Reflection and Open Implementations

Eric Tanter

DCC, University of Chile
Avenida Blanco Encalada 2120
Santiago, Chile
etanter@dcc.uchile.cl

Abstract. We review the state-of-the-art of reflection and metapro-
gramming, prior to our work on partial behavioral reflection and Reflex,
and open implementations. The first four sections are dedicated to reflec-
tion. Section 1 introduces the concept of reflection and its application to
programming languages. Section 2 discusses reflection in the particular
context of object-oriented programming languages. Then, since we are in-
terested in addressing issues in the concrete applicability of reflection, we
dedicate Section 3 to the structuring and engineering of metalevel archi-
tectures, while implementation considerations are dealt with in Section 4.
After this comprehensive review of reflection, the last section discusses
the related area of open implementations (Section 5).

1 Reflection in Programming Languages

This section introduces the concept of reflection and its application to program-
ming languages. What reflection actually means is pretty well embodied in the
following explanation of the word reflect:

“One meaning of the word reflect is to consider some subject matter.
Another is to turn back something (e.g. light or sound). Punning on
these two meanings, we get the notion of turning one’s consideration or
considering one’s own activities as a subject matter.” [82]

This section is structured as follows. Section 1.1 gives a brief historical in-
troduction to the difference between programs and data and concludes with the
appealing idea of conceiving programs as data for other programs !. Then, the
notions of metaprogramming and reflection are defined (Section 1.2). Section 1.3
exposes the seminal experiments in reflection in programming languages, based
on the idea of reflective towers. Finally, Section 1.4 discusses characteristics of
reflective languages as well as some of these languages.

1 Credits for this historical introduction to the distinction between programs and data
go to Julien Vayssiere [111].

1.1 Programs and Data

When considering an automatic information processing system, the distinction
between programs and data naturally appears. Data represent the information
to process, while programs represent the processing to apply to such data.

This distinction existed well before modern computers: indeed, in the 1830’s,
scientist Charles Babbage had conceived a calculating engine whose internals
could be adapted to a particular processing [11]. This machine, called the Dif-
ference Engine No.2, was made of a store where data was kept and a mill which
was in charge of processing the data. In this architecture, no confusion was possi-
ble between data and programs since a program was not stored in the same place
than data, but rather represented by the internals of the calculating engine.

More than one century later, in 1958, the American mathematician John von
Neumann first described the architecture of numeric computers and introduced
the idea to store program instructions in memory, that very same memory in
which data is kept. The possibilities offered by the manipulation of a program as
data to another program fascinated him, as mentioned in his book The Computer
and the Brain [112].

Interestingly, the idea to represent programs as data possibly processed by
other programs also appeared in theoretical computer science. For instance, in
Church lambda calculus [4], both programs and data are represented by higher-
order functions. Similarly, a special kind of Turing machines [109], called the
universal Turing machine [110], is indeed able of processing any other Turing
machine.

Therefore, both experimental and theoretical approaches to computer science
meet to consider that representing programs as data that can be manipulated
by another program is a legitimate idea that is worthwhile studying.

1.2 Metaprogramming and Reflection

Considering that a program can act upon another program leads to the intro-
duction of a number of concepts, defined by Pattie Maes in [62], and illustrated
in Fig. 1:

Computational system

A system that acts and reasons about a domain.

Steyaert makes clear the difference between a program and a computational sys-
tem [91]: a program is a textual description, while a computational system is
a running program. A program describes a computational system. To act and
reason about its domain, a computational system (or program) holds a represen-
tation of its domain (Fig. 1(a)). In order to be indeed useful, this representation
should be effective in the sense that it is both always up-to-date with respect
to the domain, and capable of triggering changes in the domain. This two-way
connection is known as the causal connection:

Causal connection
Property that ensures that changes in the domain are reflected
in the computational system, and vice-versa.

With these two definitions, it is possible to define a metasystem (Fig. 1(b)):

Metasystem

A computational system whose domain is another computational
system.

The domain of a metasystem, a computational system, is called its base system.
An evaluator is a particular metasystem that turns a program into a computa-
tional system (i.e. by running it). The program of the evaluator, or any other
metasystem, is a metaprogram.

Reflection then appears when considering a metasystem whose domain is
itself (Fig. 1(c)):

Reflective system
A metasystem causally connected to itself.

4Ty £ AT
H _— H
computational metasystem computational
system system
(a) (b)
;77 \‘
1
~ SR —* acts and reasons about
e ~+ - - - causal connection
reflective
system (c)

Fig. 1. Computational system (a), metasystem (b) and reflective system (c).

Therefore, a reflective system is characterized by its ability to act and rea-
son about itself. A reflective program is a program describing a computational
system that accesses its own metasystem. This ability opens a wide range of prac-
tical applications, as will be discussed further in this chapter. A more complete
definition of reflection was given by Brian Cantwell Smith in [45]:

Reflection

An entity’s integral ability to represent, operate on, and other-
wise deal with its self in the same way that it represents, operates
on, and deals with its primary subject matter.

1.3 Reflective Towers

Brian C. Smith is a philosopher, considered as the pioneer of the field of compu-
tational reflection. In the early 1980’s, he proposed and defined what it means
for a system to be reflective, presented the general architecture of procedural
reflection, and illustrated it through the implementation of a reflective dialect
of Lisp, called 3-Lisp [89, 90, 28].

As a reflective language, 3-Lisp embodies self-knowledge in the domain of
metacircular interpreters. Every 3-Lisp program is interpreted by a (continuation-
passing) metacircular interpreter, also written in 3-Lisp. This gives rise to a
potentially infinite tower of metacircular interpreters, each being interpreted by
the one above it. Crucial to this architecture is the causal connection between the
interpretation levels, characterized by Smith as “meta-ness”. A program running
at one level can provide code to be run at the next higher level, hence gaining
explicit access to the formerly implicit state of the computation [28]. Such code
is provided by calling reflective procedures, a special class of procedures. A reflec-
tive procedure (or reflective function) can be viewed as a local procedure running
at the level of the interpreter, that therefore manipulates data representing the
code, the environment, and the continuation of the current (base level) compu-
tation. More generally, the structures at any given level represent the state of
the computation one level below.

Actually, because the levels in the tower need not be based on interpretive
techniques, Smith and des Rivieres use the term reflective processor program
(RPP) instead of interpreter. Fig. 2 illustrates the levels of processing in the
infinite reflective tower.

