que el flujo es estacionario. En la práctica los resultados obtenidos aquí serán sólo una primera aproximación al problema estudiado. Para una descripción más precisa es necesario incluir en el formalismo los efectos introducidos por la viscosidad. **Problema 1:** Un tambor de altura h y área A, parado y abierto por la tapa superior (es decir, en contacto con la atmósfera), se encuentra lleno de agua. Asuma que en la parte inferior del manto se abre un tapón de sección transversal a. ¿Cuánto tiempo tardará en vaciarse el tambor?

Solución: Apliquemos la ecuación de Bernoulli en los puntos 1 y 2, en la parte superior del fluido en el tambor y una vez que ha emergido del tambor (figura 12.14). En ambos lugares la presión del fluido es igual a la presión atmosférica P_0 .

Figura 12.15

Elijamos el origen del eje vertical en la base del tambor. De acuerdo a la ecuación de Bernoulli se tiene

$$P_0 + \rho g h + 0 = P_0 + 0 + \frac{1}{2} \rho v^2 ,$$

donde v es la velocidad del fluido a la salida del tambor. La velocidad, por lo tanto, es

$$v = \sqrt{2gh}$$
 .

Esta última relación se llama teorema de Torricelli. Observe que la velocidad del fluido es la misma que la que adquiere un objeto cuando cae una distancia h.

Supongamos ahora que en cierto instante el fluido dentro del tambor está a una altura z. El volumen de fluido que emerge en un tiempo dt es av dt, lo que hace bajar el nivel del tambor en dz = -av dt/A. Tenemos que

$$-\frac{dz}{dt} = \frac{a}{A}v = \frac{a}{A}\sqrt{2gz} \; ,$$

o, escribiéndolo de otra forma,

$$-rac{dz}{\sqrt{z}} = rac{a}{A}\sqrt{2g}\,dt$$
 .

Integrando la última ecuación desde que se comienza a evacuar el tambor hasta que esté vacío, se obtiene:

$$-\int_{z=h}^{z=0} \frac{dz}{\sqrt{z}} = \frac{a}{A}\sqrt{2g} \int_{t=0}^{t=T} dt$$
$$-\left(2z^{1/2}\Big|_{h}^{0}\right) = \frac{a}{A}\sqrt{2gt}\Big|_{0}^{T}$$
$$2\sqrt{h} = \frac{a}{A}\sqrt{2gT} .$$

El tiempo que demora en evacuarse el tambor es

$$T = \frac{2A}{a} \sqrt{\frac{h}{2g}}$$

Problema 2: Considere un sifón consistente de un tubo con un diámetro constante de 10 cm, con el cual se extrae agua de una represa. Con las alturas mostradas en la figura 2.15, evalúe el flujo que pasa por el tubo.

Solución: Apliquemos la ecuación de Bernoulli en los puntos 1 y 2. Se tiene que

$$P_0 + \rho g(h_2 - h_1) + 0 = P_0 + 0 + \frac{1}{2}\rho v^2 , \qquad Figura \ 12.16$$

donde v es la velocidad del agua al interior del tubo. Como el fluido es incompresible y el diámetro del tubo no cambia, la velocidad para un fluido ideal al interior del tubo en todos los lugares es la misma. Para la velocidad v se obtiene

$$v = \sqrt{2g(h_2 - h_1)} \; .$$

El volumen de agua que pasa por el tubo en un tiempo dt es

$$dV = Av \, dt \; ,$$

donde A es la sección transversal del tubo. Sustituyendo los valores del enunciado se obtiene

$$\frac{dV}{dt} = \pi (0.05)^2 \sqrt{2 \cdot 9.81 \cdot 4} \text{ m}^3/\text{s} \simeq 70 \text{ litros/s} .$$

¿Cuál es la presión en el punto 3 (al interior del tubo, a la altura del nivel de agua del tranque)?

Para responder esta interrogante aplicamos la ecuación de Bernoulli en los puntos 2 y 3. Tenemos

$$P_0 + 0 + \frac{1}{2}\rho v^2 = P_3 + \rho g(h_2 - h_1) + \frac{1}{2}\rho v^2$$

Acá P_3 es la presión del agua en el punto 3. Se obtiene

$$P_3 = P_0 - \rho g (h_2 - h_1)$$
.

Una columna de agua de 10 metros corresponde a aproximadamente la presión atmosférica P_0 . Por lo tanto, $\rho g(h_2 - h_1) = 0.4P_0$. Luego $P_3 \simeq 0.6P_0$.

Análogamente, para la presión en el punto 4 se obtiene

$$P_4 = P_0 - \rho g h_2 \simeq 0.4 P_0.$$

Observe que h_2 no puede sobrepasar los 10 metros, ya que de lo contrario la columna de agua se corta.

0

 $h_2 = 6 \text{ m}$

2

4

 $h_1 = 2 \text{ m}$

3

agua

Otras aplicaciones

i) Atomizador:

Al pasar una corriente de aire por encima de un tubo abierto, se reduce la presión al interior del tubo. Si la velocidad del aire es v, la presión P justo encima del tubo es

$$P = P_0 - \frac{1}{2}\rho v^2 \; .$$

La disminución de presión provoca que el líquido suba por el tubo. Una vez que el líquido llega a estar en contacto con la corriente de aire, éste se atomiza. Este principio es usado en las botellas de perfume y en los aspersores de pintura.

ii) Tubo de Venturi:

Al hacer pasar un líquido por una tubería estrechada, en el lugar constreñido baja la presión. La disminución de la presión permite determinar la velocidad del fluido.

Figura 12.17

Figura 12.18

Si la tubería es horizontal (o sea, no hay cambios en la energía potencial del fluido) se tiene que

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$
.

Por otra parte, la ecuación de continuidad nos da la relación

$$A_1v_1 = A_2v_2$$
.

De las ecuaciones anteriores se deduce que

$$v_2 = A_1 \sqrt{\frac{2(P_1 - P_2)}{\rho \left(A_1^2 - A_2^2\right)}}$$

Si el flujo es suficientemente alto, el *tubo de Venturi* puede usarse para bombear. Por ejemplo, los extractores de saliva usados por los dentistas se basan en este principio.

iii) Efecto Magnus:

Consideremos un cilindro (o una esfera) en un fluido en movimiento. Si el cilindro rota en torno a un eje perpendicular a la corriente del fluido, y además hay roce viscoso entre le cilindro y el fluido, entonces el cilindro arrastrará al fluido haciendo que las velocidades del fluido a ambos lados del cilindro no sean iguales. En el caso mostrado en la figura adjunta, la velocidad es mayor arriba que abajo.

Figura 12.18

De acuerdo a la ecuación de Bernoulli, la presión en el lugar 1 serán inferior que en el lado 2 $(P_1 < P_2)$. Esta diferencia de presión genera una fuerza neta sobre el cilindro hacia arriba. Es este efecto, llamado *efecto Magnus*, el responsable de los así llamados "efectos" que pueden observarse en numerosos juegos de pelota. Justamente para aumentar el "efecto" las pelotas no deben ser completamente suaves en la superficie (pelusas en la pelota de tenis).

iv) Bomba de chorro (jet) de agua:

Por una tobera inyectora P se hace ingresar agua a alta velocidad en una cámara. De esta manera se genera una disminución de la presión en la vecindad de P, lo que a su vez permite aspirar el aire de un recipiente. El límite inferior a que puede bombear este dispositivo (usando agua y a temperatura ambiente) es de aproximadamente $P \simeq 2.7 \cdot 10^4$ Pa (la 1/40 ava parte de la presión atmosférica)

Figura 12.20

12.9. *Viscosidad

Entre las distintas moléculas de un fluido actúan fuerzas de adhesión. Por esta razón, cuando fluyen y distintas partes del fluido se mueven con velocidades relativas, aparecen *fuerzas de roce interno*, también llamada *viscosidad*. A pesar de que los fluidos no manifiestan resistencia a fuerzas de cizalla, la viscosidad hace que sí presenten cierta resistencia al deslizamiento.

Otra consecuencia de la viscosidad es que la velocidad del fluido que está en contacto con una superficie (de un sólido) es nula (con respecto a la superficie).

En esta sección sólo analizaremos casos en que el flujo es laminar.

Consideremos dos placas paralelas de área A, separadas por una distancia D y con un fluido entre ellas. Una de las placas la mantenemos fija y la otra se mueve (paralelamente) con velocidad v_0 (ver figura 12.21). El fluido en contacto con la placa superior se mueve con velocidad v_0 , mientras que el que está en contacto con la placa inferior está en reposo.

Figura 12.21

Newton experimentalmente encontró que para muchos fluidos la fuerza que se debe realizar para mantener la placa en movimiento es

$$F_r = \eta A \frac{v_0}{D} = \eta A \frac{dv}{dz}$$

o sea, es proporcional al área A y al gradiente (derivada) de la velocidad. La constante de proporcionalidad η es la viscosidad dinámica. Los fluidos que cumplen con esta relación se llaman fluidos newtonianos. La siguiente tabla da la viscosidad para algunas substancias:

Fluido	Temp. °C	viscosidad $\eta [\text{Ns/m}^2]$
Agua	0	$1,79 \cdot 10^{-3}$
Agua	20	$1,00\cdot10^{-3}$
Agua	100	$0,\!28\cdot10^{-3}$
Alcohol etílico	20	$1,2\cdot 10^{-3}$
Glicerina	0	12.11
Glicerina	20	1.49
Aire	-31.6	$1,54 \cdot 10^{-5}$
Aire	20	$1,\!83\cdot10^{-5}$
Aire	230	$2,\!64\cdot 10^{-5}$
Helio	20	$1,94 \cdot 10^{-5}$

(Otra unidad usada para medir la viscosidad es el *poise* $[P]: 1 [P] = 10 [Ns/m^2]$.) De la tabla se observa que la viscosidad es mucho mayor para los líquidos que para los gases. También se observa una fuerte dependencia de la temperatura. Para los líquidos la viscosidad disminuye al aumentar la temperatura, mientras que para los gases aumenta.

Flujo laminar en tubos

El efecto de la viscosidad en el flujo de fluidos por tubos de sección redonda es de gran importancia en muchas aplicaciones. Consideremos aquí un caso: el flujo estacionario de un líquido newtoniano por un tubo horizontal de largo L y radio R. Sean P_1 y P_2 las presiones del líquido en los dos extremos del tubo y determinemos el perfil de velocidad v(r) del fluido al interior del tubo y el flujo por unidad de tiempo. Sea v(r) la velocidad del fluido al interior del tubo. Sabemos que v(R) = 0, o sea, el fluido en contacto con el tubo está en reposo. Consideremos ahora el fluido encerrado al interior de un cilindro de radio r (ver figura 12.22). Llamemos A al fluido interior y B al fluido que está ubicado a distancia mayores que r. El área de contacto del fluido A con B es $2\pi rL$.

Figura 12.22

La fuerza que B ejerce sobre A es, por lo tanto,

$$ec{F_r} = \eta(2\pi rL) rac{dv(r)}{dr} \hat{x} \; .$$

Observe que dv/dr es negativo y, por lo tanto, la fuerza que el fluido exterior ejerce sobre A es contraria a la dirección del fluido. Como el flujo es estacionario, la fuerza total sobre el fluido A debe ser nula, o sea, la fuerza ejercida por las presiones P_1 y P_2 sobre el cilindro interno debe cancelar exactamente a la fuerza \vec{F}_r debida a la viscosidad:

$$P_1 \pi r^2 \hat{x} - P_2 \pi r^2 \hat{x} + \vec{F}_r = 0 \; .$$

De esta manera se deduce que

$$\frac{dv}{dr} = -\frac{P_1 - P_2}{2\eta L}r \; .$$

Integrando sobre r y fijando la constante de integración de manera que v(R) = 0 se encuentra el perfil de velocidades al interior del tubo (*ecuación de Poiseuille*):

$$v(r) = \frac{P_1 - P_2}{4\eta L} (R^2 - r^2) \; .$$

Este perfil es de forma parabólica.

Conocido el perfil de velocidades podemos evaluar el flujo dV/dt (la cantidad de fluido que atraviesa la sección transversal del tubo por unidad de tiempo). La cantidad de fluido que pasa entre dos cilindros concéntricos de radios r y r + dr en un tiempo dt es $(2\pi r dr)v(r) dt$. Sumando sobre todos los cilindros (integrando sobre r) se obtiene la cantidad de fluido dV que pasa por el tubo en un tiempo dt:

$$dV = \int_0^R (2\pi r \, dr) v(r) \, dt \; .$$

Se obtiene

$$\frac{dV}{dt} = 2\pi \frac{P_1 - P_2}{4\eta L} \int_0^R r(R^2 - r^2) \, dr = \frac{P_1 - P_2}{8\eta L} \pi R^4 \; .$$

Observe que la cantidad de agua que se puede hacer pasar por un tubo aumenta dramáticamente cuando se aumenta su diámetro. Aumentar la diferencia de presión en un factor 2 aumenta el flujo en ese mismo factor; aumentar el diámetro en un factor 2 (sin aumentar la diferencia de presión) aumenta el flujo en un factor 16.

También podemos escribir la última ecuación como sigue:

$$\Delta P = P_1 - P_2 = \frac{8\eta L}{\pi R^4} \frac{dV}{dt} ,$$

o sea, la pérdida de presión al pasar un flujo dV/dt por un tubo es proporcional a su largo L y a la viscosidad e inversamente proporcional a la cuarta potencia de R.

Flujo laminar alrededor de una esfera

Usando matemáticas más avanzadas se puede evaluar la fuerza de roce F_r debido a la viscosidad que actúa sobre una esfera de radio R cuando ésta se mueve respecto a un fluido con velocidad v_0 . Si el flujo es laminar la fuerza es (*ley de Stokes*)

$$F_r = 6\pi\eta r v_0$$
.

Esta ecuación, midiendo la velocidad terminal de esferas cayendo en el fluido, permite determinar su coeficiente de viscosidad.

12.10. Problemas

- 1. El rey Hierón de Siracusa pidió a Arquímedes que examinara una corona maciza que había ordenado hacer de oro puro. La corona pesaba 10 kg en el aire y 9.375 kg sumergida en agua. Arquímedes concluyó que la corona no era de puro oro. Asumiendo que en su interior contenía plata, ¿cuánto oro tenía la corona de Hierón? La densidad del oro es 19.3 g/cm³; la de la plata, 10.5 g/cm³.
- 2. Considere un vaso de agua lleno hasta el borde, con un trozo de hielo flotando en él. Por supuesto que el hielo, al flotar, sobrepasará por encima del borde del vaso. A medida que el hielo se derrite. ¿Se derramará el vaso?

