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Chapter 4  
 
 
4.1 Cheapo Electrons is an electricity retailer. The table below shows the load that it 

forecast its consumers would use over a six-hour period. Cheapo Electrons 
purchased on the forward market and the power exchange exactly enough energy 
to cover this forecast. The table shows the average price that it paid for this 
energy for each hour. As one might expect, the actual consumption of its 
customers did not exactly match the load forecast and it had to purchase or sell 
the difference on the spot market at the prices indicated. Assuming that Cheapo 
Electrons sells energy to its customers at a flat rate of 24.00$/MWh, calculate the 
profit or loss that it made during this six-hour period. What would be the rate that 
it should have charged its customers to break even? 

 
Period 1 2 3 4 5 6 
Load Forecast [MWh] 120 230 310 240 135 110
Average cost [$/MWh] 22.5 24.5 29.3 25.2 23.1 21.9
Actual load [MWh] 110 225 330 250 125 105
Spot price [$/MWh] 21.6 25.1 32 25.9 22.5 21.5
 
Table P4.1 shows the payments for energy, the revenue from the sales, the spot balancing 
transactions and the profit for each of period. 
 

Table P4.1: Summary of the revenues and expenses for Problem 4.1 
Period 1 2 3 4 5 6 
Payment for energy ($) -2700 -5635 -9083 -6048 -3118.5 -2409
Revenue from the sales ($) 2640 5400 7920 6000 3000 2520
Spot transactions ($) 216 125.5 -640 -259 225 107.5
Profit ($) 156 -109.5 -1803 -307 106.5 218.5
 
Summing the profits (or losses) for each of the six periods, we get a loss of $1738.50. 
 
Cheapo Electrons will break even price if the total income it derives from the sale of 
electricity to consumers is equal to the total payments it makes for the energy it purchases 
on the forward and spot markets:  
 
Revenue from customer sales = cost forward market purchases + cost of spot market 
purchases 
 
Using the data from Table P4.1 and summing over all six periods, we get: 
 
π × 1145 = 28993.50 + 225 
 
The break-even price is thus π = 25.52 $/MWh. 
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4.2 The input-output curve of a gas-fired generating unit is approximated by the 

following function: 
 

2( ) 120 9.3 0.0025  [MJ/h]H P P P= + +  
 

This unit has a minimum stable generation of 200 MW and a maximum output of 
500 MW. The cost of gas is 1.20 $/MJ. Over a six-hour period, the output of this 
unit is sold on a market for electrical energy at the prices shown in the table 
below. 

 
Period 1 2 3 4 5 6 
Price 
[$/MWh] 12.5 10 13 13.5 15 11 

 
Assuming that this unit is optimally dispatched, is initially on-line and cannot be 
shut down, calculate its operational profit or loss for this period. 

 
The running cost of the unit is: 
 

2( ) ( ) 144 11.16 0.003  [$/h]C P F H P P P= × = + +  
 
Therefore the marginal cost of production of the unit is: 
 

( ) 11.16 0.006d C P P
dP

= +  

 
Since the unit is optimally dispatched, its operator will adjust its output so that the 
marginal cost of production of the unit is equal to the market price for each period. 
Therefore, we have: 
 

11.16
0.006

periodP
π −

=  

 
Using this relation, we can build Table P4.2, which also shows the revenue collected by 
the unit, the running cost of the unit and the profit for each period. 
 

Table P4.2: Optimal operation of the unit of Problem 4.2 
Period 1 2 3 4 5 6 
Price, π ($/MWh) 12.5 10 13 13.5 15 11
Production (P) (MW) 233.33 200 306.66 390 500 200
Revenue (π × P)  (MW) 2916.66 2000 3986.66 5265 7500 2200
Running cost C(P)  ($) 2911.29 2496 3848.53 4952.7 6474 2496
Profit  ($) 5.376 -496 138.136 312.3 1026 -296
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Summing the values in the last row of the table, we get the total operating profit of  
$690.07 
 
 
4.3 Repeat the calculation of Problem 4.2 assuming that the cost curve is replaced by 

a three-segment piecewise linear approximation whose values correspond with 
those given by the quadratic function for 200 MW, 300 MW, 400 MW and 500 
MW. 

