METODO DE ELEMENTOS FINITOS

CI71D Modelación Numérica en Ingeniería Hidráulica y Ambiental Profs. C. Espinoza y Y. Niño

Semestre Primavera 2001

1. INTRODUCCION

El Método de Elementos Finitos (MEF) es un método numérico para resolver ecuaciones diferenciales por medio de "aproximaciones discretas". A diferencia del método de diferencias finitas (MDF), en el cual la zona de solución es un conjunto de puntos discretos, el método de elementos finitos supone que la zona de solución está compuesta de muchas subzonas interconectadas, las que se denominan "elementos finitos". Estos elementos, los que pueden tomar formas simples (por ejemplo, líneas, triángulos, rectángulos, paralelepípedos) se ensamblan de diferentes maneras para representar la solución sobre una región cualquiera.

Los conceptos básicos que se incorporan en este apunte son simples y la idea principal es comprender la operatoria detrás de la técnica numérica de los elementos finitos.

2. CONCEPTOS BASICOS EN ANALISIS DE ELEMENTOS FINITOS

El análisis de elementos finitos para un problema físico puede ser descrito de la siguiente forma:

(1) El sistema físico se divide en series de elementos que están conectados por un número discreto de puntos nodales; este proceso se denomina "discretización". Discretizaciones típicas de un sistema de tuberías y de un sistema continuo bidimensional se muestran en la Figura 1. En estos casos se identifican los elementos por medio de números. El problema de tuberías contiene 8 elementos y 6 nudos, mientras que el problema continuo posee 20 elementos y 52 nudos.

Figura 1 Ejemplos de Discretizaciones de Elementos Finitos

(2) Una expresión matricial se desarrolla para relacionar las variables nodales de cada elemento. La matriz resultante se conoce comúnmente como "matriz elemental". Para un problema discreto, la matriz elemental puede ser generada a partir de un análisis físico

simple. Para problemas continuos, la matriz elemental se obtiene mediante un proceso matemático que utiliza técnicas variacionales o métodos de residuos ponderados.

- (3) Las matrices elementales se combinan o "ensamblan" para formar un conjunto de ecuaciones algebraicas que describen el sistema global. La matriz de coeficientes del problema global se conoce como la matriz global. El procedimiento de ensamble se realiza para cumplir condiciones de compatibilidad en la unión de elementos.
- (4) Condiciones de borde son incorporadas dentro de la matriz global.
- (5) El conjunto de ecuaciones algebraicas se resuelve mediante algún método matricial adecuado.

3. SOLUCION A UN PROBLEMA DISCRETO

Consideremos el flujo de agua a través de un medio poroso, en estado estacionario. Este medio poroso está compuesto de tres zonas de diferente conductividad hidráulica, tal como se muestra en la Figura 2. El agua se inyecta a una tasa unitaria a través de uno de los extremos del medio poroso, mientras que la carga hidráulica se mantiene constante, con una valor igual a 5, en el otro extremo. Utilicemos el MEF para determinar la distribución de la carga hidráulica dentro del medio poroso.

Figura 2 Medio Poroso Saturado y Heterogéneo

3.1 Paso 1. Discretizar Medio Poroso.

Tal como se muestra en la Figura 2, el sistema se divide en tres elementos, los que se identifican en la Tabla 1.

Identific	ación Elementos	s Finitos
Número de	Conexione	es Nodales
Elemento	Nodo 1	Nodo 2
1	1	2
2	2	3
3	3	4

	Tabla 1
Identific	ación Elementos Finitos
ímoro do	Conovionos Nodalos

3.2 Paso 2. Determinar Características de los Elementos

Consideremos un elemento aislado como el que se indica en la Figura 3 (elemento e). Los valores del flujo de agua subterránea, Q, y la carga hidráulica, h, son definidas en cada nudo. Por conveniencia vamos a asignar un signo positivo al flujo que entra al elemento. El término desconocido en este problema es la carga hidráulica. la relación entre la carga hidráulica y el flujo de agua subterránea está dada por la Ley de Darcy. La ecuación de Darcy para cada nudo se puede escribir como:

$$Q_1 = \frac{K \cdot A}{L} \cdot (h_1 - h_2) \tag{1}$$

$$Q_2 = \frac{K \cdot A}{L} \cdot (h_2 - h_1) \tag{2}$$

Figura 3 Elemento Individual

donde K, A y L corresponden a la conductividad hidráulica, área transversal y longitud del elemento e, respectivamente. Las ecuaciones (1) y (2) pueden ser escritas en forma matricial como:

$$\begin{bmatrix} \frac{K \cdot A}{L} & -\frac{K \cdot A}{L} \\ -\frac{K \cdot A}{L} & \frac{K \cdot A}{L} \end{bmatrix}^{e} \cdot \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix}^{e} = \begin{bmatrix} Q_{1} \\ Q_{2} \end{bmatrix}^{e}$$
(3)

0

donde el superíndice *e* se utiliza para indicar que la ecuación matricial se escribe para el elemento *e*. Las componentes de la matriz C son las siguientes:

$$c_{11} = \left(\frac{K \cdot A}{L}\right)^e, \quad c_{12} = -\left(\frac{K \cdot A}{L}\right)^e, \quad c_{21} = c_{12}, \quad c_{22} = \left(\frac{K \cdot A}{L}\right)^e$$

Es posible notar que la matriz elemental C es simétrica pero singular, i.e. su determinante es cero.

