
Interpretation of Object-Oriented Languages

Éric Tanter
PLEIAD Laboratory

Computer Science Dept (DCC)

University of Chile

etanter@dcc.uchile.cl

Éric Tanter

Object-oriented programming

object = piece of state + behavior (coherent whole)

! local state: fields

! methods: behavior that has access to fields

- calling a method <=> message passing

in higher-order procedural languages with state (Scheme)

! a closure is an object

! fields: free variables

! method: only one! apply!

2

Éric Tanter

Classes

Reuse of methods across several pieces of state (*)

! class = structure that specifies fields and methods of a bunch of objects

! object = instance of a class

Sharing of implementation / specialization

! inheritance (“A inherits from B”, “A extends B”)

! incremental modification of existing class

- add or change behavior

- add state

3

(*) Prototypes have a different/more general way

of addressing this reuse/extension issue

Éric Tanter

Dynamic Dispatch

4

(class in-node extends object

 (field left)

 (field right)

 (method init (l r)

 (begin (set! left l)

 (set! right r)))

 (method sum ()

 (+ (send left sum ())

 (send right sum ())))

(class leaf extends object

 (field value)

 (method init (v) (set! value v))

 (method sum () value))

(let ((o1 (new in-node

 ((new in-node

 ((new leaf (3))

 (new leaf (4))))

 (new leaf (5))))))

 (send o1 sum ()))

Éric Tanter

Methods are Mutually Recursive

5

(class odd-even extends object

 (method even (n)

 (if (= 0 n)

 #t

 (send self odd (- n 1))))

 (method odd (n)

 (if (= 0 n)

 #f

 (send self even (- n 1)))))

(let ((o (new odd-even ())))

 (send o odd (13)))

Éric Tanter

Inheritance

Incremental modification of existing classes

! parent, superclass

! child, subclass: c2 < c1

Single vs. multiple inheritance

Subclass polymorphism

! instances of c2 < c1 can be used anywhere instance of c1 can.

Redefinitions

! fields: shadowing (lexical scoping)

! methods: overriding

6

Éric Tanter

Terminology: Host class

Host class of a method

! class in which a method is declared

Host class of an expression

! host class of the method (if any) in which the expression occurs

Superclass of a method or expression

! parent class of the host class

For a given “operation”, potentially many methods / host classes.

7

Éric Tanter

Self and Super

Self call

! look for method in the class of self

! self is a dynamically-scoped variable (passed as implicit parameter)

! this is dynamic method dispatch

Super call

! super.n(...), (super n ...)

! super call of n in body of method m invokes a method n of the parent of

m’s host class

! (can be) != parent of the class of self

! this is static method dispatch

8

Éric Tanter

CLASSES: A simple Class-Based OO Language

9

PROGRAM

<prog> ::= <class-decl>* <expr>

DECLARATIONS

<class-decl> ::= (class <id> extends <id>

 <field-decl>* <method-decl>*)

<field-decl> ::= (field <id>)

<method-decl> ::= (method <id> (<id>*) <expr>)

NEW EXPRESSIONS

<expr> ::= (new <id> (<id>*))

<expr> ::= (send <expr> <id> (<expr>*))

<expr> ::= (super <id> (<expr>*))

<expr> ::= self

ExpVal = Int + Bool + Proc + Listof(ExpVal) + Obj

DenVal = Ref(ExpVal)

Éric Tanter

Interpretation Phases

1. Elaboration of classes

! all class declarations are processed

! initialize a global class environment (name -> cls)

2. Interpretation of expressions

! start with the ‘startup expression’ (eg. Main.main())

! manage environment, environment-passing style

! deal with new kinds of expressions

10

Éric Tanter

Self/Super

Expression evaluated as part of a method operating on some object

Self must be bound in the environment

! pseudo-variable %self

! bound lexically, but different properties

Must also “remember” the superclass of the host class

! pseudo-variable %super

11

Éric Tanter

New Expressions

12

Éric Tanter

Self

self

! just lookup %self in the environment

13

Éric Tanter

Method Call

(send obj n arg...)

! evaluate arguments and object expressions

! look in object to get class name

! get the class

! look up the method (find-method: cname mname -> method)

! apply method

14

Éric Tanter

Super Call

(super n arg...)

! same as method call except for method lookup

! get super class of current host class: %super in environment

15

Éric Tanter

Object Creation

(new c arg...)

! evaluate arguments

! using class name n, create new empty object

! call initialize method on new object (ignore result)

! return new initialized object

16

Éric Tanter

Representing Objects, Methods, and Classes

17

Éric Tanter

Objects

Data structure

! class name

! list of (references to) fields

Creating a new object

! get field list from class

! create new list of fields with refs to illegal values

18

Éric Tanter

Methods

Like a normal procedure, except that

! it does not have a saved environment

! keeps track of

- the names of the fields it “sees”

- the name of its superclass

Applying a method

! run body in environment where:

- formal parameters bound to arguments (by-copy semantics)

- %self bound to current object

- %super bound to method’s superclass

- visible field names bound to fields of the current object

19

Éric Tanter

Looking up Fields

Field shadowing

! a method “sees” the most recently defined fields *at its level*

! keep position constant if field not redefined

! field list built from left to right

- in c1: (x y) [0 1 2 3]

- in c2: (x y y) [0 1 2 3]

- in c3: (x y y z) [0 1 2 3]

! lookup should use last position!

- dedicated lookup, or

- shadow field names: in c3: (x y%1 y z)

20

Éric Tanter

Classes

Get information for a class from its name

! class environment: define new class, lookup class

! classes are static, top-level entities (globally visible)

Data structure for classes

! superclass name (#f if object)

! field names

! method environment

Class elaboration phase

! start with empty class environment

! initialize with class object

! for each declaration, add a new binding in class environment

21