 
The three-segment piecewise linear approximation of the cost function is shown on 
Figure P4.3. This function has the following elbow values: 
 

Output [MW] 200 300 400 500 
Cost [$/h] 2496 3762 5088 6474 
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Figure P4.3: Piecewise-linear cost curve for the unit of Problem 4.3 

 
Table P4.3 is calculated in the same fashion as Table P4.2. 
 

Table P4.3: Optimal operation of the unit of Problem 4.3 
Period 1 2 3 4 5 6 
Price, π ($/MWh) 12.5 10 13 13.5 15 11
Production (P)  (MW) 200 200 300 400 500 200
Revenue (π × P)  (MW) 2500 2000 3900 5400 7500 2200
Running cost C(P)  ($) 2496 2496 3762 5088 6474 2496
Profit  ($) 4 -496 138 312 1026 -296
 
The total profit for all the periods is $ 688.00. The error introduced by the linearization of 
the cost curve is thus very small in terms of the total cost. It is more significant in terms 
of the dispatch. 
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4.4 Assume that the unit of Problem 4.2 has a start-up cost of $500 and that it is 

initially shutdown. Given the same prices as in problem 4.2, when should this unit 
be brought on-line and when should it be shutdown to maximize its operational 
profit? Assume that dynamic constraints do not affect the optimal dispatch of this 
generating unit. 

 
From the results obtained in problem 4.2 it can be appreciated that, without considering 
the start-up cost, the profit for the first period is only around 1% of the start-up cost.  In 
the following period, the unit produces at a loss because of the no-load cost.  Therefore, if 
we consider the start-up cost, the most profitable strategy is to bring the unit on-line for 
the third period.  Since the unit also operates at a loss in period 6, it is desirable to turn 
the unit off at the end of period 5.  Table P4.4 summarizes the operation of the unit under 
these conditions. 
 

Table P4.4: Optimal operation of the unit taking into account the start-up cost 
Period 1 2 3 4 5 6 
Price π ($/MWh) 12.5 10 13 13.5 15 11
Production (P)  (MW) - - 306.66 390 500 -
Revenue (π×P) (MW) - - 3986.66 5265 7500 -
Running cost C(P) ($) - - 3848.53 4952.70 6474 -
Startup cost ($) - - 500 - - -
Total cost ($) - - 4348.50 4952.70 6474 -
Profit  ($) - - -361.84 312.30 1026 -
 
The total profit is thus  $976.43 
 
 
4.5 Repeat Problem 4.4 taking into account that the minimum up-time of this unit is 

four hours. 
 
If the minimum up time for the unit is 4 hours then it is not possible to shut it down at the 
end of period 5, therefore the optimal operating procedure is as shown in Table P4.5. 
 

Table P4.5: Optimal operation of the unit taking into account the start-up cost and the 
minimum up-time 

Period 1 2 3 4 5 6 
Price, π ($/MWh) 12.5 10 13 13.5 15 11
Production (P)  (MW) - - 306.66 390 500 200
Revenue (π×P) (MW) - - 3986.66 5265 7500 2200
Running cost C(P) ($) - - 3848.53 4952.70 6474 
Startup cost ($) - - 500 - - -
Total cost ($) - - 4348.50 4952.70 6474 2496
Profit  ($) - - -361.84 312.30 1026 -296
 
The total profit is $680.43 
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4.6 Borduria Generation owns three generating units that have the following cost 

functions: 
 

Unit A: 15 + 1.4 PA + 0.04 PA
2 $/h  

Unit B: 25 + 1.6 PB + 0.05 PB
2 $/h 

Unit C: 20 + 1.8 PC + 0.02 PC
2 $/h 

 
How should these units be dispatched if Borduria Generation must supply a load 
of 350 MW at minimum cost? 