3.3 Paso 3. Ensamblar Ecuaciones Elementales.

Después de ensamblar todas las ecuaciones para cada elemento, se obtiene un conjunto de ecuaciones globales, el que se puede escribir como:

$[c_{11}]$	c_{12}	c_{13}	c_{14}^{-}	$\left[\begin{array}{c} h_1 \end{array} \right]$	ſ	$[Q_1]$
<i>c</i> ₂₁	<i>c</i> ₂₂	<i>c</i> ₂₃	<i>c</i> ₂₄	$\left \right h_2 \left $		Q_2
<i>c</i> ₃₁	<i>c</i> ₃₂	<i>C</i> ₃₃	<i>C</i> ₃₄	h_3		Q_3
<i>C</i> ₄₁	c_{42}	C_{43}	C_{44}	$ h_4 $		Q_4

o en forma equivalente,

$$[C] \cdot \{h\} = \{Q\} \tag{6}$$

donde C es la "matriz global".

El proceso de ensamble se desarrolla de la siguiente forma. Primero se reescribe la ecuación matricial en términos de la numeración global. De esta manera, para el elemento (1) se tiene:

$c_{11}^{(1)}$	$c_{12}^{(1)}$	0	0	$\int h_1$]	$Q_{1}^{(1)}$
$c_{21}^{(1)}$	$c_{22}^{(1)}$	0	0	$\int h_2$		$\int Q_2^{(1)}$
0	0	0	0	h_3	\int_{-}^{-}	0
0	0	0	0_	h_4	J	0

Para el elemento (2) se tiene:

$ = \begin{cases} \mathcal{Q}_1^{(2)} \\ \mathcal{Q}_2^{(2)} \\ 0 \end{cases} $

Para el elemento (3) se tiene:

4

(4)

La matriz global se obtiene agregando las contribuciones desde todos los elementos. La combinación de las ecuaciones (7), (8), y (9) da:

$$\begin{bmatrix} c_{11}^{(1)} & c_{12}^{(1)} & 0 & 0\\ c_{21}^{(1)} & c_{22}^{(1)} + c_{11}^{(2)} & c_{12}^{(2)} & 0\\ 0 & c_{21}^{(2)} & c_{22}^{(2)} + c_{11}^{(3)} & c_{12}^{(3)}\\ 0 & 0 & c_{21}^{(3)} & c_{22}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} h_1\\ h_2\\ h_3\\ h_4 \end{bmatrix} = \begin{bmatrix} Q_1^{(1)}\\ Q_2^{(1)} + Q_1^{(2)}\\ Q_2^{(2)} + Q_1^{(3)}\\ Q_2^{(3)} \end{bmatrix}$$
(10)

Si incorporamos la continuidad de flujos en los nodos internos, 2 y 3, se tiene en el nodo 2:

$$Q_2^{(1)} + Q_1^{(2)} = 0 \tag{11}$$

y en el nodo 3:

$$Q_2^{(2)} + Q_1^{(3)} = 0 (12)$$

Con lo que la ecuación (10) se transforma a:

$$\begin{bmatrix} c_{11}^{(1)} & c_{12}^{(1)} & 0 & 0\\ c_{21}^{(1)} & c_{22}^{(1)} + c_{11}^{(2)} & c_{12}^{(2)} & 0\\ 0 & c_{21}^{(2)} & c_{22}^{(2)} + c_{11}^{(3)} & c_{12}^{(3)}\\ 0 & 0 & c_{21}^{(3)} & c_{22}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} h_1\\ h_2\\ h_3\\ h_4 \end{bmatrix} = \begin{bmatrix} Q_1^{(1)}\\ 0\\ 0\\ Q_2^{(3)} \end{bmatrix}$$
(13)

3.4 Paso 4. Incorporar Condiciones de Borde.

En este caso se tienen dos condiciones de borde: en el nodo 1, $Q_1 = 1$, y en el nodo 4, $h_4 = 5$. La primera condición de borde se incluye en forma simple en el vector del lado derecho:

$$\begin{bmatrix} c_{11}^{(1)} & c_{12}^{(1)} & 0 & 0\\ c_{21}^{(1)} & c_{22}^{(1)} + c_{11}^{(2)} & c_{12}^{(2)} & 0\\ 0 & c_{21}^{(2)} & c_{22}^{(2)} + c_{11}^{(3)} & c_{12}^{(3)}\\ 0 & 0 & c_{21}^{(3)} & c_{22}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} h_1\\ h_2\\ h_3\\ h_4 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0\\ Q_2^{(3)} \end{bmatrix}$$
(14)

La segunda condición de borde se inserta cambiando la cuarta ecuación del sistema matricial en (14) por la ecuación:

$$h_4 = 5$$
 (15)

la que se puede escribir como:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{cases} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \{5\}$$
(16)

De esta manera se tiene:

$$\begin{bmatrix} c_{11}^{(1)} & c_{12}^{(1)} & 0 & 0\\ c_{21}^{(1)} & c_{22}^{(1)} + c_{11}^{(2)} & c_{12}^{(2)} & 0\\ 0 & c_{21}^{(2)} & c_{22}^{(2)} + c_{11}^{(3)} & c_{12}^{(3)}\\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} h_1\\ h_2\\ h_3\\ h_4 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0\\ 5 \end{bmatrix}$$
(17)