RPP running at level 3

RPP running at level 2

RPP running at level 1

user program running at level 0

Fig. 2. Processing levels in the reflective tower.

The reflective tower is a special case of processing towers, in the sense that
it is infinite and homogeneous. Finite heterogeneous processing towers are actu-
ally commonplace: consider a Java program at level 0, run by the Java Virtual
Machine which is a machine language program running at level 1, which in turn
is run by the hardware at level 2, thereby stopping the tower. In a reflective
language, user code may not only run at level 0, but at any level above, hence
gaining power to direct the course of its own execution.

Dealing with Infinity To deal with infinity, des Rivieres and Smith introduced
the notion of the degree of introspection of a program: in any single program p
and input 4, only a finite number of levels n are needed to run the program; this
number is the degree of introspection of the considered program. Hence, given
n, the level n+ 1 interpreter can be replaced by an implementation processor G,
which is a real, non-reflective processor.

Since n is unlikely to be determined without actually running program p, the
implementation processor G is proposed to be a level-shifting processor (LSP):
such a processor is able, when it is determined (dynamically) that a new level of
processing is required, to create the explicit state of the LSP on the fly as if it
had run since the beginning of the program, and to resume the computation from
this state. Therefore, along the execution of a program, G will shift up levels,
progressively climbing to higher and higher reflective levels. Recall that shifts up
are triggered by calling reflective procedures. In order to be efficient, however,
a LSP should never run at any higher level than necessary, hence requiring the
ability to shift down as soon as possible (Fig. 3).

shift up shift down

shift up nenmtinn prm‘es
1plemenmti0n processor G

‘ RPP (n= 1) ‘ implementation processor G
implementation processor G ‘ RPP (n=1) ‘ ‘ RPP (n =2) ‘ ‘ RPP (n=1) ‘
user program (n = 1) ‘ ‘ user program (n = 2) ‘ ‘ user program (n = 3) ‘ ‘ user program (n = 2) ‘

execution
time

Fig. 3. The level-shifting processor.

Reification and reflection Wand and Friedman bring some more light on
what shifting up and down actually means, in two major papers that attempted
at giving a more formal, denotational account of reflection. They show in [36]
that the concept of reflection as formulated by Smith can be decomposed in
two processes, called reification and reflection, which respectively correspond to
shifting up and down:

Reification

The process by which the state of the interpreter is passed to the
program itself, suitably packaged (reified) so that the program
can manipulate it.

In the context of a conventional operational semantics model, the state of the
interpreter is defined as interpreter registers holding an expression, an environ-
ment and a continuation. As further mentioned, the process of reification can be

thought of as converting program into data. The data representing the piece of
program is also called a reification.

Reflection
The process by which program values are re-installed as the state
of the interpreter.

In this context, the program values are defined as values for an expression, an
environment, and a continuation. The process of reflection can therefore be seen
as converting data into program. It is also sometimes referred to as absorption [28,
91, 24] or deification [126, 31].

Following their quest for a formal understanding of reflection, Wand and
Friedman manage to give a semantic account of Smith’s reflective tower. Using
a meta-continuation semantics, their account of the reflective tower does not
employ reflection to explain reflection. It is presented in an appropriately-named
paper: The Mystery of the Tower Revealed: A Non-Reflective Description of the
Reflective Tower [113].

1.4 Reflective Languages

As we have seen, the process of reification makes it possible for a program to
gain access to a representation of (a part of) itself or to some aspect of the
programming language, which were otherwise implicit. Smith mentioned two
important requirements a language must conform to in order to be reflective [90].
First, the language needs “an account of itself embedded within it”; that is to say,
some representation of the language must be accessible from within itself. Second,
this self-representation must be causally connected to the system, as discussed at
the beginning of this chapter. Another characterization of a reflective language is
that of a language that provides its programs with (full) reflection [64, 66]. Full
reflection here means that true reflection ideally does not impose any limit on
what the program may observe or modify. However, it is inherently impossible
to reify strictly all parts of a reflective system. This impossibility was mentioned
in a theoretical context in [113], and in an experimental one in [31]. Therefore,
the precise point at which a language with reflective mechanisms becomes a
reflective language is not well defined [85]. This distinction is however useful to
contrast reflective languages with programming languages that only provide (or
are extended with) some reflective mechanisms.

113

Reflective mechanisms A reflective mechanism is defined in [66] as “any
means or tool made available to a program P written in a language L that either
reifies the code of P or some aspect of L, or allows P to perform some reflective
computation”. Reflective mechanisms are called reflective operators in [91] and
defined as: “language facilities, offered by the programming language, that allow
programs to access the metasystem with which they are executed”. In order to
better characterize reflective mechanisms, several distinctions should be intro-
duced. There are potentially many “things” that can be reified, and the possible

actions the program is allowed to carry over these reifications can also vary.
Therefore, a first distinction is made between introspection and intercession:

Introspection

The ability of a program to simply reason about reifications of
otherwise implicit aspects of itself or of the programming lan-
guage implementation (processor).

In analogy with file systems, introspection can be seen as a read access to reifi-
cations.

Intercession

The ability of a program to actually act upon reifications of oth-
erwise implicit aspects of itself or of the programming language
implementation (processor).

Following the same analogy, intercession corresponds to a write access to reifica-
tions. The causal connection property ensures that changes made to reifications
are indeed effective.

Another distinction is made between structural and behavioral reflection, de-
pending on the representation reifications give access to:

Structural reflection
The ability of a program to access a representation of its struc-
ture, as it is defined in the programming language.

For instance, in an object-oriented language, structural reflection gives access to
the classes in the program as well as their defined members.

Behavioral reflection

The ability of a program to access a dynamic representation of
itself, that is to say, of the operational execution of the program
as it is defined by the programming language implementation
(processor).

In an object-oriented language, behavioral reflection could for instance give ac-
cess to base-level operations such as method calls, field accesses, as well as the
state of the execution stack of the various threads in the program.

Behavioral reflection was actually pioneered by Smith, as discussed previ-
ously, and is much more difficult to implement than structural reflection since it
is not restricted to the static representation of programs. We will come back on
implementation issues later in this chapter.

The distinction between introspection and intercession and that of behavioral
and structural representations are indeed orthogonal: the former determines the
kind of access given to the representation, whose type is determined by the lat-
ter. Moreover, these distinctions are completely valid in the context of metapro-
grams, not only reflective ones. For instance, a preprocessor is a metaprogram
that uses both structural introspection and intercession. Conversely, an Inte-
grated Development Environment (IDE) only needs structural introspection to

provide a class browser. Finally, a debugger is a metaprogram that introspects
both structure and behavior, and that may, in some cases, actually change the
execution of the program (behavioral intercession).

