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Chapter 6  
 
 
6.1 Consider the power system shown in Figure P6.1. Assuming that the only 

limitations imposed by the network are imposed by the thermal capacity of the 
transmission lines and that the reactive power flows are negligible, check that the 
following sets of transactions are simultaneously feasible. 

 
 Seller Buyer Amount 

B X 200 
A Z 400 Set 1 
C Y 300 
B Z 600 
A X 300 
A Y 200 

Set 2 

A Z 200 
C X 1000 
X Y 400 
B C 300 
A C 200 

Set 3 

A Z 100 
 
 

 

Y 

1 

X 

2 

3 

A B 

Z 

C 

x1-2 = 0.2 p.u.   PMAX =250 MW 

x2-3 = 0.4 p.u.    
PMAX =250 MW

x1-3 = 0.4 p.u.    
PMAX =250 MW

 
Figure P6.1: Three-bus power system for Problem 6.1 

 
The following power balance equations can be written for this system: 
 
Bus 1:  12 13B Y F F− = +  
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Bus 2:  12 23A X F F− = − +  
Bus 3:  13 23C Z F F− = − −  
 
Using KVL around the loop we can also write the following equation:  
 

12 12 23 23 13 13 0F x F x F x+ − =  
 
We have three unknowns and four equations. However, as can be seen by adding them 
all, the three power balance equations are not linearly independent. To get a system of 
three linearly independent equations that allows us to solve this system, we combine any 
two power balance equations and the loop equation.  For instance, the power balance 
equations for buses 1 and 2 and the loop equation in matrix form are: 
 

12

13

23

1 1 0
1 0 1

0.2 0.4 0.4 0

F B Y
F A X
F

−     
     − = −     
     −     

 

 
For the first set of transactions, we have: 
 

12

13

23

1 1 0 200 300
1 0 1 400 200

0.2 0.4 0.4 0

F
F
F

−     
     − = −     
     −     

 

 
Solving this system of equations, we get: 
 

12 12

13 13

23 23

120 MW F 250 MW

20 MW F 250 MW

80 MW F 250 MW

F

F

F

= − ⇒ ≤

= ⇒ ≤

= ⇒ ≤

 

 
These transactions are thus simultaneously feasible. 
 
For the second set of transactions the linear equations describing the system are: 
 

12

13

23

1 1 0 600 200
1 0 1 700 300

0.2 0.4 0.4 0

F
F
F

−     
     − = −     
     −     

 

 
Solving this system of equations, we get: 
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12 12

13 13

23 23

0 MW F 250 MW

400 MW F 250 MW

400 MW F 250 MW

F

F

F

= ⇒ ≤

= ⇒ ≥

= ⇒ ≥

 

 
These transactions are thus not simultaneously feasible. 
 
Finally for the third set of transactions, we have: 
 

12

13

23

1 1 0 300 400
1 0 1 300 600

0.2 0.4 0.4 0

F
F
F

−     
     − = −     
     −     

 

 
Solving this system of equations, we get: 
 

12 12

13 13

23 23

80 MW F 250 MW

180 MW F 250 MW

220 MW F 250 MW

F

F

F

= ⇒ ≤

= − ⇒ ≤

= − ⇒ ≤

 

 
These transactions are thus simultaneously feasible. 
 
 
6.2 Consider the two-bus power system shown in Figure P6.2. The marginal cost of 

production of the generators connected to buses A and B are given respectively by 
the following expressions: 

 
20 0.03  [$/MWh]A AMC P= +  
15 0.02  [$/MWh]B BMC P= +  

 

DA= 2000 MW

A 

DB= 1000 MW

B
PA PB FAB

 
Figure P6.2: Two-bus power system for Problems 6.2, 6.3, 6.4, 6.10 and 6.11 

 
Assume that the demand is constant and insensitive to price, that energy is sold at 
its marginal cost of production and that there are no limits on the output of the 
generators. Calculate the price of electricity at each bus, the production of each 
generator and the flow on the line for the following cases: 
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a. The line between buses A and B is disconnected 
b. The line between buses A and B is in service and has an unlimited capacity 
c. The line between buses A and B is in service and has an unlimited capacity, but 

the maximum output of generator B is 1500 MW 
d. The line between buses A and B is in service and has an unlimited capacity, but 

the maximum output of generator A is 900 MW. The output of generator B is 
unlimited. 