Para preservar la simetría se puede reescribir la ecuación anterior como:

$$\begin{bmatrix} c_{11}^{(1)} & c_{12}^{(1)} & 0 & 0\\ c_{21}^{(1)} & c_{22}^{(2)} + c_{11}^{(2)} & c_{12}^{(2)} & 0\\ 0 & c_{21}^{(2)} & c_{22}^{(2)} + c_{11}^{(3)} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} h_1\\ h_2\\ h_3\\ h_4 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ -c_{12}^{(3)} \cdot h_4\\ 5 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ -c_{12}^{(3)} \cdot 5\\ 5 \end{bmatrix}$$
(18)

3.5 Paso 5. Resolver Sistema de Ecuaciones Algebraicas.

La ecuación (18) puede ser resuelta en forma directa mediante un método de solución tradicional o en forma indirecta mediante un método iterativo.

4. SOLUCIÓN DE PROBLEMAS CONTINUOS EN ESTADO ESTACIONARIO O PERMANENTE

4.1 Aspectos Generales

El procedimiento de elementos finitos descrito en el punto anterior puede ser extendido en forma simple para trabajar con problemas continuos. la extensión involucra la definición de una manera más general de formular las ecuaciones matriciales de elementos. Esto puede ser definido a través de dos métodos distintos: variacionales o residuos ponderados. Desde el punto de vista operacional la formación de las matrices elementales en base al método de residuos ponderados es más útil por lo que será analizada en este apunte.

4.2 Método de Residuos Ponderados

Consideremos un problema continuo gobernado por una ecuación diferencial del tipo:

$$L(u) - f = 0 \tag{19}$$

en una región R rodeada por un borde o frontera B. para obtener una solución aproximada para

este problema se deben seguir tres etapas o fases.

En la primera fase la función desconocida o variable de estado *u* se aproxima por una función de prueba de la forma:

$$\widetilde{u} = \sum_{I=1}^{n} N_I \cdot C_I \tag{20}$$

donde N_l son funciones de base linealmente independientes, las que se definen sobre el dominio de solución, y C_l son parámetros desconocidos que serán determinados posteriormente. Debido a que la ecuación (20) es sólo una aproximación, al substituirla en la ecuación (19) se obtendrá un valor residual, es decir:

$$\varepsilon = L(\widetilde{u}) - f = 0 \tag{21}$$

El método de los residuales ponderados busca determinar los términos desconocidos, C_l , de tal forma que el error o valor residual de la ecuación (21) sea mínimo. Esto último se consigue haciendo que la integral ponderada del error ε sobre toda la región de análisis sea nula.

En la segunda fase se identifica las *n* funciones de ponderación linealmente independientes, W_{l} , que deben cumplir lo siguiente:

$$\int_{R} W_{I} \cdot \varepsilon \, dR = \int_{R} W_{I} \cdot (L(\ddot{u}) - f) \, dR = 0 \qquad para \ todo \quad I = 1, 2, \dots, n$$
(22)

Una vez que se especifica una forma funcional para las funciones de ponderación, se emplea la ecuación (20) para representar u y se combina esta información con la ecuación (22) para obtener un conjunto de n ecuaciones simultáneas, con n valores incógnitas, C_{l} , l=1, 2, ..., n.

Finalmente, la tercera etapa consiste en resolver las ecuaciones anteriores para C_i y obtener una representación aproximada para *u* utilizando la ecuación (20). Dependiendo de la selección de la función de ponderación se reconocen tres métodos distintos:

4.2.1 Método de Colocación Puntual

En este método se especifica un conjunto de puntos x_i en el dominio de solución, Puntos de Colocación, y se seleccionan las funciones de ponderación iguales a la función de Dirac:

$$W_I = \delta(x - x_I), \qquad I = 1, 2, ..., n$$
 (23)

De este modo se tiene:

$$\int_{R} W_{I} \cdot \varepsilon \, dR = \int_{R} \delta(x - x_{I}) \cdot \varepsilon \, dR = \varepsilon(x_{I}) = 0$$
(24)

4.2.2 Método de Colocación en Subdominio

En este caso el dominio de solución se divide en subdominios, y las funciones de ponderación se eligen como:

$$W_{I} = \begin{cases} 1 & x \in R_{I} \\ & , & I = 1, 2, ..., n \\ 0 & x \notin R_{I} \end{cases}$$
(25)

donde R_l se refiere al subdominio especificado.

4.2.3 Método de Galerkin

En este caso las funciones de ponderación se eligen iguales a las funciones de interpolación, es decir: $W_I = N_I$. Con lo anterior se tiene:

$$\int_{R} N_{I} \cdot \varepsilon \, dR = 0 \tag{26a}$$

о,

$$\int_{R} N_{I} \cdot (L(u) - f) dR = 0 \qquad para \ todo \quad I = 1, 2, \dots, n$$
(26b)

De los tres métodos anteriores, el de Galerkin es el más adecuado en forma natural para trabajar con elementos finitos. Por esta razón ha sido aceptado en forma general como la metodología base para el MEF.

