CI32B: ANALISIS DE ESTRUCTURAS ISOSTATICAS

Profesores Lenart González Ricardo Herrera

| Programa CI32B

- **REQUISITOS**: FI21A, MA22A
- <u>OBJETIVOS</u>: Capacitar al alumno en el análisis de estructuras isostáticas planas y tridimensionales formadas por materiales de comportamiento elástico-lineal.
- CONTENIDO
 - 1. Introducción
 - 1. Sistema estructural
 - a) Definición
 - $b) \quad Tipos\ de\ estructuras:\ estructuras\ uniaxiales,\ laminares,\ macizas$
 - 2. Análisis estructural
 - a) Modelación: elementos básicos y acciones básicas
 - b) Principios básicos: equilibrio, compatibilidad
 - c) Relaciones constitutivas: sistemas lineales y no lineales
 - d) Relación análisis-diseño: estados límites de servicio estados límtes últimos

Programa CI32B

- 2. Sistema de fuerzas
 - 1. Clasificación de los sistemas de fuerzas
 - a) Sistema de fuerzas coplanares
 - b) Composición de estados de fuerzas
 - 2. Diagrama de cuerpo libre
 - 3. Fuerzas internas
 - a) Clasificación de los estados de esfuerzos
 - b) Esfuerzos en elemento uniaxial
 - c) Diagramas de esfuerzos
 - d) Convenciones de signo
 - 4. Ecuaciones de equilibrio
 - 5. Principio de los trabajos virtuales

Programa CI32B

- 3. Acciones en las estructuras
 - 1. Descripción de las acciones básicas
 - a) Peso propio
 - b) Sobrecarga
 - c) Sismo, viento
 - d) Empuje, nieve, temperatura
 - 2. Clasificación de las acciones
 - 3. Modelación de las acciones básicas: Normas NCh
- 4. Estaticidad
 - 1. Clasificación de los tipos de apoyo
 - 2. Clasificación de los vínculos entre elementos
 - 3. Condiciones de estaticidad en una estructura
 - 4. Grado de indeterminación estática y geométrica

Programa CI32B

- 5. Análisis de sistemas uniaxiales
 - 1. Cálculos de reacciones y esfuerzos internos
 - a) Enrejados
 - Caracterización
 - Métodos de análisis: secciones y nudos
 - b) Cables
 - Caracterización
 - Análisis de cables con cargas puntuales y distribuidas
 - c) Vigas y Pórticos
 - Caracterización: vigas simples y compuestas; pórticos (marcos)
 - Métodos de análisis: ecuaciones de equilibrio y trabajos virtuales
 - d) Arcos
 - Caracterización: líneas de presión

Programa CI32B

- 6. Líneas de influencia
 - 1. Concepto general
 - 2. Cargas móviles; trenes de carga
 - 3. Líneas de influencia de reacciones y esfuerzos internos: enrejados, vigas y pórticos

Bibliografía

- Au, Tung "Elementary structural mechanics", Prentice Hall, New Jersey, 1963.
- Norris, Charles y Wilbur "Elementary structural analysis", McGraw-Hill, New York, 1960.
- Timoshenko y Young "Teoría de las estructuras", Acme agency, Buenos Aires, 1951.
- Popov, E. "Introducción a la mecánica de sólidos", Limusa, México, 1980.
- Belluzzi, O "Ciencias de la construcción", Aguilar, Madrid, 1967.
- McCormak J., Elling R. "Análisis de estructuras", Alfaomega, México, 1996.