Suponga ahora que en el mismo vaso flota un pequeño barco de juguete hecho de latón. Suponga además que el barquito tiene un pequeño orificio por el cual penetra agua, haciendo que el barquito lentamente se llene de agua. Durante este proceso, o sea mientras el barco se llena de agua pero aún no se hunde, el nivel del agua del vaso ¿baja, queda a igual altura o sube? Cuando finalmente el barquito se hunde, que pasa con el nivel del agua?

3. Considere un cilindro de masa M, área A y altura h, que flota "parado" en un líquido de densidad ρ_0 .

- a) ¿Hasta qué alguna estará sumergido el cilindro en el líquido?
- b) Si el recipiente que contiene le líquido es muy grande (por ejemplo, un lago), ¿qué trabajo debe realizarse para sacar el cilindro del líquido?
- c) ¿Varía la respuesta si el recipiente que contiene el líquido es un tambor cilíndrico de área A_0 ?

Figura 12.23

- 4. Considere una varilla de madera muy liviana, de largo L, sección transversal A y densidad ρ , que se hace flotar en el agua (designe la densidad del agua por ρ_0).
 - a) Convénzase de que no es posible que la varilla flote "parada".
 - b) Para lograr que la varilla flote parada, agreguémosle una masa puntual m en el extremo inferior. ¿Cuál es la mínima masa m que debe agregarse para lograr el objetivo?
- 5. Considere un vaso comunicante de 2 cm² de sección transversal que contiene mercurio ($\rho = 13.6 \text{ g/cm}^3$). A un lado se echan 360 gramos de glicerina ($\rho = 1.2 \text{ g/cm}^3$) y en el otro 1/4 de litro de alcohol ($\rho =$ 0,8 g/cm³). Encuentre el desnivel d que existe entre los niveles superiores de la glicerina y el alcohol. Haga un gráfico cualitativo de la presión "hidrostática" en función de la profundidad para cada uno de los dos "brazos" del vaso comunicante (grafique las dos curvas en el mismo gráfico).

Figura 12.24

Figura 12.25

6. Considere un cilindro de sección A y altura h que se encuentra flotando en la interfase de dos fluidos de densidades ρ_1 y ρ_2 , respectivamente ($\rho_1 > \rho_2$). Encuentre la densidad ρ del cilindro si éste se encuentra sumergido en el fluido 1 en una magnitud d.

ρ2
$\begin{array}{c c} & & & \\ \hline d & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & &$

- 7. ¿Qué volumen de helio se requiere si debe elevarse un globo con una carga de 800 kg (incluido el peso del globo vacío)? Las densidades del aire y del helio, a la presión de una atmósfera, son $\rho_{\rm aire} = 1,29 \text{ kg/m}^3 \text{ y } \rho_{\rm He} = 0,18 \text{ kg/m}^3$, respectivamente.
- 8. Una varilla de largo L y densidad ρ_1 flota en un líquido de densidad ρ_0 ($\rho_0 > \rho_1$). Un extremo de la varilla se amarra a un hilo a una profundidad h (ver figura adjunta).
 - a) Encuentre el ángulo α .
 - b) ¿Cuál es el mínimo valor de h para el cual la varilla se mantiene en posición vertical?
 - c) Si A es la sección transversal de la varilla, encuentre la tensión del hilo.

Figura 12.27

9. Considere las tres mediciones mostradas en la figura adjunta:

- P_1 es el peso de un recipiente con agua con un objeto sumergido en él.
- P_2 es el peso cuando el objeto está sumergido en el agua, pero colgado de una cuerda sin que toque el fondo del recipiente.
- P_3 es el peso del recipiente con agua.

Encuentre la densidad promedio del objeto.

10. En un canal horizontal, de ancho b, fluye agua con velocidad v, siendo el nivel de agua h. Asuma que en cierto lugar el canal se ensancha en una pequeña cantidad db. Demuestre que el nivel del agua cambiará en

$$dh = \frac{hv^2}{b(gh - v^2)} \, db$$

Note que si $v^2 < gh$ el nivel del agua sube.

- 11. Un corcho cilíndrico de masa m_1 y sección transversal S_1 flota en un líquido de densidad ρ . El corcho está conectado por medio de una cuerda sin masa, de largo L, a un cilindro de aluminio de masa m_2 y sección transversal S_2 . El cilindro de aluminio puede deslizarse sin roce por un orificio hermético en el fondo del tiesto. Calcular la profundidad h a la que debe hallarse la base del corcho para que el sistema de los dos cilindros esté en equilibrio. La presión atmosférica, ¿juega algún rol?
- 12. Un prado es regado con un regador hechizo que consiste en una botella plástica, con numerosos agujeros de 1 mm de diámetro, acostada sobre el prado y conectada aun a manguera. Asuma que una bomba de agua se encarga de generar un flujo de agua constante de 0.2 litros por segundo. ¿Cuántos agujeros debe tener la botella para que el agua llegue a mojar el prado a 8 metros de distancia de la botella? ¿Cuál es la presión al interior de la manguera si ésta tiene una sección transversal de 4 cm²?
- 13. Un tubo de largo L, lleno de agua, gira en el plano horizontal en torno a un eje vertical que pasa por uno de sus extremos. En el extremo junto al eje, el tubo está abierto, coincidiendo por lo tanto la presión del fluido con la presión atmosférica. El tubo gira con velocidad angular constante ω . Si en el otro extremo, en cierto instante, se abre un pequeño orificio, ¿con qué velocidad emergerá el agua del tubo? (Especifique la rapidez y dirección de la velocidad.)

Figura 12.29

Vista lateral

Figura 12.31

14. Para abastecer de agua a una casa de dos pisos se recurre a un "hidropack". Este sistema consiste en una depósito subterráneo, una bomba y un cilindro con agua y aire. La bomba inyecta agua a presión al cilindro, que en su parte superior queda con aire comprimido. Un medidor de presión detiene la bomba cuando la presi ón del cilindro alcanza el valor deseado (el mismo medidor vuelve a encender la bomba cuando la presión baja de cierto nivel).

Si el nivel del agua en el cilindro se sitúa 1 metro por debajo del suelo, calcule la presión necesaria en el aire comprimido para que una llave de 1 cm² de sección, a una altura de 5 metros sobre el suelo, entregue un caudal de 12 litros por minuto. (La sección transversal del cilindro es grande respecto a la de la llave.) También encuentre

15. La fuerza de sustentación de un avión moderno es del orden de 1000Ñ por metro cuadrado de ala. Suponiendo que el aire es un fluido ideal y que la velocidad del aire por debajo del ala es de 100 m/s, ¿cuál debe ser la velocidad requerida por sobre el ala para tener la sustentación deseada? (La densidad del aire es 1.3 kg/m³.)

la presión del aire al interior del cilindro.

Figura 12.33

- 16. Un bombero lanza agua con su manguera hacia un incendio formando un ángulo de 45° con la horizontal. El agua que emerge del pistón penetra horizontalmente por una ventana del tercer piso que se encuentra a una altura h = 10 metros. La manguera que transporta el agua desde el carro bomba tiene un diámetro D de 6 cm y concluye en un pistón cuya abertura tiene un diámetro d de 1.5 cm.
 - a) ¿Cuántos litros de agua emergen del pistón por minuto?
 - b) ¿Cuál es la presión P que debe soportar la manguera (en atmósferas)?

- 17. Considere la tubería que lleva el agua de una represa hacia una turbina. Suponga que la bocatoma se encuentra a 10 metros bajo el nivel de las aguas y que la turbina se encuentra 80 metros por debajo de ese nivel. Al inicio, es decir a la salida de la represa, la tubería tiene un diámetro de 40 cm. Suponga que el fluido se comporta como un fluido ideal.
 - a) ¿Cuál es el diámetro máximo que puede tener la tubería en su extremo inferior para que no se produzcan cortes de la columna de agua al interior de la tubería?

Figura 12.34

- b) ¿Cuál sería la cantidad de agua que pasaría en ese caso por la tubería y cuál la velocidad del agua emergente?
- c) Si el proceso de generación de energía eléctrica usando la presente turbina fuese 100 % eficiente, ¿cuál sería la potencia de esta central? ¿Esto corresponde al consumo promedio de cuántas casas?
- d) Haga un gráfico cualitativo de la presión al interior de la tubería en función de la altura. ¿Cómo cambia esta presión si la sección de la tubería, en el punto emergente, se disminuye a la mitad? ¿A la centésima parte?
- 18. Considere una tubería de una calefacción. En el sótano su diámetro es de 4.0 cm y en el segundo piso, 5 metros más arriba, la tubería tiene un diámetro de sólo 2.6 cm. Si en el sótano una bomba se encarga de bombear el agua con una velocidad de 0.5 m/s bajo una presión de 3.0 atmósferas, ¿cuál será la rapidez de flujo y la presión en el segundo piso?
- 19. Suponga que el nivel de un líquido (agua) en un tambor tiene una altura h. A una altura b se hace una pequeña perforación lateral que permite que el agua emerja horizontalmente. ;A qué altura debe hacerse la perforación para que el alcance d del agua se máximo?

Respuesta: b = h/2.

Figura 12.35

20. En un torrente de agua se sumerge un tubo doblado, tal como se muestra en la figura adjunta. La velocidad de la corriente con respecto al tubo es v = 2,5 m/s. La parte superior del tubo se encuentra a $h_0 = 12$ cm sobre el nivel del agua del torrente y tiene un pequeño agujero.

iA qué altura h subirá el chorro de agua que sale por el agujero?

Figura 12.36

- 21. Considere una masa esférica homogénea en equilibrio hidrostático. Sea R_T el radio y ρ_0 la densidad de masa.
 - a) Muestre que la presión a una distancia r del centro viene dada por

$$p = \frac{2\pi}{3}\rho_0^2 G\left(R^2 - r^2\right) \;.$$

- b) Evalúe la presión al centro de la Tierra. $R_T = 6.3 \cdot 10^8$ cm y densidad uniforme promedio $\rho_0 = 5.5$ g/cm³.
- 22. En un balón el gas en su interior se encuentra a una presión P. Demuestre que la velocidad con que escapa el gas, al abrir la válvula, es

$$v = \sqrt{\frac{2(P - P_0)}{\rho}} \; ,$$

donde ρ es la densidad del gas y P_0 la presión atmosférica. (Esta ecuación se conoce por ley de Bunsen.)

23. Considere una prensa hidráulica (ver figura 12.37). Sean $R_1 = 25$ cm y $R_2 = 150$ cm los radios de los émbolos de bombeo y de presión, respectivamente.

Si de la palanca que actúa sobre el émbolo de bombeo se tira con una fuerza $F_1 = 100$ [N] (ver figura), ¿qué fuerza ejercerá el émbolo de presión sobre el objeto S?

24. Se quiere confeccionar aluminio poroso (algo así como queso suizo) que se mantenga en suspensión en agua. Determine la razón entre el volumen de los poros y el volumen del aluminio poroso. (La densidad del aluminio sólido es $\rho = 2700 \text{ kg/m}^3$.)

25. * Considere un cuerpo líquido de densidad uniforme ρ_0 , que se mantiene unido debido a la gravedad y que gira con una velocidad angular ω_0 . Si bien el cuerpo es esférico si $\omega_0 = 0$, cuando $\omega_0 \neq 0$ (pero no demasiado grande), el cuerpo adquiere la forma de un esferoide oblato. Demuestre que si la desviación de la esfericidad es pequeña, entonces

$$\frac{R_1 - R_2}{R} = \frac{3}{8\pi} \frac{\omega_0^2}{\rho_0 G}$$

donde $R \simeq R_1 \simeq R_2$. Evalúe $(R_1 - R_2)/R$ para la Tierra y compárelo con el valor experimental, que es ~ 1/298,4.

26. * Considere la situación mostrada en la figura 12.39. Un cilindro de radio R y largo L evita que el agua de cierto recipiente se rebase. El cilindro se puede mover libremente. La densidad del cilindro es tal que, cuando el agua llega a la parte superior del cilindro, la posición del cilindro es la mostrada en la figura. Encuentre la fuerza que ejerce el agua sobre el cilindro. Encuentre la densidad del material del que está hecho el cilindro.

Figura 12.38

Figura 12.39

27. * Considere una caja de dimensiones a, by h, llena de agua. Todos los lados de la caja están firmemente unidos entre sí, excepto uno de los lados laterales (de dimensión $b \cdot h$). Evalúe la magnitud de la fuerza exterior mínima con que debe presionarse ese lado contra el resto de la caja para que el agua no escurra. Si la fuerza se aplica en un solo lugar, encuentre la posición en la que debe aplicarla.

Figura 12.40

28. Un mol de aire en condiciones normales (a nivel del mar y a 20°C de temperatura) ocupa un volumen de 22.4 litros. Estime la densidad del aire si gran parte de él está constituido por nitrógeno. (Resp.: $\sim 1,28 \text{ kg/m}^3$.)

; Cuál es el mínimo volumen que debe tener un globo de heli
o $(\rho=0.18~{\rm kg/m^3})$ para levantar un vehículo de 1200 kg?

29. Dos globos esféricos inflados con aire, ambos de radio R, se unen mediante una cuerda de longitud L. Los dos globos se mantienen bajo el agua con el punto medio de la cuerda fijo al fondo. Calcular la fuerza de contacto entre los globos.

Figura 12.41

30. Una varilla yace en el fondo de un recipiente con agua formando un ángulo de 60° con la vertical. La varilla es de sección uniforme y está formada por dos pedazos iguales en longitud pero de distinta densidad. La densidad de una de las porciones de la varilla es la mitad de la del agua. Determine la densidad de la otra porción.

Figura 12.42

12.10 Problemas

- 31. Considere un bloque de hielo ($\rho = 920 \text{ kg/m}^3$) en forma de "L", formado de tres cubos de 25 cm por lado. Mediante un peso se desea sumergir el hielo en agua como se indica en la figura. Determine la masa del peso y la ubicación en el hielo donde debería adherirse de modo que el hielo se mantenga justo sumergido lo más estable posible.
- 32. Considere un sistema de vasos comunicantes formado por dos tubos de sección transversal de 50 cm² que están unidos por un tubito corto de sección transversal muy pequeña (o sea, para efectos de este problema podemos despreciar la cantidad de fluido que se encontrará en el tubito). Inicialmente en este sistema de vasos comunicantes se encuentran dos litros de agua.