 
This problem can be formulated as an optimization problem where the objective is to 
minimize the total operating cost: 
 

( )
3

1
min i i

i
C P

=

 
 
 
∑  

 
Subject to the load/generation balance constraint: 
 

350A B CP P P+ + =  MW 
 
Therefore we can build the Lagrangian function: 
 

( ) ( )
3 3

1 1
, , , 350A B C i i i

i i
P P P C P Pλ λ

= =

 = + − 
 

∑ ∑  

 
and write the optimality conditions: 
 

1.4 0.08 0A
A

P
P

λ∂ = + − =
∂

 

1.6 0.1 0B
B

P
P

λ∂ = + − =
∂

 

1.8 0.04 0C
C

P
P

λ∂ = + − =
∂

 

350 0A B CP P P
λ

∂ = − − − =
∂

 

 
Since these optimality conditions are linear, we can write them in matrix form as follows: 
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0.08 0 0 1 1.4
0 0.1 0 1 1.6
0 0 0.04 1 1.8
1 1 1 0 350

A

B

C

P
P
P
λ

− −     
     − −     =
     − −
     
     

 

 
The solution of this system of equations is: PA = 95.3 MW, PB = 74.2 MW, PC = 180.5 
MW, λ = 9.02 $/MWh. 
 
The total production cost is $1,927.15 
 
 
4.7 How would the dispatch of Problem 4.6 change if Borduria Generation had the 

opportunity to buy some of the energy it must supply on the spot market at a price 
of 8.20 $/MWh? 

 
From the solution of problem 4.6, we see that the marginal cost of production, which is 
equal to the Lagrange multiplier λ, is equal to 9.02 $/MWh. Since this is larger than the 
8.20 $/MWh price at which Borduria Generation can purchase energy on the spot market, 
it would save money by reducing its own production down the point where the marginal 
cost of production of each generator is equal to the market price. For each unit we get: 
 

1.4 0.08 8.2          85MWA
A A

A

C P P
P

∂ = + = ⇒ =
∂

 

1.6 0.1 8.2          66MWB
B B

B

C P P
P

∂ = + = ⇒ =
∂

 

1.8 0.04 8.2          160MWC
C C

C

C P P
P

∂ = + = ⇒ =
∂

 

 
Summing these productions, we get: 
 

311 A B CP P P+ + = MW 
 
The remainder of the load (350 – 311= 39 MW) is purchased on the spot market. 
 
This problem can be formulated as a an optimization problem in a different manner if we 
denote by SpotP    the amount of energy purchased on the spot market and by Spotπ  the 
price at which this energy is purchased. 
 
The objective function is to minimize the sum of the cost of producing energy with the 
generating units and of buying energy on the spot market: 
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( )
3

1
min i i Spot Spot

i
C P Pπ

=

 + × 
 
∑  

 
This minimization is done subject to the following constraint: 
 

350A B C SpotP P P P+ + + =  MW 
 

8.20λ =  
 
The corresponding Lagrangian function is: 
 

( ) ( )
3 3

1 1
, , , , 350A B C Spot i i Spot Spot i Spot

i i
P P P P C P P P Pλ π λ

= =

 = + × + − − 
 

∑ ∑  

 
The optimality conditions are then: 
 

1.4 0.08 0A
A

P
P

λ∂ = + − =
∂

 

1.6 0.1 0B
B

P
P

λ∂ = + − =
∂

 

1.8 0.04 0C
C

P
P

λ∂ = + − =
∂

 

0Spot
SpotP

π λ∂ = − =
∂

 

350 0A B C SpotP P P P
λ

∂ = − − − − =
∂

 

 
The last optimality conditions forces the Lagrange multiplier (and hence the marginal 
cost of production) to be equal to the spot market price.  Rewriting this set of linear 
equations in matrix form and replacing Spotπ  by its value, we have: 
 

0.08 0 0 0 1 1.4
0 0.1 0 0 1 1.6
0 0 0.04 0 1 1.8
1 1 1 1 0 350
0 0 0 0 1 8.2

A

B

C

Spot

P
P
P

P
λ

− −     
     − −     
     =− −
     
     
          

 

 
Solving this system of equations, we get: PA = 85 MW, PB = 66 MW, PC = 160 MW, 

SpotP = 39 MW and λ = 8.2 $/MWh. 
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4.8 If, in addition to supplying a 350 MW load, Borduria Generation had the 

opportunity to sell energy on the electricity market at a price of 10.20 $/MWh, 
what is the optimal amount of power that it should sell? What profit would it 
derive from this sale? 

