Physics of Electronics:

6. Semiconductors

July – December 2008

Contents overview

- Crystal structure of semiconductors.
- Conduction processes in semiconductors.
- Density of carriers in intrinsic semiconductors.
- Extrinsic semiconductors.
- Electron processes in real semiconductors.
- Density of carriers in extrinsic semiconductors.
- Compensation doping.
- Electrical conduction in semiconductors.

Covalent Bond

• Valence electrons are shared.

Valency group	IIIA	IVA	VA	VIA	VIIA
	B 5 2p Boron	C 6 2p ² Carbon	n na serie de la serie de La serie de la s		
	Al 13 3p Aluminium	Si 14 3p ² Silicon	P 15 3p ³ Phosphorus	S 16 3p ⁴ Sulphur	al subscr
	Ga 31 4p Gallium	Ge 32 4p ² Germanium	As 33 4p ³ Arsenic	Se 34 4p ⁴ Selenium	
	In 49 5p Indium	Sn 50 5p ² Tin	Sb 51 5p ³ Antimony	Te 52 5p ⁴ Tellurium	I 53 5p ⁵ Iodine
			Bi 83 6p ³ Bismuth		

– Holes and electrons

T > 0

• Concentration of conduction electrons:

Extrinsic or Impurity sC

• n-type semiconductors (pentavalent impurities)

• p-type semiconductors (trivalent impurities)

Electron Processes in Real sC

• Direct and indirect gap sC

The minimum

The minimum separation can be reached optically (by means of a photon).

Electron Processes in Real sC

- Recombination (permanent loss of a carrier)
 - Possible in direct-gap sC's but marginally probable in indirect-gap sC's. Intermediate steps are required.

• Trapping (temporary removal of a carrier on localized states)

- General considerations:
 - Electrical neutrality:

holes + ionized donors = electrons + ionized acceptors

 $p + N_{\rm d}^{\,+} = n + N_{\rm a}^{\,-}$

n and p were already found

- Concentration of ionized impurities:

ionized impurities = impurity concentration × prob. finding e/h at the imp. level $N_{a}^{-} = \frac{N_{a}}{1 + \exp[(E_{A} - E_{F})/kT]} \quad \& \quad N_{d}^{+} = N_{d} \left(1 - \frac{1}{1 + \exp[(E_{D} - E_{F})/kT]}\right)$ - Replacing on neutrality condition $N_{v} \exp(-E_{F}/kT) + \frac{N_{d}}{1 + \exp[-(E_{D} - E_{F})/kT]} = N_{e} \exp[-(E_{g} - E_{F})/kT] + \frac{N_{a}}{1 + \exp[(E_{A} - E_{F})/kT]}$

which can be solved for $E_{\rm F}$

 $n = (N_{\rm d} N_{\rm c})^{\frac{1}{2}} \exp[(E_{\rm D} - E_{\rm g})/2kT] \propto N_{\rm d}^{\frac{1}{2}}$

- p-type material:
 - $-N_{\rm a} >> N_{\rm d} \& p >> n$

– Idem as before

Compensation doping

- General considerations
 - Consider a sC with both donors and acceptors
 - Suppose all impurities are ionized $(N_a = N_a^+ \& N_d = N_d^+)$
 - Electrical neutrality:

$$n + N_{\rm a} = p + N_{\rm d}$$
 $n = n_{\rm i}^2$
 $n^2 - (N_{\rm d} - N_{\rm a})n - n_{\rm i}^2 = 0$

$$n = \frac{N_{\rm d} - N_{\rm a}}{2} + \frac{N_{\rm d} - N_{\rm a}}{2} \left[1 + \left(\frac{2n_{\rm i}}{N_{\rm d} - N_{\rm a}}\right)^2 \right]^{1/2}$$

– Idem:

$$p = -\frac{N_{\rm d} - N_{\rm a}}{2} + \frac{N_{\rm d} - N_{\rm a}}{2} \left[1 + \left(\frac{2n_{\rm i}}{N_{\rm d} - N_{\rm a}}\right)^2 \right]^{1/2}$$