Some reflective languages As defined by Pattie Maes [63], “a programming
language is said to have a reflective architecture if it recognizes reflection as
a fundamental programming concept and thus provides tools for handling reflec-
tive computation explicitly”. Various languages with reflective architectures have
been proposed. We have already mentioned 3-Lisp [89]. Another reflective vari-
ant of Lisp is Brown, which served as the basis for the formal work of Friedman
and Wand [36]. These languages are examples of procedure-based languages with
a reflective architecture. Languages with reflective architectures have also been
proposed in other paradigms, such as logic-based languages (e.g. Fol [120] and
Meta-Prolog [7]), rule-based languages (e.g. SOAR [57]). Finally, many reflective
object-oriented languages have been proposed, basically because of the apparent
good match between object orientation and reflection. The next section will ex-
plore this relation further. Examples of reflective object-oriented languages are
3-KRS [63, 62], Agora [91, 24], ObjVLisp [20], Smalltalk [85], Classtalk [9] and
CLOS [53].

Smalltalk is in fact not fully reflective due the pragmatic reason of effi-
ciency [39], which made its designers choose not to reify messages and mes-
sage lookup as such. Still, Smalltalk presents so many reflective mechanisms
and is so deeply rooted in reflection that it is often considered as being able
to provide much of the power of full reflection [35]. Indeed, Smalltalk is almost
entirely written in itself, and supports both introspection and intercession of its
structures (classes) and its behavior (by reifying both the compiler, and mes-
sage sending and control state) [85]. Conversely, other industrial languages like
C++ [95] have no reflective or metalevel features®. The more recent Java pro-
gramming language [96] actually started without any reflective mechanism, but
has been progressively updated with more and more reflective mechanisms. It
now basically supports structural introspection and a limited form of behavioral
intercession. We will come back to Java in Section 4.2.

From reflective languages to reflective applications As we have seen,
reflection was first introduced in the context of reflective languages, i.e. lan-
guages that indirectly give access to the otherwise implicit aspects of themselves,
through reflective metacircular interpreters. As a consequence, this makes it pos-
sible for programs (applications) to be reflective as well, since they can access
their own representation in the language. However, as argued in [30], most useful
reflective applications rely only on limited reflective capabilities. Douence and
Stidholt therefore advocate the use of reflective applications, rather than (fully)
reflective languages. Such applications then exhibit reflective capabilities that
are specifically-tailored to their needs and are only present at well-chosen places

2 Actually C++ templates are a textual compile-time metaprogramming facility [23].

in the code. We shall come back on this in Section 4.4 when discussing partial
reflection.

2 Reflection and Object Orientation

As we have seen, reflection in programming languages started to gain a lot of
attention in the early 1980’s. Be it a coincidence or not, this period of time was
also the beginning of the advent of object-oriented programming. Rapidly, most
of the work in reflection was formulated in the context of object orientation. As
acknowledged by the reflection community, the reason seems to be a good match
between both [45]. We will discuss this match in Section 2.1. In Section 2.2, we
will introduce metaobject protocols, the fruit of the wedding between reflection
and object orientation. The various reflective object-oriented models that have
been proposed in the literature will be reviewed in Section 2.3

2.1 The Good Match

Object orientation as a programming paradigm appeared as a means to solve
some of the issues with procedural programming. Mainly, the issue of keeping
procedures and data structures coherent which each other: in procedural pro-
gramming, both are defined separately, although they are inherently interdepen-
dent, since changes in one usually affects the other. Object-oriented program-
ming addresses this issue by packing data and procedures together in entities
called objects, that communicate through messages. The fact that data and pro-
cedures are distributed in separate objects brings interesting properties, such
as abstraction and encapsulation. Furthermore, object-oriented languages have
quickly integrated means for localized extensions of behavior, through overrid-
mg.

As Pattie Maes remarks, abstraction in object-oriented languages makes re-
flection naturally fit in this spirit. Since an object is free to realize its role in
the overall system in its own way, “it is natural to think that an object not
only performs computation about its domain, but also about how it can realize
this computation” [63]. Moreover, since abstraction and encapsulation promote
minimum coupling between communicating objects by relying on well-defined in-
terfaces or protocols, it is possible to program base computation independently of
meta computation. Therefore base objects (performing base, or domain, compu-
tation) and so-called metaobjects (performing meta computation) can be made to
cooperate through a well-defined interface and therefore it is possible to change
implementations of one or another independently. And precisely, through exten-
sion mechanisms provided by object-oriented languages such as delegation and
overriding, it becomes feasible to develop libraries of metaobjects. Such meta-
objects can be reused and extended in turn. Eventually, the very motivations
that led to the advent of object orientation as a major programming paradigm
do explain why reflection is also expected to profit from it:

10

“What reflection on its own doesn’t provide, however, is flexibility, incre-
mentality, or ease of use. This is where object-oriented techniques come
into their own.” [53]

In other words, object orientation seems promising to address issues related
to the structure of the metalevel and the locality of reflective computation. By
locality we refer to the scope that changes done at the metalevel have on base-
level computation. We will be refining this notion along this chapter, since it
is one of the key elements that drove a major track of research in metalevel
architectures, open implementations, and aspect-oriented programming.

2.2 Metaobject Protocols (MOPs)

Object orientation allows for the independent programming of base and meta
computation, since base objects and metaobjects communicate through a well-
defined interface. Such an interface, which is the equivalent of standard interfaces
between objects, transposed in the realm of reflection and metaprogramming, is
called a Metaobject Protocol, abbreviated as MOP. As Kiczales et al. put it:

“Metaobject protocols are interfaces to the language that give users the
ability to incrementally modify the language’s behavior and implementa-
tion, as well as the ability to write programs within the language.” [53]

This notion is refined later, in the context of the CLOS MOP, a metaobject
protocol for CLOS [6] (an object-oriented variant of LISP):

“First, the basic elements of the programming language - classes, methods
and generic functions - are made accessible as objects. Because these
objects represent fragments of a program, they are given the special name
of metaobjects. Second, individual decisions about the behavior of the
language are encoded in a protocol operating on these metaobjects - a
metaobject protocol. Third, for each kind of metaobjects, a default class
is created, which lays down the behavior of the default language in the
form of methods in the protocol.” [53]

Maes observed that reflective computation may be caused either by an object
itself or by the interpreter [63]. On the one hand, an object can trigger reflec-
tive computation by specifying reflective code, i.e. code that explicitly mentions
metaobjects. On the other hand, the interpreter may cause reflective computa-
tion for an object whenever it determines that it is needed. At such time, the
interpretation of the object is delegated to some metaobject. Such kind of re-
flection has been called implicit [64]. This observation leads to the distinction
of different types of MOPs, depending on whether they are explicit, implicit or
related to communications between metaobjects [128]:

Explicit MOPs are used by base objects to communicate with the metalevel.
This can concretely be done by sending messages to a given metaobject
or by actually changing a metaobject by another one. This usually results

11

in explicit changes in the behavior of base objects. For instance, changing
the status of an object from volatile to persistent may be done either by
informing the metaobject in charge of this concern that, from now on, the
object should be persistent, or by effectively changing the default metaobject
implementing the volatile semantics by one implementing the persistent se-
mantics.

