Tutorial WMS 7.1 para determinar CURVA TIEMPO AREA

Además se explica como delimitar la cuenca hasta una cierta elevación

- 1) Iniciar WMS.
- 2) Posicionarse en el modulo Terrain Data Module.
- 3) Ir al menu File/Open
- 4) Abrir el archivo 19849729.hdr.
- 5) Acotar la Importación del DEM entre las latitudes -34°45' (-34.75) y -35° 25' (-35.4166667) y entre las longitudes -71°30' (-71.5) y -70° 15' (-70.25) (ver Figura Nº 1)

Importing NED GRIDFLOAT File	X
Files 19849729.HDR	Elevation units: Meters Feet Thinning factor: 1 Lat/Lon to UTM Calculator
Add Delete	Smooth DEM on Import Smooth Options
DEM coverage	
Northern boundary -34.75	Enclose All DEM(s)
Western boundary	Eastern boundary -70.25
Southern boundary -35.416	
Approximate total points 1200800 Approximate	e clipped points 1200800
Help	OK Cancel

Figura Nº 1: Delimitación Área de Importación del DEM

A la siguiente pregunta de cambio de coordenadas contestar "Si"

Coordinate Conversion	
Convert From Coordinate System	Convert To Project Coordinate System
Horizontal Horizontal System: Geographic Ellipsoid: South American 1969	Horizontal Horizontal System: UTM Ellipsoid: South American 1969
Units: Meters	Units: Meters UTM Zone: 19 72W to 66W Hemisphere: Southern
Vertical Vertical System: Local Units: Meters	Vertical Vertical System: Local Units: Meters
Local Origin	Local Origin
Help	OK Cancel

En la Coordinate Conversión, seleccionar los siguientes Ítems:

Luego seleccionar O.K.

Ahora en el Menú principal se debiese ver la siguiente imagen:

Luego ir a DEM --> TRIM --> ELEVATION y escribir la Elevación deseada para cortar la cuenca. En este ejemplo se considerará que la línea de nieves está ubicada a los 1500 metros.

(Caso de cuenca nivopluvial en donde se quiera considerar sólo el aporte pluvial)

DEM Trim by Ele	vation	
Maximum DEM ce	ell elevation to ke	ep
1500		
	OK	Cancel

Ahora en el Menú principal se debiese ver la siguiente imagen:

PROCESO DE DELIMITACIÓN DE CUENCA

- 1. Marcar el módulo Drainage 🦉
- 2. Seleccionar DEM/Compute TOPAZ Flor Data
- 3. Seleccionar OK
- 4. Aparecerá el menú "Units", en él cual se deben seleccionar los siguientes Ítems:

Units	
Model units Current Coordinates Horizontal units: Meters Vertical units: Meters	Parameter units Basin Areas Square kilometers Distances Meters Drain Data Display Opts
Help	OK Cancel

- 5. Seleccionar OK y esperar mientras corre el TOPAZ
- 6. Cuando aparezca "NORMAL PROGRAM TERMINATION" presionar Close
- 7. Elegir Create Oulet Point tool •
- 8. Marcar donde se quiere tener el punto de salida
- 9. Select DEM/DEM \rightarrow Stream Arcs y seleccionar las siguientes opciones:

Stream Feature Arc Options	
✓ Display stream feature arc creation	ОК
Use feature points to create streams	Cancel
10 Threshold value	Help

10. OK

- 11. Seleccionar DEM/Define Basins
- 12. Seleccionar DEM/Basins → Polygons

En el menú principal se debiese ver la siguiente imagen:

Luego seleccionar DEM/Compute Basins Data...

PROCESO DE DETERMINACIÓN DE CURVA TIEMPO AREA

Ir a Hydrologic Modeling Module 📩

Seleccionar el ícono **I** y realizar doble click en este mismo ícono desplegado en la cuenca, tal como se indica a continuación:

Al realizar el doble click se abrirá el menú Edit HEC-1 Parameters.

im WMS 7.1 - [untitle	ed.wpr]	
🐜 File Edit Display	Tree HEC-1 Models Calculators Hydrographs Window Help	- 8 ×
🗅 🚅 🗑 🎒 🛛	Edit HEC-1 Parameters	. XY Units: Meters
:+ 🖉 🕊 🔯	< Previous Hydrograph Station>	Data
** >> ●> ₩ ·:> ≪ ;;; ₹	Basin HEC-1 Cards KK,BA,BF Basin Data KK,RL,RD,RK,RM,RT,RS Routing Data	:M :M (Trimmed) ata
t्यू रू छ ⊕ ् ॐ ≣ © >	KM_KD Output Control KM_KD Output Control PB,PG,PH,PI,PC,PM Precipitation SV,SA,SE,SQ,SL,SS,ST Reservoir Data	verages Drainage
	LU,LE,LG,LH,LS Loss Method RC,RX,RY Channel Data UC,US,UA,UD,UK Unit Hydrograph Method Diversion HEC-1 Cards	bgic Tree Data logic Modeling Tree 1age Coverage T
	MA,MC,MS,MD,MW Snow Melt Data DT,DI,DQ,DR Diversion Data KM K0 Output Control	d Data yers
	HEC-1 File Output - select to edit	atter Data
	KK 125 K0 0 0.0 022 EA404.97 L3 0.0 0.0 0.0 UD 0.0	
	Display Job Control Cards Copy to Clipboard Done	