e. The line between buses A and B is in service but its capacity is limited to 600 
MW. The output of the generators is unlimited. 

 
a. This case can be treated as two independent systems, each with its own load and 
generation.  For system A the amount of power generated is PA = 2000 MW and the price 
of electricity is given by: ( )20 0.03 2000  = 80Aπ = +  $/MWh.  For system B the amount 
of power generated is PB = 1000 MW and the price is given by: 

( )15 0.02 1000  = 35Bπ = +  $/MWh. 
 

b. In this case the marginal cost of all the generating units is equal to the price of the 
electricity; and the total production of the generating units is equal to the total load of the 
system.  We can thus write: 

 
20 0.03 APπ = +  
15 0.02 BPπ = +  

3000A BP P+ =  
 

Writing this set of equations can be written in matrix form: 
 

0.03 0 1 20
0 0.02 1 15
1 1 0 3000

A

B

P
P
π

− −     
     − = −     
          

 

 
We get:  

 
PA = 1100 MW  
PB = 1900 MW 
π = 53 $/MWh 

 
Furthermore, the flow from A to B is: FAB = PA –DA = 1100 – 2000 = –900 MW. 

 
c. From the previous case we can see that, if no restriction is imposed on the transfer of 
power between A and B, the generation in system B is 1900 MW.  If this generation is 
limited to a maximum of 1500 MW, then the generation in A is given by: PA = 3000 – PB 
= 1500 MW. The power flow from A to B is then FAB = 1500 – 2000 = -500 MW.  Using 
the expressions for the marginal production costs, we find that the price at A is πA = 65 
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$/MWh.  However, since generator B is producing at its maximum output (1500 MW for 
this case) it becomes an infra-marginal generator; therefore if the demand at B requires an 
extra MW it will be provided by A, and therefore the price at B is πB = 65 $/MWh as 
well. 

 
d. The power generated in area B is given by: PB = 3000 – PA = 2100 MW while the flow 
from A to B is given by: FAB = 900 – 2000 = –1100 MW. The price at B is 

( )15 0.02 2100  = 57Bπ = +  $/MWh. And since the generator at A is producing at its 
maximum output the next MW supplied at A would have a cost of 57 $/MWh as well. 

 
e. From case b we know that when no restriction is imposed on any of the components of 
the system, the flow on the line from A to B is FAB = –900. In this case, it is thus 
restricted to FAB = –600 MW.  Therefore the generation at A is PA = FAB + DA = –600 + 
2000 = 1400 MW.  We also have PB = 3000 – PA = 1600 MW.  Using the expressions for 
the marginal production costs, we get the prices πA = 62 $/MWh and πB = 47 $/MWh  
 
 
6.3 Calculate the generator revenues and the consumer payments for all the cases 

considered in Problem 6.2. Who benefits from the line connecting these two 
buses? 

 
 a b c d e 

Payments by 
consumers at A 
EA = DA πA  ($) 

 
160,000 

 
106,000 

 
130,000 

 
114,000 

 
124,000 

Payments by 
consumers at B 
EB = DB πB  ($) 

 
35,000 

 
53,000 

 
65,000 

 
57,000 

 
47,000 

Revenue of 
generator A 

RA = PA πA   ($) 

 
160,000 

 
58,300 

 
97,500 

 
51,300 

 
86,800 

Revenue of 
generator B 

RB = PB πB   ($) 

 
35,000 

 
100,700 

 
97,500 

 
62,700 

 
75,200 

 
The main beneficiaries of the tie line are the generation at B and the load at A because 
flows on the tie line increase the price at B and lowers it at A. 
 
 
6.4 Calculate the congestion surplus for case (e) of Problem 6.2. Check your answer 

using the results of Problem 6.3.  For what values of the flow on the line between 
buses A and B is the congestion surplus equal to zero? 

 
The congestion surplus is the difference between the payments and revenues: 
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( ) ( )A A B B A A B Bcs D D P Pπ π π π= + − +  
 
Factorizing this expression, we get: 
 

( ) ( )A A A B B Bcs D P D Pπ π= − + −  
 
Since DA – PA = –FAB and DB – PB = FAB, we have:  
 

( ) ( )600 47 62 $9000AB B Acs F π π= − = − − =  
 
From the solution of Problem 6.3, we have: 
 

124,000 47,000 86,800 75,200 $9,000A B A Bcs E E R R= + − − = + − − =  
 
This congestion surplus is equal to zero when the prices at A and B are equal and when 
the flow from A to B is zero. 
 