 
This problem is similar to the previous one except that, since the market price is higher 
than its marginal cost of production, Borduria Generation will want to sell energy. It will 
increase its production and sell the excess until the marginal cost of production is equal to 
the market price: 
 

( ) 1.4 0.08 10.2A A AMC P P= + =  
( ) 1.6 0.1 10.2B B BMC P P= + =  
( ) 1.8 0.04 10.2C C CMC P P= + =  

 
From which we get: 
 

10.2 1.4 110
0.08AP −= = MW 

10.2 1.6 86
0.1BP −= = MW 

10.2 1.8 210
0.04CP −= = MW 

 
Since the total production is 406 MW and the load is 350 MW, Borduria Generation sells 
406 - 350 = 56 MW on the spot market. 
 
As above, we can also write this problem as an optimisation problem: 
 

( )
3

1
min i i Spot Spot

i
C P Pπ

=

 − × 
 
∑  

 
Subject to: 
 

350A B C SpotP P P P+ + − =  MW 
 
The minus signs in the objective function and the constraint arise because SpotP  represents 
a sale on the spot market instead of a purchase and should therefore appear as a revenue 
in the objective function and an additional load in the constraint.  
 
The Lagrangian function of this problem is: 
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( ) ( )
3 3

1 1
, , , , 350A B C Spot i i Spot Spot i Spot

i i
P P P P C P P P Pλ π λ

= =

 = − × + − + 
 

∑ ∑  

 
The optimality conditions are as in problem 4.7 except the fourth one, which becomes: 
 

350 0A B C SpotP P P P
λ

∂ = − − − + =
∂

 

10.2 0λ
ϕ

∂ = − =
∂

 

 
The linear system of equations that we must solve is then: 
 
 

0.08 0 0 0 1 1.4
0 0.1 0 0 1 1.6
0 0 0.04 0 1 1.8
1 1 1 1 0 350
0 0 0 0 1 10.2

A

B

C

Spot

P
P
P

P
λ

− −     
     − −     
     =− −
     −     
          

 

 
And the solution is: PA = 110 MW, PB = 86 MW, PC = 210 MW, λ = 10.2 $/MWh, SpotP = 
56 MW. 
 
 
4.9 Repeat Problem 4.8 if the outputs of the generating units are limited as follows: 
 
PA

MAX= 100 MW 
PB

MAX= 80 MW 
PC

MAX= 250 MW 
 
We will again formulate this problem as an optimization problem. However, while the 
objective function and the load generation balance constraint are the same, we must 
consider the inequality constraints on the output of the generators: 
 

( )
3

1
min i i Spot Spot

i
C P Pπ

=

 − × 
 
∑  

 
Subject to: 
 

350A B C SpotP P P P+ + − =  MW  
 
PA ≤ 100 MW 
PB ≤ 80 MW 
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PC
 ≤ 250 MW 

 
The Lagrangian function is as follows: 
 

( ) ( )
3

1 2 3
1

3

1

1

2

3

, , , , , , ,

350

( 100)
( 80)
( 250)

A B C Spot i i Spot Spot
i

i Spot
i

A

B

C

P P P P µ µ µ C P P

P P

µ P
µ P
µ P

λ π

λ

=

=

= − ×

 + − + 
 

+ −
+ −
+ −

∑

∑
 

 
 
The optimality conditions are: 
 

11.4 0.08 0A
A

P µ
P

λ∂ = + − + =
∂

 

21.6 0.1 0B
B

P µ
P

λ∂ = + − + =
∂

 

31.8 0.04 0C
C

P µ
P

λ∂ = + − + =
∂

 

0Spot
SpotP

λ π∂ = − =
∂

 

350 0A B C SpotP P P P
λ

∂ = − − − + =
∂

 

1

100 0AP
µ

∂ = − ≤
∂

 

2

80 0BP
µ
∂ = − ≤
∂

 

3

250 0CP
µ
∂ = − ≤
∂

 

 
Complementary slackness conditions: 
 

( )1 100 0Aµ P − =  

( )2 80 0Bµ P − =  

( )3 250 0Cµ P − =  
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As always with optimization problems involving inequality constraints, the difficulty is to 
determine which of these constraints are actually binding. The only way to determine the 
set of binding constraints is by trial and error. The process, however, can be made much 
faster through clever guessing. In this case, for example, we know from Problem 4.8 that 
the unconstrained solution is: 
 
PA = 110 MW 
PB = 86 MW 
PC = 210 MW 
 
Since both PA and PB are greater than their maximum limit, it is probable that these two 
constraints will be binding. On the other hand, the constraint on PC is probably not 
binding. Based on the complementary slackness conditions, we therefore try a solution 
with: 
 