Seleccionar Unit Hydrograph Method \rightarrow Clark

Ir a BASIN GEOMETRICAL ATTRIBUTES y seleccionar RECOMPUTE BASIN DATA

HEC-1 Unit Hydrograph Methods					
Clark (UC) TC: 0.000 (hr) R: 0.000	(hr)	C Kiner	matic wave (U) st Kinematic re	<) cord	nits XY Units: Meters
Define Time Area	Basin G	eometria	: Attributes	;	×
Compute Tic and R - Maricopa County	Variab Carriad	le Names	Value	Unite	Description
C Snuder (US)	A	<u>түүмэ</u> А	404.978	sa.	Basin area (mi^2 or km^2).
TP: 3.831 (hr) CP: 0.000	Lo	AOFD	1928.000	m.	Average overland flow length.
Define Time Area	S, So	BS	0.358	m/m	Basin (overland) slope.
C SCS dimensionless (UD)	L	MFD	51990.075	m.	Basin length along main channel from outlet to upstream boundary.
TLAG : 3.831 (hr)		MFDS	0.019	m/m	Basin slope along main channel from outlet to upstream boundary.
	Lca	CSD	18061.000	m.	Length along main channel from outlet to point opposite centroid.
G Given unit hydrograph (UI)	Sca	CSS	0.011	m.	Slope along main channel from outlet to point opposite centroid.
Define Unit Graph	Lc	MSL	43689.000	m.	Maximum flow (watercourse) length.
Maricopa County S-Graph	Sc	MSS	0.017	m/m	Maximum flow (watercourse) average slope.
Basin Geometrical Attributes	CN	CN	0.000		Current curve number (CN) (defined in Losses Dialog).
Compute Time Area Curve(s)	I	RTIMP	0.0	%	Current percent impervious area (defined in Losses Dialog).
Help	He	lp	Recompute	Basin D	Data Restore Original Values OK Cancel

Luego seleccionar Compute Time Area Curve (s)

HEC-1 Unit Hydrograph Methods	
Clark (UC) TC : 0.000 (hr) R : 0.000 (hr) Define Time Area Compute Tc and R - Maricopa County	Kinematic wave (UK) First Kinematic record L : 0.000 (ft) S : 0.000 (ft/ft) N : 0.000 A : 0.000
Snyder (US) TP : 0.000 (hr) CP : 0.000 Define Time Area SCS dimensionless (UD) TLAG : 0.000 (hr)	Define Loss ✓ Second kinematic record L: 0.000 (ft) S: 0.000 N: 0.000 A: 0.000 Define Loss
C Given unit hydrograph (UI) Define Unit Graph Maricopa County S-Graph	C RK C RD Define Channels
Basin Geometrical Attributes Compute Time Area Curve(s)	Compute Parameters - Basin Data Compute Parameters - Map Data
Help	OK Cancel

Especificar los incrementos de tiempo deseados, en este caso 25.

Para visualizar la curva encienda el botón Define Time Area

	Time (min)	Area (mi^2)	
1	0.0	0.0	
2	1.0	2.15857755561	

A pesar que dice arriba ² ^{1.0} ^{2.15857755561...} que el tiempo está en minutos, esto NO ES ASÍ, el tiempo está en INCREMENTOS DEL TIEMPO DE CONCENTRACIÓN. Estos incrementos (en este caso 25) son definidos por el usuario, los cuales sólo dividen en más partes la MISMA curva.

Si se desea ver el tiempo de concentración se debe presionar Compute Parameters - Basin Data.

IMPORTANTE:

Se recomienda hacer el cálculo en forma inicial

Guardar el proyecto.

Reabrirlo y recalcular con Compute Basins Data los parámetros de la cuenca.

Luego ir de nuevo al Hydrologic Modeling Module **XUEVAMENTE** LA CURVA TIEMPO ÁREA, **puesto que a veces el programa entrega en primera instancia resultados que no son coherentes.** Como por ejemplo curvas de este estilo:

