Physics of Electronics:

July — December 2008



Announcements

e Instructor: Patricio (pmena@ing.uchile.cl).

— Ph.D. 1n Solid State Physics, University of
Groningen, The Netherlands.

— Group of Astronomical Instrumentation
— Off. 509. Telf. 9784888

e Slides will be in English BUT lectures in Spanish.

e Assistants still to be determined.



Announcements

* Some (if not all) Thursday lectures will be changed

to Monday, since I have to travel frequently to the
ALMA site.

ALMA = Atacama Large Millimeter Array
(66 radio telescopes at 5000 m using the latest technology)



Overview of the Course

Review of Quantum Mechanics.
Electronic processes.
Semiconductors

P-n junction. A

Bipolar Transistors.
JFET’s. > Semiconductor devices

MOSFET’s.
SCR’s. _/
Fabrication technology.




Literature

e Basic:

— J.Allison, “Electronic Engineering: Semiconductors
and Devices,” London: Mc Graw Hill International

Editions, 1990.
e Additionally, any other book on semiconductor
physics and solid state physics like:

— A. van der Ziel, “Electronica Fsica del Estado

Solido,” New Jersey: Prentice/Hall International,
1972.

— C. Kittel, “Introduction to Solid State Physics,” New
York: John Willey & Sons, 1996.



1. Introduction to Quantum
Mechanics
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Introduction

 What does explain the (electrical, magnetic,
thermal) properties of solids?
— Metals (conductors)
— Semiconductors
— Insulators

— Superconductors

* It 1s explained by the behavior of the constituent

electrons and their interactions inside the structure
of the solid.

e To study them we need Quantum Mechanics (as
opposed to Newtonian Mechanics).



Blackbody Radiation

e Radiation emitted by an incandescent radiator
(example the Sun):

Experimental solar irradiance

Incandescent spectral flux (a.u.)
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Blackbody Radiation

e One can model the radiation of a blackbody by
assuming that it 1s formed by atomic oscillators
emitting energy:

* Classical theory (Rayleigh-Jean’s law):

Qoq, § Q%% Oscillators emit energy in a continuos way

-
e Quantum theory (Planck’s law):

Oscillators emit energy in a discret way
FL

E= 0, ho, 2ho, 3ho, ..., nho
E



Blackbody Radiation

e One can model the radiation of a blackbody by
assuming that it 1s formed by atomic oscillators
emitting energy:

Rayleigh-Jean’s law
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Blackbody Radiation

e One can model the radiation of a blackbody by
assuming that it 1s formed by atomic oscillators
emitting energy:

/ Planck’s law

Experimental Solar irradiance




Photoelectric Effect

e Experimental setup
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Photoelectric Effect

e Experimental results
)
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high light intensity

low light intensity
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Photoelectric Effect

e Theoretical explanation:
)

It 1s assumed that light
energy 1s quantized:

collector
photocurrent

high light intensity

ymv* = hf —ed

e Minimum energy to emit
low light intensity an electron:

/= fo= ep/h

g
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light intensity

. When interacting with matter light to be considered as a particle.



Bohr Atom

e Experimental fact:

— An excited hydrogen atom emits radiation at a
discrete energies.

Hydrogen Absorption Spectrum

Hydrogen Emission Spectrum
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From: http://www.solarobserving.com/halpha.htm



Bohr Atom

* Simplest theoretical explanation:

1. In the hydrogen atom, the electron can only exist in
stable (non-radiating) orbits whose angular moment
are quantized.

central orbiting .= muor =nh where n=1,2,3,...
nucleus electron

Which implies the existence of
discrete orbits of radius:
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Bohr Atom

* Simplest theoretical explanation:

2.

energy, E (eV)

Radiation occurs only when electron moves from one
allowed orbit to another. Energy lost by the atom 1is
converted 1n a single photon:
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Particle-Wave Duality
* De Broglie hypothesis:

— For a photon we have:
p=Ejc =) p=h/i

— De Broglie hypothesized that p = h/A also holds for
particles. This can be seen from the Bohr atom:

2xr=nA =) p=h/A




Wavepackets

 Consider the juxtaposition of waves, A cos(ax-[x),
of slightly different wavelength:

Co3 [X]
t=0
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Wavepackets

 Consider the juxtaposition of waves, A cos(ax-[x),
of slightly different wavelength:

Co3 |{ %]l + C0O3 [X]
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Wavepackets

 Consider the juxtaposition of waves, A cos(ax-[x),
of slightly different wavelength:

cnsl{%}l + CO3 (%] + CO3[(X)

t=0
n=23 ol
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Wavepackets

 Consider the juxtaposition of waves, A cos(ax-[x),
of slightly different wavelength:

cnsl{%]l +|:|:|s|[%:| +|:|:|3|: 3;:] + C03 [(X]

t=0
n=4 .
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A wavepacket 1s formed when n—co
Wavepacket = wave (superposition of waves) + particle (localization)



Wavepackets

Consider a wave: A cos(wt - Bx) < A eli@!- 5]

— Phase velocity: velocity of planes of constant phase
phase: o¢=wt-fx

Line of constant phase
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Wavepackets

* Consider superposition of two waves:

,Clﬂ cos{wt — ﬁX}'{' A/D cos[(w + o)t —(f+ éﬁ)a
=2A, cos{3[ (2w + dw)t — (28 + 6P)t]} cos[3(dcwt — 5x)]
~2 A, cos[3(dwt — 5fx)] cos(wt — Px)




Wavepackets

e Associating a wavepacket to a particle:

— From De Broglie and Bohr relations:
W) = Ay exp[ —j(Tt—px)/h]

— Phase and group velocity are:
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— The wavepacket ¥ 1s called wavefunction



Wavepackets

e Associating a wavepacket to a particle:

— From De Broglie and Bohr relations:

) )~ A, exp[ —j(Te—px)/h]

— In general a particle has also potential energy, therefore
1ts wavefunction will be:

W= A, exp[ —j(Et — px)/h]
where E=T+V



Schrodinger Equation

It 1s similar to Newton’s equation. It describes the
behavior of the wavefunction of a particle (and 1n
general of any quantum system).

e Since we are describing a wave, SE should have
the form of the well known wave equation that
describe, for example, the EM field:
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Schrodinger Equation

e Time-dependant SE:
— Starting from = A, exp[ —j(Et — px)/h]

— By deriving once respect to time and twice respect to
the position, the time-dependent SE can be obtained:

aln,'; 2m Zm@lfl
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— Generalizing to 3D:
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— Given a potential energy and the mass of the system,
this equation can be solved.



Schrodinger Equation

* Time-independent SE:

— If V1s time independent, we can assume the following
form of the wavefunction (variable separation):

Y =¥(x)I()
— Then replacing it in the time-dependent SE:

h% 1 d?¥ Ard’
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— Two independent equations (one in x, one 1n ?).



Schraodinger Equation

* Time-independent SE:
— Solving the one in t:

I'(1) = exp(—jEt/h)

— The one 1n x 18, then:

d*VY 2m

axd T VIE=0




That’ s all folksl!
(for today)



