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A Simple Model of a Conductor

* From one atom to a collection of atoms:
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The potential barrier confines the electrons inside the faces of the
conductor. Therefore we can model a conductor as unbound or

free electrons confined to a potential box.



Electrons in a 3D box

* Free electron model: V =0 inside box & V = = outside box
— Solving the -independent SE:
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For every triplet (n, , n, , n,) there exists an allowed state.
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Maximum Number of States

* (Given a (maximum) number 7, how many
allowed states are there?
— Equivalently, how many triplets (n,, n,, n ) are there
such thatnp, 2n = (n? +n2 +n?)"?

 The number of states such that n < n.
corresponds to the volume generated by n:

KA nnd)=nn /6 ‘ 2(nnd/6)=mnnp/3

T =0: Number of electrons=Number states n< n,
Nd?=mnn3/3

ne=03N/n)'"?d

e The energy corresponding to n,:
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Energy Distribution of e- in a Metal

 What 1s the number of (available) states with
energies in the range E and E+dE ?

— N 1s large, we can consider that n varies continuously.

e Number of states in shell dn 1s equal to twice its volume:
2(4nn? dn)/8 = nn?dn
e Density of states, S(E), is defined such that S(E)dE d? =nrn?dn
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* N(E), is defined such that: N(E)dE = S(E)dE X p(E) ‘ N(E)=S(E) p(E)
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Fermi Level in a Metal

 From N(F) the number of electrons 1n a metal 1s:
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e Note that in a gas the energy of the particles is 0.

* In a metal the electrons have an energy up to Ep, (few eV’s).

e AtT>0: -
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e At usual temperatures kT ~ meV E depends slowly on T.



Conduction Processes in a Metal

e Consider a (classical) free e~ moving 1n a metal.

— There are collisions with the crystal structure:
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— Collisions are described by a friction term. Then,
equation of motion of the electron 1n an external

electrical field.

—ed—f=mXx

— The friction is assumed to be proportional to m x/7,
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Conduction Processes in a Metal

e Consider a (classical) free e~ moving 1n a metal.

— Current density:

ne’t. &,

J=nqgx wm) J=p(—el,, =

[1—exp(—t/7,)]

— At large times (¢ >> 7)) we have:
Upy = —(E‘Tr/m)(-?x o B &

X

J.=(ne® 1. /m)&, =neué,
— The last relation 1s Ohm’s law with:

6=neu=ne*t /m



Conduction Processes in a Metal

e Conduction and distribution of states:

— Every available state 1s characterized by an energy £
with which we can associate a velocity ( £ = Y2 mv?) :
& =0

Some scatter
dueto T >0

Fermi surface
vi = (2 E/m)”



Allowed Energy Bands
* Energy splitting.
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* Energy splitting.

Allowed Energy Bands
Two atoms separated
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Allowed Energy Bands

¢ Energy Spllttlng splitting degeneracy
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electron energy

Allowed Energy Bands

* Energy splitting.

More atoms are brought together.

continuous bands
start to form

distance between atoms, «

Example: Carbon.

states per atom
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Allowed Energy Bands

 Bloch’s theorem.

— Let’s consider a 1D chain of N atoms of period a.
® —® ®

= a = a =

e The potential has the same periodicity: v(x)=V(x+a)=V(x+2a)= ...
e The w.1. has to have the same periodicity:
Y(x + a) = CY(x)
e Further we consider that the chain forms a ring:
W(x + Na) = ¢(x) = CV Yx)
=) (V=] =) C=exp@i2ms/N); s=012...,N—-1.

e To satisfy the previous relations, the w.f. has to be of the form:
W (x) = uk(x)eikx with:  ug(x) = urlx + a) & k = 2ms/Na

i.e. a plane wave modulated in space



