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Contents overview

• Introduction

• Blackbody radiation

• Photoelectric effect

• Bohr atom

• Wavepackets

• Schrödinger equation

• Interpretation of wavefunction

• Uncertainty principle

• Beams of particles and potential barriers

The English translation of some of the original articles can be seen at: 

http://strangepaths.com/resources/fundamental-papers/en/



Blackbody Radiation

• Experiment

• Theory

Experimental solar irradiance
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• Experiment

• Theory

Photoelectric Effect
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Bohr Atom

• Experiment

• Theory



Particle-Wave Duality & Wavepackets

• De Broglie hypothesis:

• Phase and group velocity:

λ

2π r = n λ                 p = h / λ

vph = ω / β

vg = δω / δβ



Wave function

• Associating a wavepacket to a particle:

– From De Broglie and Bohr relations:

– Phase and group velocity are:

– The wavepacket ψ is called wave function

vg = ∂ω /∂β = v



• Time-dependent SE:

• Time-independent SE:

Schrödinger Equation

where the complete solution is:



• Where is the particle?

• Born interpretation:

– The probability of finding the particle in the length 

interval [x, x+dx], at the time t, is given by:

|ψ(x, t)|2dx

– Therefore: ∫whole length ||||ψψψψ(x, t)|2dx = 1 (normalization)

Interpretation of the Wave Function



• Since |ψ(x, t)|2 physical meaning, the w.f. has to 

comply various requirements:

– Continuous on x.

– Single valued on x.

– Idem with its spatial first derivatives.

• Examples of improper w.f.

Interpretation of the Wave Function



• Where is the particle?

Heisenberg Principle

but λ is not well defined, therefore:

DeBroglie

L



• Where is the particle?

• A rigorous demonstration (no approximations) 

using matrix mechanics gives:

Heisenberg Principle

but λ is not well defined, therefore:

DeBroglie



• Where is the particle?

• In QM there are pair of physical quantities (called 

conjugates) for which this relation holds, e.g.:

Heisenberg Principle

but λ is not well defined, therefore:

DeBroglie

For an experimental demo: Nature 371, 594 - 595 (13 October 2002) 



Potential Barriers

• Finite potential barrier ( V1 < E < V2 ):
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Potential Barriers

• Finite potential barrier ( V1 < E < V2 ):

– A,B,C are found using continuity arguments and norm.
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ΨΨΨΨI|x=0 = ΨΨΨΨII|x=0

Notice that | A | = | B |
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Potential Barriers

• Finite potential barrier ( V1 < E < V2 ):
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• Finite potential barrier ( V1 < V2 < E):

Potential Barriers
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From continuity arguments:



• Finite potential barrier ( V1 < V2 < E):

Potential Barriers
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From continuity arguments:

Reflection coefficient:
2



• Finite potential barrier ( V1 < V2 < E):

Potential Barriers
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From continuity arguments:

Transmission coefficient:

2 2
but β1>β2

2

> 1 !



• Narrow potential barrier (V1 < E < V2 ):

Potential Barriers

α and β as before

As before, A,B,C,D,F to be obtained from continuity and normalization.

In particular:



• Narrow potential barrier (V1 < E < V2 ):

– Transmission from I to III

Potential Barriers



2. The Electronic Structure of 
Atoms



Contents overview

• A particle in a 1D potential well

• The hydrogen atom

• The exclusion principle



A Particle in a 1D Potential Well

• Infinite well:

V = 
0 for 0 < x < d

∞ elsewhere
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From continuity, i.e. Ψ(0) = 0 = Ψ(d): 



A Particle in a 1D Potential Well

• Infinite well:

V = 
0 for 0 < x < d

∞ elsewhere

From continuity, i.e. Ψ(0) = 0 = Ψ(d): 

where C = 2iAΨ = C sin(β x)



A Particle in a 1D Potential Well

• Infinite well:

– C is obtained via normalization:

Ψ = (2/d)1/2 sin(nπ x/d)

Each of these w.f. has an 

associated energy
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A Particle in a 1D Potential Well

• Finite well (left as an excercise):

V = Vo
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Attenuation

Bound states

Unbound states

x = 0 x = d



http://www.youtube.com/watch?v=HKr9lSyL-Lo