 
6.5 Consider the three-bus power system shown in Figure P6.5 The table below 

shows the data about the generators connected to this system. Calculate the 
unconstrained economic dispatch and the nodal prices for the loading conditions 
shown in Figure P6.5.  

 
 

Generator Capacity 
[MW] 

Marginal Cost 
[$/MWh] 

A 150 12 
B 200 15 
C 150 10 
D 400 8 
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400 MW 

1 

80 MW

2 

3 

A B 

C 

40 MW 

D  
Figure P6.5-a: Three-bus power system for Problems 6.5 to 6.9 and 6.12 to 6.17 

 
Since there are no transmission constraints, the outputs of all the generators can be 
stacked in order of marginal cost as shown on Figure 6.5: 
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Figure P6.5-b: Stack of generator outputs in order of marginal cost  

 
Using Figure 6.5.b, we see that for a system load of 400 + 40 + 80 = 520 MW the 
marginal cost (and hence the price) is 10 $/MWh. Furthermore, the units are dispatched 
as follows: PD = 400 MW, PC = 120, and PA = PB = 0 MW. 
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6.6 The table below gives the branch data for the three-bus power system of Problem 
6.5. Using the superposition principle, calculate the flow that would result if the 
generating units were dispatched as calculated in Problem 6.5. Identify all the 
violations of security constraints. 

 
Branch Reactance 

[p.u.] 
Capacity 

[MW] 
1-2 0.2 250 
1-3 0.3 250 
2-3 0.3 250 

 
Figure P6.6 shows the injections for the economic dispatch conditions and how this 
system can be decomposed to make use of the superposition principle to calculate the line 
flows. 
 
Using Equations. (6.4) and (6.5) and considering the reactances of the various branches, 
we get: 
 

1
0.5 400 250 MW
0.8

AF = × =  

1
0.3 400 150 MW
0.8

BF = × =  

2
0.5 80 50 MW
0.8

AF = × =  

2
0.3 80 30 MW
0.8

BF = × =  

 
Combining these flows as suggested by Figure P6.6, we get: 
 

12 1 2 120 MWB BF F F= − + = −  

13 1 2 280 MWA BF F F= − − = −  

23 1 2 200 MWB AF F F= − − = −  
 
The flow on line 1-3 thus exceeds its maximum capacity by 30 MW. 
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1 

80 MW

2 

3 

480 MW 

400 MW 

1 

80 MW

2 

3 

80 MW 

1 

400 MW 

2 

3 

400 MW 

F1
A

F1
B

F2
A

F2
B

F23F13

F12

 
Figure P6.6: Application of the superposition principle to the solution of Problem 6.6 

 
Note that superposition is not the only way to solve this problem. We can also solve it 
directly. To this effect, we write the power balance equation at two buses and KVL 
around the loop: 
 
Bus 1:  12 13400BP F F− = +  
Bus 2:  12 2380AP F F− = − +  
Bus 3:  13 2340C DP P F F+ − = − −  
Loop equation: 12 23 130.2 0.3 0.3 0F F F+ − =  
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Putting these equations in matrix form gives: 
 

12

13

23

1 0 1 80
0 1 1 40

0.2 0.3 0.3 0

A

C D

F P
F P P
F

− −     
     − − = + −     
     −     

 

 
Substituting 0 MW; 0 MW; 120 MW; 400 MWA B C DP P P P= = = =  in these equations, we 
get: 
 

12

13

23

1 0 1 80
0 1 1 480

0.2 0.3 0.3 0

F
F
F

 − −   
    − − =    
    −    

 

 
Solving these equations, we get 12 13 23120 MW; 280 MW; 200 MWF F F= − = − = − . 
 
 
6.7 Determine two ways of removing the constraint violations that you identified in 

Problem 6.6 by redispatching generating units. Which redispatch is preferable? 
 
