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Contents overview

• Assemblies of classical particles.

• Collection of particles obeying the exclusion

principle.

• A simple model of a conductor.

• Electrons in a 3D box.

• Maximum number of possible energy states.

• Energy distribution of electrons in a metal.

• Fermi level in a metal.

• Conduction processes in metals.



Assemblies of Classical Particles

• Consider a gas of N neutral molecules

dVxyz

The number of particles in dVxyz is

and in a shell of thickness dv is

where P(v2) is the density of

particles having a speed v (i.e.

density of points in v-space).

Total number of particles is:



Assemblies of Classical Particles

• The distribution function (distribution of speeds):

– To find P(v2) let’s consider collisions inside this gas

– Constants A and β are found from:

Collision and reversed collision:

Energy conservation:

Total number of particles:

Definition of T:

Mean kinetic energy

½(M v2) [A exp(-β v2)]
0

∞



• Relation between P(v2) and f (v):

– Number of particles in a shell of thickness dv:

– f (v) gives the fraction of molecules (per unit volume)

in a given speed range (per unit range of speed).

Fraction of

molecules with

speed less than v’

Maxwell-Boltzmann Distribution Function



Energy Distribution Function

• How the energy is distributed in the ensemble

– The particles in the ensemble we have considered so

far only have kinetic energy:

– Replacing in  the expression for dNv:

– But                      then:

⇒

Note that the density of the particles

is independent of the position



Boltzmann Distribution Function

• How the energy is distributed in the ensemble

– We now consider that the particles in the ensemble not

only have KE but also PE (gravitational or electrical

field).

– If the PE depends on the position so does the density of

the ensemble:



• Ensembles obeying exclusion principle

– Two quantum particles (E3, E4) interact and end up in

two states (E1, E2) previously empty:

– When E→∞  it  reduces to the Boltzmann distribution:

Fermi-Dirac Distribution

E1+ E2  = E1+ E2

β = 1/kT

E1, 1- p(E1)

E2, 1- p(E2)

E3, p(E3)

E4, p(E4)

=



Fermi-Dirac Distribution

• Ensembles obeying exclusion principle

– The constant A is redefined through E
F
 and can be

found via normalization

– Therefore:

Note that for T = 0, p(E) reduces to

a step function. It means that all the

states with energies E ≤ EF are

occupied and those above, are

empty. When T > 0, some states

below EF are emptied and some are

occupied due to thermal energy.
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A Simple Model of a Conductor

• From one atom to a collection of atoms:



A Simple Model of a Conductor

• From one atom to a collection of atoms:

The potential barrier confines the electrons inside the faces of the

conductor. Therefore we can model a conductor as unbound or

free electrons confined to a potential box.

~unperturbed potential



Electrons in a 3D box

• Free electron model: V = 0 inside box & V = ∞ outside box

– Start from t-independent SE:

– Solving by variable separation

– Solving and using continuity (Ψ=0 at the walls)



Electrons in a 3D box

• Free electron model: V = 0 inside box & V = ∞ outside box

– After normalization

– Back into SE to obtain the energies of every state

– Note that results are similar to 1D well

For every triplet (nx , ny , nz) there exists an allowed state.

where d = xo = yo = zo

n2 = nx
2 + ny

2 + nz
2



Maximum Number of States

• Given a (maximum) number nF, how many

allowed states are there?

– Equivalently, how many triplets (nx, ny, nz) are there

such that nF ≥ n = (nx
2 + ny

2 + nz
2)½ ?

• In this representation, each point corresponds

to one available state.
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Maximum Number of States

• Given a (maximum) number nF, how many

allowed states are there?

– Equivalently, how many triplets (nx, ny, nz) are there

such that nF ≥ n = (nx
2 + ny

2 + nz
2)½ ?

• In this representation, each point corresponds

to one available state.

• To each unit of volume corresponds one

available state.
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Maximum Number of States

• Given a (maximum) number nF, how many

allowed states are there?

– Equivalently, how many triplets (nx, ny, nz) are there

such that nF ≥ n = (nx
2 + ny

2 + nz
2)½ ?

• In this representation, each point corresponds

to one available state.

• To each unit of volume corresponds one

available state.

• Then, the number of states such that n ≤ nF

corresponds to the volume generated by nF:

• If we take into account the spin:
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Maximum Number of States

• Given a (maximum) number nF, how many

allowed states are there?

– Equivalently, how many triplets (nx, ny, nz) are there

such that nF ≥ n = (nx
2 + ny

2 + nz
2)½ ?

• At 0 K we have:

   Number of electrons = Number states n ≤ nF

• Therefore:

• The energy corresponding to nF:
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Energy Distribution of e- in a Metal

• What is the number of (available) states with

energies in the range E and E+dE ?

– Since N is large, we can consider that n varies

continuously.

• Number of states in shell dn is equal to twice its

volume:

• We define the density of (available) states,

S(E), such that S(E)dE gives the number of

states with energies in the range E and E+dE

(or equivalently in the range n and n + dn).



Energy Distribution of e- in a Metal

• What is the number of (available) states with

energies in the range E and E+dE ?

N(E)dE        =           S(E)dE            ××××         p(E)

number of e-         =    number of available states     ×     probability of occupation

N(E)  =  S(E) p(E)
number of e- per unit volume

and unit energy



Fermi Level in a Metal

• From N(E) the number of electrons in a metal is:

• At T = 0:

• Note that in a gas the energy of the particles is 0.

• In a metal the electrons have an energy up to EF0 (few eV’s).

• At T > 0:

• At usual temperatures kT ~ meV  EF depends slowly on T.



Conduction Processes in a Metal

• Consider a (classical) free e– moving in a metal.

– There are collisions with the crystal structure:

– Collisions are described by a friction term. Then,

equation of motion of the electron in an external

electrical field.

– The friction is assumed to be proportional to



Conduction Processes in a Metal

• Consider a (classical) free e– moving in a metal.

– Current density:

– At large times (t >> τr) we have:

– The last relation is Ohm’s law with:



Conduction Processes in a Metal

• Conduction and distribution of states:

– Every available state is characterized by an energy E

with which we can associate a velocity ( E = ½ mv2) :



Conduction Processes in a Metal

• Conduction and distribution of states:

– Every available state is characterized by an energy E

with which we can associate a velocity ( E = ½ mv2) :



A 2D metal?

• Consider graphite:

• Single layers obtained from exfoliation:

http://www.sciencemag.org/cgi/reprint/306/5696/666.pdf


