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Contents overview

* Allowed energy bands.
* Velocity and effective mass of electrons 1n solids.

e Conductors, semiconductors, and insulators.



Allowed Energy Bands

* Energy splitting.

Two atoms separated a
distance r modeled by

potential wells. If r is large,

w.f. are unperturbed.

The atoms are brought
together.
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* Energy splitting.

Allowed Energy Bands

\ splitting degeneracy
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Allowed Energy Bands

 Bloch’s theorem.

— Let’s consider a 1D chain of N atoms of period a.
® —® ®

= a = a =

e The potential has the same periodicity: v(x)=V(x+a)=V(x+2a)= ...
e The w.1. has to have the same periodicity:
Y(x + a) = CY(x)
e Further we consider that the chain forms a ring:
W(x + Na) = ¢(x) = CV Yx)
=) (V=] =) C=exp@i2ms/N); s=012...,N—-1.

e To satisfy the previous relations, the w.f. has to be of the form:
W (x) = uk(x)eikx with:  ug(x) = urlx + a) & k = 2ms/Na

i.e. a plane wave modulated in space



Allowed Energy Bands

e Kronig-Penney model.

— Let’s consider a 1D chain of N atoms of period a.
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Allowed Energy Ba

e Kronig-Penney model.

nds

— Let’s consider a 1D chain of N atoms of period a.
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— From continuity of y and dy/dx at t
e At x=0: A+B=C+D;
if(A—B)= o{fC —D) .

he boundaries:

— From Bloch’s theorem, ¥ (x + a) = ¥ (x)e'

e Atx=-b: Aeiflab) 4 Be-ifab) = (Cel@(h) 4 De -1(-h)) g-ika
i (AciBb _ Berifab) = g (Cel@h) — De -iah) g-ika



Allowed Energy Bands

e Kronig-Penney model.

— The previous system of 4 equations have a solution only
if 1ts determinant 1s equal to zero giving:

[(o* ~ BA12a8] sinh ab sin [ (a—b)+ cosh ab cos Ha—b) = cos ka

— For simplicity, let’s consider the case b — 0 & V) — oo
but such that &r2ba/2 = P remains constant.

— In this limit &» f & ab « 1. Then:

(P/Ba)sin Pa + cos Ba = cos ka



Allowed Energy Bands

e Kronig-Penney model.
— What are the allowed electron energies E= 73%/2m?

— We have to solve (P/Ba)sin Ba + cos fa = cos ka
|

left-hand side of eq. (5.9)

+ cos (Ba)

range of right-hand side of eq. (5.9)
: forbidden energy bands
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— As P becomes larger (1.e. the product bV,)), the allowed bands become
narrower.
— As P — 0, f— k (i.e. towards the free electron model)



Allowed Energy Bands

e Kronig-Penney model.

— Since  (P/Ba)sin Ba + cos fa = cos ka
e The allowed energies are function of the wavenumber k.

e The solutions have the periodicity of cos(ka).
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Allowed Energy Bands

e Kronig-Penney model.
— Since  (P/Ba)sin Ba + cos fa = cos ka
e The allowed energies are function of the wavenumber k.
e The solutions have the periodicity of cos(ka).

e To ease representation: First reduced
'(_CI (Brillouin) zone
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Velocity and Effective Mass

e Group velocity

o ’ x, 1) =u,(x ei(kx-Et/ﬁ) £ —wave packet
From Bloch’s theorem V (x, 1) = u,(x)

spatial modulation plane wave

— Therefore, the velocity of the electron 1s given by the

group velocity
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Velocity and Effective Mass
e Effective Mass

— Consider an e~ in a solid moving 1n an external field that
exerts a force F on it. The energy acquired by the e 1s:

FSE
SE=Féx=Fv 5r—~m5t =) |F = dk/dr = dp/ds

» External forces and effects of the lattice are included

— Applied for the case of a free electron (i.e. p = mv):

dp dv

= dt (ﬁk} dr dr

— Now, 1n general, differentiating v,:

2 2R 2 2 =1
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Velocity and Effective Mass

 Effective Mass

— Comparing both we define:
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Velocity and Effective Mass
e Effective Mass

— Comparing both we define:

dlE =1 2 =1
m*=(_) =ﬁ3(d E) EEE)  F=m*do,/dt
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Velocity and Effective Mass
e Effective Mass

— Comparing both we define:

2 =1 2 =1
m*=(d_E) =ﬁ3(d E) EEE)  F=m*do,/dt

dp? dk?
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Velocity and Effective Mass
e Effective Mass

— Comparing both we define:

dlE =1 2 =1
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@ Opposite velocities. No net current,
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Velocity and Effective Mass
e Effective Mass

naring both we define:
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@ Not cancelled. Net current.




Conductors, Semiconductors & Insulators

e (Classification according to the filling of the gaps

electron energy, £

A empty band E}
full band ——
overlapping upper band empty conduction
band
forbidden energy
B gap
full valence band — -

(a) metal

4,
conduction band /
i "
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(c) semiconductor

(b) insulator

a few conduction
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holes for conduction



in Graphene

Energy Bands

structures

e Graphene and other related




Energy Bands in Graphene

e Ideal band structure

http://www.nature.com/nmat/journal/v6/n3/full/nmat1849.html
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Energy Bands in Graphene

e Measured band structure

http://www.nature.com/nmat/journal/v6/n10/pdf/nmat2003.pdf