Compensation doping

$$n = \frac{N_{\rm d} - N_{\rm a}}{2} + \frac{N_{\rm d} - N_{\rm a}}{2} \left[1 + \left(\frac{2n_{\rm i}}{N_{\rm d} - N_{\rm a}}\right)^2 \right]^{1/2}$$
$$p = -\frac{N_{\rm d} - N_{\rm a}}{2} + \frac{N_{\rm d} - N_{\rm a}}{2} \left[1 + \left(\frac{2n_{\rm i}}{N_{\rm d} - N_{\rm a}}\right)^2 \right]^{1/2}$$

• Extrinsic compensated

$$= n_{i} \leqslant |N_{d} - N_{a}|:$$
for $N_{d} > N_{a}:$

$$p \approx n_{i}^{2} / (N_{d} - N_{a})$$
majority carriers large
(T independent)
minority carriers low
(strong T dependence)
 $n \approx n_{i}^{2} / (N_{a} - N_{d})$

Compensation doping

$$n = \frac{N_{\rm d} - N_{\rm a}}{2} + \frac{N_{\rm d} - N_{\rm a}}{2} \left[1 + \left(\frac{2n_{\rm i}}{N_{\rm d} - N_{\rm a}}\right)^2 \right]^{1/2}$$
$$p = -\frac{N_{\rm d} - N_{\rm a}}{2} + \frac{N_{\rm d} - N_{\rm a}}{2} \left[1 + \left(\frac{2n_{\rm i}}{N_{\rm d} - N_{\rm a}}\right)^2 \right]^{1/2}$$

• Intrinsic compensated

$$n_{i} \gg |N_{d} - N_{a}|$$
:
 $n = n_{i} + (N_{d} - N_{a})/2$
 $p = n_{i} + (N_{d} - N_{a})/2$

- Conductivity
 - In a sC we have e^{-1} 's and h^{+1} 's moving:

$$J_{\rm e} = ne\mu_{\rm e} \mathscr{E}$$

$$J_{\rm h} = pe\mu_{\rm h} \mathscr{E}$$

$$J = J_{\rm e} + J_{\rm h} = \mathscr{E}(n\mu_{\rm e} + p\mu_{\rm h}) \mathscr{E}$$

– In a n-type sC (n>>p):

 $\sigma_{\rm n} \simeq en\mu_{\rm e} \simeq eN_{\rm d}\mu_{\rm e}$

− In a p-type sC (*p*>>*n*):

 $\sigma_{\rm p} \simeq e p \mu_{\rm h} \simeq e N_{\rm a} \mu_{\rm h}$

- Diffusion of charge carriers
 - In general, diffusion occurs when concentration gradients are present.
 - In a neutral gas with gradient in the x direction:

$$v_{\mathrm{D}x} = -(e\tau_{\mathrm{r}}/m)\mathscr{E}_{x}$$

•
$$v_{\rm D}$$
 due to $F_{\rm D}$:
 $v_{\rm D} = -\frac{\tau_{\rm r}}{M} \frac{1}{N} \frac{\mathrm{d}P}{\mathrm{d}x}$ $\stackrel{P = NkT}{\longrightarrow}$ $v_{\rm D} = -\frac{\tau_{\rm r} kT}{M} \frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}x}$

- Diffusion of charge carriers
 - In general, diffusion occurs when concentration gradients are present.
 - In a neutral gas with gradient in the *x* direction:

- Diffusion of charge carriers
 - In a sC with a concentration gradient of the e^- and h^+ :

- Diffusion of charge carriers
 - Diffusion coefficient is related with mobility:

$$D = \frac{\tau_{\rm r} kT}{M} \xrightarrow{\mu = e\tau_{\rm r}/m} D_{\rm e} = (kT/e)\mu_{\rm e}$$
$$D_{\rm h} = (kT/e)\mu_{\rm h} \longrightarrow D_{\rm e}/\mu_{\rm e} = D_{\rm h}/\mu_{\rm h} = kT/e$$

• Total current flow

$$J_{\rm e} = n e \mu_{\rm e} \mathscr{E} + e D_{\rm e} \nabla n$$

Spin-Charge Separation

- In 1D systems, a collective excitation can be produced such that two new particles form:
 - **Spinon:** spin without charge **Holon:** charge without spin

http://www.nature.com/nphys/journal/v2/n6/pdf/nphys316.pdf