Implicit MOPs take place transparently: the base object does not know about
the “jump to the metalevel”. For instance, each time an object is created,
its state may be transparently initialized by retrieving it from storage, and
when it is destroyed, storage is transparently updated with the new state. As
Maes mentioned, this transparency comes from the fact that the interpreter
itself triggers the meta computation.

Inter-metaobject Protocols are used by metaobjects to communicate with
each other. An inter-metaobject protocol is also explicit (implemented through
standard method calls), but usually not visible to base objects.

It is interesting to note that explicit and implicit MOPs usually collaborate
to achieve a given behavior: base objects can use an explicit MOP to specify the
required semantics (e.g. saying that an object should be persistent), which is
then implemented through the implicit MOP (e.g. intercepting object creation
and destruction to retrieve and store the object state).

2.3 Reflective Models for Object-Oriented Languages

The first object-oriented languages to incorporate some reflective facilities, such
as Smalltalk-72 [38] and Flavors [116], did so in ad hoc ways. A first step towards
a cleaner handling of reflective facilities was the introduction of metaclasses by
Smalltalk-80 [39], further studied by Cointe in ObjVLisp [20] and Classtalk [9].
Metaclasses basically serve the purpose of specifying the internal structure and
behavior of a class. In uniform object-oriented languages, everything is an object.
In a pure class-based language, a class is therefore just an object, that has the
particularity that it can generate objects, its instances. And a metaclass is a
class whose instances are classes. This approach to reflection was brought to the
fore by Pierre Cointe with ObjVLisp. This model mainly allows for extension of
the static part of object-oriented languages, although it can serve as a basis for
behavioral reflection, as discussed hereafter.

The second model of reflection for object-oriented languages was introduced
by Pattie Maes in 3-KRS [62, 63], in the line of Smith’s work on 3-Lisp. In
this model, there is a 1-to-1 relation between an object and its metaobject. The
metaobject represents the otherwise implicit information of its so-called referent:
its structure as well as its way of handling messages. However, this model was
formulated in the context of the prototype-based language KRS [67], which does
not support the notion of classes. Ferber [34] studied the transposition of this
model to class-based languages, comparing it to the metaclass model. Finally, a
third model, based on message reification, is presented.

12

Metaclass model In this model, the meta relation is merged with the type
relation: the class of an object is considered as its metaobject, since classes
actually describe the structure and behavior of their instances. Metaclasses are
therefore the metaobjects of classes, because of their ability to describe the
internal structure and behavior of a class. Note that some languages only provide
one metaclass that describes all classes in the system. This was the case of
Smalltalk-76, and is still the case in Java, which furthermore closes the door to
extension since the unique metaclass cannot be subclassed. A unique metaclass
is actually not convenient to allow semantic variations because it propagates
changes to all classes in the system. Conversely, in languages like ObjVLisp and
Smalltalk-80, each class is the unique instance of its own metaclass.

From a behavioral point of view, it is equivalent for an object o to receive a
message m, or for the class of o to receive a message handleMessage (that takes
as parameters both o and m). Thus, the default handling of a method is de-
scribed in the metaclass, since it is where the handleMessage method is defined.
Specializing the default interpretation of a message implies a substitution or an
alteration of the metaclass. This model presents the drawback that all instances
of a class share the same message interpreter: there is no possibility to special-
ize the interpreter for a unique object?. Furthermore, metaclass substitution is
dangerous and can quickly lead to inconsistencies. Finally, it is not possible for
the metaobject (the class) to keep personal characteristics of objects. These lim-
itations are summarized by Ferber saying that “metaclasses are not meta in the
computational sense, although they are meta in the structural sense” [34].

Metaobject model In this model, the metalink is different from the instance-
of link: classes and metaobjects are distinct objects. Each object has its own
metaobject.

The main distinction between this model and the metaclass model lies in
the separation of structural and computational (behavioral) reflection: in the
metaclass model, classes are used for both structural description (definition of
the instance structure and the set of applicable operations) and computational
description (how a message is interpreted and a method is applied); conversely,
the metaobject model splits them apart: classes handle the structural part, while
metaobjects handle the behavioral part. This model presents many advantages.
First, it is easy to modify the metaobject of a single object; second, an object can
be monitored by its metaobject; finally, defining new ways of handling messages
simply consists in defining new classes of metaobjects (e.g. by subclassing a
default metaobject class).

Message reification Ferber introduces yet another model that consists of reify-
ing the communication itself. In this model, each communication is an object,
instance of a message class, that can react to the send message. It is therefore the

3 Unless a dictionary is kept in the class in order to distinguish between instances, but
then this is really close to the metaobject model, presented afterwards.

13

responsibility of the message to interpret itself. Specialization of message sending
semantics therefore implies subclassing the default message class. In the model
presented by Ferber, a message object encapsulates only the receiver, the selector
(of the message) and the arguments. Cazzola has further extended this model by
including the sender object as well, leading to more expressive power [14], which
is particularly useful in a distributed setting [2, 72]. The main disadvantage of
this model, apart from efficiency considerations, is that it does not say anything
about the objects of the application. However, as Ferber outlines, this model can
be used in conjunction with the metaobject model.

Where is the reflective tower? The three models presented above are mainly
based on the lookup/apply protocol of object-oriented languages. The CLOS
MOP [53] is rather based around the generic function model, where the appli-
cation of a generic function is reified as a generic function [66]. As discussed
by Malenfant et al., reflective towers appear in both kinds of approaches. Des
Rivieres [27] has pointed out the existence of the reflective tower in the CLOS
MOP: the tower appears because, when invoked, the generic function that de-
scribes how generic functions are applied is itself a generic function, and therefore
must invoke itself. This infinite meta-regression is however simply avoided (by
not reifying the application of the MOP generic function). Besides, in [65], the
existence of the reflective tower in the lookup/apply model is shown. The tower
appears because apply methods are themselves methods, which much have their
own apply method.