Calendario de actividades

Semana		Período		Lu 14:00-16:00	Ma 8:30-10:00	Mi	Ju 8:30-10:00	Vi	Observaciones	Materia
1	28	Julio-Agosto	1		Clase 1		Clase 2		Inicio de clases 29/07	Introducción
2	4		9		Clase 3		Clase 4			Sistema de fuerzas
3	11		15	Clase aux.	Clase 5		Clase 6		Tarea #1	Acciones en estructuras
4	18		22	Clase aux.	Clase 7		Clase 8			Estaticidad
5	25		29	Ejercicio 1	Clase 9		Clase 10		Tarea #2	Cables
6	1	Septiembre	5	Clase aux.	Clase 11		Clase 12			Enrejados
7	8		12	Ejercicio 2	Clase 13		Clase 14		Tarea #3	"
	15		19	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXX	Vacaciones	xxxx
8	22		26	Clase aux.	Clase 15		Clase 16			Enrejados-Vigas
	29	SeptOctubre	3	-	Clase 17		Clase 18		Tarea #4	Vigas
9	6		10	C#1	Clase 19		Clase 20			Pórticos
10	13		17	Ejercicio 3	Clase 21		Clase 22		Tarea #5	"
11	20		24	Clase aux.	Clase 23		Clase 24			Arcos
12	27		31	Ejercicio 4	Clase 25		Clase 26		Tarea #6	Ejemplos combinados
13	3	Noviembre	7	Clase aux.	Clase 27		Clase 28			Trabajos virtuales
14	10		14	C#2	Clase 29		Clase 30			Líneas de influencia
15	17		21	Clase aux.	Clase 31		Clase 32		Última semana clases	
	24		28			1			Exámenes	
	1	Diciembre	5			1			Exámenes	
	8		9						Exámenes	

6 Tareas 4 Ejercicios = Control # 3 2 Controles

EVALUACIÓN:

NF = 0.6*NC + 0.4*Tareas Tareas = 4.0 (tareas son reprobatorias)

Capítulo 1: Introducción

Diseño Estructural:

 Proceso <u>creativo</u> basado en conocimiento de los principios de estática, dinámica, mecánica de sólidos y análisis estructural.
 Producto es una estructura segura y económica que cumple su propósito.

Criterios de diseño

- Costo mínimo.
- Peso mínimo.
- Tiempo de construcción mínimo.
- Mano de obra requerida mínima.
- Mínimo costo de fabricación de productos.
- Máxima eficiencia de operación.

Etapas de un diseño estructural

- Planificación.
- 2. Estructuración preliminar.
- 3. Definición de solicitaciones a considerar.
- 4. Selección preliminar de elementos.
- 5. Análisis.
- 6. Evaluación.
- 7. Rediseño.
- 8. Decisión final.

Análisis estructural

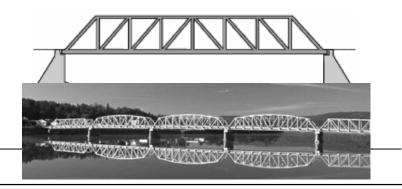
Herramienta usada durante el proceso de diseño para determinar esfuerzos y deformaciones de una estructura sometida a ciertas acciones

Estructura

Conjunto o sistema de elementos que transmiten las acciones desde el punto de aplicación de estas hasta los apoyos.

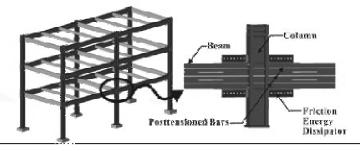
Se habla entonces de sistemas estructurales y elementos estructurales.

Elementos Estructurales

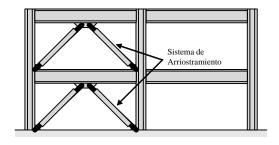

- Unidimensionales: una dimensión es mucho mayor que las otras
 - Elementos que resisten tracción (cables, elementos esbeltos)
 - Elementos que resisten compresión (arcos, puntales, suelo, aisladores no apernados)
 - Elementos que resisten tracción y compresión (bielas)
 - Elementos que resisten flexión y corte (vigas)
 - Elementos que resisten esfuerzo axial, flexión y corte (viga-columnas)

Elementos Estructurales

- Bidimensionales: dos dimensiones predominantes sobre la otra
 - Elementos que resisten acciones en el plano (muros)
 - Elementos que resisten acciones perpendiculares al plano (losas)
 - Elementos que resisten presiones (cáscaras, membranas)
- Tridimensionales: tres dimensiones igualmente importantes
 - Cuerpos sólidos (represa curva)


Sistemas Estructurales

 Enrejados: formados exclusivamente por bielas, sólo resisten acciones aplicadas en los nudos, pueden ser planos o espaciales


Sistemas Estructurales

 Marcos rígidos: formados por vigas y columnas, resisten acciones en los nudos y en los elementos, pueden ser planos o tridimensionales.