- a) Encuentre la altura en que se encontrarán las interfases entre los líquidos y el aire en cada uno de los tubos si en uno de los tubos se le agregan 2 litros de un líquido cuya densidad es $\rho = 0.8 \text{ g/cm}^3$.
- b) Para la situación descrita en la parte a), encuentre la presión en el fondo de los vasos comunicantes.
- c) Encuentre la altura en que se encontrarán las interfases entre los líquidos y el aire en cada uno de los tubos si en uno de los tubos, en lugar de 2, se le agregan 3 litros de un líquido cuya densidad es $\rho = 0.8$ g/cm³.
- 33. Un tubo horizontal por el que fluye líquido de densidad ρ_0 a razón de $Q \text{ m}^3/\text{s}$, se bifurca en dos ramas en el plano vertical, una superior y otra inferior, de secciones transversales $a_1 = a_2 = a$, abiertas a la atmósfera (ver figura 12.45). Si la distancia entre las ramas es h, determinar:
 - a) Las cantidades $q_1 \ge q_2$ de líquido (en m³/s) que fluyen por ambas ramas.
 - b) La condición que debe cumplir Q para que haya flujo en la rama superior.
- 34. Una gotita de agua de 1 mm de radio se pulveriza en gotitas de 10^{-4} mm de radio. ¿En qué factor aumenta la energía superficial (debido a la tensión superficial)?

35. La figura 12.46 muestra un tubo de Pitot, instrumento que se usa para medir la velocidad del aire. Si el líquido que indica el nivel es agua y $\Delta h = 12$ cm, encuentre la velocidad del aire. La densidad del aire es $\rho_{\rm aire} = 1,25$ kg/m³.

Respuesta: $v_0 = 43,4 \text{ m/s} = 156 \text{ km/h}.$

- 36. Considere dos placas planas de vidrio, separadas por una distancia de 0,1 mm, con un extremo sumergidas en agua en forma vertical. ¿Qué distancia se elevará el agua entre las placas debido a la capilaridad?
- 37. * Encuentre la velocidad terminal que adquiere una esfera de cobre de 0,5 cm de diámetro, cuando cae en agua ($\rho_{Cu} = 8,92 \text{ g/cm}^3$). ¿En qué factor disminuye la velocidad terminal si el diámetro se achica en un factor 10?
- 38. * Considere un oleoducto de 5 km y 50 cm de diámetro por el cual se desea bombear 1 m³ por segundo. Si uno de los extremos está abierto a la presión atmosférica, ¿qué presión P_1 debe existir en el otro extremo? Suponga que la densidad del petróleo es $\rho = 950 \text{ kg/m}^3$ y el coeficiente de viscosidad es aproximadamente $\eta = 0,2 \text{ Pa} \cdot \text{s.}$ ¿Cuál es la potencia dW/dt (energía por unidad de tiempo) disipada por la fricción interna originada por la viscosidad?

Respuesta: $P_1 \simeq 7.5$ atm; $dW/dt \simeq 650$ kW.

12.11. Solución a algunos de los problemas

Solución al problema 8

El largo a de la parte de la varilla sumergida es $a = h/ \operatorname{sen} \alpha$. La fuerza de empuje se aplica en el lugar a/2 y la fuerza de gravedad en el lugar L/2 (medidos desde O).

Sea A la sección transversal de la varilla. Entonces la fuerza de empuje viene dada por

$$\vec{F}_e = \rho_0 A a g \hat{z} = \rho_0 A \frac{h}{\operatorname{sen} \alpha} g \hat{z} \; .$$

Figura 12.47

La fuerza de gravedad es

$$\vec{F}_g = -\rho_1 L A g \hat{z}$$
 .

El torque ejercido por ambas fuerzas respecto a O debe ser nulo, o sea,

$$F_e \frac{a}{2} \cos \alpha = F_g \frac{L}{2} \cos \alpha \; .$$

Simplificando se obtiene

$$F_e a = F_q L$$
.

Sustituyendo las expresiones par F_e y F_g se deduce que

$$\rho_0 A a^2 g = \rho_1 A L^2 g \; ,$$

o sea

$$\rho_0 \frac{h^2}{\operatorname{sen}^2 \alpha} = \rho_1 L^2$$

Despejando se encuentra finalmente que

$$sen \alpha = \sqrt{\frac{\rho_0}{\rho_1}} \frac{h}{L} .$$

Si el lado derecho de la última ecuación es mayor o igual a uno, la varilla se mantendrá en posición vertical. El mínimo valor de h para que la varilla esté en posición vertical es

$$h_{\min} = L \sqrt{\frac{\rho_1}{\rho_0}}$$

La tensión del hilo se obtiene exigiendo que la fuerza total sea nula. De esta manera se obtiene que

$$T = F_e - F_g = \rho_0 A \frac{h}{\operatorname{sen} \alpha} g - \rho_1 L A g$$
$$= A L g \rho_1 \left(\sqrt{\frac{\rho_0}{\rho_1}} - 1 \right) = M g \left(\sqrt{\frac{\rho_0}{\rho_1}} - 1 \right) ,$$

donde M es la masa de la varilla.

Solución al problema 16

a) Si v es la velocidad con que emerge el agua del pistón, la velocidad hacia arriba será $v/\sqrt{2}$. El agua alcanza a subir una altura h, luego su velocidad es

$$v = 2\sqrt{gh} = 20 \text{ m/s}$$
.

La cantidad de agua V que emerge del pistón en t = 60 segundos es

$$V = vt\pi \left(\frac{d}{2}\right)^2 = \frac{1}{4}20 \cdot 60 \cdot 3,14 \cdot (0,015)^2 \text{ m}^3 = 212 \text{ litros} .$$

b) Usemos el teorema de Bernoulli para comparar el flujo del agua justo a la salida del pistón con el flujo en la manguera justo detrás del pistón. No hay cambio en la energía potencial. Como la sección transversal de la manguera es 16 veces mayor que la abertura del pistón, la velocidad del agua en la manguera será 16 veces menor que la velocidad emergente v. A la salida del pistón la presión es la presión atmosférica, que ignoraremos en el presente cálculo, ya que sólo estamos interesados en la presión adicional p que debe soportar la manguera debido al agua que fluye en su interior. Se tiene

$$p + \frac{1}{2}\rho_0 \left(\frac{v}{16}\right)^2 = \frac{1}{2}\rho_0 v^2$$
.

Ignorando la energía cinética del agua al interior de la manguera (convénzase de que modifica el resultado final en menos de un 0.5%), se obtiene

$$p = \frac{1}{2}\rho_0 v^2 = \frac{1}{2}1000 \frac{\text{kg}}{\text{m}^3} 400 \frac{\text{m}^2}{\text{s}^2} = 2 \cdot 10^5 \frac{\text{kg}}{\text{m} \text{s}^2} ,$$

lo que corresponde a aproximadamente 2 atmósferas.

Solución al problema 27

Elijamos el eje \hat{z} a lo largo de la vertical, con el origen al fondo de la caja sobre la tapa móvil. La presión a una altura z es $P(z) = \rho_0 g(h - z)$. Dividamos la tapa en franjas horizontales de largo b y ancho (altura) dz. La fuerza que ejerce el fluido sobre la franja que está a la altura z es

$$dF = P(z)b\,dz$$

Sumando (integrando) la fuerza que el líquido ejerce sobre cada una de las franjas se obtiene la fuerza total

$$F = \int_0^h P(z)b \, dz = \rho_0 g b \int_0^h (h-z) \, dz = \frac{1}{2} \rho_0 b g h^2 \, .$$

Para encontrar a qué altura h_0 debemos aplicar esta fuerza sobre la tapa, evaluemos el torque que ejerce el fluido sobre la tapa respecto al origen. El torque que el fluido ejerce sobre la franja que está a la altura z es

$$d\tau = zP(z)b\,dz\;.$$

Sumando (integrando) el torque que el líquido ejerce sobre cada una de las franjas se obtiene el torque total

$$\tau = \int_0^h z P(z) b \, dz = \rho_0 g b \int_0^h z(h-z) \, dz = \frac{1}{6} \rho_0 b g h^3 \, dz$$

Para que la tapa esté en equilibrio el torque que ejerce la fuerza total externa F debe coincidir en magnitud con τ , es decir,

 $Fh_0 = \tau$,

o sea

$$\frac{1}{2}\rho_0 bgh^2 h_0 = \frac{1}{6}\rho_0 bgh^3$$

De esta ecuación se deduce finalmente que $h_0 = h/3$.

Solución al problema 33

La relación de Bernoulli se puede aplicar entre los puntos $A ext{ y } B_1 ext{ y también entre } A ext{ y } B_2$. Por transitividad, la relación de Bernoulli también es válida entre los puntos $B_1 ext{ y } B_2$. Se tiene

$$P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$$
.

Pero $P_1=P_2=P_0$ (la presión atmosférica), $h_1=0$ y $h_2=h,$ luego

$$\frac{1}{2}\rho v_1^2 = \rho g h + \frac{1}{2}\rho v_2^2$$

Los flujos que circulan por la rama superior e inferior vienen dados por $q_1 = av_1$ y $q_2 = av_2$, respectivamente. También se tiene que $Q = q_1 + q_2$. De las relaciones anteriores se deduce que

$$q_1 = \frac{Q^2 - 2a^2gh}{2Q}$$
$$q_2 = \frac{Q^2 + 2a^2gh}{2Q} \; .$$

у

Para que circule líquido por la rama superior se debe tener que

$$Q > a\sqrt{2gh}$$

Capítulo 13

Oscilador Armónico

13.1. La ecuación diferencial $\ddot{x}(t) + \omega_0^2 x(t) = 0$

La ecuación diferencial que gobierna el comportamiento de un oscilador armónico simple es

$$\ddot{x}(t) + \omega_0^2 x(t) = 0 . (13.1)$$

Ésta es una ecuación diferencial lineal de segundo orden. Comenzaremos este capítulo exponiendo algunos resultados generales relativos a este tipo de ecuaciones, resultados que serán de gran utilidad para nuestros propósitos.

Sean $x_1(t)$ y $x_2(t)$ dos soluciones cualesquiera de cierta ecuación diferencial. Tal ecuación diferencial es lineal si $\alpha x_1(t) + \beta x_2(t)$ también es solución, donde α y β son constantes (reales o complejas) arbitrarias.

Ejercicio: Demuestre que la ecuación diferencial del oscilador armónico es lineal.

El orden de la derivada más alta da el orden de la ecuación diferencial. La solución general de una ecuación diferencial de orden n tiene n constantes arbitrarias (que luego deben ser determinadas usando las condiciones de borde).

La ecuación diferencial del oscilador armónico es de segundo orden, por lo tanto, la solución general tiene dos constantes arbitrarias. Sean $x_1(t)$ y $x_2(t)$ dos soluciones cualesquiera (distintas) de (13.1). Como la ecuación diferencial (13.1) es lineal, se tiene que la función $x_g(t) = \alpha x_1(t) + \beta x_2(t)$, con α y β constantes arbitrarias, también es solución. Pero observe que la solución $x_g(t)$ tiene dos constantes arbitrarias y, por lo tanto, debe ser una solución general del problema. En otras palabras, todas las posibles soluciones de (13.1) deben ser de la forma $x_g(t)$; las distintas soluciones se diferencian sólo por los valores de α y β . En el lenguaje técnico se dice que las soluciones de la ecuación diferencial (13.1) forman un espacio vectorial de 2 dimensiones, siendo x_1 y x_2 dos "vectores" particulares de ese espacio. Los dos vectores $x_1(t)$ y $x_2(t)$ (si uno de ellos no es múltiplo del otro) forman una *base* del espacio vectorial. Cualquier otro vector (o sea, solución de (13.1)) es una combinación lineal de los vectores base, es decir, es de la forma $\alpha x_1(t) + \beta x_2(t)$.

Sabemos que las funciones

$$x_1(t) = \cos(\omega_0 t) \tag{13.2}$$

у

$$x_2(t) = \operatorname{sen}(\omega_0 t) \tag{13.3}$$

son dos soluciones particulares de (13.1). Estas dos funciones (y de hecho así se hace frecuentemente) pueden ser tomadas como los dos vectores base del espacio vectorial formado por las soluciones de (13.1). Cualquier otra solución x(t) de la ecuación diferencial del oscilador armónico puede escribirse de la forma

$$x(t) = a \cos(\omega_0 t) + b \sin(\omega_0 t)$$

Las constantes $a \ge b$ se determinan a partir de las condiciones iniciales.

Observe que no es necesario elegir las funciones (13.2) y (13.3) como vectores base del espacio vectorial; de hecho, cualquier otro par de soluciones (mientras una no sea múltiplo de la otra) también habría servido. Lo interesante es que las funciones (13.2) y (13.3) no son las funciones más convenientes para usar como base. Existe un par de soluciones de (13.1) que, si se usan como base, simplifican notoriamente los cálculos. En lo que sigue de esta sección introduciremos esta nueva base, estudiaremos algunas de sus propiedades y la relacionaremos con la base dada por las funciones (13.2) y (13.3).

Consideremos la función

$$z(t) = e^{\Gamma t} = \exp(\Gamma t) \; .$$

Al derivar z(t) dos veces se obtiene

$$\dot{z}(t) = \Gamma e^{\Gamma t}$$

у

$$\ddot{z}(t) = \Gamma^2 e^{\Gamma t} = \Gamma^2 z(t)$$

Observe que esta última ecuación se puede escribir de la forma

$$\ddot{z}(t) - \Gamma^2 z(t) = 0 .$$

Esta ecuación es idéntica a la del oscilador armónico si se identifica

$$\Gamma^2 = -\omega_0^2 \; ,$$

lo que es equivalente a la relación

$$\Gamma = \pm i\omega_0 \; ,$$

con $i \equiv \sqrt{-1}$. Observe que acabamos de demostrar que las funciones

$$x_1(t) = e^{i\omega_0 t} \tag{13.4}$$

у

$$x_2(t) = e^{-i\omega_0 t} (13.5)$$

son dos soluciones particulares de la ecuación diferencial del oscilador armónico, o sea, de (13.1). Resulta que éstas son las funciones más convenientes para generar todas las demás soluciones de (13.1). Cualquier solución x(t) de (13.1) se puede escribir de la forma

$$x(t) = \alpha e^{i\omega_0 t} + \beta e^{-i\omega_0 t}$$

donde las constantes α y β se determinan a partir de las condiciones iniciales. (Las constantes α y β , generalmente, resultan ser números complejos).