The first method consists in increasing the output of generator B and decreasing by the 
same amount the output of generator C. (Decreasing the output of generator D is not 
desirable as it is cheaper than generator C). To calculate how big this increase should be 
to remove the violation of the flow limit on line 3-1, consider an injection of +1 MW at 
bus 1 and an injection of –1 MW at bus 3. This pair of injection causes a flow in the 
network that divides itself as follows: 
 

( )
0.3 1 0.375 MW

0.2 0.3 0.3
× =

+ +
 along the path 1-2-3 

 
( )

( )
0.2 0.3

1 0.625 MW
0.2 0.3 0.3

+
× =

+ +
 along the path 1-3 

 
Since we use a linear (dc) model, we can say that to remove the 30 MW overload on line 
3-1, we therefore need to increase the output of generator B by: 
 

30 48 MW
0.625

=  

 
The constrained dispatch is then: 
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0
48 MW
72 MW
400 MW

A

B

C

D

P
P
P
P

=
=
=
=

 

 
To calculate the flows, we can either use the equations that we developed for Problem 
6.6, or compute the changes in flows caused by an injection of +48 MW at bus 1 and an 
injection of –48 MW at bus 3: 
 

12

23

13

120 0.375 48 102 MW
200 0.375 48 182 MW
280 0.625 48 250 MW

F
F
F

= − + × = −
= − + × = −
= − + × = −

 

 
Or solving the linear system generated using the nodal equations and the loop equation: 
 

12

13

23

1 1 0 400
0 1 1 40

0.2 0.3 0.3 0

B

C D

F P
F P P
F

−     
     − − = + −     
     −     

 

 
This redispatch does not cause a violation of the line flow constraints on any other line. 
 
The cost of this dispatch is: 
 

48 15 72 10 400 8 $4,640TotalC = × + × + × =  
 
which represents an increase of  $240 compared to the case where network constraints are 
not considered. 
 
The other method to remove the constraint violation consists in increasing the output of 
generator A and decreasing the output of generator C by the same amount. To calculate 
how big this increase should be to remove the violation of the flow limit on line 3-1, 
consider an injection of +1 MW at bus 2 and an injection of –1 MW at bus 3. This pair of 
injection causes a flow in the network that divides itself as follows: 
 

( )
0.3 1 0.375 MW

0.2 0.3 0.3
× =

+ +
 along the path 2-1-3 

 
( )

( )
0.2 0.3

1 0.625 MW
0.2 0.3 0.3

+
× =

+ +
 along the path 2-3 

 
Since we use a linear (dc) model, we can say that to remove the 30 MW overload on line 
3-1, we therefore need to increase the output of generator B by: 
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30 80 MW

0.375
=  

 
The constrained dispatch is then: 
 

80 MW
0 MW
40 MW
400 MW

A

B

C

D

P
P
P
P

=
=
=
=

 

 
To calculate the flows, we compute the changes caused by an injection of +80 MW at bus 
2 and an injection of –80 MW at bus 3: 
 

12

23

13

120 0.375 80 150 MW
200 0.625 80 150 MW
280 0.375 80 250 MW

F
F
F

= − − × = −
= − + × = −
= − + × = −

 

 
Or in matrix form: 
 

12

13

23

1 0 1 80
0 1 1 40

0.2 0.3 0.3 0

A

C D

F P
F P P
F

− −     
     − − = + −     
     −     

 

 
Once again, this redispatch does not cause a violation of the line flow constraints on any 
other line. The cost of this constrained dispatch is: 
 

80 12 40 10 400 8 $4,560TotalC = × + × + × =  
 
which represents an increase of  $160 compared to the case where network constraints are 
not considered. Even though it re-dispatches a larger amount of MW, the second 
constrained is preferable to the first because its cost is smaller. It is thus the optimal 
constrained dispatch. 
 
 
6.8 Calculate the nodal prices for the three-bus power system of problems 6.5 and 6.6 

when the generating units have been optimally re-dispatched to relieve the 
constraint violations identified in Problem 6.7. Calculate the merchandising 
surplus and show that it is equal to the sum of the surpluses of each line. 

 
The nodal price at each bus is given by the cost of one additional MW of load at each 
node. Therefore, the price at bus 3 is 10 $/MWh because the next MW of load would be 
generated locally by generator C because it is the cheapest generator not operating at its 
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upper limit.  An additional MW of load at node 2 would have to be produced by 
generator A. Producing it with generator C would cause a violation of the line flow 
constraint on line 3-1. Producing it with generator B would be more expensive than with 
generator A. The price at node 2 is therefore 12 $/MWh.  An additional MW of load at 
bus 1 requires a redispatch of A and C to minimize the cost increase while maintaining 
the flow on line 3-1 within limits.   
 
