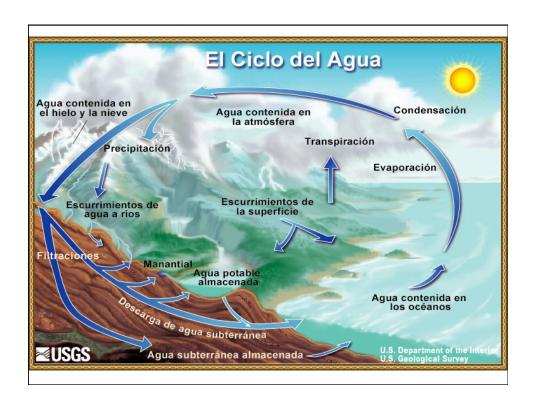
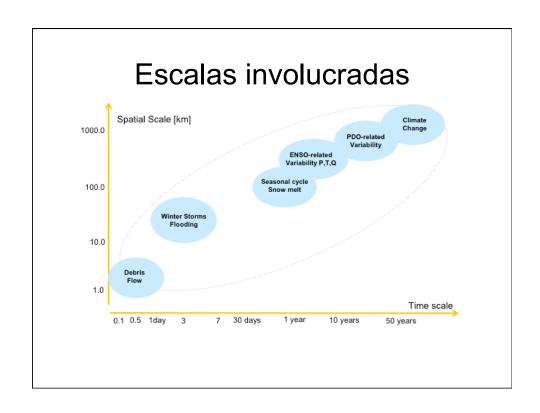

Escorrentía



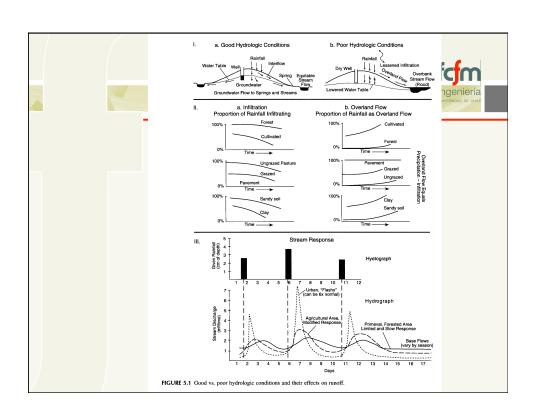

 Aquella parte de la precipitación que eventualmente se manifiesta como flujo en cauces –ríos y esteros- permanentes o intermitentes

Definiciones

- Flujo superficial: Lámina de agua que escurre superficialmente antes de incorporarse a un cauce
- Flujo subsuperficial o intermedio: flujo en los primeros horizontes de suelo, no alcanza a incorporarse al flujo subterráneo; distribución geológica es factor importante
- Flujo subterráneo: proviene de percolación profunda; desfase temporal significativo
- Escorrentía total: escorrentía directa + flujo base

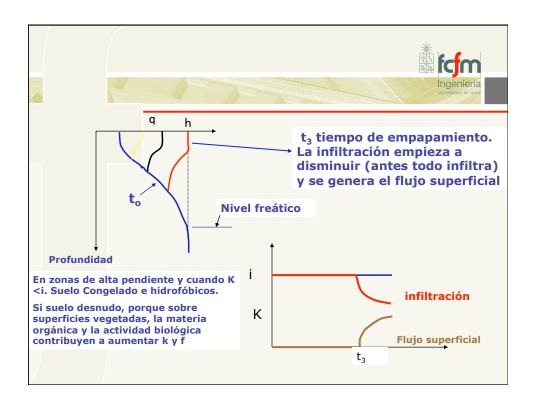
f. Superficial + f. Intermedio rápido + precip.sobre cauces