Para la aplicación del MEF basado en Galerkin se procede de la siguiente forma:

Paso 1

El dominio es subdividido en una serie de elementos y las funciones desconocidas son representadas sobre una subregión típica por la siguiente función de prueba o aproximada:

$$\widetilde{u} = \sum_{I=1}^{ne} N_I \cdot u_I \tag{27}$$

donde N_I son las funciones de interpolación definidas para el elemento *e*, u_I son los valores nodales desconocidos, y *ne* es el número de nodos en el elemento.

Paso 2

La integral presentada en la ecuación (26) se puede separar en una serie de subintegrales, cada una de ellas sobre el área de un elemento individual, esto es:

$$\int_{R} N_{I} \cdot \varepsilon \, dR = \sum_{e} \int_{\text{Re}} N_{I} \cdot \varepsilon \, dR \tag{28}$$

Lo anterior permite escribir la siguiente ecuación, la que describe el comportamiento en un elemento individual:

$$\int_{\text{Re}} N_I \cdot (L(\ddot{u}) - f) dR = Q_I^e \qquad \text{para todo} \quad I = 1, 2, \dots, ne$$
(29)

En este punto, la integral obtenida mediante el método de Galerkin contiene elementos de elevado orden, los cuales pueden ser reducidos utilizando el Teorema de Green (integración por partes). De esta manera se disminuye el orden de las ecuaciones, lo que permite utilizar funciones de interpolación más simples.

Paso 3

Luego de haber analizado las ecuaciones individuales (por elementos) estas se pueden combinar o ensamblar para crear la ecuación matricial global y luego incorporar las condiciones de borde.

4.3 Derivación de Funciones de Base

Los procedimientos para formular las ecuaciones de elementos finitos por métodos variacionales o métodos de residuales se basan en el supuesto que la integral sobre la región entera se puede reemplazar por la suma de integrales sobre subregiones. Para asegurar que este supuesto es válido y que nuestra solución aproximada converge a la solución correcta al refinar la malla de elementos finitos, las funciones de interpolación deben cumplir ciertas condiciones:

- (1) En la interfaces entre elementos, la función desconocida *u* y cualquiera de sus derivadas hasta un orden inferior a la más alta derivada en la integral residual ponderada debe ser continua. Esto se denomina condición de continuidad.
- (2) La función de prueba *u* y sus derivadas deben ser capaces de representar cualquier valor constante de *u* cuando el tamaño de los elementos se aproxima a cero. Esto se denomina el requerimiento de completitud.

4.3.1 Funciones Lineales

Considere un elemento típico como el mostrado en la Figura 4. Supongamos que la función de prueba se puede escribir como:

$$\hat{u} = a_1 + a_2 \cdot x \tag{30}$$

donde a_1 y a_2 son constantes. Estas constantes pueden ser evaluadas definiendo que $\hat{u}(x_1) = u_1$ y $\hat{u}(x_2) = u_2$, donde x_1 y x_2 definen los nodos del elemento. Aplicando estas dos restricciones se puede escribir el siguiente sistema de ecuaciones:

$$\begin{cases} u_1 \\ u_2 \end{cases} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \end{bmatrix} \cdot \begin{cases} a_1 \\ a_2 \end{cases}$$
(31)

Resolviendo para los términos desconocidos a_1 y a_2 obtenemos:

Figura 4 Funciones de Base Lineales

$$\begin{cases} a_1 \\ a_2 \end{cases} = \frac{1}{L} \cdot \begin{bmatrix} x_2 & -x_1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
(32)

donde $L = x_2 - x_1$. La función $\hat{u}(x)$ se puede escribir como:

$$\hat{u}(x) = \frac{1}{L} \cdot (x_2 \cdot u_1 - x_1 \cdot u_2) + \frac{1}{L} \cdot (u_2 - u_1) \cdot x$$
(33)

la que puede ser reordenada para obtener:

$$\hat{u}(x) = \frac{1}{L} \cdot (x_2 - x) \cdot u_1 + \frac{1}{L} \cdot (x - x_1) \cdot u_2$$
(34)

La comparación entre las ecuaciones (34) y (27) muestra que las funciones de base están dadas por:

$$N_{1}^{e}(x) = \frac{1}{L} \cdot (x_{2} - x)$$
(35a)

$$N_{2}^{e}(x) = \frac{1}{L} \cdot (x - x_{1})$$
(35b)

para $x_1 \leq x \leq x_2$.

en donde el superíndice e se introduce para recordar que estas funciones pertenecen al elemento e. La forma de estas funciones de base se presentan en la Figura 4b. Al considerar funciones de base entre elementos consecutivos se observa la típica forma de un "sombrero triangular", que es el nombre que recibe este tipo de función de base. En la Figura 4d se observa que al combinar estas funciones de base se consigue una aproximación lineal por partes de la función original.

