Se tiene una industria la cual realiza una descarga con las características que se expresan en la tabla siguiente.

Tabla I. Características de la descarga

Caudal q	[l/s]	300
W	[mg/s]	30000
ΔW	[mg/s]	9000
k	[1/s]	3,47E-06

La descarga se hace a un río, del cual se tienen los registros de los caudales de los meses críticos (menor caudal) de los últimos treinta años. A partir de estos registros y mediante el método de Weibull, se calculan las probabilidades de excedencia de los caudales. Con las probabilidades de excedencia de los caudales y la expresión (I), se obtienen las probabilidades de excedencia de la concentración.

Tabla II. Probabilidades de excedencia

Caudal [l/s]	Pexc. Caudal	Pexc. Conc.
3190	0,040	0,960
3110	0,080	0,920
2870	0,120	0,880
2750	0,160	0,840
2710	0,200	0,800
2500	0,240	0,760
2480	0,280	0,720
2460	0,320	0,680
2440	0,360	0,640
2280	0,400	0,600
2260	0,440	0,560
2140	0,480	0,520
2110	0,520	0,480
1970	0,560	0,440
1880	0,600	0,400
1860	0,640	0,360
1820	0,680	0,320
1680	0,720	0,280
1560	0,760	0,240
1400	0,800	0,200
1390	0,840	0,160
1350	0,880	0,120
1140	0,920	0,080
780	0,960	0,040

Se estudia la construcción de un embalse a la salida de la descarga, con el fin de mejorar la calidad del agua que va a ser descargada al río. Para esto, se calcula la concentración resultante en el río para distintos volúmenes de embalse, y para caudales asociados a las probabilidades de excedencia 40%, 60% y 80%.

La concentración a la salida del embalse se calcula mediante la siguiente expresión.

$$Ceq = W / (q + k*V)$$
 (II)

Para obtener la concentración final en el río se hace un balance de masa en el punto justo después de la descarga. La concentración final queda determinada por la siguiente expresión.

$$Cf = (q*Ceq) / (q + Qrio)$$
 (III)

A partir de las expresiones y tablas anteriores, se obtienen los siguientes valores y gráficos para las concentraciones finales en el río.

Tabla III. Caudales Probabilidad excedencia 40%, 60% y 80%

Pexc. caudal	Caudal	
[%]	[l/s]	
40	2280	
60	1880	
80	1400	

Tabla IV. Concentración final río

Volumen [I]	Ceq [mg/l]		Cf [mg/l]	
Volumen [i]	Ceq [mg/i]	Pexc. Caudal 40%	Pexc. Caudal 60%	Pexc. Caudal 80%
1000	100,00	11,63	13,76	17,65
10000	99,99	11,63	13,76	17,65
100000	99,88	11,61	13,75	17,63
1000000	98,86	11,49	13,60	17,45
10000000	89,63	10,42	12,33	15,82
10000000	46,35	5,39	6,38	8,18
100000000	7,95	0,92	1,09	1,40
10000000000	0,86	0,10	0,12	0,15

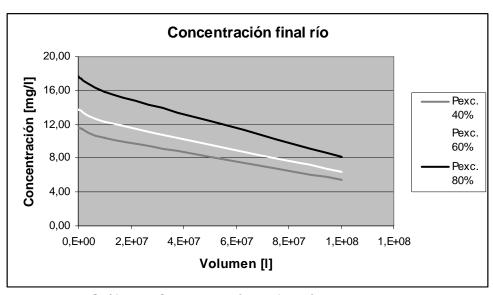


Gráfico 1. Concentración en función del volumen

A continuación, se muestra un gráfico con el volumen requerido versus la seguridad del sistema, entendiendo seguridad como el porcentaje de los años en los cuales la concentración no supera el límite máximo establecido. En este caso el límite máximo establecido es 10 [mg/l].

La seguridad corresponde a la probabilidad de no excedencia de la concentración, lo que a su vez corresponde a la probabilidad de excedencia del caudal. Entonces, para calcular el volumen del embalse asociado a la seguridad, basta con utilizar las fórmulas (II) y (III) para caudal asociado a cada seguridad.

Tabla V. Seguridad y volumen

Caudal [l/s]	Pexc. Conc.	Seguridad	Ceq [mg/l]	Volumen [I]	Volumen [m3]
3190	0,96	0,04	116,33	No es necesario embalse para lograr la seguridad establecida	
3110	0,92	0,08	113,67		
2870	0,88	0,12	105,67		
2750	0,84	0,16	101,67		
2710	0,8	0,2	100,33		
2500	0,76	0,24	93,33	6171428,57	6171,43
2480	0,72	0,28	92,67	6837410,07	6837,41
2460	0,68	0,32	92,00	7513043,48	7513,04
2440	0,64	0,36	91,33	8198540,15	8198,54
2280	0,6	0,4	86,00	14065116,28	14065,12
2260	0,56	0,44	85,33	14850000,00	14850,00
2140	0,52	0,48	81,33	19829508,20	19829,51
2110	0,48	0,52	80,33	21151867,22	21151,87
1970	0,44	0,56	75,67	27785022,03	27785,02
1880	0,4	0,6	72,67	32499082,57	32499,08
1860	0,36	0,64	72,00	33600000,00	33600,00
1820	0,32	0,68	70,67	35864150,94	35864,15
1680	0,28	0,72	66,00	44509090,91	44509,09
1560	0,24	0,76	62,00	52954838,71	52954,84
1400	0,2	0,8	56,67	66070588,24	66070,59
1390	0,16	0,84	56,33	66972781,07	66972,78
1350	0,12	0,88	55,00	70690909,09	70690,91
1140	0,08	0,92	48,00	93600000,00	93600,00
780	0,04	0,96	36,00	153600000,00	153600,00

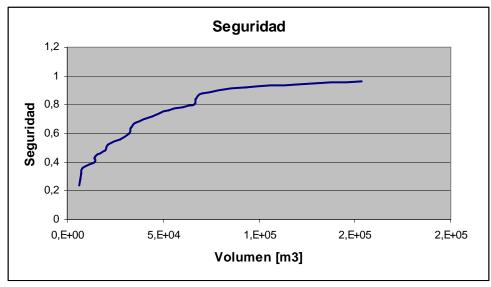


Gráfico 2. Seguridad

La autoridad sanitaria establece un 80% de seguridad, a partir de la tabla V se puede obtener el volumen necesario del embalse para obtener esta seguridad.

Tabla VI. Volumen necesario

Seguridad	Volumen [m3]
80%	66071

Como la concentración de la descarga es sinusoidal, la calidad del río tendrá fluctuaciones. Estas fluctuaciones dependeran de cómo varie la concentración Ceq. Para determinar la amplitud de las oscilaciones de Ceq, se tiene la siguiente expresión.

$$Amplitud = \frac{\Delta W/V}{\sqrt{(\frac{1}{\theta} + k)^2 + W^2}}$$
 (IV)

Teniendo la concentración máxima y mínima del efluente del embalse, mediante la expresión (III) se obtiene la concentración máxima y mínima en el embalse.

Tabla VI. Concentración máxima y mínima en el río

Amplitud	[mg/l]	1,862
Ceq	[mg/l]	56,67
Ceqmax	[mg/l]	58,53
Ceqmin	[mg/l]	54,80
Cmax	[mg/l]	10,33
Cmin	[mg/l]	9,67