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Assemblies of Classical Particles

e Consider a gas of N neutral molecules

The number of particles in dV __is

L dV.,. 2 Xyz
D dN,,.=P(v")dv, dv, do,
1dv.. 1 . . .
e s and 1n a shell of thickness dv 1s
|- E ‘ dN = P(v*)4nv* dv

: g where P(v?) is the density of
b : particles having a speed v (1.e.
; density of points in v-space).

Total number of particles is: f dN v=j P(v*)4mv® dv=N
0 0



Assemblies of Classical Particles

e The distribution function (distribution of speeds):

— To find P(v?) let’s consider collisions inside this gas

collison probability oc P(v?) P(v3)

Collision and reversed collision:
\/ \ 7 PEDPEI=PE3)PEI)

collision . >P(Uz)=A exp(——ﬁvz)

colision Energy conservation:
Uy
/\ n v} +vi=0v3+03 )
vy M
[

M

— Constants A and [ are found from:

- e A =M/(2kT

Total number of particles: N=4n4 f exp(— fv?)v? dv e
e N ” - M \3/2

Definition of T ‘ Yo(M v?) [A exp(-Bv)] 4nv? dv=3NKT | A=N (2nkT>

——
Mean kinetic energy



Maxwell-Boltzmann Distribution Function

e Relation between P(v?) and f (v):

— Number of particles in a shell of thickness dv:

dN_ = P(v*)4nv* dv M \32 Mo\
dN, =Nf(v)dv = f(v)=4ﬂ(2ﬂk’1") EXP(_ 2kT)”

— f (v) gives the fraction of molecules (per unit vo!
in a given speed range (per unit range of speed).
Fraction of

molecules with
speed less than v’

f(v)

lume)



Energy Distribution Function

e How the energy 1s distributed in the ensemble

— The particles in the ensemble we have considered so
far only have kinetic energy:

| 2 dE dE/M\'? dE
T Mo*/l = idpREEito an i
: / "My M\2E] TREM)T

— Replacing in the expression for dN,;:

M \32 E\2E dE
dN, =4nN( - LR R
i (anT) CXP( kT)M(zEM)UZ

— But dn.=Nf(E)dE then: \

o e E
j o Pt Tl 1/2 e
o) 2roe(m)| e

Note that the density of the particles
1s independent of the position

E,=kT/2 kT E



Boltzmann Distribution Function

e How the energy 1s distributed in the ensemble

— We now consider that the particles 1n the ensemble not

only have KE but also PE (gravitational or electrical
field).

[(E)ocexp(— E/kT)ocexp[ —(KE+ PE)/kT]

— If the PE depends on the position so does the density of
the ensemble: b

ny/n; =exp[—e(V, —V,)/kT]

number density

=
potential energy



Fermi-Dirac Distribution

* Ensembles obeying exclusion principle

— Two quantum particles (£;, E,) interact and end up in
two states (E,, E,) previously empty:

E,, 1- p(E)) Es, p(E5)
O\/. P(E;)p(E2)[1—p(E3)][1—p(E,)]
Il
E,, 1- p(E,) O/\. E,, p(Ey)
\

P(E3)p(E)[1—p(E,)][1—p(E,)]
(1) )=o) i~
P(E,) P(E,) \PMEs) m_) >|::> L1/p(E)] —1= A exp(BE)

E+E,=E+E, ) p(E}=1/[1+ A exp(BE)]

— When E— 1t reduces to the Boltzmann distribution:

p(E)~A exp(—fE) =)> f= KT



Fermi-Dirac Distribution

* Ensembles obeying exclusion principle

— The constant A 18 redefined through E . and can be
found via normalization

— Therefore:

p(E)
1

0.5 ¢

exp(—E,/kT)

p(E)=

1

1 +exp [(E— Eg)/kT]

Note that for T = 0, p(E) reduces to
a step function. It means that all the
states with energies E < E are
occupied and those above, are
empty. When T > 0, some states
below E are emptied and some are
occupied due to thermal energy.



A Simple Model of a Conductor

* From one atom to a collection of atoms:

energy

+ electron energy T

i radial distance. r le i | :
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A Simple Model of a Conductor

* From one atom to a collection of atoms:

~unperturbed potential

potential energy

l ‘-
! tl \
[ Il |

P ,.._......-__9

potential barrier
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The potential barrier confines the electrons inside the faces of the
conductor. Therefore we can model a conductor as unbound or
free electrons confined to a potential box.



Electrons in a 3D box

 Free electron model: V = 0 inside box & V = « outside box
— Start from t-independent SE

o Z
: * 3
2m v /
VLP'})‘(P’ V)lPZO /x//f//;//
2 2 2 /: ’
N e L T ) e
ox* ay 0z° h? o o )’OJ._/__.‘./_-_:_Q ErA L
/ //
. . . /
— Solving by variable separation 077 ERREAE
W= £ .f, ). wmy L8N LEL 14 omE L ey,
f dx? f dy P TR dx?

(idem fory & z)

— Solving and using continuity (‘W=0 at the walls)
fr=A sin(n,nx/x,)  f,=Bsin(nmny/y,) f.=C sin(n,znz/z,)
wheren,n,n =1, 2,3,.

