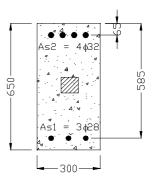


CI 42B HORMIGÓN ESTRUCTURAL TAREA N°2 (Entrega: 25/septiembre)

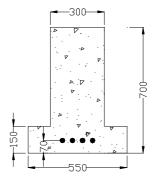

Prof. Leonardo Massone Sem. Primavera 2008


P1 (30 pts).

Considere una viga doblemente empotrada que tiene una luz de 11 m. La sección tiene una perforación al centro de la viga de 100x100mm. Determine:

- (a) La capacidad a flexión de la viga (positiva y negativa) considerando **ambas** armaduras **(15 pts)**.
- (b) La capacidad a flexión de la viga (positiva y negativa) considerando **sólo** la armadura traccionada **(10 pts)**.
- (c) La carga mayorada máxima posible para (a) y (b). Compare y discuta (5 pts).

$$A_{s2} = 4\phi 32$$
 (superior)
 $A_{s1} = 3\phi 28$ (inferior)
 $f'_{c} = 30$ MPa
 $f_{v} = 420$ MPa


P2 (30 pts).

Considere una viga simplemente apoyada que tiene una luz de 9 m y una carga viva de servicio uniforme $w_l = 27$ kN/m (la carga muerta debe considerarse a partir del peso propio de la viga). Diseñe la viga, indicando dimensiones y distribución de armadura de refuerzo, para resistir el momento mayorado. Considere los siguientes criterios para el diseño:

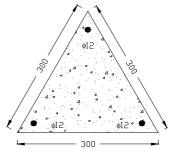
- (a) Asuma que d = 2b y ρ = 0.5 ρ _b (viga rectangular).**(10 pts)**
- (b) Asuma que h = 700 mm y $\epsilon_{s,max}$ = 0.005 (viga rectangular) (10 pts)
- (c) Asuma la geometría de la figura (10 pts)

Considere,

$$f'_{c} = 25 \text{ MPa}$$

 $f_{v} = 420 \text{ MPa}$

Notar que los criterios indicados permiten hacer un prediseño, sin embargo, el diseño final puede ser levemente diferente.



P3 (20 pts).

Calcule la resistencia a flexión (M_n) de la sección triangular de lado 300 mm. Determine si fluye o no el acero a tracción y compresión. Considere que cada vértice tiene una barra de 12 mm y del vértice al centro de la barra hay una distancia de 50 mm. Resuelva el problema para los dos casos siguientes:

- (a) La fibra extrema de compresión es un vértice del triángulo y el plano de flexión es normal a la base.
- (b) La fibra extrema en compresión es una base del triángulo y el plano de flexión es normal a la base.

f'c = 25 MPa fy = 420 MPa