f. Subterráneo + f. Intermedio lento

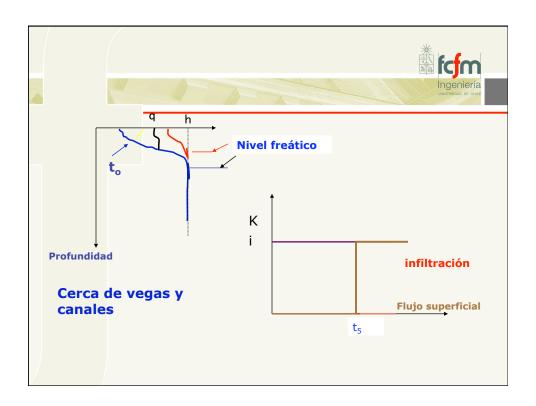

Definiciones

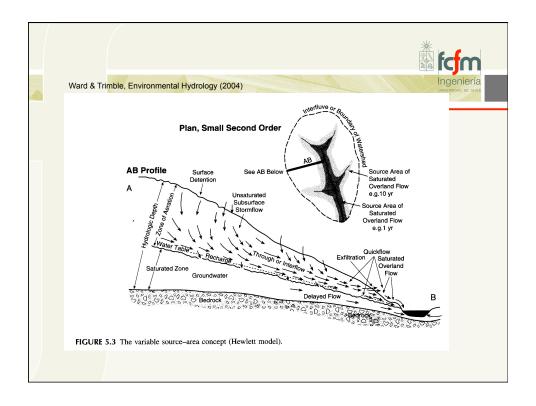
- Precipitación en exceso: contribuye directamente a la escorrentía superficial
 - ✓P_{exceso} = P_{total} Abstracción inicial Evaporación – Infiltración
- Precipitación efectiva: contribuye a la escorrentía directa

- En condiciones extremas, la escorrentía puede causar daños significativos
 - Erosión de suelos y riberas
 - Transporte de nutrientes y contaminantes
 - Impactos sobre infraestructura


Inundaciones y depósitos de sedimento en zonas habitadas

Mecanismos de generación de escorrentía


 Modelo Hortoniano: potencial para generación de flujo superficial existe cuando la tasa de aplicación de agua excede la capacidad de infiltración del suelo

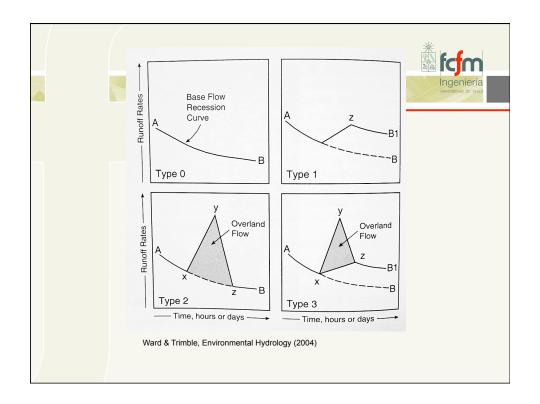


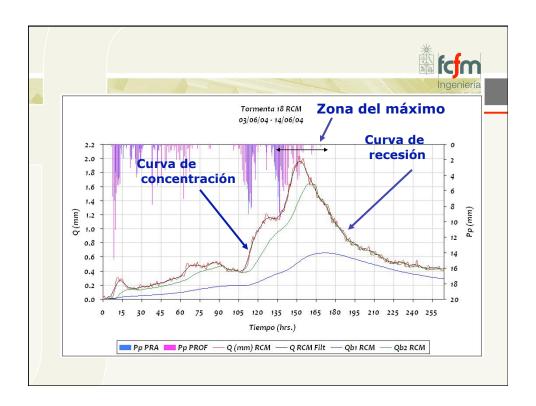
Mecanismos de generación de escorrentía

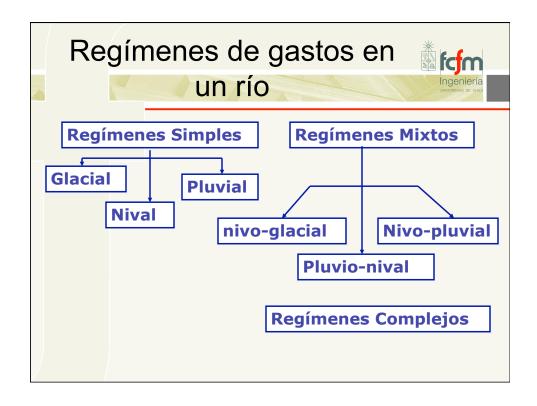
 Modelo Hewlett: surge a partir de la observación de que los cauces presentan directa sin escorrentía que necesariamente se observe flujo superficial

