

Resistencia al corte (cont.)

Estabilidad de taludes: cuando la superficie del suelo esta inclinada, la fuerza de gravedad produce esfuerzos de corte geostáticos. Si estos esfuerzos exceden la resistencia al corte, se produce un deslizamiento.

12

Resistencia al corte (cont.)

Muros de contención: el peso del suelo retenido por un muro de contención produce esfuerzos de corte en ese suelo. La resistencia al corte del suelo toma parte de los esfuerzos y el muro resiste el resto. Por lo tanto la carga que tome el muro depende de la resistencia al corte del suelo retenido.

Figure 1.1a: The Vajont dam during impounding of the reservoir. In the middle distance, in the centre of the picture, is Mount Toc with the unstable slope visible as a white scar on the mountain side above the waterline.

14

foreground, was largely undamaged.

Figure 1.1c: The town of Longarone, located downstream of the Vajont dam, before the Mount Toc failure in October 1963.

Comportamiento drenado y no drenado

26

• Si el agua puede entrar o salir del suelo, las partículas se reacomodan generando un cambio de volumen y por lo tanto de densidad. No se genera cambio en la presión de poros.

$$\Delta \mathbf{V} \neq \mathbf{0} \implies \Delta \mathbf{u} = \mathbf{0}$$

• Si el cambio de volumen no es posible, la presión de poros cambia, generando un cambio en el esfuerzo efectivo.

$$\Delta \mathbf{V} = \mathbf{0} \implies \Delta \mathbf{u} \neq \mathbf{0}$$

- En el laboratorio se puede llevar el suelo a la falla en condiciones totalmente drenadas o no-drenadas.
- En terreno, debido a su gran permeabilidad, suelos granulares por lo general fallan en condiciones drenadas, excepto arenas muy sueltas que pueden licuarse. Suelos cohesivos por lo general tienden a fallar en condiciones no drenadas.

Definición de falla

- En suelos con comportamiento dúctil, la resistencia aumenta con la deformación al corte, alcanzando una meseta, valor que se considera como resistencia al corte.
- En suelos con comportamiento frágil, éste presenta una resistencia máxima (máximo punto de la curva) y una resistencia residual (o resistencia última) que ocurre a mayores deformaciones de corte.
- Cualquiera de los dos valores puede ser usado para el diseño, dependiendo del tipo de problema a resolver.
- Para un determinado tipo de suelo no existe una única curva esfuerzo-deformación, ya que ésta depende de factores como esfuerzo de confinamiento, tasa de deformación, etc.

Criterio de falla Mohr-Coulomb

Análisis en términos de esfuerzos totales

- El análisis basado en esfuerzos efectivos es posible solamente si podemos estimar o medir los esfuerzos efectivos en terreno. Esto puede ser complicado cuando hay excesos de presión de poros, ya sea por efectos de la consolidación o por comportamiento no drenado durante la carga.
- Debido a estas complicaciones es necesario a veces evaluar la resistencia basada en esfuerzos totales, utilizando los parámetros $c_T y \phi_T$. La ecuación de la resistencia al corte es por lo tanto:

$$\boldsymbol{t}_{\mathrm{f}} = \boldsymbol{c}_{\mathrm{T}} + \boldsymbol{s} \tan \boldsymbol{f}_{\mathrm{T}}$$

- Este método asume que el exceso de presión de poros desarrollado en laboratorio es el mismo que se desarrollará en el terreno.
- Pero se debe recordar que la resistencia al corte depende de los esfuerzos efectivos.

Clasificación	Angulos de fricción							
	Angulo de talud natural		Para la resistencia residual		Para la resistencia máxima			
					Compacidad media		Compocta	
	A(*)	Talud (vert. a hor.)	(dev(°)	tg Øcr	¢(°)	Izφ	\$ ^(*)	vg ø
Limo (no plástico)	26	1:2	26	0,488	28	0.532	30	0.577
	3	- 1. m (1. 1	8		а		a	
Arras welfamme fam	30	1:1.75	30	0.577	32	0.625	34	0.675
a media	20	4.4	20	0.465	30	0.577	32	0.075
	30	1.1.75	30	0.577	34	0.675	36	0.726
Arena bien gra-	30	1:1.75	30	0.577	34	0.675	38	0.839
duada	8	1. 1	2	0.011	3	4.47.5		0.000
	34	1: 1.50	34	0.675	40	0.839	46	1.030
Arena y grava	32	1:1.60	32	0.625	36	0.726	40	0.900
					а		а	
	36	1:1.40	36	0.726	42	0.900	48	1.110

Ensayos para estimar la resistencia al corte en 34 laboratorio (los más utilizados)

- Ensayo de corte directo
- Ensayo de compresión no confinada
- Ensayo de corte simple
- Ensayo Triaxial
- Cada uno de estos ensayos es adecuado para estudiar el comportamiento esfuerzo-deformación bajo un tipo de carga específico.
- La mayoría de este tipo de ensayos son realizados en dos etapas.

Etapas en los ensayos para determinar la ₃₆ resistencia al corte (cont.)

2^{da} etapa

- Esta etapa representa un proceso natural o de construcción que somete el suelo a cambios de esfuerzo de corte.
- Los ensayos se pueden realizar a esfuerzo controlado o deformación controlada.
- Si a la muestra se le permite el cambio de volumen, el ensayo es llamado drenado (la velocidad del ensayo debe ser tal que no se generen cambio de presión de poros).
- Si a la muestra no se le permite cambio de volumen, el ensayo es llamado no-drenado y se generan cambios de presión de poros.
- Un ensayo drenado tiene que ser precedido por una etapa de consolidación.

Ensayo de corte directo (cont.)

39

- Se puede realizar a suelos granulares y cohesivos.
- Se puede realizar a esfuerzo o deformación controlada.

Ventajas

- Simple y rápido, especialmente con arenas.
- Arcillas se pueden orientar para medir la resistencia al corte en un plano débil.

Desventajas

- Cambio en el área de la superficie de deslizamiento.
- Plano de falla es forzado.
- Las direcciones principales no se conocen y no es fácil determinar los esfuerzos principales.

Ensayo de compresión no confinada ⁴⁶ • Se suelen hacer 2 ensayos, uno con una muestra natural y otro con una muestra remoldeada (con la misma densidad y contenido de humedad) de manera de conocer la sensitividad *s* del material. $s = \frac{s_u (natural)}{s_u (remoldeada)}$

 $s \le 3$ baja sensitividad $3 < s \le 6$ medias > 6alta

Respuesta no drenada en materiales no cohesivos

84

Inicio de falla de flujo

- En la figura, tres muestras fueron sometidas a cargas mayores que su resistencia residual.
- La línea roja corresponde a donde se inicia la falla de flujo.
- La falla de flujo no puede ocurrir si los esfuerzo de corte son menores a la resistencia residual.