Extracting an additional 1 MW at bus 1 and generating it at bus 3 causes the following 
change in the flow on line 1-3: 
 

12

13

23

1 1 0 1
0 1 1 1

0.2 0.3 0.3 0

F
F
F

∆ −     
     − − ∆ =     
     − ∆     

 

 
31 0.625 MWF∆ =  

 
Similarly, extracting an additional 1 MW at bus 1 and generating it at bus 2 causes the 
following change in the flow on line 1-3: 
 

12

13

23

1 1 0 1
1 0 1 1

0.2 0.3 0.3 0

F
F
F

∆ −     
     − ∆ =     
     − ∆     

 

 
31 0.250 MWF∆ =  

 
Therefore, if we want to the flow on line 3-1 unchanged (because it is already at its limit), 
we must change the productions by generators C and A in such a way that:  
 

31 0 0.625 0.250C AF P P∆ = = × ∆ + × ∆  
 
At the same time, since we are increasing the load by 1 MW, we must also have: 
 

1A CP P∆ + ∆ =  
 
Solving the system consisting of the previous two equations we get: 
 

0.667 MWCP∆ = −  
 

1.667 MWAP∆ =  
 
To supply an additional MW of load at bus 1 without violating network constraints, we 
must therefore increase the output of generator A and decrease the output of generator C. 
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The nodal price at bus 1 is thus given by a linear combination of the marginal cost of 
production of these two generators: 
 

1 0.667 10 1.667 12 13.33 $/MWhπ = − × + × =  
 
The table below summarizes the calculation by bus and by line of the merchandising 
surplus caused by the congestion in this network. 
 

Surplus by bus   total 
Bus 1 2 3  
Production 0 80 440 520 
Consumption 400 80 40 520 
Price 13.33 12 10  
Consumers' payments 5332 960 400 6692 
Producers' revenue 0 960 4400 5360 
Congestion surplus    1332 
     
Surplus by line:     
Line 2 to 1 3 to 1 3 to 2  
Flow 150 250 150  
Price at from bus 12 10 10  
Price at to bus 13.33 13.33 12  
Congestion surplus -199.5 -832.5 -300 1332 

 
 
6.9 Consider the three-bus power system described in Problems 6.5 and 6.6. Suppose 

that the capacity of branch 1-2 is reduced to 140 MW while the capacity of the 
other lines remains unchanged. Calculate the optimal dispatch and the nodal 
prices for these conditions.  
[Hint: the optimal solution involves a redispatch of generating units at all three 
buses] 

 
While we could solve this problem using superposition, this approach is getting a bit 
difficult for this problem. Instead, let us write the power balance equation for each node: 
 
Bus 1: 12 13400BP F F− = +  
Bus 2: 12 2380AP F F− = − +  
Bus 3: 13 2340C DP P F F+ − = − −  
 
Again, we must remember that these equations are not linearly independent because of 
the principle of conservation of energy. We should therefore replace one of these 
equations by the obtained by applying KVL around the loop: 
 

12 23 130.2 0.3 0.3 0F F F+ − =  
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Before the rating of line 1-2 was changed, the flows were as follows for the optimal 
constrained dispatch: 
 

12

13

23

150 MW
250 MW
150 MW

F
F
F

= −
= −
= −

 

 
If the capacity of line 1-2 is restricted to 140 MW, this constraint is thus likely to be 
binding as well as the constraint on line 1-3. We will thus have: 
 

12

13

140 MW
250 MW

F
F

= −
= −

 

 
The value of 23F  can then be calculated using the loop equation: 
 

13 12
23

0.3 0.2 156.67
0.3

F FF −= = −  MW 

 
Using the nodal power balance equations, we then get: 
 

12 23 80 63.33 MWAP F F= − + + =  
 

13 23 40 446.67 MWC DP P F F+ = − − + =  
 

12 13 400 10 MWBP F F= + + =  
 
Since generator D has a lower marginal cost than generator C, it should be loaded up to 
its maximum capacity before loading generator C: 
 

400 MWDP =  
46.67 MWCP =  

 
(Note that the value given in the appendix of the book for the output of generator C is 
incorrect.) 
 