As argued in [31], since these approaches to reflection do not feed higher-
level interpreters with the code of lower-level interpreters, they have no semantic
foundation, but allow for more efficient implementations. In contrast, MetaJ [31],
3-KRS [62] and Agora [24] are semantics-based, following Smith’s seminal work
on 3-Lisp. According to [66], the most important difference however is that the 3-
Lisp (and alike) tower is potentially infinite, whereas in object-oriented models,
the towers are finite by construction, and the languages always provide mecha-
nisms that stop the tower at some fixed level, possibly differing from methods
to methods.

2.4 MOPs for Separation of Concerns

Reflective systems have interesting practical applications. In particular, in the
context of programming languages, reflection has served a lot as a means to
rapidly experiment with variations on language semantics, in particular for
object-oriented programming, at a time where basic elements were still being
defined [45]. Furthermore, from a software engineering point of view, reflection
is interesting because it introduces a separate level, the metalevel, at which sev-
eral concerns can be addressed, in a manner that is mostly transparent for the
base level.

As a matter of fact, one of the major quest of programming language research
is that of being able to develop software systems while preserving a good Sepa-
ration of Concerns (SoC) [29, 81]. The idea of SoC basically consists in assigning

14

particular concerns to separate modules. Object-oriented programming was it-
self a step forward in this direction. However, as software systems are applied
in more and more complex situations and demanding environments, it becomes
difficult to maintain a good separation of all concerns. For instance, when con-
sidering the behavior that a cleanly-designed system should adopt when facing
exceptional situations, the concern of exception handling tends to be spread over
many modules, thereby violating the SoC principle.

Behavioral reflection and metaobject protocols actually provide means to
achieve a cleaner separation of concerns in complex software systems, since the
metalevel can actually address the issues related to how a system should do its
job, letting the base level only focus on what it should do: this is the idea of
separating functional concerns, handled at the base level, from non-functional
concerns, handled at the metalevel. Furthermore, behavioral reflection supports
separation of dynamic concerns as well, thereby offering a modular support for
adaptation in software systems [5, 84]. These strengths of reflection have been ex-
ercised in a wide range of domains, including distribution [92, 13, 59, 72], mobile
objects [5, 60, 106], concurrency [68], fault-tolerance [33] and atomicity [93].

In [94, 10], a comparison is made between three approaches to separation of
non-functional concerns: system-based approaches, language-based approaches,
and MOP-based approaches. System-based approaches basically consist in han-
dling non-functional requirements such as persistent data storage, data sharing,
and distributed programming, directly in the operating system. This approach
has the advantage of being efficient, but offers no means of adaptation or cus-
tomization.

Language-based approaches consist in extending the semantics of the lan-
guage by providing a range of building blocks. This can either be done by
adding semantics directly to the programming language, by extending the run-
time support mechanisms or by adding object definitions to object libraries.
Typical tools are therefore preprocessors, specially-tailored interpreters, and/or
reusable objects. Some examples of this approach are: Arjuna [88], which pro-
vides persistence and atomicity by inheritance, and distribution transparency
via a preprocessor; PC++ [122], which provides atomic data types via a com-
bined use of inheritance and preprocessing; or SOS [87], which adds persistence
and migration to C++ objects with a special compiler and a runtime object
management system. The limitations of these approaches is that they are usu-
ally not transparent at all for programmers: they require “stylized” code that
obscures base functionality. For instance, in Arjuna, explicit lock manipulation
code must be mixed with base functionality. Furthermore they require a special-
ized implementation of a language that is hard to customize: for instance, the
PC++ processor generates code that might not be adequate in some situations;
changing the generation scheme actually involves changing the preprocessor.

MOP-based approaches, on the other hand, provide both transparency and
flexibility. Non-functional requirements are implemented as metaobjects, by sys-
tem developers. Then, adding non-functional properties to objects is done by
binding them to appropriate metaobjects: e.g. a persistence metaobject, a repli-

15

cation metaobject, etc.. Defining new kind of behaviors can be done by incre-
mentally extending metaobject classes. Furthermore, metaobjects may in some
cases be reusable: indeed, standing above objects from a meta viewpoint makes it
possible for metaobjects to be generic, and hence adequate on different types of
objects. As Stroud and Wu conclude, the key of MOP-based approaches among
others is their flexible approach to reification [94]. Indeed, dedicated preproces-
sors and the like also use a form of reification to operate, but they do so in a very
ad hoc way, that makes them unsuitable for handling other concerns or being
extended.

3 Structuring the Metalevel

As reflective approaches matured, attempts to concretely apply them to various
domains have progressively brought to the fore the need for further investigat-
ing structuration aspects of the metalevel. It is therefore no coincidence that
the main elements discussed in this section emerged from applied work, e.g. in
the field of concurrency, distribution, and operating systems. In particular, the
nature and arity of the metalink was further explored, leading to more flexible
models. This is explored in Section 3.1. Besides, the nature and coordination of
metalevel entities themselves have been subject to deeper studies, as the need
for advanced engineering techniques at the metalevel started to appear. This is
reviewed in Section 3.2.

3.1 Nature of the Metalink

As we said earlier, the notion of metaobject was first introduced by Pattie Maes
in the context of 3-KRS [63]. In this model, a metaobject is an object which
reflects the structural, and possibly also the computational aspect of a single
object.

Still, in 3-KRS, several metaobjects participate in the representation of a
single object*: the metaobject of an object has slots that are filled by primi-
tive metaobjects. These primitive metaobjects together represent the complete
3-KRS interpreter. ABCL/R [114], a reflective version of the object-oriented
concurrent system ABCL/1 [127], is another example of such an architecture. In
ABCL/R, the arity of the metalink is also 1-to-1, and the different aspects of a
base object (in this case, variables, scripts, local evaluator and message queue)
are held in the state variables of the metaobject.

Such architectures are qualified as individual-based architectures [70] since a
single object is the unit of computation at the base level (from a metalevel point
of view). The reflective tower (that comes from the fact that a metaobject is also
an object) is called an individual tower. The limitation of such an architecture

4 A distinction is introduced in [70] between metalevel objects and metaobjects. While
metaobjects are metalevel objects, the reverse is not true: some metalevel objects
simply reside at the metalevel, without actually being bound to a base object.

16

lies in its lack of a global view of computation. Since each metaobject is self-
contained (in the sense that it only “sees” its referent), other parts of the base
computation are only accessible through explicit access to their metaobjects.

To address this issue in scenarios dealing with resource management where
a more global view of the computation is needed, the idea of group-wide reflec-
tion was introduced [115]. In group-wide reflective architectures, the collective
behavior of a group of objects is represented as coordinated actions of a group of
metalevel objects, called the metagroup. The reflective tower, that comes from
the fact that a metagroup is itself an object group, is called a group tower. In
this model, there is no intrinsic relation between a particular object and a meta-
object. Rather, the entire object group is the unit of base-level computation
(from a metalevel point of view). The disadvantage of such a model is that the
identity of a given base object is lost at the metalevel, and must therefore be
reconstructed manually.

Naturally, Satoshi et al. proposed the amalgamation of both architectures,
called the hybrid group architecture [70], implemented in ABCL/R2. In this ar-
chitecture, both the individual tower and the group tower are preserved. In their
application context, coordinated resource management, they observe that the
hybrid group architecture does not merely combine the benefits of both archi-
tectures. Rather, it enables advanced coordinated resource management schemes
to be modeled, which would hardly be feasible with previous architectures. This
work therefore brings a first justification to the interest of a more flexible met-
alink. However, in the proposed hybrid architecture, a limitation is that an object
cannot belong to more than one group: although this limitation does make sense
in the precise application context of ABCL/R2, it is, in a more general setting,
questionable. Satoshi et al. actually end up arguing that architectural issues
are fundamental, and that research on more effective architectures should be
pursued.

In their work on the Iguana language (a fully-featured MOP for C++ °),
Gowing et al. expose a fairly flexible approach to the metalink [42]. Metaobject
instances may be shared by several objects, and an object may be controlled
by several metaobjects. In their model, there is one metaobject per reification
category (i.e. features of the object model of the language that can be reified, such
as object creation and deletion, activation frames, state access, etc.). This has
an interesting impact on the modularity of the metalevel, exploited in particular
by McAffer [73], as discussed hereafter.

3.2 Metalevel Engineering

Applying metalevel architectures in complex domains raises the need to be able
to properly engineer the metalevel. Jeff McAffer made a significant contribution
to this issue in a paper called: Engineering the Metalevel [73]. His observations
are the result of his work on a metalevel architecture for distributed object
systems, CodA [71, 72]. As he states:

5 The issue of bringing reflection to a compiled language such as C++ will be discussed
later in Section 4.

17

“l...] the metalevel has been thought of as a place for making small
changes requiring small amounts of code and interaction. We believe that
the metalevel should be viewed as any other potentially large and complex
application — it is in great need of management mechanisms.” [73]

McAffer is therefore concerned by the need to bring traditional engineering tech-
niques to the metalevel, such as decomposition, combination, abstraction and
reuse. According to him, the desirable properties of expressiveness (as the pos-
sibility to express a wide range of computational behavior), extensibility and
programmability are lacking in previous work, which solely concentrated on the
clear separation of base level and the metalevel.

Operational decomposition Most reflective systems are based on reification
of the structural concepts offered by the language (classes, methods, objects,
slots, etc.). McAffer characterizes this approach as a top-down approach: tak-
ing high-level concepts (those of the language) and breaking them into their
constituent pieces. Although this approach presents the advantage of structur-
ing the metalevel in terms of a limited and particular set of concepts that are
usually well-understood (since they closely match those of the base language),
it is hard to integrate new concepts or behaviors which have no foundation in
the base language. This limitation compromises the desired expressiveness and
extensibility properties.

The approach promoted by CodA in this regard is therefore to separate the
description of the computational behavior of an object from that of its base lan-
guage. McAffer therefore formulates a bottom-up approach, which consists in
starting from the basic operations (e.g. message send and receive, field access,
object creation, etc.) defining the computational behavior of an object. This
approach strongly diverges from the top-down approaches that we have been
discussing until now: the interpreter-based approaches, such as 3-Lisp [89], 3-
KRS [62] and MetaJ [31], where metaobjects match the structure of the in-
terpreter, and the language-centric approaches, such as the CLOS MOP [53],
ObjVLisp [20] and Classtalk [9], which provide representation of the structural
elements of the language.

Actually, the top-down and the bottom-up approach described by McAffer
could alternatively be referred to as a structural and a behavioral approach,
respectively. Other pieces of work adopt a similar philosophy, and interestingly
enough, they all come from concrete applications of reflective techniques (and
not from the pure language community): work on atomic data types [93], con-
currency [46], distribution [75, 76] and operating systems [126]. This operational
decomposition of the metalevel is shown to be both expressive and extensible.
Such an architecture concentrates on what occurs, not how the description of
this is organized. Object systems are therefore reduced to a set of conceptual
operations, whose occurrences “can be thought of as the events which are required
for object execution” [73].

18

Fine-grained MOPs McAffer also argues for the freedom to design meta-
objects at the appropriate level of granularity. This is indeed just standard
object-oriented programming practice, that leads to better robustness, encap-
sulation, and modularity.

In this direction, a significant improvement in the modularity of a metalevel
architecture is the concept of fine-grained MOPs, introduced in Iguana [42]. This
proposal was motivated by the will to make metaobject protocols practical for
operating systems [41], more precisely, as a mechanism for adaptable system
components. The fine-grained MOPs of Iguana are an enhancement, in terms
of fine granularity and combination possibilities, of the Multi-Model Reflection
Framework developed for AL-1/D [76, 75].

A MOP essentially specifies a reflective object model: the object model spec-
ified by a MOP is implemented by metaobjects. The idea of fine-grained MOPs
is to allow multiple reflective object models to coexist in a given application. For
example, in an application, a distributed object could use a distributed object
model while other objects of the system use the standard (local) object model.
Furthermore, if an object subsequently needs to modify its object model (that
is, its metalevel implementation), it can do so knowing that any changes will not
affect other object models: this is called metalevel locality of change [42]. Iguana
hence provides a very elegant and flexible way of structuring customized met-
alevels from elementary building blocks, with the protocols themselves provid-
ing higher-level building blocks. The Iguana approach to fine-grained metalevel
structuring was later on ported to Java, with Iguana/J [83, 84].