1 0µ ≠ ; 2 0µ ≠ ; 3 0µ =   
  
Rewriting the optimality conditions in matrix form, we have: 
 

1

2

0.08 0 0 0 1 1 0 1.4
0 0.1 0 0 1 0 1 1.6
0 0 0.04 0 1 0 0 1.8
0 0 0 0 1 0 0 10.2
1 1 1 1 0 0 0 350
1 0 0 0 0 0 0 100
0 1 0 0 0 0 0 80

A

B

C

Spot

P
P
P

P

µ
µ

λ

− −    
    − −    
    − −
    =    
    −
    
    
        

 

 
The solution of this linear system of equations is:  
 
PA = 100 MW  
PB = 80 MW 
PC = 210 MW 
PSpot = 40 MW 
λ = 10.2 $/MWh 
µ1 = 0.8 $/MWh  
µ2 = 0.6 $/MWh 
 
This solution is feasible because the Lagrange multipliers µ1 and µ2 are positive. This is 
thus the optimal solution. 
 
Generating unit C operates at a marginal cost equal to the spot market price of 10.2 
$/MWh. The other two generating units operate at a lower marginal cost but at their 
maximum output. The Lagrange multipliers µ1 and µ2 indicate the marginal cost of the 
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constraints on the outputs of generators A and B respectively, i.e. how much money 
would be saved if these constraints were relaxed by 1 MW.  
 
 
4.10 Consider a market for electrical energy that is supplied by two generating 

companies whose cost functions are: 
 

36  [$/h]A AC P= ⋅  
31  [$/h]B BC P= ⋅  

 
The inverse demand curve for this market is estimated to be: 

 
120  [$/MWh]Dπ = −  

 
Assuming a Cournot model of competition, use a table similar to the one used in 
Example 4.8 to calculate the equilibrium point of this market (price, quantity, 
production and profit of each firm). 
[Hint: Use a spreadsheet. A resolution of 5 MW is acceptable] 

 
In the Cournot model of competition the state of the market is determined by the 
production decisions made by each firm. We summarize the possible outcomes using a 
table where all the cells in a column correspond to a given production by generator A 
while all the cells in a row correspond to a given production by generator B. 
 
Each cell contains four pieces of information arranged in the following format: 
 

D ΩA 
ΩB π 

Where: 
π price [$/MWh] 
D demand [MWh] 
ΩA profit made by firm A [$] 
ΩB profit made by firm B [$] 
 
Given the productions PA and PB of the two generators, the other quantities are calculated 
as follows: 
 

A BD P P= +  
120 Dπ = −  

( )36A AP πΩ = −  

( )31B BP πΩ = −  
 
File P4-10.xls contains the spreadsheet used to calculate the results shown on Table 
P4.10. From this table we observe that the cell corresponding to PA = 25 MW and PB = 30 
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MW is an equilibrium point because deviating from those conditions would reduce the 
profit of the generator that adjusts its output. 
 

Table P4.10: Cournot model of competition for the conditions of Problem P4.10 
PB\PA 5  10  15  20  25  30  35  

5 10 370 15 690 20 960 25 1180 30 1350 35 1470 40 1540
 395 110 370 105 345 100 320 95 295 90 270 85 245 80

10 15 345 20 640 25 885 30 1080 35 1225 40 1320 45 1365
 740 105 690 100 640 95 590 90 540 85 490 80 440 75

15 20 320 25 590 30 810 35 980 40 1100 45 1170 50 1190
 1035 100 960 95 885 90 810 85 735 80 660 75 585 70

20 25 295 30 540 35 735 40 880 45 975 50 1020 55 1015
 1280 95 1180 90 1080 85 980 80 880 75 780 70 680 65

25 30 270 35 490 40 660 45 780 50 850 55 870 60 840
 1475 90 1350 85 1225 80 1100 75 975 70 850 65 725 60

30 35 245 40 440 45 585 50 680 55 725 60 720 65 665
 1620 85 1470 80 1320 75 1170 70 1020 65 870 60 720 55

35 40 220 45 390 50 510 55 580 60 600 65 570 70 490
 1715 80 1540 75 1365 70 1190 65 1015 60 840 55 665 50

 
 