Sistemas Estructurales

 Sistemas mixtos: formados por enrejados, marcos rígidos, cables y/o arcos trabajando en conjunto

Acciones sobre estructuras

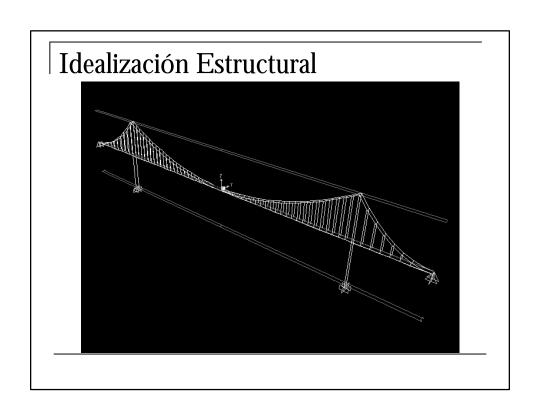
- Fuerzas
- Presiones
- Desplazamientos
- Cambios de temperatura

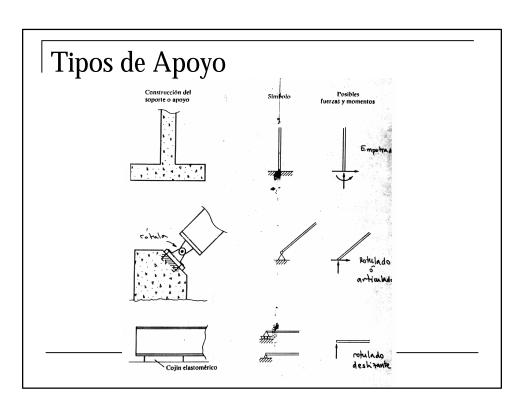
Principios del análisis estructural

- Equilibrio estático: la estructura no experimenta movimientos de cuerpo rígido sometida a acciones, ni puede desplazarse sin la aplicación de fuerzas externas.
- Compatibilidad: la deformación de la estructura bajo acciones externas debe ser "posible".

Hipótesis Básicas

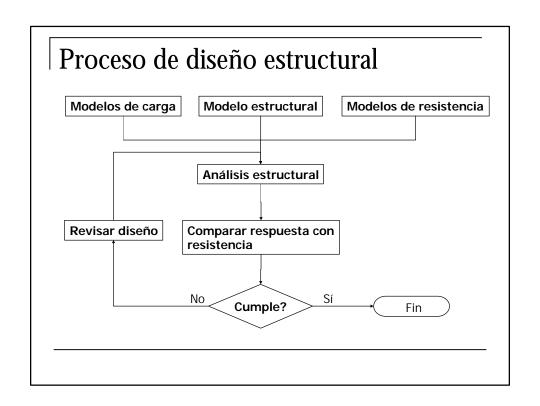
- 1. El material es homogéneo, isótropo, elástico y lineal, es decir, las deformaciones son proporcionales a las acciones aplicadas.
- Las deformaciones son pequeñas, el equilibrio puede plantearse en la configuración no deformada sin incurrir en grandes errores


Hipótesis Básicas


1 y 2 implican que las estructuras consideradas tienen comportamiento Elástico y Lineal.