4 Implementing Reflection

The implementation of reflection poses a number of challenges, which this sec-
tion surveys. The first one, quite easily addressed, is that of the potential infinite
in the reflective tower and the associated issue of metaregression (Section 4.1).
Another one is how to actually provide reflection in existing, non-reflective lan-
guages both interpreted and compiled. This issue is discussed at length in Sec-
tion 4.2. The case of Java is treated apart in more details, since it is the language
with which we will be experimenting. Finally, we will consider the issue of the
efficiency of reflection, which has seen the emergence of two trends: the first
one, presented in Section 4.3, attempts to make reflection efficient by anticipat-
ing reflective computation; the other approach, explored in Section 4.4, rather
considers that the cost of reflection may not be such an issue if we are able to
selectively apply it only when needed.

4.1 Infinity

The issue of the potential infinity present by essence in reflective architectures
appears more problematic than it really is in practice. It is either addressed
by arbitrarily fixing the number of metalevels (such as in the Apertos operating

19

system, where the number of metalevels is fixed to four [126]), or more generally,
by relying on laziness, as in all other reflective systems mentioned until now.

Infinite meta-regressions, also called circularities, can also be easily dis-
charged. As explained in [53], there are two kinds of circularity issues: boot-
strapping issues, which are involved with how to get a reflective system up and
running in the first place, and are usually easily tackled in an ad hoc manner; and
metastability issues, which have to do with how a reflective system manages to
run, and to stay running even while fundamental aspects of its implementation
are being changed. Metastability issues require a bit more care and anticipation,
however. By noticing that they are indeed similar to recursion, similar practices
apply: typically, stopping on some special cases, like in well-founded recursion
(think of the factorial function, for instance, which stops recursion for n = 0).
Indeed, like for recursion, the particular way regression is stopped depends on
each particular case (see for instance [53], Appendix C, for the CLOS MOP,

r [15], for the OpenC++ MOP).

4.2 Reflection for Interpreted and Compiled Languages

Reflection and metaobject protocols have first been mainly studied in the con-
text of interpreted languages. The reason for that is that an interpreter is the
good place to look for metalevel information about a running program®. Since
reflection occurs when a program has access to such metalevel information about
itself and can manipulate it, having a reflective interpreter only involves export-
ing this information and providing the base-level program with means to access
and modify the information.

However, this approach is not adequate in two (widely-spread) situations:
(a) for compiled languages, such as C++, where source code is turned into code
directly executed by the machine, since there is no interpreter at all; (b) for
interpreted languages whose standard interpreter is non-reflective and hardly
extensible or modifiable, like Java virtual machines. Actually, the Java language
is compiled into an intermediate language, the bytecode language, which is inter-
preted by a Java Virtual Machine. As a matter of fact, the bytecode is very close
to the original source code, in the sense that most semantic information is pre-
served at a sufficiently high-level of abstraction. Approaches to bring reflection in
these cases —called refiective extensions— are discussed hereafter. The two follow-
ing sections discuss the issue of providing reflection in compiled and interpreted
languages respectively. Before presenting the case of the Java programming lan-
guage in Section 4.2, we will discuss the notion of binding time, which is helpful
to understand and characterize the various approaches to implement reflection.

Compiled languages With compilers, the metalevel information that is con-
structed at compile time is usually not kept beyond the compilation phase. In the

5 We use the term metalevel information as introduced in [42]: “to describe both the
tables of data associated with interpretation/compilation and the implicit knowledge
maintained by the interpreter/compiler to order its decision making process regarding
the behavior of the base-level program”.

20

generated code, the object model of the language is completely implicit and can
not be accessed”. Therefore, as discussed in [42], adding reflection to a compiled
language entails maintaining the metalevel information beyond the compilation
process and also transforming the generated code with the appropriate links to
the metalevel information that controls its behavior. Concretely, this widely-
used technique consists in transforming code to introduce so-called hooks to the
metalevel, also known as metalevel interceptions (MLIs) [128].

Typically, hooks are pieces of code in charge of the reification process: inserted
in the code, they trigger a shift to the metalevel when reached by the execution
flow. Therefore, even if the fact that some metalevel behavior should occur is
statically determined (i.e. anticipated), the precise metaobjects implementing
that behavior can still be accessed and changed dynamically, thus supporting
dynamic adaptation of behavior. Obviously, this technique involves a significant
execution overhead if used at each and every place in the code, since the program
must evaluate both the hooks (i.e. code that builds a representation of the inter-
cepted piece of program) and the metalevel code. This is where considerations
related to partial reflection come into play, discussed in depth in Section 4.4.

Note furthermore that we hereby considered the implementation of dynamic
behavioral reflection, provided by so-called runtime MOPs: in fact, the obser-
vation that some metacomputation need not happen at runtime led to the in-
troduction of compile-time MOPs and other related techniques, as discussed in
Section 4.3.

Interpreted languages To introduce reflection in languages for which a non-
reflective interpreter is available, the logical solution is to make the interpreter
reflective. Douence and Siidholt proposed, in the context of object-oriented
languages, a significant improvement over early proposals such as 3-Lisp and
Brown (where the interpreter is fully reflective). Their generic reification tech-
nique makes it possible to build, from a non-reflective metacircular interpreter,
a specially-tailored reflective interpreter in which only required elements are re-
flective [31]. This technique based on transforming the code of the interpreter
presents nice properties of completeness and sound semantics. However, for this
approach to be applicable, a metacircular interpreter must be available. In the
context of an industrial language like Java or C#, this is not the case: production-
quality virtual machines are not metacircular interpreters.

In such a situation, two alternatives are available. The first one is to intro-
duce the interception and redirection mechanisms in the program code (source
or binary), as in the case of compiled languages discussed previously. The inter-
preter is untouched. The second alternative is to leave program code as it is, but
to modify or extend the interpreter to create the interception mechanisms. The
limitation of the first approach is that it requires a static transformation of the

" If compiling with debugging attributes, some semantic information can still be ob-
tained, but it is really hard to use in order to affect the behavior of the program.
Still, Marc Ségura-Devillechaise has recently been able to get convincing results in
the case of Linux elf binaries [86].

21

application, which limits its support for dynamic adaptability. Furthermore, it
is limited in expressiveness to what can actually be found in the code. Its great
advantage is that it remains compatible with the standard interpreter for the
language. It can thus benefit, at no cost, from the evolution of virtual machine
technologies, and its use is also facilitated.