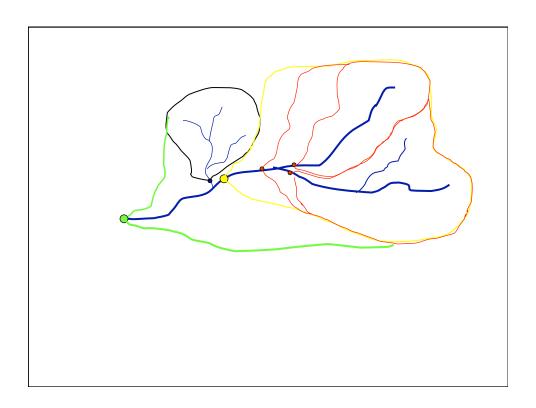
Factores que afectan la fefm generación de escorrentía

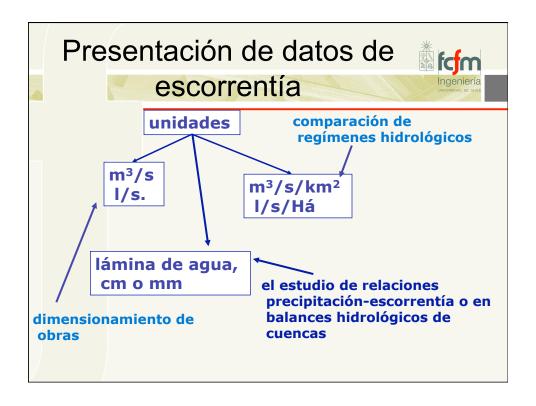
- Factores climáticos
 - Precipitación: forma (líquida, sólida), tipo (frontal, ciclónica, convectiva), intensidad, duración, distribución temporal y espacial
 - Evaporación: temperatura, humedad, vientos, presión atmosférica
 - Transpiración: temperatura, radiación solar, vientos, humedad aire y suelo, tipos de vegetación

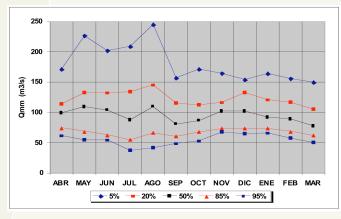



- Factores fisiográficos
 - Geométricos cuenca: tamaño, forma, red de drenaje
 - Físicos cuenca: uso del suelo, tipos de suelo, condiciones de infiltración, geología, topografía
 - Cauces: tamaño y forma secciones transversales, pendiente, rugosidad, longitud de tributarios, remansos y torrentes


Características de la escorrentía: el hidrograma




- Hidrograma es una representación gráfica de la interacción de numerosos mecanismos altamente complejos, que determinan la respuesta de una cuenca frente a un evento de precipitación
- Esquemáticamente, la forma en que un curso de agua puede responder a la precipitación son las siguientes:


Presentación de datos de lescorrentía

- Caudales medios mensuales
- Caudales anuales o módulos (promedio ponderado caudales mensuales)
- Caudales medios diarios
- Caudales máximos y mínimos: anuales y mensuales
- Caudales acumulados (volúmenes)

Caudales medios mensuales

- · Tablas o gráficos cronológicos
- · Curvas de variación estacional

Curvas de gastos clasificados o CURVAS DE DURACIÓN

- Son distribuciones de frecuencia acumuladas que indican el porcentaje de tiempo durante el cual los caudales han sido igualados o excedidos
 - Gastos medios diarios
 - Gastos medios mensuales
 - Gastos medios semanales
 - ... en general cualquier período de tiempo

Curvas de duración

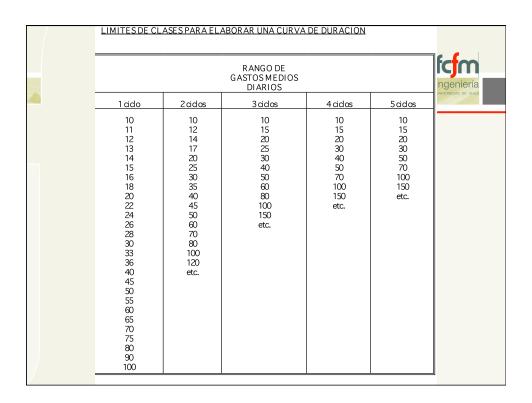
- Seguridad de abastecimiento de agua en un intervalo de tiempo
- Frecuencia de interrupciones de servicio de obras de infraestructura por efecto de caudales altos
- Capacidad de dilución de ríos o esteros