Determinemos las relaciones entre las dos bases. Como $\cos(\omega_0 t)$ es solución de (13.1) debe poder escribirse de la forma

$$\cos(\omega_0 t) = c_1 e^{i\omega_0 t} + c_2 e^{-i\omega_0 t} .$$
(13.6)

Determinemos las constantes c_1 y c_2 . Derivando (13.6) se encuentra que

$$-\omega_0 \operatorname{sen}(\omega_0 t) = i\omega_0 c_1 e^{i\omega_0 t} - i\omega_0 c_2 e^{-i\omega_0 t}$$

o sea,

$$sen(\omega_0 t) = -i \left(c_1 e^{i\omega_0 t} - c_2 e^{-i\omega_0 t} \right) .$$
 (13.7)

Evaluando (13.6) y (13.7) para t = 0 se obtiene

$$1 = c_1 + c_2$$

у

$$0 = -i(c_1 - c_2)$$

De estas relaciones se deduce que $c_1 = c_2 = 1/2$. De esta manera hemos demostrado que

$$\cos(\omega_0 t) = \frac{1}{2} \left(e^{i\omega_0 t} + e^{-i\omega_0 t} \right)$$
(13.8)

у

$$sen(\omega_0 t) = \frac{1}{2i} \left(e^{i\omega_0 t} - e^{-i\omega_0 t} \right) .$$
 (13.9)

También podemos escribir $\exp(i\omega_0 t)$ y $\exp(-i\omega_0 t)$ en función de $\cos(\omega_0 t)$ y $\sin(\omega_0 t)$. Usando las relaciones anteriores no es difícil demostrar que

$$e^{i\omega_0 t} = \cos(\omega_0 t) + i \operatorname{sen}(\omega_0 t) \tag{13.10}$$

у

$$e^{-i\omega_0 t} = \cos(\omega_0 t) - i \sin(\omega_0 t)$$
 (13.11)

Por último, sustituyendo en (13.10) $\omega_0 t$ por π encontramos una de las más bellas ecuaciones de la matemática

$$e^{i\pi} + 1 = 0$$

relación que combina de manera simple los más importantes números de esa ciencia: 0, 1, π , $e \in i = \sqrt{-1}$.

Ejercicio: Demuestre que el módulo de los números complejos $\exp(i\omega_0 t)$ y $\exp(-i\omega_0 t)$ es uno, es decir, demuestre que

$$|e^{i\omega_0 t}| = |e^{-i\omega_0 t}| = 1$$
.
13.2. El oscilador armónico simple

Cada vez que la ecuación dinámica de un sistema tiene la forma

$$\ddot{x}(t) + \omega_0^2 x(t) = 0$$

estaremos en presencia de un oscilador armónico.

Ejemplo: Consideremos un péndulo de largo R. Elijamos el origen en el punto de suspensión. El momento angular y el torque (en torno al origen) vienen dados por

$$l = mR(R\dot{\theta})$$

у

$$\tau = -Rmq\,\sin\theta\;.$$

Por otra parte

$$\tau = \frac{dl}{dt} = mR^2\ddot{\theta}$$

luego

$$mR^2\ddot{\theta} = -Rmg\,\sin\theta$$
 .

Esta relación se puede escribir de la forma

$$\ddot{\theta} + \frac{g}{R} \, \sin \theta = 0 \; .$$

Figura 13.1

Denotando g/R por ω_0^2 y restringiéndonos a pequeños ángulos, de manera que podamos usar la aproximación sen $\theta \simeq \theta$, se obtiene

$$\ddot{\theta} + \omega_0^2 \theta = 0 . \tag{13.12}$$

La constante ω_0 está relacionada con el período T del movimiento por la relación $\omega_0 T = 2\pi$. Conocer la ecuación dinámica de un sistema permite, en principio, conocer la evolución temporal del mismo. Para encontrar la solución explícita del problema se procede generalmente de la siguiente manera: i) se busca la solución general de la ecuación dinámica; ii)las constantes arbitrarias de la ecuación general se determinan exigiendo que la solución cumpla con las condiciones de borde (iniciales) del problema.

Ilustremos el procedimiento con nuestro ejemplo concreto. Supongamos que en el instante t = 0 el ángulo y la velocidad angular del péndulo son θ_0 y Ω , respectivamente. Deseamos encontrar una expresión explícita para $\theta(t)$. Resolveremos este problema de dos maneras:

a) Sabemos que la solución general de (13.12) puede escribirse de la forma

$$\theta(t) = a\cos(\omega_0 t) + b\sin(\omega_0 t)$$

Determinaremos las constantes $a \ge b$. Para ello derivemos primero la última ecuación respecto al tiempo. Se obtiene

$$\theta(t) = -a\,\omega_0\,\mathrm{sen}(\omega_0 t) + b\,\omega_0\,\mathrm{cos}(\omega_0 t) \;.$$

Evaluando las dos últimas ecuaciones para t = 0, y usando las condiciones iniciales, se obtiene

$$\theta(0) = a = \theta_0$$

у

$$\dot{\theta}(0) = b\omega_0 = \Omega$$
.

La solución explícita se obtiene sustituyendo los valores de $a \ge b$, que se deducen de estas relaciones, en la solución general:

$$\theta(t) = \theta_0 \cos(\omega_0 t) + \frac{\Omega}{\omega_0} \sin(\omega_0 t) .$$

b) Como vimos en la sección anterior, en lugar de $\cos(\omega_0 t)$ y $\sin(\omega_0 t)$ también podemos usar las soluciones particulares $\exp(i\omega_0 t)$ y $\exp(-i\omega_0 t)$ como base. O sea, otra forma de escribir la solución general de (13.12) es

$$\theta(t) = \alpha \, \exp(i\omega_0 t) + \beta \, \exp(-i\omega_0 t) \; .$$

Determinaremos las constantes α y $\beta.$ Para ello, nuevamente, derivemos la solución general:

$$\dot{\theta}(t) = i\omega_0 \,\alpha \,\exp(i\omega_0 t) - i\omega_0 \,\beta \,\exp(-i\omega_0 t)$$

Evaluando estas dos últimas ecuaciones para t = 0, y usando las condiciones iniciales, se obtiene

$$\theta(0) = \theta_0 = \alpha + \beta$$

у

$$\dot{\theta}(0) = \Omega = i\omega_0 \alpha - i\omega_0 \beta$$
.

Despejando $\alpha \neq \beta$ de estas dos relaciones:

$$\alpha = \frac{1}{2} \left(\theta_0 - i \frac{\Omega}{\omega_0} \right) ,$$

$$\beta = \alpha^* = \frac{1}{2} \left(\theta_0 + i \frac{\Omega}{\omega_0} \right) .$$

Sustituyendo estos valores en la solución general se obtiene

$$\theta(t) = \frac{1}{2} \left(\theta_0 - i \frac{\Omega}{\omega_0} \right) \exp(i\omega_0 t) + \frac{1}{2} \left(\theta_0 + i \frac{\Omega}{\omega_0} \right) \exp(-i\omega_0 t)$$

Demostremos ahora que las expresiones encontradas en las partes a) y b) son equivalentes. En efecto, reordenando los términos de la solución encontrada en la parte b) se encuentra que

$$\begin{aligned} \theta(t) &= \theta_0 \frac{1}{2} \left(\exp(i\omega_0 t) + \exp(-i\omega_0 t) \right) - i \frac{\Omega}{\omega_0} \frac{1}{2} \left(\exp(i\omega_0 t) + \exp(-i\omega_0 t) \right) \\ &= \theta_0 \frac{e^{i\omega_0 t} + e^{-i\omega_0 t}}{2} + \frac{\Omega}{\omega_0} \frac{e^{i\omega_0 t} - e^{-i\omega_0 t}}{2i} \\ &= \theta_0 \cos(\omega_0 t) + \frac{\Omega}{\omega_0} \sin(\omega_0 t) \;. \end{aligned}$$

Los dos procedimientos dan exactamente el mismo resultado. En el presente ejemplo, el segundo método resultó ser más engorroso, más largo y menos transparente y ciertamente no se observa ninguna ventaja al haber introducido la base con exponenciales complejas. Sin embargo, en las secciones siguientes, al estudiar problemas levemente más complejos, la ventaja de usar las exponenciales complejas en lugar del seno y coseno resultará más evidente.

13.3. El oscilador armónico atenuado

Ejemplo: Consideremos una masa m adosada a un resorte de constante de restitución k. Supongamos que la masa m sólo se puede desplazar a lo largo del eje \hat{x} . Sea x(t)la posición de m, siendo x = 0 la posición de equilibrio. Supongamos además que sobre el sistema actúa una fuerza de roce que es proporcional a la velocidad \dot{x} (pero de signo contrario), o sea

$$f_r = -\gamma \, \dot{x}(t) \qquad (\operatorname{con} \, \gamma > 0) \; .$$

Figura 13.2

Usando la segunda ley de Newton se deduce que la posición x(t) satisface la siguiente ecuación diferencial

$$m\ddot{x}(t) = -k\,x(t) - \gamma\,\dot{x}(t) \;.$$

Introduciendo las constantes $\omega_0 \equiv \sqrt{k/m}$ y $\eta \equiv \gamma/2m$ se encuentra que la relación dinámica para este oscilador armónico con roce es

$$\ddot{x} + 2\eta \, \dot{x} + \omega_0^2 \, x = 0 \; . \tag{13.13}$$

Esta es la ecuación diferencial del oscilador armónico atenuado.

Ejercicio: Demuestre que la ecuación diferencial (13.13) es lineal.

Deseamos encontrar la solución general de la ecuación (13.13). Sabemos que, si encontramos dos soluciones particulares distintas de (13.13) (denotémoslas por $x_1(t) \ge x_2(t)$), entonces la solución general vendrá dada por

$$x(t) = \alpha x_1(t) + \beta x_2(t) ,$$

donde las constantes α y β se eligen de manera que la solución satisfaga las condiciones iniciales.

Procederemos de acuerdo al siguiente esquema: primero encontraremos la solución general de (13.13) y luego determinaremos las constantes arbitrarias de la solución general de

manera de obtener la solución particular que, en t = 0, satisface las siguientes condiciones iniciales:

$$x(0) = x_0$$

у

$$\dot{x}(0) = v_0 = 0$$

Ansatz (o hipótesis de trabajo): Busquemos soluciones del tipo $x(t) = e^{\Gamma t}$, donde Γ es una constante por determinar. Derivando el Ansatz dos veces se obtiene

$$\dot{x}(t) = \Gamma e^{\Gamma t} ,$$

у

$$\ddot{x}(t) = \Gamma^2 e^{\Gamma t} \, .$$

Sustituimos estas relaciones en (13.13),

$$\label{eq:gamma_states} \Gamma^2 \, e^{\Gamma t} + 2\eta \, \Gamma \, e^{\Gamma t} + \omega_0^2 \, e^{\Gamma t} = 0 \ ,$$

o sea,

$$\Gamma^2 + 2\eta \,\Gamma + \omega_0^2 = 0 \; .$$

Resolviendo esta ecuación de segundo grado para Γ se encuentra

$$\Gamma = -\eta \pm \sqrt{\eta^2 - \omega_0^2} . \qquad (13.14)$$

Debemos distinguir tres casos:

i) Caso $\eta > \omega_0$ (oscilador armónico supercrítico).

En este caso la ecuación (13.14) nos entrega dos soluciones distintas de la ecuación diferencial, éstas son

$$x_1(t) = e^{\left(-\eta + \sqrt{\eta^2 - \omega_0^2}\right)t}$$

у

$$x_2(t) = e^{\left(-\eta - \sqrt{\eta^2 - \omega_0^2}\right)t}$$

La solución general, por lo tanto, es

$$x(t) = \alpha e^{\left(-\eta + \sqrt{\eta^2 - \omega_0^2}\right)t} + \beta e^{\left(-\eta - \sqrt{\eta^2 - \omega_0^2}\right)t}$$

Determinando α y β de manera que la solución general anterior cumpla con las condiciones iniciales $x(0) = x_0$ y $\dot{x}(0) = 0$, se encuentra

$$x(t) = \frac{x_0}{2} \left[\left(1 + \frac{\eta}{\sqrt{\eta^2 - \omega_0^2}} \right) e^{\left(-\eta + \sqrt{\eta^2 - \omega_0^2} \right)t} + \left(1 - \frac{\eta}{\sqrt{\eta^2 - \omega_0^2}} \right) e^{\left(-\eta - \sqrt{\eta^2 - \omega_0^2} \right)t} \right] .$$

La figura 13.3 muestra cualitativamente el comportamiento del oscilador en este caso. En el caso supercrítico la fricción es muy grande y la masa m no oscila. Imagínese una bolita colgada de un resorte sumergida en un frasco con miel.

Figura 13.3

b) Caso $\eta < \omega_0$ (oscilador armónico subcrítico).

En este caso la ecuación (13.14) también nos da dos soluciones distintas:

$$x_1(t) = e^{\left(-\eta + i\sqrt{\omega_0^2 - \eta^2}\right)t} = e^{-\eta t} e^{i\omega t}$$

у

$$x_2(t) = e^{\left(-\eta - i\sqrt{\omega_0^2 - \eta^2}\right)t} = e^{-\eta t} e^{-i\omega t}$$

con

$$\omega \equiv \sqrt{\omega_0^2 - \eta^2} \; .$$

La solución general viene dada por

$$x(t) = e^{-\eta t} \left(\alpha \, e^{i\omega t} + \beta \, e^{-i\omega t} \right) \, .$$

Evaluando α y β de manera que la solución cumpla las condiciones de borde $x(0) = x_0$ y $\dot{x}(0) = 0$, se encuentra

$$x(t) = \frac{x_0}{2} e^{-\eta t} \left[\left(1 + \frac{\eta}{i\omega} \right) e^{i\omega t} + \left(1 - \frac{\eta}{i\omega} e^{-i\omega t} \right) \right]$$
$$= x_0 e^{-\eta t} \left[\cos(\omega t) + \frac{\eta}{\omega} \sin(\omega t) \right] .$$
(13.15)

La figura 13.3 muestra cualitativamente el comportamiento del oscilador en este caso. En el caso subcrítico la fricción es relativamente pequeña y la masa m oscila. Note que a medida que transcurre el tiempo la amplitud de la oscilación decae exponencialmente.

Figura 13.4

c) Caso $\eta = \omega_0$ (oscilador armónico crítico).

Este caso es levemente más complicado, ya que la ecuación (13.14)nos da sólo una solución:

$$x_1(t) = e^{-\eta t}$$

Debemos, de alguna manera, encontrar otra solución para poder construir la solución general.

Ejercicio: Demuestre que la otra solución de la ecuación diferencial

$$\ddot{x} + 2\eta \, \dot{x} + \eta^2 \, x = 0$$

es la función

$$x_2(t) = t \, e^{-\eta t}$$

Usando el resultado del ejercicio se encuentra que, para un oscilador armónico atenuado crítico, la solución general viene dada por

$$x(t) = (\alpha + \beta t) e^{-\eta t} .$$

Para que la solución cumpla con las condiciones de borde se determina que ésta viene dada por

$$x(t) = x_0(1+\eta t) e^{-\eta t} . (13.16)$$

Observe que, independiente de las condiciones iniciales, el oscilador armónico atenuado paulatinamente siempre se acercará a su posición de equilibrio, es decir, para $t \to \infty$, siempre $x(t) \to 0$.

Ejercicio: Demuestre que la solución (13.16) también se puede obtener a partir de (13.15) poniendo $\omega_0 = \eta + \epsilon$ y realizando el límite $\epsilon \to 0$.