4.3.2 Elementos de Lagrange

Consideremos un elemento finito compuesto por m+1 puntos nodales, tal como se muestra en la Figura 5a. La ubicación de cada punto queda definida por su coordenada x. Lo que deseamos es aproximar una función desconocida u mediante los valores nodales de esta en la forma:

$$\widetilde{u}(x) = \sum_{i=1}^{m+1} N_i(x) \cdot u_i$$
(36)

donde $N_i(x)$ son las funciones base o de aproximación, las que tiene la siguiente propiedad:

$$N_{i} = \begin{cases} 1 & en \quad x = x_{i} \\ 0 & en \quad x = x_{j}, i \neq j \end{cases}$$
(37)

Estas funciones se conocen como los polinomios de Lagrange de grado *m*. De esta forma se puede escribir:

$$N_{i}(x) = \prod_{j=1}^{m+1} \frac{x - x_{j}}{x_{i} - x_{j}}$$
(38)

Como un ejemplo podemos considerar el elemento de tres nudos que se muestra en la Figura 5b. En este caso m=2, de tal forma que N_1 , N_2 , y N_3 están dados por:

Figura 5 Elementos de Lagrange

$$N_{1}(x) = \frac{(x - x_{2}) \cdot (x - x_{3})}{(x_{1} - x_{2}) \cdot (x_{1} - x_{3})}$$
(39a)

$$N_{2}(x) = \frac{(x - x_{1}) \cdot (x - x_{3})}{(x_{2} - x_{1}) \cdot (x_{2} - x_{3})}$$
(39b)

$$N_{3}(x) = \frac{(x - x_{1}) \cdot (x - x_{2})}{(x_{3} - x_{2}) \cdot (x_{3} - x_{1})}$$
(39c)

4.4 Ejemplo

Consideremos un problema simple de flujo en una dimensión en un medio poroso uniforme de 10 unidades de longitud. La ecuación que representa este problema es la siguiente:

$$K \cdot \frac{d^2 p}{dx^2} = 0, \qquad 0 \le x \le 10 \tag{40}$$

donde el coeficiente K es igual a 1. Supongamos además que las funciones de borde son de tipo Dirichlet, dados por:

$$p = \begin{cases} 0 & en \quad x = 0 \\ 1 & en \quad x = 1 \end{cases}$$
(41)

Para este análisis subdividamos la región en *m* elementos, y procedamos con los siguientes pasos.

Paso 1

Construir la función de base o de aproximación y usar el criterio de Galerkin para formar la integral ponderada residual. La función de aproximación \tilde{p} se puede escribir en términos de las funciones de aproximación globales y de los valores nodales de p como sigue:

$$\widetilde{p} = \sum_{j=1}^{n} N_j \cdot p_j \tag{42}$$

donde N_j corresponde a la función de interpolación en el nodo j, *n* es el número de nodos de la malla de elementos finitos. Al sustituir este último término en la ecuación diferencial (40) se obtiene un residual ε , el cual se puede expresar como:

$$K \cdot \frac{d^2 \widetilde{p}}{dx^2} = \varepsilon$$
(43)

Paso 2

Aplicando el criterio de Galerkin y construyendo la integral residual de la forma:

$$\int_{x=0}^{10} N_i \cdot \varepsilon \quad dx = 0 \qquad i = 1, 2, ..., n$$
(44)

0

$$\int_{x=0}^{10} N_i \cdot K \cdot \frac{d^2 \tilde{p}}{dx^2} \quad dx = 0 \qquad i = 1, 2, ..., n$$
(45)

Al aplicar el Teorema de Green (Integración por partes) a la ecuación anterior se obtiene:

$$-\int_{0}^{10} K \cdot \frac{dN_i}{dx} \cdot \frac{d\tilde{p}}{dx} \quad dx + K \cdot \frac{d\tilde{p}}{dx} \cdot N_i \Big|_{0}^{10} = 0 \qquad i = 1, 2, ..., n$$
(46)

Debido al tipo de condición de borde, Dirichlet, que impone valores de p en los extremos de la malla (x=0 y x=10) la segunda expresión puede ser eliminada de la ecuación (46). De esta forma, para el resto de los nodos se obtiene la siguiente expresión:

$$\int_{0}^{10} K \cdot \frac{dN_i}{dx} \cdot \frac{d\widetilde{p}}{dx} \quad dx = 0 \qquad i = 2, 3, \dots, n-1$$
(47)

Al substituir la aproximación (42) en la ecuación (47) se tiene:

$$\int_{0}^{10} K \cdot \frac{dN_{i}}{dx} \cdot \sum_{j=1}^{n} \frac{dN_{j}}{dx} \cdot p_{j} \quad dx = 0 \qquad i = 2, 3, ..., n-1$$
(48)

Debido a que las funciones de aproximación satisfacen condiciones de continuidad dentro de la malla es posible escribir:

$$\int_{0}^{10} K \cdot \frac{dN_{i}}{dx} \cdot \sum_{j=1}^{n} \frac{dN_{j}}{dx} \cdot p_{j} \quad dx = \sum_{e=1}^{m} \left[\int_{x_{1}}^{x_{2}} K \cdot \frac{dN_{i}}{dx} \cdot \sum_{j=1}^{n} \frac{dN_{j}}{dx} \cdot p_{j} \quad dx \right] = 0$$

$$i = 2, 3, ..., n-1$$
(49)

donde x1 y x2 son las coordenadas de los nudos extremos del elemento e. De la ecuación (49) podemos extraer la ecuación para el elemento e, la que corresponde a:

$$\int_{x_{1}}^{x_{2}} \sum_{j=1}^{n} K \cdot \frac{dN_{i}}{dx} \cdot \frac{dN_{j}}{dx} \cdot p_{j} \quad dx = 0 \qquad i = 2, 3, ..., n-1$$
(50)

o al reordenarla se obtiene:

$$\sum_{j=1}^{n} \int_{x1}^{x2} K \cdot \frac{dN_i}{dx} \cdot \frac{dN_j}{dx} \cdot p_j \quad dx = 0 \qquad \qquad i = 2, 3, \dots, n-1$$
(51)