Entonces, es aplicable el principio de superposición: el efecto de varias acciones simultáneas sobre una estructura es equivalente a la suma de los efectos de cada una por separado

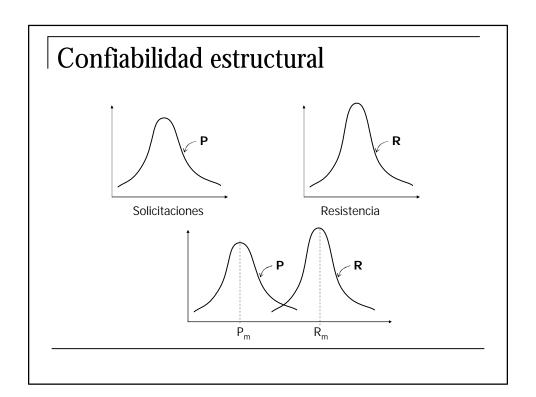
Idealización Estructural

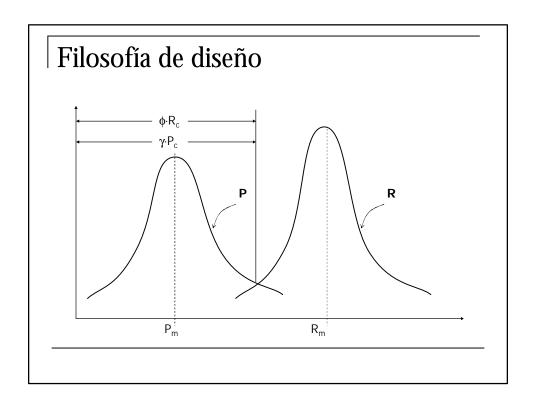


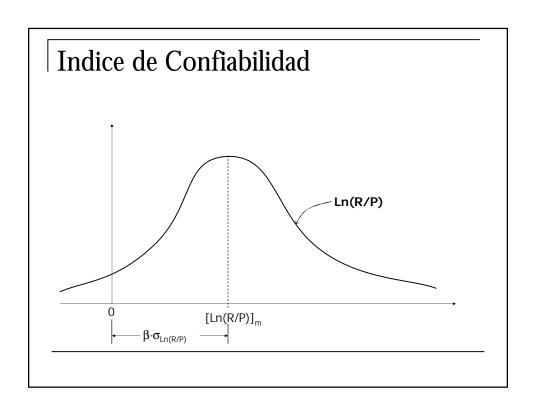
Capítulo 1: Introducción

Fundamentos del Diseño Estructural

Incertezas


- Variabilidad de las solicitaciones
 - □ Cambio de uso
 - Estimación poco conservadora de las solicitaciones
 - Mala estimación de los efectos de las solicitaciones debido a simplificaciones excesivas durante análisis
 - □ Diferencias en el proceso constructivo


Incertezas


- Variabilidad de la resistencia
 - Variabilidad de dimensiones
 - Variabilidad de la resistencia del material
 - □ Defectos en el proceso constructivo
 - □ Deterioro de resistencia con el tiempo
 - Aproximación en fórmula para determinar la resistencia

Entonces?

Diseño estructural debe proveer confiabilidad adecuada para el caso de solicitaciones mayores que las consideradas o baja (o muy alta) resistencia

Filosofías de diseño vigentes

- Diseño por tensiones admisibles (tensiones de trabajo)
- Diseño por estados límite
 - □ Resistencia última.
 - □ Diseño plástico.
 - □ Factores de carga.
 - □ Diseño límite.
 - □ Factores de carga y resistencia.

Método de tensiones admisibles

 Asume la misma variabilidad para todas las cargas

$$\frac{\mathbf{f}R_n}{\mathbf{g}} \ge \sum P_n$$

$$\frac{R_n}{FS} \ge P$$

Método de Diseño por factores de carga y resistencia (LRFD)

Basado en:

- Un modelo probabilístico
- Calibración con ASD
- Evaluación de experiencias previas

$$\mathbf{f}R_n \geq \sum \mathbf{g}_i P_i$$