13.4. El oscilador armónico forzado

Agreguémos le al oscilador armónico atenuado una fuerza armónica externa F_e de una frecuencia Ω , es decir,

$$F_e = F_0 \cos(\Omega t)$$
.

Situaciones de este tipo se dan con gran frecuencia en la naturaleza. La ecuación diferencial para el oscilador en este caso es

$$\ddot{x} + 2\eta \dot{x} + \omega_0^2 x = \frac{F_0}{m} \cos(\Omega t) .$$
(13.17)

Ejemplo: Demuestre que la ecuación diferencial anterior no es lineal, o sea, la suma de dos soluciones ya no sigue siendo solución.

Si el lado derecho es nulo (o sea, $F_0 = 0$), entonces la ecuación coincide con la analizada en la sección anterior. En este caso conocemos la solución general. Denotemos esta solución general (de la *ecuación homogénea*) por $x_h(t)$. Tal solución tendrá dos constantes arbitrarias.

Sea $x_p(t)$ una solución particular cualquiera de (13.17), entonces la solución general será

$$x(t) = x_h(t) + x_p(t) \; .$$

Efectivamente, es fácil demostrar que x(t) es solución de (13.17). De que es la solución general se desprende del hecho de que ésta, por ser la ecuación diferencial de segundo orden, debe tener dos constantes arbitrarias, las que x(t) efectivamente tiene (las de la función $x_h(t)$).

En general, la solución x(t) tiene un comportamiento complejo. Sin embargo, para tiempos grandes $(t \to \infty)$ la solución $x_h(t)$ siempre desaparece, quedando sólo la solución particular $x_p(t)$. Observe que $x_p(t)$ es independiente de las condiciones iniciales. Todas las soluciones del problema, para $t \to \infty$, terminarán siendo idénticas. Cuando esto ocurre, se dice que se ha llegado al *estado estacionario*. Las oscilaciones iniciales del oscilador, que son altamente irregulares, y que si dependen de las condiciones iniciales, se llama es *transiente*. Para muchos problemas prácticos la solución que interesa es la del estado estacionario.

En lo que sigue encontraremos la solución $x_p(t)$ que es la correspondiente al estado estacionario. Por ser algebraicamente mucho más simple, usaremos extensivamente las funciones exponenciales complejas. La fuerza externa la reemplazaremos por la expresión

$$\bar{F}_e = F_0 e^{i\Omega t}$$
.

En otras palabras, en lo que sigue encontraremos la solución estacionaria de la ecuación diferencial

$$\ddot{\bar{x}} + 2\eta \, \dot{\bar{x}} + \omega_0^2 \, \bar{x} = \frac{F_0}{m} \, e^{i\Omega t} \, . \tag{13.18}$$

Observe que la parte real de \overline{F}_e corresponde a la fuerza externa $F_e = F_0 \cos(\Omega t)$, luego, al tomar la parte real de esta ecuación diferencial, obtenemos la ecuación (13.17); y a su vez, la parte real de $\overline{x}(t)$ corresponderá a la solución estacionaria de (13.17). Hagamos el siguiente Ansatz:

$$\bar{x}(t) = A e^{i\Omega t} .$$

o sea, analicemos si (13.18) puede tener una solución de este tipo. Aquí A es una constante que eventualmente habría que determinar. Derivamos $\bar{x}(t)$ respecto al tiempo:

$$\dot{\bar{x}}(t) = i\Omega A e^{i\Omega t}$$

у

$$\ddot{\bar{x}}(t) = -\Omega^2 A e^{i\Omega t} .$$

Sustituyendo esto en (13.18) se obtiene

$$-\Omega^2 A e^{i\Omega t} + 2\eta i\Omega A e^{i\Omega t} + \omega_0^2 A e^{i\Omega t} = \frac{F_0}{m} e^{i\Omega t} ,$$
$$-\Omega^2 A + 2\eta i\Omega A + \omega_0^2 A = \frac{F_0}{m} ,$$

o sea, nuestro Ansatz es una solución sólo si

$$A = \frac{F_0/m}{(\omega_0^2 - \Omega^2) + 2i\eta\Omega} \; .$$

Observe que A es un número complejo.

Cualquier número complejo A se puede escribir de la forma

$$A = A_R + iA_I = |A| e^{i\phi} = |A| \cos \phi + i|A| \sin \phi ,$$

donde |A| es el módulo y ϕ la *fase* del número complejo. Conociendo la parte real e imaginaria de A se pueden encontrar el módulo y la fase usando las relaciones

$$|A| = \sqrt{A_R^2 + A_I^2}$$

у

$$\tan\phi = \frac{A_I}{A_R} \; .$$

Usando las expresiones anteriores para el número complejo A se encuentra que éste puede escribirse de la forma

$$A = \frac{F_0/m}{\sqrt{(\Omega^2 - \omega_0^2)^2 + 4\eta^2 \Omega^2}} \exp\left[i \arctan\left(\frac{2\Omega\eta}{\Omega^2 - \omega_0^2}\right)\right] \ .$$

Hemos encontrado una solución particular de (13.18):

$$\bar{x}(t) = \frac{F_0/m}{\sqrt{(\Omega^2 - \omega_0^2)^2 + 4\eta^2 \Omega^2}} \exp\left[i\Omega t + i \arctan\left(\frac{2\Omega\eta}{\Omega^2 - \omega_0^2}\right)\right] \ .$$

La solución estacionaria de (13.17) es la parte real de $\bar{x}(t)$, o sea,

$$x(t) = \frac{F_0/m}{\sqrt{(\Omega^2 - \omega_0^2)^2 + 4\eta^2 \Omega^2}} \cos\left[\Omega t + \arctan\left(\frac{2\Omega\eta}{\Omega^2 - \omega_0^2}\right)\right] = |A|\cos(\Omega t + \phi) ,$$

 con

$$|A| = \frac{F_0/m}{\sqrt{(\Omega^2 - \omega_0^2)^2 + 4\eta^2 \Omega^2}}$$

у

$$\tan\phi = \frac{2\Omega\eta}{\Omega^2 - \omega_0^2}$$

Observe que la solución estacionaria, o sea, después de que el transiente ha desaparecido, oscila con la misma frecuencia con que la fuerza externa está forzando el sistema. Observe, sin embargo, que las dos oscilaciones (la de la fuerza externa y la de la respuesta del sistema) no van es fase, sino que están desfasados en ϕ . La amplitud con que oscila el sistema en el estado estacionario viene dada por |A|.

Resonancias

Analicemos con más detalle la amplitud con que oscila un oscilador armónico forzado en su estado estacionario. La figura 13.5a muestra la amplitud |A| en función de la frecuencia Ω con que se está forzando el oscilador. Las distintas curvas corresponden a distintos parámetros del coeficiente de roce $\xi \equiv 2\eta/\omega_0$. cuando el roce es pequeño, la amplitud llega a ser muy grande cuando la frecuencia Ω con que se fuerza el oscilador es parecida a la frecuencia natural del oscilador ω_0 . Estas grandes respuestas de un sistema de estímulos pequeños se

conoce con el nombre de resonancias.

Para η pequeño, la amplitud máxima de la resonancia viene dada por

$$|A|_{\max} = \frac{F_0}{2m\eta\omega_0}$$

La fricción η , aun cuando es pequeña, no puede despreciarse. De lo contrario se obtienen resultados absurdos; la amplitud del oscilador se iría incrementando indefinidamente.

Figura 13.5a Figura 13.5b

La figura 13.5b muestra el comportamiento de la fase ϕ . Observemos que si la frecuencia Ω con que se fuerza el sistema es mucho menor que la frecuencia natural del sistema ω_0 , entonces el estímulo y la respuesta del sistema esencialmente estarán en fase; cuando $\Omega \gg \omega_0$, las dos magnitudes estarán completamente desfasadas. Cuando el sistema entra en resonancia $\omega_0 \simeq \Omega$, el desfase entre el estímulo y la respuesta del sistema es de 90°

13.5. Osciladores armónicos acoplados

Considere la configuración mostrada en la figura 13.7. Las masas están restringidas a moverse a lo largo del eje \hat{x} . Analicemos la forma en la cual oscila este sistema.

Figura 13.7

Sean x_1 y x_2 los desplazamientos de las dos masas respecto a sus posiciones de equilibrio. Las ecuaciones de movimiento para estas masas son:

$$M\ddot{x}_1 = -kx_1 + k(x_2 - x_1) \tag{13.19}$$

у

$$M\ddot{x}_2 = -kx_2 - k(x_2 - x_1) . (13.20)$$

(Note que $(x_2 - x_1)$ es el alargamiento neto del resorte central respecto al largo que tiene cuando el sistema está en equilibrio.) Las ecuaciones (13.19) y (13.20) son dos ecuaciones diferenciales de segundo orden acopladas (la segunda derivada de x_1 depende no sólo de x_1 , sino que también de x_2 , y lo mismo ocurre para la segunda derivada de x_2). Sumando y restando las dos ecuaciones diferenciales obtenemos

$$M(\ddot{x}_1 + \ddot{x}_2) = -k(x_1 + x_2)$$

у

$$M(\ddot{x}_2 - \ddot{x}_1) = -3k(x_2 - x_1) \; .$$

Definamos dos nuevas variables $\xi_1 \neq \xi_2$ por

$$\xi_1 = x_1 + x_2$$

у

$$\xi_2 = x_2 - x_1$$
.

Con estas definiciones las dos últimas ecuaciones diferenciales se pueden escribir de la forma

$$M\xi_1 = -k\xi_1$$

у

$$M\ddot{\xi}_2 = -k\xi_2$$

Observe que estas ecuaciones ya no están acopladas y que cada una de ellas corresponde a la de un oscilador armónico simple. Las soluciones generales vienen dadas por

$$\xi_1(t) = A \, \cos(\omega_1 t) + B \, \sin(\omega_1 t)$$

у

$$\xi_2(t) = C \, \cos(\omega_2 t) + D \, \sin(\omega_2 t)$$

 con

$$\omega_1 \equiv \sqrt{\frac{k}{M}}$$

у

$$\omega_2 \equiv \sqrt{\frac{3k}{M}} = \sqrt{3}\,\omega_1 \ .$$

Conociendo ξ_1 y ξ_2 en función del tiempo también conocemos el comportamiento de x_1 y x_2 :

$$x_1(t) = \frac{1}{2}(\xi_1(t) + \xi_2(t))$$

= $\frac{A}{2}\cos(\omega_1 t) + \frac{B}{2}\sin(\omega_1 t) + \frac{C}{2}\cos(\omega_2 t) + \frac{D}{2}\sin(\omega_2 t)$

у

$$x_2(t) = \frac{1}{2}(\xi_1(t) - \xi_2(t))$$

= $\frac{A}{2}\cos(\omega_1 t) + \frac{B}{2}\sin(\omega_1 t) - \frac{C}{2}\cos(\omega_2 t) - \frac{D}{2}\sin(\omega_2 t)$

Esta solución general tiene cuatro constantes arbitrarias $(A, B, C \neq D)$, las que se determinan exigiendo que la solución cumpla con las cuatro condiciones iniciales (la posición y velocidad de cada una de las masas). Por ejemplo, si en $t = 0, x_1(0) = x_2(0) = 0, \dot{x}_1(0) = v_0$ $y \dot{x}_2 = 0$, entonces las constantes resultan ser $A = C = 0, B = v_0/\omega_1 \neq D = -v_0/\omega_2$. Debido a que la razón entre las frecuencias de y de no es un número racional, el sistema

Debido a que la razón entre las frecuencias ω_1 y ω_2 no es un número racional, el sistema, en general, no manifestará un comportamiento periódico.

Modos normales

Si en el problema anterior hacemos oscilar el sistema de manera que C = D = 0, entonces la posición de ambas masas vendrá dada por

$$x_1(t) = x_2(t) = \frac{A}{2} \cos(\omega_1 t) + \frac{B}{2} \sin(\omega_1 t)$$

Observe que en ese caso ambas masas oscilan juntas (en fase) y que el movimiento de cada una de ellas es armónico (con período $T_1 = 2\pi/\omega_1$).

Algo parecido ocurre cuando el sistema oscila de manera que A = B = 0. En este caso

$$x_1(t) = -x_2(t) = \frac{C}{2} \cos(\omega_2 t) + \frac{D}{2} \sin(\omega_2 t)$$

Nuevamente ambas masas oscilan juntas, pero en sentido opuestos (en contrafase) y el movimiento de cada una de ellas es armónico (con período $T_2 = 2\pi/\omega_2$). Estos modos de oscilación armónicos del sistema se conocen con el nombre de modos normales.

Un concepto útil en la discusión de sistemas más complejos es el de *grados de libertad*. Los grados de libertad de un sistema son el número de variables que se requieren para describir el sistema. Por ejemplo: una masa m restringida a moverse a lo largo de una recta tiene un grado de libertad. La misma partícula, si su movimiento está confinado a un plano, tendrá dos grados de libertad. Un sistema consistente de tres partículas que pueden moverse en un plano, tiene 6 grados de libertad. Dos partículas en el espacio tridimensional unidas por una barra rígida poseen 5 grados de libertad.

A continuación resumiremos, sin demostración, algunas características generales que presentan todos los sistemas consistentes de osciladores armónicos acoplados.

- i) Un sistema de osciladores armónicos acoplados de N grados de libertad se describe con N funciones $\{x_j(t)\}$. Las ecuaciones dinámicas son ecuaciones diferenciales de segundo orden y generalmente están acopladas.
- ii) Siempre es posible introducir nuevas variables $\{\xi_j(t)\}$ cuyas ecuaciones diferenciales son de la forma

$$\ddot{\xi}_j + \omega_j^2 \xi_j = 0 \; ,$$

o sea, corresponden a osciladores armónicos simples. Las variables $\xi_j(t)$ son combinaciones lineales de las variables $\{x_j(t)\}$. Los métodos generales para encontrar estas nuevas variables serán materia de cursos más avanzados. Sin embarga, en muchas situaciones simples no es difícil encontrarlos por simple inspección.

- iii) Algunas de las frecuencias ω_j pueden ser nulas, en cuyo caso la ecuación diferencial es simplemente $\ddot{\xi}_j = 0$. Los modos normales de frecuencia nula corresponden a la traslación o rotación del sistema como un todo.
- iv) Cada una de estas nuevas variables da origen a un modo normal. Un sistema con N grados de libertad tiene N modos normales (algunos de ellos pueden tener frecuencia nula).