Since we have two binding constraints, we have 2 + 1 = 3 partly-loaded generators, i.e. 
one at each bus of this system. The nodal price at each bus is thus given by the marginal 
cost of these generators: 
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1

2

3

15 $/MWh
12 $/MWh
10 $/MWh

B

A

C

MC
MC
MC

π
π
π

= =
= =
= =

 

 
 
6.10 Consider the two-bus power system of Problem 6.2. Given that 

1
2 0.0001 MWRK V

−= =  for the line connecting buses A and B and that there is 

no limit on the capacity of this line, calculate the value of the flow that minimizes 
the total variable cost of production. Assuming that a competitive electricity 
market operates at both buses, calculate the nodal marginal prices and the 
merchandising surplus. 
[Hint: use a spreadsheet]. 

 
The EXCEL® spreadsheet “P6_10.xls” shows how this problem can be solved using a 
trial and error approach, i.e. calculating the total variable cost of production for various 
dispatches. 
 
This problem can be solved analytically as follows. The marginal costs of production are: 
 

20 0.03  [$/MWh]A AMC P= +  
15 0.02  [$/MWh]B BMC P= +  

 
The variable costs of production for each system are the integral of the marginal costs: 
 

0

( ) ( )
XP

X X XC P MC P dP= ∫  

 
We get: 
 

2( ) 20 0.015A A A AC P P P= +  
 

2( ) 15 0.01B B B BC P P P= +  
 
The power balance equation is: 
 

2
A B A B ABP P D D K F+ = + +  

 
Where AB A AF P D= − . Substituting this expression in the power balance equation, we get: 
 

( )2
A B A B A AP P D D K P D+ = + + −  
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2 22A B A B A A A AP P D D K P K P D K D+ = + + − +  
 
Since we are trying to minimize the overall production cost, we construct the following 
Lagrangian function: 
 

( )
( )2 2 2 2

, ,

20 0.015 15 0.01 2
A B

A A B B A B A A A A A B

P P

P P P P D D K P K P D K D P P

λ

λ

=

+ + + + + + − + − −

!
 

 
The optimality conditions are: 
 

( )1 20 0.03 2 2 1 0A A A
A

f P K P K D
P

λ∂= = + + − − =
∂
!  

2 15 0.02 0B
B

f P
P

λ∂= = + − =
∂
!  

2 2
3 2 0A B A A A A A Bf D D K P K P D K D P P

λ
∂= = + + − + − − =
∂
!  

 
These optimality conditions form a non-linear system of equations, and therefore finding 
a closed-form solution is not straightforward. Instead, we will use an interactive solution 
based on the Newton algorithm.  The Jacobian matrix of this system is: 
 

1 1 1

2 2 2

3 3 3

0.03 2 0 2 2 1
0 0.02 1

2 2 1 1 0

A B
A A

A B
A A

A B

f f f
P P

K K P K D
f f f

P P
K P K D

f f f
P P

λ λ

λ

λ

 ∂ ∂ ∂
 ∂ ∂ ∂  + − − 
 ∂ ∂ ∂  = = −   ∂ ∂ ∂   − − −  ∂ ∂ ∂
 

∂ ∂ ∂  

J  

 
The vector of mismatches (residuals) is: 
 

( )

2 2

20 0.03 2 2 1
15 0.02

2

A A A

B

A B A A A A A B

P K P K D
P

D D K P K P D K D P P

λ
λ

+ + − − 
 = + − 
 + + − + − − 

g  

 
At each iteration, the corrections are given by: 
 

1P −∆ = − ×J g  
 
If we set the stopping condition of the iterative process to be that the absolute value of the 
maximum increment should be smaller than 1×10-9, the solution is obtained in 5 iterations 
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and we get: PA = 1269.4 MW, PB = 1783.9 MW, λ = 50.679 $/MWh, FAB = -730.56 MW, 
πA = 58.083 $/MWh, πB = 50.679, losses = 53.371 MW. 
 
The file P6_10.m contains a MATLAB® implementation of this optimization procedure, 
for more information, type “help p6_10” in the MATLAB® command window within the 
directory that contains the file P6_10.m. 
 
 
6.11 Repeat problem 6.10 for several values of K  ranging from 0 to 0.0005. Plot the 

optimal flow and the losses in the line, as well as the marginal cost of electrical 
energy at both buses. Discuss your results. 