Curvas de duración

- Método del año calendario
 - Ordenar caudales de acuerdo a su magnitud (orden decreciente)
 - Calcular porcentaje de tiempo durante el cual cada valor fue igualado o excedido (probabilidad de excedencia)

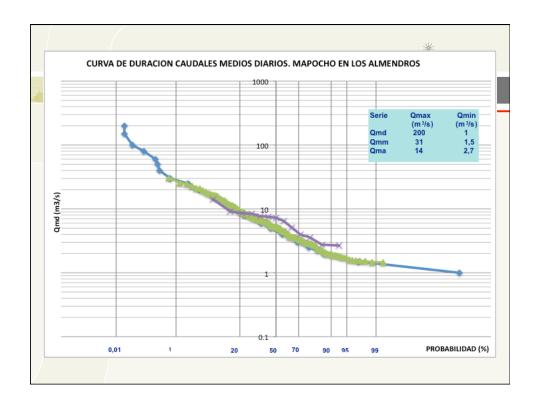
$$p_{exc} = \frac{n_{orden}}{N_{total} + 1}$$

Curvas de duración

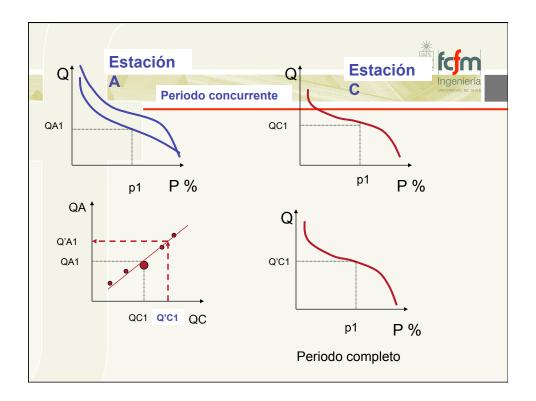


- Método del período total
 - Agrupar caudales en clases de acuerdo a su magnitud
 - Acumular totales para cada año y calcular probabilidad de excedencia

Q ₀ (m ³ /s)	Año 1	Año 2	Año 3	Año 4	Total	Total Días con Q=Q ₀	P _{exc} %
<10		2			2	1460	100,0
[10-15)	4	3			7	1458	99,9
[15-20)	3	2		4	9	1451	99,4
[20-30)	1	3	4	3	11	1442	98,8
[30-50)	7	1	5	2	15	1431	98,0

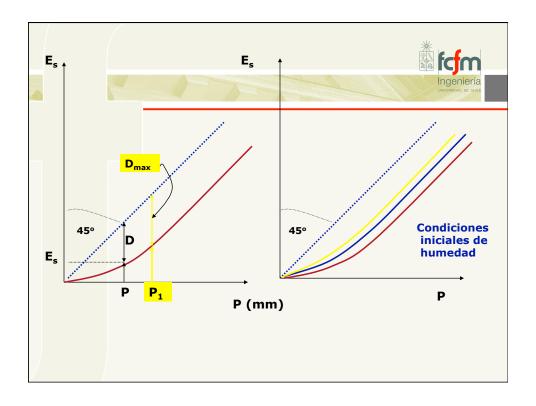


- Todos los años con registros completos se pueden utilizar para preparar curvas de duración a pesar de que esos años no sean consecutivos
- Los años con registros incompletos deben ser excluidos
- los años que se utilicen deben corresponder a condiciones similares en la cuenca en lo que se refiere a almacenamiento artificial, extracciones o cualquier otra influencia humana


 El método del año calendario da valores menores para los caudales altos y valores mayores para los caudales bajos que el método del período total.