- v) La solución de las ecuaciones diferenciales para las variables $\xi_j(t)$ son inmediatas. En total se tendrán 2N constantes arbitrarias.
- vi) Siempre es posible despejar $x_j(t)$ en función de las funciones $\{\xi_j(t)\}$ (en el lenguaje técnico, el movimiento del sistema, en general, es una suma –superposición– de los distintos modos normales). De esta manera se encuentra la solución general del problema. Las constantes arbitrarias se determinan exigiendo que la solución cumpla con las condiciones iniciales. Hay 2N condiciones iniciales: $x_j(0)$ y $\dot{x}_j(0)$ para los j = 1, 2, ..., N grados de libertad.
- vii) Cuando sólo se excita un único modo normal, todas las partículas se moverán armónicamente y con la misma frecuencia. Cuando se excitan dos o más modos normales es forma simultánea, las partículas no se moverán armónicamente y el movimiento, en general, ni siquiera será periódico.
- viii) Frecuentemente, en sistemas no demasiado complejos, es posible no sólo identificar algunos o todos los modos normales, sino que también encontrar las frecuencias respectivas por simple inspección del problema.

Ejemplo: Consideremos la configuración mostrada en la figura 13.8. Las tres masas sólo pueden moverse a lo largo del anillo de radio R. Los resortes, todos con constante de restitución k, también siempre se deforman a lo largo de la circunferencia. Encontraremos todos los modos normales con sus frecuencias.

El sistema tiene tres grados de libertad y, por lo tanto, existirán tres modos normales. Uno de ellos tiene frecuencia cero y corresponde a una rotación (rígida) uniforme de las tres masas a lo largo del anillo.

Es evidente que otro modo normal de oscilación del sistema es el mostrado en la figura 13.9: una de las tres partículas queda quieta y las otras dos se mueven en sentidos opuestos.

No es difícil encontrar la frecuencia angular de este modo. De los resortes que unen las partículas que se mueven, uno se acorta en una magnitud $a = \alpha R$ y el otro se alarga en 2a;

la fuerza neta sobre la partícula es, por lo tanto, 3ka. Para la frecuencia de este modo de vibración se obtiene $\omega = \sqrt{3k/m}$.

Otro modo normal se encuentra si la partícula 2 se mantiene quieta y las partículas 1 y 3 oscilan moviéndose en direcciones opuestas (ver figura 13.10). Por supuesto que este modo de oscilación tiene la misma frecuencia que el modo anterior (en el lenguaje técnico se dice que los dos modos son *degenerados*).

Pareciera que existe un cuarto modo, en que la partícula 3 se mantiene quieta y las partículas 1 y 2 oscilan, moviéndose en direcciones opuestas (ver figura 13.11). Efectivamente este también es un modo normal, pero no es uno distinto; en efecto, la superposición de los modos mostrados en las figuras 13.9 y 13.10 generan el modo mostrado en la figura 13.11. En el lenguaje técnico se dice que el modo de la figura 13.11 no es un modo independiente sino que es una combinación lineal de los modos normales mostrados en las figuras 13.9 y 13.10.

13.6. * Modos normales de una cuerda

Consideremos una cuerda de largo L, sin masa, bajo la tensión τ , que al centro tiene adosada una masa m y analicemos el movimiento transversal de la masa en ausencia de gravedad. Sea u(t) el desplazamiento transversal de la masa en función del tiempo. En todo momento supondremos que el ángulo de la cuerdo con la horizontal es pequeño, es decir, que

$$\frac{u(t)}{L/2} = \tan \alpha \simeq \alpha \; .$$

Figura 13.11

Además supondremos que la tensión τ no varía debido a la pequeña elongación que sufre la cuerda cuando está deformada. La fuerza transversal neta sobre la masa m debida a la tensión de la cuerda es

$$F = -2\tau \, \operatorname{sen} \alpha \simeq -2\tau \, \alpha \simeq -2\tau \frac{u}{L/2} = \frac{4\tau}{L} \, u$$

La segunda ley de Newton nos da la relación

$$m\ddot{u} = -\frac{4\tau}{L}u \; ,$$

o sea,

con

$$\ddot{u} + \omega_1^2 u = 0$$
,
 $\omega_1^2 = \frac{4\tau}{Lm}$. (13.21)

Concluimos que la masa m oscilará armónicamente con frecuencia ω_1 .

Consideremos ahora dos masas m adosadas a la cuerda en forma equiespaciada. Este sistema ahora tiene dos grados de libertad y, por lo tanto, tendrá dos modos normales de oscilación: uno en que las dos partículas oscilan en fase y otro en que oscilan en contrafase (ver figura 13.12).

En el modo 1, la fuerza transversal que actúa sobre cada masa es

$$F = -\tau \operatorname{sen} \alpha = -\tau \alpha = \tau \frac{u}{L/3} = -\frac{3\tau}{L}u$$
.

El desplazamiento de cada masa satisfacerá la ecuación de movimiento (segunda ley de Newton)

$$m\ddot{u} = -\frac{3\tau}{L}u \; ,$$

que es la ecuación de un oscilador armónico con frecuencia angular

$$\omega_1^2 = \frac{3\tau}{Lm} \ . \tag{13.22}$$

En el modo 2, la fuerza transversal que actúa sobre cada masa es

$$F = -\tau \, \operatorname{sen} \alpha - \tau \, \operatorname{sen} \beta = -\tau \, \alpha - \tau \, \beta = -\tau \frac{u}{L/3} - \tau \frac{2u}{L/3} = -\frac{9\tau}{L}u$$

La ecuación de movimiento de cada masa (segunda ley de Newton) en este caso es

$$m \ddot{u} = - \frac{9\tau}{L} u \ . \label{eq:mu}$$

Nuevamente es la ecuación de un oscilador armónico, pero ahora con la frecuencia angular

$$\omega_2^2 = \frac{9\tau}{Lm} \ . \tag{13.23}$$

Generalicemos los resultados anteriores y consideremos N masas m adosadas en forma equiespaciada a la cuerda. Definamos el eje \hat{x} a lo largo de la cuerda cuando está en su posición de equilibrio y elijamos el cero coincidiendo con el extremo izquierdo de la cuerda (el otro extremo de la cuerda estará en x = L). La posición longitudinal de la masa j será

$$x_j = j \, \frac{L}{N+1} \, . \tag{13.24}$$

El sistema tiene N grados de libertad y por lo tanto existirán N modos normales. En lo que sigue encontraremos los N modos normales con sus frecuencias respectivas. Para ello introduzcamos las N funciones

$$y_{\nu}(x,t) = u(t) \, \operatorname{sen}\left(\frac{\nu\pi}{L}x\right) \,, \qquad (13.25)$$

con $\nu = 1, 2, 3, \dots, N$.

Consideremos un ν particular (por ejemplo $\nu = 3$) y desplacemos las N partículas transversalmente en una distancia $u_j(t) = y_{\nu}(x_j, t)$. La figura 13.6 muestra esquemáticamente la situación que se tiene en este caso.

Encontraremos la ecuación de movimiento de la partícula j. Los ángulos que la cuerda al lado izquierdo y derecho de la partícula j forman con la horizontal son

$$\alpha \simeq \frac{u_j - u_{j-1}}{L/(N+1)}$$

у

$$\beta \simeq \frac{u_{j+1} - u_j}{L/(N+1)} ,$$

respectivamente (ver figura 13.14).

La fuerza transversal neta que actúa sobre la partícula j es

$$F = -\tau \, \operatorname{sen} \alpha + \tau \, \operatorname{sen} \beta \simeq -\tau (\alpha - \beta) \simeq \tau (2u_j - u_{j+1} - u_{j-1}) \, \frac{N+1}{L} \, .$$

La ecuación de movimiento para la partícula j es, por lo tanto,

$$m\ddot{u} = -\frac{\tau(N+1)}{L} \left(2u_j - u_{j+1} - u_{j-1}\right) \,.$$

Pero $u_j(t) = y_{\nu}(x_j, t)$, luego

$$\begin{split} \ddot{u}_j &= \ddot{u}(t) \, \operatorname{sen}\left(\frac{\nu\pi}{L} x_j\right) = \ddot{u}(t) \operatorname{sen}\left(\frac{\nu\pi j}{N+1}\right) \;,\\ u_{j+1} &+ u_{j-1} = u(t) \, \left[\operatorname{sen}\left(\frac{\nu\pi (j+1)}{N+1}\right) + \operatorname{sen}\left(\frac{\nu\pi (j-1)}{N+1}\right)\right] \\ &= 2 \, \operatorname{sen}\left(\frac{\nu\pi j}{N+1}\right) \, \cos\left(\frac{\nu\pi}{N+1}\right) \end{split}$$

у

$$2u_j - u_{j+1} - u_{j-1} = 2u(t) \left(1 - \cos\left(\frac{\nu\pi}{N+1}\right)\right) \operatorname{sen}\left(\frac{\nu\pi j}{N+1}\right)$$

Con estas relaciones la ecuación de movimiento para la partícula j queda

$$m\ddot{u} = -\frac{2\tau(N+1)}{L}\left(1 - \cos\left(\frac{\nu\pi}{N+1}\right)\right)u ,$$

o sea,

$$\ddot{u} + \omega_{\nu}^2 u = 0$$

 con

$$\omega_{\nu}^2 = \frac{2\tau(N+1)}{mL} \left(1 - \cos\left(\frac{\nu\pi}{N+1}\right)\right) . \tag{13.26}$$

Observe que ésta resulta ser la de un oscilador armónico y que es independiente de j, o sea, todas las masas oscilarán armónicamente con la misma frecuencia. En otras palabras, el movimiento será el de un modo normal de vibración del sistema. Haciendo variar ν se obtienen los distintos modos de vibración.

Ejercicio: Demuestre que la ecuación (13.26), para N = 1 (y $\nu = 1$) coincide con (13.21) y que para N = 2 (con $\nu = 1$ y 2) coincide con (13.22) y (13.23), respectivamente.

Ejercicio: Demuestre que para enteros $\nu > N$ no se obtienen nuevos modos de oscilación.

A continuación estudiaremos el caso de una cuerda de largo L, pero con una densidad lineal de masa uniforme μ . La masa de tal cuerda es $L\mu$.

Para obtener la cuerda con masa tomaremos el límite $N \to \infty$ y $m \to 0$ de manera que la masa total de la cuerda sea $L\mu$, o sea,

$$L \to \infty$$
 y $m \to 0$ tal que $Nm = L\mu$

En este límite, para las frecuencias ω_{ν} , se tiene

$$\omega_{\nu}^{2} = \frac{2\tau N^{2}}{L(Nm)} \left(1 - \left(1 - \frac{1}{2} \frac{\nu^{2} \pi^{2}}{N^{2}} \right) \right) = \frac{\tau \nu^{2} \pi^{2}}{\mu L^{2}}$$

o sea,

$$\omega_{\nu} = \nu \frac{\pi}{L} \sqrt{\frac{\tau}{\mu}} \; .$$

Esta última ecuación da las frecuencia de los modos normales de una cuerda de largo L, densidad lineal μ y bajo tensión τ . Hay infinitos modos normales, todos ellos múltiplos enteros de una frecuencia fundamental

$$\omega_1 = \frac{\pi}{L} \sqrt{\frac{\tau}{\mu}} \; .$$

13.7. Problemas

- 1. La aceleración de la gravedad varía con la posición sobre la Tierra debido a su rotación y a que el globo terráqueo no es exactamente esférico. Esto fue descubierto por primera vez en el siglo XVII, cuando se observó que un reloj pendular, cuidadosamente ajustado para marcar el tiempo correcto en París, perdía alrededor de 90 s por día cerca del Ecuador.
 - a) Demuestre que una pequeña variación de g produce una pequeña modificación del período del péndulo T dado por

$$\frac{\Delta T}{T} = -\frac{1}{2}\frac{\Delta g}{g}$$

- b) ¿Cuánto deberá variar g para lograr explicar la diferencia del período de un péndulo entre París y el Ecuador?
- 2. Una masa de 2 kg se sujeta a un resorte de constante de fuerza k = 10 N/m que descansa sobre una superficie horizontal lisa. Otra masa de 1 kg se desliza a lo largo de la superficie hacia la primera a 6 m/s.
 - a) Hallar la amplitud de la oscilación si las masas realizan un choque perfectamente inelástico y ambas quedan adosadas al resorte. ¿Cuál es el período de oscilación?
 - b) Hallar la amplitud y período de la oscilación si el choque es perfectamente elástico.
 - c) En cada caso encuentre una expresión para la posición x de la masa sujeta al resorte en función del tiempo, admitiendo que el choque se produce en el instante t = 0.
- 3. Un resorte de constante de fuerza k = 100N/m cuelga verticalmente de un soporte. En su extremo inferior (que se encuentra a una distancia l_0 del techo) se engancha una masa de 0.5 kg, que luego (en el instante t = 0) se suelta, desde el reposo. La masa comenzará a oscilar en torno a un nuevo punto de equilibrio x_0 .

Figura 13.15

- a) Encuentre el nuevo punto de equilibrio x_0 .
- b) ¿Con qué período oscilará la masa m alrededor de x_0 ?
- c) Encuentre la energía cinética y el potencial en función del tiempo. (Especifique claramente los orígenes usados para especificar las energías potenciales.)
- d) Encuentre la velocidad máxima que llegará a tener la masa m mientras oscila.

- 4. En una cuenca esférica de radio r se desliza una masa m_1 una pequeña distancia s_1 , siendo $s_1 \ll r$. Una segunda masa m_2 se desplaza en sentido opuesto hasta una distancia $s_2 = 3s_1$ (también $s_2 \ll r$).
 - a) Si las masas se dejan libres en el mismo instante y resbalan sin roce, ¿en dónde se encontrarán?
 - b) Si la colisión es elástica, ¿cuándo volverán las masas nuevamente a estar en reposo y en qué lugar?

Figura 13.16

- 5. Un bloque de madera se desliza sobre una superficie horizontal lisa. El bloque está sujeto a un resorte que oscila con período de 0.3 s. Un segundo bloque descansa en su parte superior. El coeficiente de roce estático entre los dos bloques es $\mu_s = 0.25$.
 - a) Si la amplitud de oscilación es 1 cm, ¿se deslizará el bloque situado encima?
 - b) ¿Cuál es la mayor amplitud de oscilación para la cual no se deslizará el bloque de encima?
- 6. Una variable x(t) se comporta armónicamente. Si en t = 0, la posición, la velocidad y aceleración vienen dadas por x(0) = 1 cm, v(0) = 2 cm/s y a(0) = -4 cm/s², respectivamente. Encuentre la posición x(t) y la velocidad v(t) para t = 6 s.
- 7. La figura 13.17 muestra un tubo de sección constante A y forma de U, abierto a la atmósfera. El tubo está lleno hasta el nivel indicado por una línea a trazos con un líquido incompresible que fluye a través del tubo con un rozamiento despreciable. La longitud total de la columna de líquido es L. Demuestre que si se hace descender la superficie del líquido en uno de los brazos de la U y luego se deja libre, el nivel del fluido oscilará armónicamente alrededor de su posición de equilibrio con un período dado por $T = 2\pi \sqrt{L/2g}$.

Figura 13.17

- 8. Encuentre (aproximadamente) el menor valor de la frecuencia angular que podría tener un oscilador armónico x(t), si lo que se conoce es que x(0) = 0, v(1 s) = 2 cm/s y $a(2 \text{ s}) = 4 \text{ cm/s}^2$.
- 9. Suponga que una variable x(t) varía armónicamente con una frecuencia angular $\omega_0 = 2 \text{ s}^{-1}$.

- a) Encuentre la posición x y la velocidad v en el instante t = 3 s si x(0) = 1 cm y x(1 s) = 1 cm.
- b) Repita lo mismo pero con las condiciones de borde x(1 s) = 1 cm y v(1 s) = 4 cm/s.
- c) Repita lo mismo pero ahora con las condiciones de borde x(0) = 2 cm y v(2 s) = -4 cm/s.
- 10. Se cuelga una masa M de un resorte y se pone en movimiento oscilatorio vertical, con una amplitud de 7 cm. La frecuencia de las oscilaciones es de 4 Hz. Al llegar M a la posición más baja, se le coloca encima una pequeña piedrecita. Supongamos que la masa de la piedrecita es tan pequeña que no tiene mayor efecto sobre la oscilación.
 - a) ¿A qué distancia por encima de la posición de equilibrio perderá contacto la piedrecita con la masa M?
 - b) ¿Cuál es la velocidad de la piedrecita cuando se separa de la masa M?
- 11. Un péndulo simple de 50 cm de largo cuelga del techo de un vagón que se acelera con una aceleración $a = 7 \text{ m/s}^2$ en dirección horizontal. Encuentre el período del péndulo para pequeñas oscilaciones en torno a su posición de equilibrio.

Figura 13.18

- 12. Considere una variable x(t) que satisface la ecuación de un oscilador armónico atenuado. Suponga que $\omega_0 = 1$ rad/s y que se tienen las siguientes condiciones iniciales: x(0) = 2 cm, v(0) = 0 cm/s.
 - a) Encuentre la solución si $\eta = 2, 2\omega_0$. Grafique la solución en el intervalo0 < t < 20 s.
 - b) Repita lo mismo de la parte (a), pero con $\eta = \omega_0$.
 - c) Repita lo anterior, pero ahora con $\lambda = 0.5\omega_0$.
 - d) Repita lo de las partes (a), (b) y (c), con las condiciones iniciales x(0) = 0 cm y v(0) = 50 cm/s.

13. Considere dos péndulos idénticos acoplados. Las ecuaciones de movimiento en ese caso vienen dadas por:

$$m\ell\ddot{\theta}_1 = -mg\theta_1 - \lambda(\theta_1 - \theta_2)$$
$$m\ell\ddot{\theta}_2 = -mg\theta_2 - \lambda(\theta_1 - \theta_2)$$

La constante λ acopla los dos osciladores armónicos. Si $\lambda = 0$ (o sea, si el acoplamiento se hace cero) cada péndulo oscila independientemente del otro.

Figura 13.19

a) Introduzca las nuevas variables

$$\eta_1(t) = \theta_1(t) + \theta_2(t)$$

$$\eta_2(t) = \theta_1(t) - \theta_2(t)$$

y demuestre que éstas varían armónicamente con las frecuencias

$$\omega_0 = \sqrt{g/\ell}$$
 y $\omega_1 = \sqrt{\omega_0^2 + \Gamma}$,

respectivamente, donde $\Gamma = 2\lambda/(m\ell)$.

b) Demuestre que la solución general se puede escribir de la forma

$$\theta_1(t) = \frac{1}{2} [A\cos(\omega_0 t + \alpha) + B\cos(\omega_1 t + \beta)]$$

$$\theta_2(t) = \frac{1}{2} [A\cos(\omega_0 t + \alpha) - B\cos(\omega_1 t + \beta)]$$

Las constantes A, B, $\alpha \neq \beta$ se determinan con las condiciones de borde.

- c) Sea $\omega_0 = 1 \text{ rad/s y } \Gamma = 0.1 \text{ s}^{-2}$. Encuentre la solución para el caso en que $\theta_1(0) = \theta_0, \, \theta_2(0) = \dot{\theta}_1(0) = \dot{\theta}_2(0) = 0$. Grafique $\theta_1(t) \neq \theta_2(t)$.
- d) Repita lo anterior, pero para el caso en que $\theta_1(0) = \theta_2(0) = \theta_0$ y $\dot{\theta}_1(0) = \dot{\theta}_2(0) = 0$.
- e) Repita lo anterior, pero para el caso en que $\theta_1(0) = -\theta_2(0) = \theta_0$ y $\dot{\theta}_1(0) = \dot{\theta}_2(0) = 0$.
- f) Para el caso (c) el movimiento de cada péndulo consiste en un movimiento oscilatorio cuya amplitud también varía periódicamente. Sea Ω la frecuencia angular de la variación periódica de la amplitud. Encuentre Ω .
- 14. *Péndulo físico*: Considere un objeto de masa M, que puede oscilar alrededor de un eje que lo atraviesa. Sea I el momento de inercia para rotaciones alrededor de ese eje

y ℓ la distancia entre el eje y el centro de masas del objeto. Encuentre el período T para pequeñas oscilaciones alrededor de su posición de equilibrio. Demuestre que un péndulo simple equivalente, es decir, uno que tenga el mismo período, tiene un largo

15. Considere la configuración mostrada en la figura 13.20. Las cuatro masas sólo pueden moverse a lo largo del anillo de radio R. (Los resortes también siempre se deforman a lo largo de la circunferencia.) Encuentre la frecuencia de los modos normales de oscilación.

Figura 13.20

16. Considere una masa m resbalando sin roce (en presencia de la aceleración de gravedad $-g\hat{y}$) a lo largo de un perfil de la forma

$$y(x) = \alpha x^3 - \beta x^2 ,$$

con $\alpha = 1 \text{ m}^{-2}$ y $\beta = 3/2 \text{ m}^{-1}$. Grafique y(x). Si la masa realiza pequeñas oscilaciones en torno al mínimo local, encuentre el período T de tal movimiento.

- 17. Una masa de 2 kg oscila colgada de un resorte de constante de restitución k = 400 N/m. La constante de amortiguamiento es $\eta = 1 \text{ s}^{-1}$. El sistema es forzado por una fuerza sinusoidal de amplitud $F_0 = 10$ N y frecuencia angular $\omega = 10$ rad/s.
 - a) ¿Cuál es la amplitud de las oscilaciones en el régimen estacionario?
 - b) Si se varía la frecuencia de la fuerza impulsora, ¿a qué frecuencia se producirá la resonancia?
 - c) Encuentre la amplitud de las vibraciones en la resonancia.
- 18. Considere una masa m = 50 g que oscila sujeta a un resorte de constante de restitución k. Suponga que hay algún dispositivo que atenúa las oscilaciones con una fuerza que es proporcional a la velocidad (o sea, estamos en presencia de un oscilador armónico atenuado). Con un cronómetro se mide el "período de oscilación"; éste resulta ser igual a 2.1 s.
 - a) ¿Cuánto valen ω_0 y λ ?
 - b) ¿En cuánto disminuirá la amplitud máxima de oscilación entre dos ciclos consecutivos?

- 19. Una masa m = 1 kg cuelga de un resorte de constante de restitución k = 200 N/m. La constante de amortiguamiento es $\eta = 1$ s⁻¹. En el instante t = 0 comienza a actuar sobre la masa una fuerza $F = F_0 \sin(\omega t)$, con $F_0 = 2$ N y $\omega = 10$ s⁻¹.
 - a) Si x(0) = 0 y v(0) = 0, encuentre x(t) para t = 1 s, t = 100 s y t = 1000 s.
 - b) Encuentre la energía disipada en un ciclo cuando el oscilador se encuentra en el régimen estacionario.
- 20. Una masa *m* descansa sobre una mesa horizontal lisa (sin roce). El movimiento de la masa está restringido a desplazamientos a lo largo del eje \hat{x} . Sobre la masa actúa una fuerza $\vec{F}(t) = F_0 \sin(\omega t) \hat{x}$.
 - a) Encuentre la aceleración a(t) y la velocidad v(t) de la masa, si en el instante t = 0 se encontraba detenida.
 - b) Encuentre la posición x(t) si además se sabe que x(0) = 0. Demuestre que el movimiento es armónico con una amplitud $A = F_0/(m\omega^2)$.
 - c) La masa ahora se sujeta adicionalmente a un resorte de constante de restitución k. (La orientación del resorte también es a lo largo del eje \hat{x}). Compare el movimiento que tiene ahora con el que tenía cuando no estaba unida al resorte.

21. (Péndulo de torsión)

Suponga que un extremo de un alambre metálico está firmemente adosado del cielo de una pieza y del otro cuelgan dos esferas sólidas tal como se mustran en la figura adjunta. Al girar las esferas con el alambre en un ángulo θ (alrededor del eje formado por el alambre), el alambre ejercerá un torque τ que hará que las esferas retornen a la posición de equilibrio. El torque que ejerce el alambre es

$$\vec{\tau} = -\eta \vec{\theta}$$

donde τ es una constante (que depende del largo, diámetro y material de que está hecho el alambre).

Figura 13.21

Para este problema suponga que $\eta = 1250 \text{ g cm}^2/\text{s}^2$. Si las esferas son de aluminio $(\rho_{\text{Al}} = 2,7 \text{ g/cm}^3)$, ¿qué diámetro deben tener las esferas para que el período sea exactamente de un segundo? (El momento de inercia de una esfera sólida de masa M y radio R para una rotación alrededor de un eje que pasa por su centro es $I = 2mR^2/5$).

22. Una masa de m = 0.5 kg, después de caer una distancia h = 5 m, se adosa a un resorte (largo) de constante k = 2 kg/s². El sistema resultante viene gobernado por la ecuación de movimiento

$$\ddot{z}(t) + \omega_0^2 z(t) + 2\omega_0 \dot{z}(t) = 0$$

o sea, corresponde a un oscilador armónico amortiguado crítico. La magnitud z(t) mide la posición de la masa *m* respecto al punto de equilibrio y $\omega_0 = \sqrt{k/m}$ es la frecuencia natural del sistema.

La solución general está dada por la relación

$$z(t) = (A + Bt)e^{-\omega_0 t}$$

donde $A ext{ y } B$ son constantes que se ajustan con las condiciones iniciales.

(Para los cálculos numéricos que siguen, use para la aceleración de gravedad el valor $g = 10 \text{ m/s}^2$)

- a) Determine $A \ge B$ us ando las condiciones iniciales.
- b) Sea t_0 el instante en que el resorte tiene su máxima compresión. Evalúe t_0 . (Elija el cero del tiempo en el instante en que la masa colisiona con el resorte).
- c) Haga un gráfico esquemático de la función z(t).
- d) ¿Cuál será la energía total disipada por el amortiguador?

Figura 13.22

23. Considere dos cilindros que giran rápidamente en sentidos contrarios tal como se muestra en la figura adjunta. Sobre estos cilindros se coloca un tablón de masa M y densidad uniforme. Sea d la distancia entre los dos cilindros y sea μ el coeficiente de roce cinemático entre el tablón y los cilindros. Demuestre que el movimiento del tablón es armónico. Encuentre el período del movimiento.

Figura 13.23

24. Considere dos masas m_1 y m_2 unidas por un resorte de largo natural ℓ_o y constante de restitución k. Supongamos que el movimiento de ambas masas está restringido a

lo largo de la recta que los une.

Sean $x_1(t)$ y $x_2(t)$ las posiciones de las masas m_1 y m_2 , respectivamente.

a) Demuestre que $x_1(t)$ y $x_2(t)$ satisfacen las ecuaciones diferenciales acopladas

$$m_1 \ddot{x}_1(t) = k[x_2(t) - x_1(t) - \ell_0]$$

$$m_2 \ddot{x}_2(t) = -k[x_2(t) - x_1(t) - \ell_0]$$

b) Definamos las variables $\eta_0(t) \ge \eta_1(t)$ por

$$\eta_0(t) = \frac{m_1 x_1(t) + m_2 x_2(t)}{m_1 + m_2}$$

$$\eta_1(t) = x_2(t) - x_1(t) - \ell_0$$

Demuestre que las variables $\eta_0(t)$ y $\eta_1(t)$ satisfacen las ecuaciones diferenciales (desacopladas)

$$\ddot{\eta_0} = 0$$
$$\ddot{\eta_1} + \omega^2 \eta_1 = 0$$

 con

$$\omega^2 = k \frac{m_1 + m_2}{m_1 m_2}$$

c) Demuestre que la solución más general del problema se puede escribir de la forma

$$x_1(t) = A + Bt - \frac{m_2}{m_1 + m_2} (\ell_0 + C\cos(\omega t) + D\sin(\omega t))$$

$$x_2(t) = A + Bt + \frac{m_1}{m_1 + m_2} (\ell_0 + C\cos(\omega t) + D\sin(\omega t))$$

- d) Definamos ω_0 y α por $\omega_0 = \sqrt{k/m}$ y $\alpha = m_2/m_1$. Exprese ω en términos de ω_0 y α . ¿Cuánto vale ω en términos de ω_0 si $\alpha \to \infty$? ¿Coincide esto con lo que usted intuía? ¿Cuánto vale ω en términos de ω_0 si $\alpha = 1$?
- e) Sea $\ell_0 = 8 \text{ cm y } \omega_0 = 1 \text{ rad/s y } \alpha = 1$ (o sea, $m_1 = m_2$). Encuentre la solución que satisface las siguientes condiciones iniciales: $x_1(0) = 0, x_2(0) = 10 \text{ cm y}$ $v_1(0) = v_2(0) = 0$. Grafique $x_1(t) \text{ y } x_2(t)$ en un mismo gráfico para el intervalo 0 < t < 15 s.
- f) Repita lo mismo de la parte (e) pero para las condiciones iniciales $x_1(0) = 0$, $x_2(0) = 8$ cm, y $v_1(0) = 4$ cm/s y $v_2(0) = 0$.

- g) Repita la parte (f) pero con $\alpha = 10$.
- h) Repita la parte (f) pero con $\alpha = 0,1$.
- 25. Considere tres partículas de masa m que sólo pueden moverse a lo largo del eje \hat{x} y están unidas por resortes de largo natural ℓ_0 y constantes de restitución k (ver figura).