 
Using the spreadsheet or the optimization technique described above, problem 6.10 can 
be repeated for this range of value.  File P6_11.m contains a MATLAB® implementation 
of this repeated optimization. The results obtained are shown graphically below: 
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Figure 6.11-a Losses and power flow from B to A as a function of K 
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Figure 6.11-b Marginal cost of A and B as a function of K 

 
(Note that the label of the secondary vertical axis of Figure P6.11 in the appendix of the 
book is incorrect. The units of the marginal cost are $/MWh.) 
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Figure 6.11-c Units generations as a function of K 

 
These graphs show that when the resistance of the line is small, generator B should 
produce more than generator A because its marginal cost of production is smaller. As the 
resistance increases, so do the losses and the relative advantage of generating unit B 
decreases. 
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6.12 Using the linearized mathematical formulation (dc power flow approximation), 
calculate the nodal prices and the marginal cost of the inequality constraint for 
the optimal redispatch that you obtained in Problem 6.7. Check that your results 
are identical to those that you obtained in Problem 6.8. Use bus 3 as the slack 
bus. 

 
The first step to solve this problem is to build the admittance matrix of the system.  Since 
there is no resistance, the imaginary part of the Y matrix is: 
 

12 13 12 13

12 12 23 23

13 23 13 23

y y y y
y y y y
y y y y

+ − − 
 = − + − 
 − − + 

Y  

 
Where the ykl terms are the inverse of the reactance of the branch between k and l.  With 
bus 3 as the slack, instantiating equations 6.137 and 6.138 gives the following equations: 
 

12 13 12 131 13
3 31

12 12 23 232 0
y y y y y

y y y y
π

π µ
π

+ −      
= +      − +      

 

 
There are two unknowns in these equations: π1 and µ13.  Rewriting the equations to put 
the unknown variables on the left hand side, we get: 
 
( )12 13 1 13 31 12 2 13 3y y y y yπ µ π π+ − = +  

( )21 1 12 23 2 23 3y y y yπ π π− = − + +  
 
Or in matrix form: 
 

1 12 13 212 13 13

31 12 23 23 321 0
y yy y y

y y yy
π π
µ π

+ −       
=       − −−       

 

 
Solving these equations gives: π1 = 13.33 $/MWh and µ31 = 5.33 $/MWh 
 
 
6.13 Show that the choice of slack bus does not influence the nodal prices for the dc 

power flow approximation by repeating Problem 6.12 using bus 1 and then bus 2 
as the slack bus. 

 
Selecting bus 1 as the slack bus, the equations are: 
 

( )21 1 12 23 2 23 3y y y yπ π π− = − + +  

( )31 1 31 31 32 2 13 23 3y y y y yπ µ π π− + = − +  
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Rewriting in matrix form: 
 

21 1 12 23 23 2

31 31 31 32 13 23 3

0y y y y
y y y y y

π π
µ π

− − −       
=       − − −       

 

 
The results are: π1 = 13.3333 $/MWh and µ31 = 5.3333 $/MWh.   
 
Selecting bus 2 as the slack bus the equations are: 
 
( )12 13 1 13 31 12 2 13 3y y y y yπ µ π π+ − = +  

( )31 1 31 31 32 2 13 23 3y y y y yπ µ π π− + = − +  
 
In matrix form: 
 

12 13 13 1 12 13 2

31 31 31 32 13 23 3

y y y y y
y y y y y

π π
µ π

+ −       
=       − − −       

 

 
The results are again: π1 = 13.3333 $/MWh and µ31 = 5.3333 $/MWh 
 
 
6.14 Using the linearized mathematical formulation (dc power flow approximation), 

calculate the marginal costs of the inequality constraints for the conditions of 
Problem 6.9. 

 
In problem 6.9 the solution consisted of dispatching the units as follows: PA = 63.33 MW, 
PB = 10 MW, PC = 46.66 MW and PD = 400 MW.  Therefore the prices at each bus are: 
π1 = 15 $/MWh, π2 = 12 $/MWh and π3 = 10 $/MWh. 
 
Using the dc approximation (Equations 6.137 and 6.138) we can write the following 
equations: 
 

( )21 21 21 1 12 23 2 23 3y y y y yµ π π π= − + +  

( )31 31 31 1 32 2 13 23 3y y y y yµ π π π= + − +  
 
Since in this case we know the nodal prices, the solution is obtained directly by replacing 
the nodal prices by the values given above and dividing both sides of the first equation by 
y21 and both sides of the second dividing by y31. 
 