4.11 Write and solve the optimality conditions for problem 4.10. 
 

{ }max A BΩ + Ω  
 
Each generating company is trying to maximize its profit, which is equal to the difference 
between its revenue and its cost:  
 

( ) ( )A A A AP D C PπΩ = −  
( ) ( )B B B BP D C PπΩ = −  

 
However, we cannot treat these two maximizations as separate optimization problems 
because they are linked through the demand: 
 

A BP P D+ =  
120 Dπ = −  

 
We can get around this difficulty in this case by expressing the price as a function of the 
production of the two generators: 
 

120 A BP Pπ = − −  
 
The profits for the two generators can then be expressed as follows: 
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( ) ( )2120 36 84A A A B A A B AP P P P P P PΩ = − − − = − + −  

( ) ( )2120 31 89B B A B B B A BP P P P P P PΩ = − − − = − + −  
 
The optimality condition for the maximization problem of generator A is thus: 
 

2 84 0A
A B

A

P P
P

∂Ω = − − + =
∂

 

 
While the optimality condition for the maximization problem of generator B is: 
 

2 89 0B
A B

B

P P
P

∂Ω = − − + =
∂

 

 
(We only consider the partial derivatives of the profit of a generator with respect to its 
own output because that is the only variable over which it has control). 
 
Putting these optimality conditions in matrix form, we get: 
 

( ) ( ) ( )2 2, 84 89A B A B B AP P P P P P= − + − − + −  
 

2 84A B
A

P P
P
∂ = − + −
∂

 

2 84B A
B

P P
P
∂ = − + −
∂

 

 
2 1 84
1 2 89

A

B

P
P

− − −    
=    − − −    

 

 
Solving this linear system, we get: 
 
PA = 26.333 MW  
PB = 31.333 MW 
 
From which we can easily find that 
 
π = 62.333 $/MWh 
D = 57.667 MW 
ΩA = $ 693.44  
ΩB = $ 981.78 
 
[Note that the answer given in the Appendix of the book is incorrect due to a 
typographical mistake]. 
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4.12 Consider the pumped hydro plant of Example 4.10 and the price profile shown in 

the table below. Assuming that the operator uses the same strategy as in the 
example (reservoir initially empty, pumping during four hours of lowest prices 
and turbining during four hours of highest prices), calculate the profit or loss that 
this plant would make during this cycle of operation. Determine the value of the 
plant efficiency that would make the profit or loss equal to zero. 

 
Period 1 2 3 4 5 6 
Price 
[$/MWh] 40.92 39.39 39.18 40.65 45.42 56.34 

Period 7 8 9 10 11 12 
Price 
[$/MWh] 58.05 60.15 63.39 59.85 54.54 49.50 

 
The following table can be produced (possibly using the spreadsheet of file P4-12.xls) to 
summarize the operation of this pumped-hydro station: 
 

Period Energy 
prices 

($/MWh) 

Energy 
consumed 

(MWh) 

Energy 
released 
(MWh) 

Cost 
($) 

Revenue 
($) 

1 40.92 250 0 10230 0 
2 39.39 250 0 9848 0 
3 39.18 250 0 9795 0 
4 40.65 250 0 10163 0 
5 45.42 0 0 0 0 
6 56.34 0 0 0 0 
7 58.05 0 187.5 0 10885 
8 60.15 0 187.5 0 11278 
9 63.39 0 187.5 0 11886 
10 59.85 0 187.5 0 11222 
11 54.54 0 0 0 0 
12 49.50 0 0 0 0 

Totals  1000 750 40037 45271 
 
This plant thus makes a profit of 45271 – 40037 = $5,235 during this cycle. 
 
The value of the plant efficiency that would reduce the profit to zero is such that the 
revenue from the sale of the released energy would be equal to the cost of the energy used 
for storage. Since the released energy is equal to the efficiency times the consumed 
energy, we have the following expression for the revenue, assuming that energy is 
released during the four hours with the highest prices: 
 
Revenue = 7 8 9 10250 250 250 250η π η π η π η π+ + +  
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Where iπ  represents the energy price at hour i. 
 
Since the cost of storing the energy is $40,037, we have the following expression for the 
breakeven efficiency: 
 

( )7 8 9 10

40037 66.33%
250

η
π π π π

= =
+ + +

 

 
The same result could be obtained by trial and error using the spreadsheet of file 
P4_12.xls. 