Figura 13.24

Sean $x_1(t)$, $x_2(t)$ y $x_3(t)$ las posiciones de las tres masas en función del tiempo.

a) Demuestre que $x_1(t)$, $x_2(t)$ y $x_3(t)$ satisfacen las ecuaciones diferenciales acopladas

$$m\ddot{x}_1 = k(x_2 - x_1 - \ell_0)$$

$$m\ddot{x}_2 = k(x_3 + x_1 - 2x_2)$$

$$m\ddot{x}_3 = k(x_2 - x_3 + \ell_0)$$

b) Intoduzca las nuevas variables definidas por

$$\eta_0 = (x_1 + x_2 + x_3)$$
, $\eta_1 = (x_1 - x_3) + \ell_0$ y $\eta_2 = (x_1 - 2x_2 + x_3).$

Demuestre que estas nuevas variables satisfacen las ecuaciones diferenciales desacopladas

$$\ddot{\eta}_0 = 0$$
 , $\ddot{\eta}_1 + \omega_1^2 \eta_1 = 0$ y $\ddot{\eta}_2 + \omega_2^2 \eta_2 = 0$

con $\omega_1 = \sqrt{k/m}$ y $\omega_2 = \sqrt{3}\omega_1$. ¡Interprete!

c) Demuestre que la solución general al problema se puede escribir de la forma

$$\begin{aligned} x_1(t) &= A + Bt + C\cos(\omega_1 t + \delta_1) + D\cos(\omega_2 t + \delta_2) - \ell_0 \\ x_2(t) &= A + Bt - 2D\cos(\omega_2 t + \delta_2) \\ x_1(t) &= A + Bt - C\cos(\omega_1 t + \delta_1) + D\cos(\omega_2 t + \delta_2) + \ell_0 \end{aligned}$$

Las constantes $A, B, C, D, \delta_1 y \delta_2$ se eligen de manera que la solución satisfaga las condiciones de borde. Convénzase de que, en general, las condiciones de borde determinan a las seis constantes.

d) Suponga que $\ell_0 = 5 \text{ cm y } \omega_1 = 1 \text{ rad/s}$. Encuentre la solución que satisface las siguientes condiciones iniciales: $x_1(0) = -8 \text{ cm}, x_2(0) = 0, x_3(0) = 8 \text{ cm}, v_1(0) = v_2(0) = v_3(0) = 0$. Grafique en un mismo gráfico $x_1(t), x_2(t)$ y $x_3(t)$ en el intervalo 0 < t < 15 s.

- e) Repita lo mismo que la parte (d), con las condiciones iniciales $x_1(0) = -4$ cm, $x_2(0) = -2$ cm, $x_3(0) = 6$ cm y $v_1(0) = v_2(0) = v_3(0) = 0$
- f) Repita lo mismo que la parte (d), con las condiciones iniciales $x_1(0) = -8$ cm, $x_2(0) = 0$ cm, $x_3(0) = 5$ cm y $v_1(0) = v_2(0) = v_3(0) = 0$
- g) Repita lo mismo que la parte (d), con las condiciones iniciales $x_1(0) = -5$ cm, $x_2(0) = 0$ cm, $x_3(0) = 5$ cm, $v_1(0) = v_2(0) = 0$ y $v_3(0) = 3$ cm/s.
- 26. Considere un resorte, de constante de restitución k, que conecta dos masas, M y m restringidas a moverse a lo largo del eje \hat{x} . Encuentre la frecuencia de oscilación de tal sistema.
- 27. * Suponga que la energía potencial de cierta molécula diatómica viene razonablemente bien desvrita por la expresión

$$U(r) = \frac{1}{2}U_0 \left[\left(\frac{r_0}{r}\right)^{12} - 2\left(\frac{r_0}{r}\right)^6 \right]$$

con $U_0 = 2$ eV (eV es una unidad de energía usada en la física atómica llamada "electron-volt") y $r_0 = 0.5$ nm (1 nm= 10^{-9} m).

- a) Demuestre que $r = r_0$ es la separación de equilibrio de la molécula.
- b) Grafique U(r) en el rango 0,4 nm< r < 0,7 nm.
- c) Desarrolle el potencial U(r) en torno a $r = r_0$, es decir exprese U(r) de la forma

$$U(r) = c_0 + c_1 s + \frac{1}{2}c_2 s^2 + \dots$$

donde $s = r - r_0$ y encuentre los coeficientes c_0 , c_1 y c_2 .

- d) Convénzase de que la fuerza para pequeños desplazamientos de los átomos respecto a su posición de equilibrio (que ocurre para s = 0) viene dada por F(s) = -ks. Evalúe k.
- e) Si las masas de los átomos son $m_1 = m_2 = m$, ¿cuál será la frecuencia vibracional de la molécula?
- 28. Considere cuatro masas iguales unidas por resortes de constante de restitución k tal como se muestra en la figura. Las masas sólo se pueden mover en el plano en que se ubican. Usando argumentos de simetría, describa algunos de los modos normales de vibración y encuentre la frecuencia de ellos. ¿Cuaántos modos normales tiene este sistema? ¿Cuántos de ellos tienen frecuencia cero?

Figura 13.25

13.7 Problemas

- 29. Un reloj "de los abuelos" se basa en un péndulo de longitud 1 m. El reloj se atrasa 1 segundo por día. ¿En cuánto se debe corregir la longitud del péndulo?
- 30. Un resorte de constante de resitución k = 2 dina/cm y largo en reposo ℓ_0 se encuentra adosado firmemente a la base de un recipiente (ver figura). El recipiente está lleno de agua.

Suponga ahora que en el instante t = 0se le adosa al extremo superior una esfera sólida homogénea de radio R = 1 cm, hecha de un material más liviano que el agua, y que la esfera luego se suelta (o sea, en el instante t = 0 la longitud del resorte es ℓ_0 y la esfera se suelta en reposo). Se observa que la esfera realiza oscilaciones armónicas de amplitud A = 0.8 cm.

- a) Encuentre la densidad ρ de la esfera.
- b) Encuentre el período T del movimiento armónico que la esfera realiza una vez que se suelta.

(Al desarrollar el problema ignore los efectos debidos al roce viscoso entre la esfera y el agua).

31. El péndulo de la figura está formado por una barra de masa despreciable y longitud L. La masa del extremo inferior se mantiene unido a un resorte de constante k dispuesto horizontalmente y fijo, por su otro extremo a una pared. Cuando el péndulo se encuentra en posición vertical la longitud del resorte es la de su largo natural. Calcule la frecuencia ω del sistema. Verifique su resultado analizando el límite de algunos sistemas conocidos.

Figura 13.27

32. Considere un cilindro de radio R y densidad ρ , con una perforación cilíndrica de radio R/2, tal como se muestra en la figura. El cilindro rueda sin resbalar sobre una superficie horizontal realizando pequeñas oscilaciones en torno a su posición de equilibrio. Encuentre el período de las oscilaciones.

Figura 13.28

13.8. Solución a algunos de los problemas

Solución al problema 8

La forma general de la solución para un oscilador armónico simple es

$$x(t) = A\cos(\omega t) + B\sin(\omega t).$$

La condición x(0) = 0 implica que A = 0, luego queda

$$x(t) = B\sin(\omega t).$$

Derivando se obtiene

$$v(t) = \omega B \cos(\omega t)$$
 y $a(t) = -\omega^2 B \sin(\omega t)$

Aplicando las condiciones de borde se encuentra que

$$v(1) = \omega B \cos(\omega) = 2$$

у

$$a(2) = -\omega^2 B \sin(2\omega) = -2\omega^2 B \sin(\omega) \cos(\omega) = 4.$$

Formando el cuociente entre las dos últimas ecuaciones obtenemos

$$\sin(\omega) = -\frac{1}{\omega}$$

La figura 13.29 muestra un gráfico del lado izquierdo y derecho de esta ecuación. La intersección de menor frecuencia ocurre para $\omega \sim 3.43 \text{ s}^{-1}$.

Solución al problema 15

El sistema tiene 4 grados de libertad y por lo tanto existen cuatro modos normales. Sean θ_j , j = 1,2,3,4 los cuatro ángulos de las cuatro masas respecto a sus posiciones de "equilibrio". Los cuatro modos normales se encuentran por simple inspección del problema.

Figura 13.29

- i) Uno de los modos normales tiene frecuencia nula ($\omega_1 = 0$) y corresponde a la rotación uniforme y simultánea de las cuatro masas a lo largo del anillo, o sea, $\theta_1(t) = \theta_2(t) = \theta_3(t) = \theta_4(t) = \omega t$.
- ii) Otro modo normal se obtiene si las partículas 1 y 3 se mantienen en reposo y las partículas 2 y 4 oscilan con la misma amplitud pero en sentido contrario, o sea $\theta_1(t) = \theta_3(t) = 0, \theta_2(t) = -\theta_4(t), \forall t$. Al desplazar la masa 2 en un ángulo α uno de los resortes se comprime y el otro se alarga en una magnitud $R\alpha$. La fuerza sobre la masa será igual a $2kR\alpha$, luego la frecuencia de este modo normal será $\omega_2 = \sqrt{2k/m}$.
- iii) Otro modo normal se obtiene si las partículas 2 y 4 se mantienen en reposo y las partículas 1 y 3 oscilan con la misma amplitud pero en sentido contrario. Por simetría este modo tiene la misma frecuencia que el modo normal anterior ($\omega_3 = \sqrt{2k/m}$).
- iv) El cuarto modo normal se obtiene si las cuatro masas oscilan con la misma amplitud, 1 y 3 en la misma dirección y 2 y 4 en la dirección contraria, es decir, $\theta_1(t) = \theta_3(t) = -\theta_2(t) = -\theta_4(t) =$, $\forall t$. Al desplazarse una masa en un ángulo α , uno de los resortes se acorta y el otro se alarga en una magnitud $2R\alpha$. La fuerza sobre la masa será, por lo tanto, igual a $4kR\alpha$. Luego la frecuencia de oscilación es $\omega_2 = \sqrt{4k/m}$.

La figura 13.30 muestra esquemáticamente el movimiento de las cuatro masas para los cuatro modos normales.

Solución al problema 21

Al girar el alambre con las esferas en un ángulo $\vec{\theta} = \theta \hat{z}$ el torque es

$$\vec{\tau} = -\eta \theta \hat{z}.$$

El torque genera un cambio del momento angular del sistema. Se tiene

$$\vec{\tau} = \frac{d\vec{\ell}}{dt} = \frac{d}{dt} \left(I\dot{\theta} \right) \hat{z} = I\ddot{\theta}\hat{z},$$

donde I es el momento de inercia de las dos esferas para rotaciones alrededor del eje \hat{z} (que coincide con el alambre).

De las dos ecuaciones anteriores se deduce que

$$I\ddot{\theta} = -\eta\theta$$

o sea,

 $\ddot{\theta}+\omega_0^2\theta=0$

con $\omega_0^2=\eta/I.$ Para el período T se obtiene

$$T = 2\pi \sqrt{\frac{I}{\eta}}.$$

Usando el teorema de Steiner, para el momento de inercia se encuentra la expresión

$$I = 2\left[\frac{2}{5}mR^2 + mR^2\right] = \frac{14}{5}mR^2 = \frac{14}{5}\frac{4}{3}\pi R^3\rho R^2 = \frac{56}{15}\pi\rho R^5.$$

Usando esto en la expresión anterior para el período y despejando R se encuentra

$$R^5 = \frac{15}{56} \frac{T^2}{4\pi^3} \frac{\eta}{\rho} = 0,99986 \text{ cm}^5.$$

O sea, con esferas de diámetro igual a 1 cm, este péndulo tendrá un período de 1 segundo.

Solución al problema 22

a) Se
a x_0 la magnitud que el resorte se comprimirá respecto a su largo natural una vez que llegue al equilibrio. Se tiene que

$$kx_0 = mg$$

o sea,

$$x_0 = \frac{mg}{k} = \frac{0, 5 \cdot 10}{2}$$
 m = 2, 5 m.

La velocidad v_0 de la masa cuando choca con el resorte viene dada por

$$v_0 = \sqrt{2gh} = \sqrt{2 \cdot 10 \cdot 5} \quad \frac{\mathrm{m}}{\mathrm{s}} = 10 \quad \frac{\mathrm{m}}{\mathrm{s}}.$$

Por consiguiente, las condiciones iniciales son

$$x(0) = x_0 = 2,5$$
 m y $\dot{x}(0) = -v_0 = -10$ $\frac{m}{s}$

La frecuencia angular natural del sistema es $\omega_0=\sqrt{k/m}=2\frac{1}{\rm s}.$ Derivando la expresión

$$z(t) = (A + Bt)e^{-\omega_0 t}$$

se obtiene

$$\dot{z}(t) = (B - A\omega_0 - B\omega_0 t)e^{-\omega_0 t}.$$

Evaluando estas expresiones en t = 0 se obtiene

$$z(0) = A$$
 y $\dot{z}(0) = B - A\omega_0$.

Usando las condiciones iniciales se encuentra para $A \ge B$ los valores

$$A = x_0 = 2,5$$
 m

у

$$B = A\omega_0 + \dot{z}(0) = (2, 5 \cdot 2 - 10) \quad \frac{\mathrm{m}}{\mathrm{s}} = -5 \quad \frac{\mathrm{m}}{\mathrm{s}}.$$

b) La velocidad $\dot{z}(t)$ es nula cuando $(B - A\omega_0 - B\omega_0 t) = 0$. De esta relación se deduce que ello ocurre en el instante

$$t_o = \frac{1}{\omega_0} - \frac{A}{B} = \left(\frac{1}{2} - \frac{2,5}{(-5)}\right) \mathbf{s} = 1$$
 s

- c) La figura 13.31 muestra el gráfico de la posición z(t) en función del tiempo.
- d) Del cambio de energía potencial $\Delta U = mg(h + x_0)$,

$$\frac{1}{2}kx_o^2$$

queda como energía potencial del resorte; el resto se disipa. Por lo tanto, la energía disipada es

$$Q = mgh + mgx_0 - \frac{1}{2}kx_0^2$$

= $mgh + \frac{1}{2}kx_0^2$
= $\left[\frac{1}{2} \cdot 10 \cdot 5 + \frac{1}{2} \cdot 2 \cdot (2,5)^2\right]$ Joule = 31,25 Joule

Solución al problema 30

Una vez que se adosa la esfera al resorte el nuevo punto de equilibrio del resorte sube en una magnitud D que se puede evaluar de la relación

$$kD = \frac{4}{3}\pi R^3(\rho_0 - \rho)g,$$

$$\rho = \rho_0 - \frac{3kA}{4\pi R^3 g}.$$

Ahora $k/g=2~{\rm dina}/g=2$ gramos, luego

$$\rho = \left[1 - \frac{3 \cdot 2 \cdot 0, 8}{4\pi}\right] \quad \text{g/cm}^3 = 0,618 \quad \text{g/cm}^3.$$

El período del movimiento viene dado por

$$T = 2\pi \sqrt{\frac{m}{k}},$$

donde $m = 4\pi R^3 \rho/3 = 4\pi 0.618/3$ g = 25,9 g. Para el período se encuentra T = 1.75 s.