Extensión de período Ingeniería

• Obtención de curvas de duración representativas de períodos largos a partir de períodos cortos

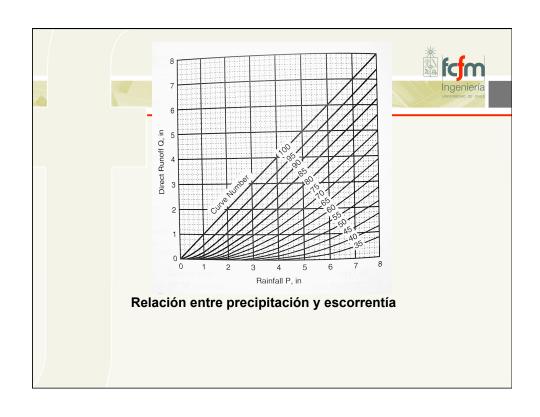

Estimación de caudales de escorrentía

Déficit de escorrentía

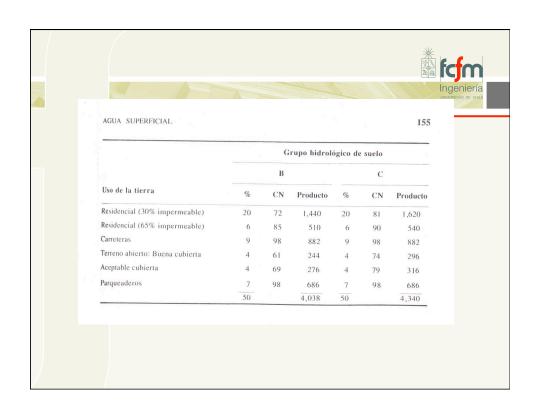
$$E_s = P - D$$

 D representa diversas formas de retención del agua en la cuenca

Método Curva Número

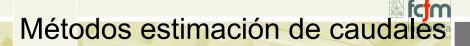

- Soil Conservation Service
- Pérdidas por infiltración se combinan con almacenamiento superficial

$$Q = \frac{(P - I_a)^2}{(P - I_a + S)}$$


$$S = \frac{1000}{CN} - 10$$

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

bana y urbana (condiciones antecedentes de humedad Descripción del uso de la tierra		Grupo hidrológico del suelo			
	A	В	С	D	
Tierra cultivada ¹ : sin tratamientos de conservación con tratamientos de conservación	72 62	81 71	88 78	91 81	
Pastizales: condiciones pobres condiciones óptimas	68 39	79 61	86 74	89 80	
Vegas de ríos: condiciones óptimas		58	71	78	
Bosques: troncos delgados, cubierta pobre, sin hierbas, cubierta buena ²	45 25	66 55	77 70	83 77	
Áreas abiertas, césped, parques, campos de golf, cementerios, etc. óptimas condiciones: cubierta de pasto en el 75% o más condiciones aceptables: cubierta de pasto en el 50 al 75%	39 49	61 69	74 79	80 84	
Áreas comerciales de negocios (85% impermeables)	89	92	94	95	
Distritos industriales (72% impermeables)	81	88	91	93	
Residencial ³ : Tamaño promedio del lote Porcentaje promedio impermeable ⁴					
1/8 acre o menos 65	77	85	90	92	
1/4 acre 38	61	75	83	87	
1/3 acre 30	57	72	81	86	
1/2 acre 25	54	70	80	8.5	
1 acre 20	51	68	79	84	
Parqueaderos pavimentados, techos, accesos, etc.5	98	98	98	98	
Calles y carreteras:					
Pavimentados con cunetas y alcantarillados ⁵	98	98	98	98	
grava	76	8.5	89	91	
tierra	72	82	87	89	



CLASE A: Suelos con alta capacidad de infiltración. Arenas, gravas y loess profundos.

CLASE B: Suelos con capacidad de infiltración moderada. Loess poco profundos, marga arenosa

CLASE C: Suelos con capacidad de infiltración bajas. Marga arcillosa, marga arenosa poco profunda, suelos de bajo contenido orgánico y suelos generalmente con alto contenido de arcilla.

CLASE D: Suelos con muy baja capacidad de infiltración o en los que el nivel freático está cerca de la superficie. Suelos que aumentan de volumen cuando están mojados, arcillas plásticas pesadas y algunos suelos salinos.