Cambiando de coordenadas globales a coordenadas locales se obtiene:

$$\sum_{j=1}^{2} \int_{x_1}^{x_2} K \cdot \frac{dN_i}{dx} \cdot \frac{dN_j}{dx} \cdot p_j \quad dx = 0 \qquad i = 1, 2$$
(52)

La ecuación anterior representa una fila (i) de una ecuación matricial en la que p_j es una de las incógnitas:

$$\sum_{j=1}^{2} C_{ij}^{e} \cdot p_{j}^{e} = 0$$
(53)

donde:

$$C_{ij}^{e} = \int_{x1}^{x2} K \cdot \frac{dN_{i}}{dx} \cdot \frac{dN_{j}}{dx} \cdot p_{j} dx$$
(54)

En una notación matricial, la ecuación (53) se puede escribir como:

$$\left[C\right]^{e} \cdot \left\{p\right\}^{e} = 0 \tag{55}$$

donde:

$$[C]^{e} = \int_{x^{1}}^{x^{2}} K \cdot \begin{bmatrix} \frac{dN_{1}}{dx} \cdot \frac{dN_{1}}{dx} & \frac{dN_{1}}{dx} \cdot \frac{dN_{2}}{dx} \\ \frac{dN_{2}}{dx} \cdot \frac{dN_{1}}{dx} & \frac{dN_{2}}{dx} \cdot \frac{dN_{2}}{dx} \end{bmatrix} dx$$
(56)

Si utilizamos funciones de aproximación lineales del tipo:

$$N_{1}^{e}(x) = \frac{1}{L} \cdot (x_{2} - x)$$
(57a)

$$N_{2}^{e}(x) = \frac{1}{L} \cdot (x - x_{1})$$
(57b)

tenemos que:

$$\frac{dN_1}{dx} = \frac{dN_1^e(x)}{dx} = -\frac{1}{L}$$
(58a)

$$\frac{dN_2}{dx} = \frac{dN_2^e(x)}{dx} = \frac{1}{L}$$
(58b)

Lo anterior permite escribir:

$$\begin{bmatrix} C \end{bmatrix}^e = \frac{K}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
(59)

La ecuación (59) describe las características de un elemento finito en particular. A continuación se debe realizar el ensamble de la matriz global y finalmente la incorporación de las condiciones de borde.

5. SOLUCIÓN DE PROBLEMAS TRANSIENTES

5.1 Formulación de las Ecuaciones de Elementos Finitos

La solución de estado estacionario que se presentó en el ejemplo anterior es de tipo elíptico. Cuando se considera un problema de flujo transiente las ecuaciones de estado se transforman en parabólicas, y es necesario realizar discretizaciones espaciales y temporales. la aproximación en el tiempo puede ser realizada a través de un esquema de diferencias finitas o de elementos finitos.

Consideremos el siguiente problema en una dimensión:

$$\frac{\partial}{\partial x} \left(\kappa \cdot \frac{\partial p}{\partial x} \right) = \alpha \cdot \frac{\partial p}{\partial t}, \qquad 0 \le x \le 10$$
(60)

con las siguientes condiciones iniciales y de borde:

$$p(x,0) = p_0 \tag{61a}$$

$$p(0,t) = 0 \tag{61b}$$

$$p(10,t) = 0 \tag{61c}$$

Debido a que *p* es una función que depende del espacio y el tiempo, la representaremos por medio de una función de aproximación del tipo:

$$\widetilde{p}(x,t) = \sum_{j=1}^{n} N_j(x) \cdot p_j(t)$$
(62)

Si desarrollamos los mismos pasos que para el problema estacionario o de régimen permanente la ecuación global es del tipo:

$$\sum_{j=1}^{n} \int_{0}^{10} \kappa \cdot \frac{dN_i}{dx} \cdot \frac{dN_j}{dx} \cdot p_j \, dx + \sum_{j=1}^{n} \int_{0}^{10} \alpha \cdot N_i \cdot N_j \cdot \frac{dp_j}{dt} \, dx = 0$$
(63a)

0

$$\sum_{j=1}^{n} \left(C_{ij} \cdot p_{j} + M_{ij} \cdot \frac{dp_{j}}{dt} \right) = 0 \qquad i = 2, 3, \dots, n-1$$
(63b)

donde

$$C_{ij} = \int_{0}^{10} \kappa \cdot \frac{dN_i}{dx} \cdot \frac{dN_j}{dx} dx$$
(64a)

у

$$M_{ij} = \int_{0}^{10} \alpha \cdot N_i \cdot N_j \, dx \tag{64b}$$

La ecuación (63) representa un sistema de ecuaciones diferenciales de primer orden, el que puede ser resuelto numéricamente a través de un esquema de diferencias finitas de la forma siguiente:

$$\sum_{j=1}^{n} \left(C_{ij} \cdot p_j^{k+\theta} + M_{ij} \cdot \left(\frac{dp_j}{dt}\right)^{k+\theta} \right) = 0 \qquad i = 2, 3, \dots, n-1$$
(65)

donde θ es un factor de ponderación, cuyo valor se encuentra entre 0 y 1. Si reemplazamos la derivada temporal por una diferencia del tipo:

$$\left(\frac{dp_j}{dt}\right)^{k+\theta} = \frac{p_j^{k+1} - p_j^k}{\Delta t}$$
(66)

Los valores nodales de *p* en el tiempo $k + \theta$ se pueden escribir como:

$$p_{j}^{k+\theta} = (1-\theta) \cdot p_{j}^{k} + \theta \cdot p_{j}^{k+1}$$
(67)

Sustituyendo las ecuaciones (66) y (67) en (65) se obtiene la siguiente expresión:

$$\sum_{j=1}^{n} \left(C_{ij} \cdot \left[(1-\theta) \cdot p_{j}^{k} + \theta \cdot p_{j}^{k+1} \right] + M_{ij} \cdot \frac{p_{j}^{k+1} - p_{j}^{k}}{\Delta t} \right) = 0 \qquad i = 2, 3, \dots, n-1$$
(68)

La ecuación (68) corresponde a un sistema de ecuaciones algebraicas o matriciales. dependiendo del valor de θ es posible derivar diferentes aproximaciónes.

Esquema Explícito

Este esquema se obtiene si se fija θ en 0:

$$\sum_{j=1}^{n} \left(\frac{M_{ij}}{\Delta t} \right) \cdot p_{j}^{k+1} = \sum_{j=1}^{n} \left(\frac{M_{ij}}{\Delta t} - C_{ij} \right) \cdot p_{j}^{k} \qquad i = 2, 3, \dots, n-1$$
(69)

Esquema Implícito

Este esquema se obtiene si se fija θ en 1:

$$\sum_{j=1}^{n} \left(C_{ij} + \frac{M_{ij}}{\Delta t} \right) \cdot p_{j}^{k+1} = \sum_{j=1}^{n} \left(\frac{M_{ij}}{\Delta t} \right) \cdot p_{j}^{k} \qquad i = 2, 3, \dots, n-1$$
(70)

Esquema de Crank-Nicolson

Este esquema se obtiene si se fija θ en 1/2:

$$\sum_{j=1}^{n} \left(\frac{C_{ij}}{2} + \frac{M_{ij}}{\Delta t} \right) \cdot p_{j}^{k+1} = \sum_{j=1}^{n} \left(\frac{M_{ij}}{\Delta t} - \frac{C_{ij}}{2} \right) \cdot p_{j}^{k} \qquad i = 2, 3, \dots, n-1$$
(71)

Cualquiera que sea el esquema de interpolación temporal que se utilice, la solución del problema se obtiene utilizando las condiciones iniciales y de borde.

5.2 Análisis de Estabilidad

Al resolver un problema transiente utilizando un esquema numérico es necesario asegurarse de que el problema sea computacionalmente estable. Al igual que para los enfoques de diferencias finitas es posible estudiar los cambios en el Factor de Amplificación. Para esto expresemos los esquemas anteriores en forma matricial como:

$$[A] \cdot \{p\}^{k+1} = [B] \cdot \{p\}^k$$
(72)

La ecuación anterior puede ser escrita en forma reducida como:

$$\{p\}^{k+1} = [A]^{-1} \cdot [B] \cdot \{p\}^k = [G] \cdot \{p\}^k$$
(73)

donde [G] se conoce comúnmente como la matriz de amplificación. Definamos el vector de error en el tiempo *k*, como:

$$\{E\}^{k} = \{P\}^{k} - \{p\}^{k}$$
(74)

donde $\{P\}^k$ corresponde a la solución exacta del problema en el tiempo *k*. Dado que la ecuación (73) también es satisfecha por la solución exacta, es posible mostrar que:

$$\{E\}^{k+1} = [G] \cdot \{E\}^k$$
(75)

Utilizando normas compatibles para la matriz y los vectores, así como la desigualdad de Schwartz, se obtiene:

$$\left\|E\right\|^{k+1} \le \left\|G\right\| \cdot \left\|E\right\|^k \tag{76}$$

La ecuación anterior permite identificar un criterio de estabilidad, de tal manera que los errores numéricos no crecerán de una iteración a la siguiente si se cumple que:

$$\|G\| \le 1 \tag{77}$$

De esta manera, la estabilidad de la solución numérica puede ser asegurada si la norma de la matriz de amplificación es menor que la unidad. Para una matriz simétrica, la norma más apropiada es la de tipo espectral o tipo 2:

$$\left\|G\right\|_{2} = \max_{i} \left|\lambda_{i}\right| \tag{78}$$

donde λ_i denota los valores propios de la matriz G. De esta manera, el criterio de convergencia es el siguiente:

$$\max_{i} |\lambda_i| \le 1 \tag{79}$$

Esquema Explícito

Para este esquema podemos escribir la siguiente expresión matricial:

$$[M] \cdot \{p\}^{k+1} = ([M] - \Delta t \cdot [C]) \cdot \{p\}^k$$
(80)

Lo anterior puede ser reordenado para obtener que:

$$\{p\}^{k+1} = [M]^{-1} \cdot ([M] - \Delta t \cdot [C]) \cdot \{p\}^k = [G] \cdot \{p\}^k$$
(81)