Therefore the marginal costs of the constraints are: µ31 = 7.00 $/MWh and µ21 = 1.67 
$/MWh. 
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6.15 Consider the three-bus system shown in Figure P6.5. Suppose that generator D 
and a consumer located at bus 1 have entered into a contract for difference for 
the delivery of 100 MW at a strike price of 11.00 $/MWh with reference to the 
nodal price at bus 1. Show that purchasing 100 MW of point-to-point financial 
rights between buses 3 and 1 provides a perfect hedge to generator D for the 
conditions of Problem 6.8. 

 
In problem 6.8 the nodal prices were:  π1 = 13.33 $/MWh, π2 = 12 $/MWh and π3 = 10 
$/MWh. The dispatch corresponding to these prices was as follows: PA = 80 MW, PB = 0 
MW, PC = 40 MW and PD = 400 MW. This dispatch produces the following flows: F12 = 
-150 MW, F13 = -250 MW and F23 = -150 MW 
 
Therefore the contract would be settled as follows: 
 
The consumer pays 100×13.33 = $1333.33, for extracting the 100 MWh at bus 1 
The generator receives 100×10 = $1000, for injecting 100 MWh at bus 3 
The consumer pays 100×(11-10) = $100 to the generator to settle the contact for 
difference 
The consumer who owns the point-to-point financial rights of 100 MWh between 3 and 1 
collects 100×(13.33-10) = $ 333.33. 
 
The consumer thus pays a total of 1333.33+100-333.33 = $1100 for 100 MWh, which is 
equivalent to a price of 11 $/MWh. 
 
  
6.16 What flowgate rights should generator D purchase to achieve the same perfect 

hedge as in problem 6.15? 
 
Because we are using a dc network approximation, the system is linear and transactions 
can be treated independently. We can therefore analyze the flows that this transaction 
causes independently of all other transactions. As we have done before, we must use two 
nodal equations and one loop equation to solve this network. If generator D injects 100 
MWh at bus 3 and the consumer extracts 100 MWh at bus 1, we can write the following 
equations: 
 

12

13

23

1 1 0 100
0 1 1 100

0.2 0.3 0.3 0

fr

fr

fr

F
F
F

  −   
    − − =    
    −    

 

 
Solving these equations, we get: 12 37.5frF = −  MW, 13 62.5frF = − MW and 23 37.5frF = −  
MW.  Generator D should therefore purchase 62.5 MW worth of flowgate rights in 
branch 3-1.  Since the flow in line 3-1 is the only binding constraint, the only non-zero 
Lagrange multiplier is µ31 = 5.33 $/MWh.  Generator D will thus collect 62.5 MW × 5.33 
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$/MWh = $ 333.333. This amount is equal to the amount collected in point-to-point 
financial rights: 100×(13.33-10). 
 
 
6.17 Repeat problems 6.15 and 6.16 for the conditions of Problem 6.9. 
 
In that case the dispatch is PA = 63.33 MW, PB =10 MW, PD = 400 MW and PC = 46.67 
MW. The resulting flows are: F23 = -156.67 MW, F12 = -140 MW and F13 = -250 MW.  
The Lagrange multipliers corresponding to binding constraints are µ31 = 7 $/MWh and 
µ21 = 1.67 $/MWh and the nodal prices are π1 = 15 $/MWh, π2 = 12 $/MWh and π3 = 10 
$/MWh. 
 
The consumer pays 100×15 = $1500, for extracting the 100 MWh at bus 1 
The generator receives 100×10 = $1000, for injecting 100 MWh at bus 3 
The consumer pays 100×(11-10) = $100 to the generator to settle the contact of 
difference. 
If the consumer owns point-to-point financial rights for 100 MWh between 3 and 1, it  
collects 100×(15-10) = $ 500. 
 
The consumer thus pays a total of 1500+100-500 = $1100 for 100 MWh, which is 
equivalent to a price of 11 $/MWh. 
 
In this case the flowgate rights that should be obtained are 62.5 MWh on branch 3-1 and 
37.5 MWh on branch 2-1.  The amount collected from these rights would be 62.5×7 = 
$437.5 and 37.5×1.66 = $62.5, for a total of $500, which is equal to the amount that 
would be collected in point-to-point financial rights. 