- Relaciones precipitación-escorrentía
 - Empíricas: Grunsky, Peñuelas, Coutagne, Turc
 - Generales
- Modelos de simulación hidrológica

Fórmulas empíricas: Escorrentía total anual

Grunsky (EEUU principios s.XX)

$$E_s = 0.4P^2$$
 (m); $P > 1.25$ (m)

- Si P>1.25 m, todo escurre
- $D_{max} = 625 \text{ mm}$

Fórmulas empíricas: Escorrentía total anual

Peñuelas (Chile años 30)

$$E_s = 0.5P^2$$
 (m); $P > 1.0$ (m)

- Si P>1.0 m, todo escurre
- $D_{max} = 500 \text{ mm}$

Fórmulas empíricas: Escorrentía total anual

Coutagne (Francia)

$$D = P - \lambda P^{2}$$

$$E_{s} = P - D = \lambda P^{2}$$

$$\lambda = \frac{1}{(0.8 + 0.14T)}$$
Temperatura media anual en °C
$$\frac{1}{8\lambda} < P < \frac{1}{2\lambda}$$

$$P < 1/8\lambda$$

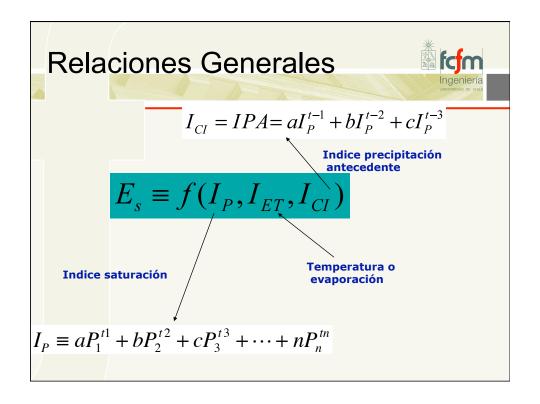
$$P > 1/2\lambda$$

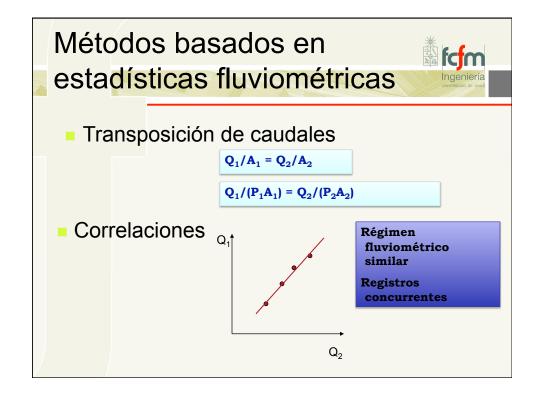
$$D = 0.2 + 0.035 \text{ T}$$

Fórmulas empíricas: Escorrentía total anual

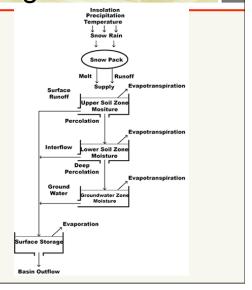
Turc

$$D = \frac{P}{\sqrt{0.9 + (P/L)^2}}$$
 (mm)


$$L = 300 + 25T + 0.05T^3$$


$$E_s = P - D$$

Relaciones generales


- Volumen de escorrentía depende de:
 - Precipitación
 - Evapotranspiración
 - Condiciones iniciales de humedad
 - etc.

Modelos de simulación hidrológica

- Modelo conceptual
- Representación matemática
- Calibración
- Validación
- Análisis de sensibilidad

Resumen

- Infiltración
 - Clave para mantener un buen estado hidrológico
 - Combinación de fuerzas de atracción eléctricas y gravitacional
 - Difícil de modelar
 - · Incertidumbre respecto a procesos
 - Incertidumbre debido a variabilidad de características del suelo
 - Métodos de estimación han mejorado por avance en capacidad computacional

Diploma de Postítulo: Hidrogeología Aplicada a la Minería y Medio Ambiente

Resumen

Escorrentía

- Factores climatológicos, geomorfológicos y biológicos
- Precipitación es el mayor forzante
- Influencia escala espacial y temporal en valores
- Mecanismo de generación no completamente explicado
- Hidrogramas fuente de información valiosa respecto a la hidrologia de una cuenca

Diploma de Postítulo: Hidrogeología Aplicada a la Minería y Medio Ambiente