De tal manera que:

$$[G] = [M]^{-1} \cdot ([M] - \Delta t \cdot [C]) \cdot \{p\}^{k} = [I] - \Delta t \cdot [M]^{-1} \cdot [C]$$
(82)

donde [I] es la matriz identidad. La ecuación anterior puede ser escrita como:

$$[I] = [G] + \Delta t \cdot [M]^{-1} \cdot [C]$$
(83)

Utilizando la norma de una matriz en ambos costados de la ecuación (83) se tiene:

$$\|I\|_{2} \leq \|G\|_{2} + \Delta t \cdot \|M^{-1}\|_{2} \cdot \|C\|_{2}$$
(84)

0

$$\|G\|_{2} \ge \|I\|_{2} - \Delta t \cdot \|M^{-1}\|_{2} \cdot \|C\|_{2}$$
(85)

Para estabilidad se debe tener:

$$\left\|G\right\|_{2} \le 1 \tag{86}$$

El análisis de esta desigualdad muestra que es válida sólo para algunos valores de Δt , lo que hace que el esquema sea sólo condicionalmente estable.

Al realizar el mismo análisis para los esquemas Implícito y Crank-Nicolson se puede demostrar que ambos son incondicionalmente estables.

5.3 Ejemplo

Para propósitos ilustrativos consideremos el problema unidimensional con la geometría definida en la Figura 2. Consideremos que la longitud de cada elemento es Δx . Las matrices elementales para este problema son las siguientes:

$$[C]^{e} = \kappa \cdot \int_{0}^{\Delta x} \begin{bmatrix} \frac{dN_{1}}{dx} \cdot \frac{dN_{1}}{dx} & \frac{dN_{1}}{dx} \cdot \frac{dN_{2}}{dx} \\ \frac{dN_{2}}{dx} \cdot \frac{dN_{1}}{dx} & \frac{dN_{2}}{dx} \cdot \frac{dN_{2}}{dx} \end{bmatrix} dx = \frac{\kappa}{\Delta x} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
(87)

у

$$[M]^{e} = \alpha \cdot \int_{0}^{\Delta x} \begin{bmatrix} N_{1} \cdot N_{1} & N_{1} \cdot N_{2} \\ & & \\ N_{2} \cdot N_{1} & N_{2} \cdot N_{2} \end{bmatrix} dx = \frac{\alpha}{6} \cdot \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
(88)

Ensamblando los tres elementos e incorporando condiciones de borde Dirichlet en los nudos 1 y 4 ($p_1=0$ y $p_4=0$), la matriz global resultante puede ser reducida a:

$$\frac{\kappa}{\Delta x} \cdot \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} p_2 \\ p_3 \end{bmatrix} + \frac{\alpha \cdot \Delta x}{6} \cdot \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} \frac{dp_2}{dt} \\ \frac{dp_3}{dt} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(89)

desde donde:

$$[C] = \frac{\kappa}{\Delta x} \cdot \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
(90)

у

$$\begin{bmatrix} M \end{bmatrix} = \frac{\alpha \cdot \Delta x}{6} \cdot \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$$
(91)

Para obtener el criterio de estabilidad del esquema explícito, calculemos la matriz [G] desde:

$$[G] = [I] - \Delta t \cdot [M]^{-1} \cdot [C]$$
(92)

De esta manera,

$$[G] = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$$
(93)

donde

$$g_{11} = g_{22} = \frac{18 \cdot \kappa \cdot \Delta t}{5 \cdot \alpha \cdot (\Delta x)^2}$$
 $y \quad g_{12} = g_{21} = -\frac{12 \cdot \kappa \cdot \Delta t}{5 \cdot \alpha \cdot (\Delta x)^2}$

A partir de los resultados anteriores se pueden obtener los valores propios de la matriz G como:

$$\lambda_1 = \frac{6 \cdot \kappa \cdot \Delta t}{\alpha \cdot (\Delta x)^2} - 1 \tag{94}$$

у

$$\lambda_2 = \frac{6 \cdot \kappa \cdot \Delta t}{5 \cdot \alpha \cdot (\Delta x)^2} - 1 \tag{95}$$

Estos últimos resultados nos permiten escribir:

$$\max_{i} |\lambda_{i}| = |\lambda_{1}| \le 1$$
(96)

lo que nos lleva a la siguiente condición de estabilidad:

$$-1 \le \frac{6 \cdot \kappa \cdot \Delta t}{\alpha \cdot (\Delta x)^2} - 1 \le 1$$
(97)

о

$$\Delta t \le \frac{\alpha \cdot (\Delta x)^2}{3 \cdot \kappa} \tag{98}$$

REFERENCIAS

Anderson, Tannehil and Pletcher (1984). "Computational Fluid Mechanics and Heat Transfer". Hemisphere Publishing Corporation.

Huyakorn, P. And G. Pinder (1983). "Computational Methods in Subsurface Flow". Academic Press.

Lapidus, G. and G. Pinder (1982). "Numerical Solution of Partial Differential Equations in Science and Engineering". Wiley Interscience.

Remson, I., G. Hornberger, and F. Molz (1971). "Numerical Methods in Subsurface Hydrology". Wiley Interscience.

Valocchi, A. (1994). "Modeling of Groundwater Flow and Solute Transport". Lecture Notes. University of Illinois at Urbana-Champaign.