X “y? z



Electrons in a 3D box

 Free electron model: V = 0 inside box & V = « outside box

— After normalization

V7] _f2ANYA L MmN 2 N2 L ) 2 NP i
nnn, — ( sy - s sinf *— || — | sin[ -2
XUyz X0, - Xp Yo yO 20 ZO

For every triplet (n, , n, , n,) there exists an allowed state.

— Back into SE to obtain the energies of every state

2
h e whered=x,=y, =z,
8md * n*=n’+n?+n?

==

— Note that results are similar to 1D well



Maximum Number of States

* (Given a (maximum) number 7, how many
allowed states are there?

— Equivalently, how many triplets (n,, n,, n ) are there
such thatnp, 2n = (n? +n2 +n?)"?

e In this representation, each point corresponds
to one available state.
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Maximum Number of States

* (Given a (maximum) number 7, how many
allowed states are there?

— Equivalently, how many triplets (n,, n,, n ) are there
such thatnp, 2n = (n? +n2 +n?)"?

e In this representation, each point corresponds
to one available state.

e To each unit of volume corresponds one
available state.

 Then, the number of states such that n < n,
corresponds to the volume generated by n,:

W nnd)=nnd /6

 If we take into account the spin:

2(nnd/6)=mnni/3




Maximum Number of States

* (Given a (maximum) number 7, how many
allowed states are there?
— Equivalently, how many triplets (n,, n,, n ) are there
such thatnp, 2n = (n? +n2 +n?)"?

* At 0 K we have:
Number of electrons = Number states n < n,,

Nd?®=mnn3/3
e Therefore:
n.=(3N/n)!?d

e The energy corresponding to nF:

h% 3N \2>
Froi(x)




Energy Distribution of e- in a Metal

 What 1s the number of (available) states with
energies in the range E and E+dE ?

— Since N 1s large, we can consider that n varies
continuously.

fl, . . . .
4 * Number of states in shell dn is equal to twice its
volume:

2(4nn? dn)/8 =nn2dn

e We define the density of (available) states,
S(E), such that S(E)dE gives the number of
states with energies in the range E and E+dE
(or equivalently in the range n and n + dn).

mmp S(E)dEd’=nn’dn mmmp :5(15)—1’”12':”i

~ d3 dE

3/2
> S{.ff]:-(—g-—‘“/——zzfm E12




Energy Distribution of e- in a Metal

 What 1s the number of (available) states with
energies in the range E and E+dE ?

NE)E = S(E)dE x  p(E)

number of e = number of available states X  probability of occupation

number of e per unit volume
and unit energy

N(E) = S(E) p(E)

T increasing




Fermi Level in a Metal

 From N(F) the number of electrons 1n a metal 1s:

n= mN dE o ooS g dE:(S\/z)ntIZJw E124E
J~0 ( ) J.O ( )p( ) "13 o 1+3Xp[(E—EF)f*'kT]

e AtT=0:

(8 ) ,Emlifz Exo h2 3 2/3
n= \/ ) E'Y2dE - Ep'ozg—njl(—n) =3.65x10"1%9p23 ey

3
h ; -

e Note that in a gas the energy of the particles is 0.

* In a metal the electrons have an energy up to Ep, (few eV’s).

e AtT>0: -

2 \ 2
)
12\E,

e At usual temperatures kT ~ meV E depends slowly on T.



Conduction Processes in a Metal

e Consider a (classical) free e~ moving 1n a metal.

— There are collisions with the crystal structure:

/\VP“ 7.(average time between collisions)
M AR

e

¢=0 &,
— Collisions are described by a friction term. Then,
equation of motion of the electron 1n an external

electrical field.

—ed—f=mXx

— The friction is assumed to be proportional to m x/7,

d
— o) S i s
dz T
—et &

== Vp,=——— [1—exp(—t/7,)]

m



Conduction Processes in a Metal

e Consider a (classical) free e~ moving 1n a metal.

— Current density:

ne’t. &,

J=nqgx wm) J=p(—el,, =

[1—exp(—t/7,)]

— At large times (¢ >> 7)) we have:
Upy = —(E‘Tr/m)(-?x o B &

X

J.=(ne® 1. /m)&, =neué,
— The last relation 1s Ohm’s law with:

6=neu=ne*t /m



Conduction Processes in a Metal

e Conduction and distribution of states:

— Every available state 1s characterized by an energy £
with which we can associate a velocity ( £ = Y2 mv?) :

Some scatter
dueto T >0

»

]
a \' e
Lzl deic

L]
-]
e Fermi surface

vp = (2 Ey/m)"”



Conduction Processes in a Metal

e Conduction and distribution of states:

— Every available state 1s characterized by an energy £
with which we can associate a velocity ( £ = Y2 mv?) :
& =0

Some scatter
dueto T >0

Fermi surface
vi = (2 E/m)”



A 2D metal?
e Consider graphite:

a &

http://www.sciencemag.org/cgi/reprint/306/5696/666.pdf



