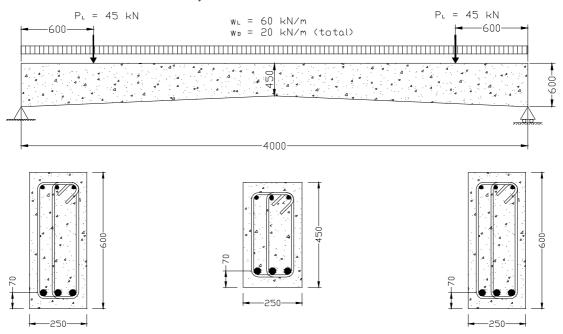

CI 42B HORMIGÓN ESTRUCTURAL

TAREA N° 3 (Entrega: al comienzo del control 2)

Prof. Leonardo Massone Sem. Primavera 2008

P1 (20 pts).

- (a) Diseñe el refuerzo requerido, para el sistema de vigas T de la figura. Las vigas se encuentran apoyadas en vanos de 9 m (están separadas 10 m), y deberán soportar una carga muerta de 20 kN/m (incluye peso propio) y una carga viva de 70 kN/m. Considere f'c = 20 MPa, fy = 420 MPa, y que el momento máximo positivo es M = 0.0772 w L² (12 pts).
- (b) Para la viga de la parte (a), determine la capacidad a flexión de la viga T si está armada a tracción con 12φ36. ¿Cuál sería la capacidad de la viga si no se considera la contribución de la losa? (8 pts).



P2 (20 pts).

Considere una viga de sección rectangular de altura h(x), donde h(x) varía linealmente con la distancia del centro al apoyo, simplemente apoyada y con la distribución de cargas de la figura. Para la mejorar la capacidad al corte se ha dispuesto de estribos $\phi 10$ en tres ramas. Usar ecuación simplificada para V_c .

- (a) Determine la curvas $V_u(x)$ de la solicitación mayorada para el corte y $\phi V_c(x)$ de la capacidad al corte en un mismo gráfico. (3 pts)
- (b) Determinar la curva de separación de estribos para la viga. Incluir limitaciones (ej.: separación máxima, etc.) (12 pts)
- (c) Si se desea diseñar la viga con sólo dos espaciamientos distintos en todo su largo. Indique los espaciamientos y la ubicación de los estribos con estos espaciamientos. Haga un esquema de la viga con los estribos. (5 pts)

Considere $f'_c = 25$ MPa, $f_v = 420$ MPa.

P3 (20 pts).

Para la viga rectangular simplemente apoyada de 20 m de luz de la figura, determinar:

- (a) La capacidad resistente a flexión para cada punto de ésta. Representarlo gráficamente (10 pts.).
- (b) La carga mayorada uniformemente repartida máxima que se puede colocar sobre la viga para producir una falla por flexión. Sólo considere la capacidad última reducida (ϕM_n) que puede desarrollarse a lo largo de la viga (4 pts.).
- (c) La carga mayorada uniformemente repartida máxima que se puede colocar sobre la viga para producir una falla por corte. Solo considere el criterio de diseño $(\phi V_n \ge V_u)$ en la zona crítica (3 pts.).
- (d) Si se desea sólo reducir la cantidad de armadura de 5φ25 a 4φ25, determine la posición de la viga donde se puede cortar una barra para una solicitación mayorada (carga distribuida) de 8.5 kN/m, cumpliendo con los requisitos establecidos en el ACI 318 (3 pts.).

Dimensiones: h = 600 mm, b = 350 mm.

Estribos de dos ramas \$\phi10@180mm\$, con recubrimiento de hormig\u00e9n de 40mm.

Materiales: $f'_c = 25$ MPa, $f_y = 420$ MPa.

Nota: El esquema presentado sólo muestra la mitad de la viga.