The second approach, on the other hand, presents the advantage of having
direct access to the internal structure of the interpreter and therefore provides
greater flexibility and expressiveness for supporting dynamic adaptation. The
major disadvantages are the loss of compatibility with standard environments,
which often results in particular tools becoming obsolete quickly, and the com-
plexity of the implementation. Indeed, modifying a production virtual machine is
not an easy task, and it is subsequently difficult to keep up-to-date with new ver-
sions and technologies (all the more that virtual machines are usually updated
more often than language specifications). Just as an illustration, consider the
case of Iguana/J [84]: it was implemented as a native dynamic library integrated
very closely with the interpreter, via the Java Just-In-Time (JIT) compiler in-
terface [97]. At that time, Sun started its integrated HotSpot technology [104],
and stopped supporting the JIT compiler interface.

Binding times and modes When starting to consider implementation tech-
niques and approaches to reflection, it is important to look at reflection under
the viewpoint of binding times.

Looking at the history of programming languages, one can notice that it has
been driven by the quest for ever late binding time, responsible for most of the
advances in software design [43, 48, 44]. Binding basically means associating a
value to a name. The following definition, taken from [43], expresses binding
from a lower-level point of view:

Binding and binding time

Binding means translating an expression in a program into a
form immediately interpretable by the machine on which the
program is run; binding time is the moment at which this trans-
lation is done.

For instance, consider the binding of a procedure call to the address of the code
to be run: while the binding is done at compile time in procedural languages,
object-oriented languages have postponed it to runtime.

Postponing binding times brings more flexibility at the expense of perfor-
mance penalties. If we make the distinction between a formal binding time (as
being the latest moment at which the binding can be done, in general) and the
actual binding time (as being the actual moment at which a particular binding
is done), we can say with Malenfant et al. that:

“The general trend in the evolution of programming languages has been
to postpone formal binding times towards the running of programs, but to
use more and more sophisticated analysis and implementation techniques
to bring actual times back to the earlier stages.” [66]

22

Seen in this light, reflection in programming languages naturally fits in the trend
of ever late binding times, by postponing the binding of almost all elements of
programs and languages to the runtime.

The actual trade-off between functionality and cost in reflective architectures
is further clarified by introducing the notion of binding modes [23]. While the
binding time describes when an association occurs, the binding mode describes
the permanency of the binding. This mode may be either static, if it cannot be
undone, or dynamic, if it may be undone and redone. Systems can therefore be
characterized according to their position in the range going from static binding
at compile time, to dynamic binding at runtime. The hook insertion technique
presented above imposes binding to be done at compile time (or load time) and
may support both static and dynamic binding. Conversely, the interpreter-based
approaches support dynamic binding at runtime (and are hence better suited for
unanticipated software adaptation). A characterization of many systems in light
of this range can be found in [84].

The Java case The Java programming language first started without any re-
flective mechanisms, and has been successively updated, until JDK version 1.3.
The standard Java reflection API [102] mainly supports structural introspec-
tion. Indeed, the ability to obtain metaobjects representing classes, methods,
fields and constructor is restricted to introspection: it is not possible to modify
a given class through such an API. It is, however, possible to instantiate a class
through its representation (an instance of class Class) or to invoke a method
(through an instance of class Method). This limited support for reflection called
for many proposals of reflective extensions to appear. Still, the standard re-
flection APT is really useful and widely used, for instance for serialization [98],
remote method invocation [99] and component architectures [103]. Consequently,
its implementation has been aggressively optimized since its first versions. It is
interesting to note that it is also useful for implementing reflective extensions,
since it provides basic (and necessary) features for providing behavioral reflec-
tion. Structural intercession, on the other hand, is not supported in Java, except
in a limited manner when the virtual machine is running in debug mode.

The fact that so much information is present in the Java bytecode motivated
many reflective extensions to be based on bytecode transformation (e.g. Dalang [117],
Kava [119], Jinline [105], Javassist [18, 19]). Transforming bytecode presents sev-
eral advantages over source code transformation, as done by OpenJava [107] and
Reflective Java [123] for instance. First, the source code is not always available,
in particular when considering binary COTS (commodity off-the-shelf) compo-
nents or distributed systems, and second, since Java supports dynamic class
loading, this makes it possible to transform classes lazily as they are loaded. An
exhaustive discussion of Java bytecode transformation approaches can be found
in [105].

Apart from approaches based on source code transformation or bytecode
transformation, some approaches are based on a modified or extended virtual ma-
chine. We mentioned the case of Iguana/J in the previous section. Guarang [77]

23

and MetaXa [56, 40] are other examples. Some approaches also use the fact that
Java features Just-In-Time (JIT) compilation to operate at this level (e.g. [69,
84]). Finally, it is also possible to use the debugging interface of Java [101],
although this interface is only available when the virtual machine is run in a
(costly) debug mode.

Among code transformation approaches providing runtime behavioral reflec-
tion, it is interesting to note that some approaches are based on the use of
interception objects rather than direct code transformation: this is the case of
Dalang, the MOP of ProActive [12], and the standard dynamic prozies intro-
duced with the JDK 1.3 [100]. The major inconvenient of this approach is to
introduce two objects (the interceptor and the original object) when conceptu-
ally there is only one: this gives rise to the famous “self problem” first discussed
in [61]. Other disadvantages of this approach are discussed in [118], where Welch
and Stroud motivate the evolution of Dalang, based on interceptor objects, to
Kava, based on bytecode rewriting.

4.3 Techniques for Efficient Reflection

Making reflective systems efficient is a truly hard challenge. Since reflection is
interpretative by nature, it is highly inefficient. Therefore, if it is to be used
intensively in real-world systems, its applicability is compromised. Not surpris-
ingly, a lot of research efforts have been devoted to tackle the efficiency issue of
reflective systems. There are indeed two major approaches: the first one, explored
in this section, relates to techniques that basically try to anticipate execution in
order to replace interpretation by compilation whenever possible — at the price
of dynamicity; the second, that will be discussed in Section 4.4 rather focuses on
a partial use of reflection, for instance by providing means for users to precisely
select where reflective computation is required. The underlying intuition of this
second approach is that, if reflection is seldom used, at a few appropriate places,
then its inefficiency may not be such a big issue.

In this section, we discuss the three main implementation techniques for
efficient reflective languages, following [16]: currying, partial evaluation, and
compile-time MOPs. This discussion includes a formal representation of the ex-
ecution model advocated by each technique. We will extend this in Section 4.4
by proposing a formal representation of partial reflection, that will clarify the
complementarity between the two approaches.

First of all, let us give the execution expression of a standard (i.e. non-
reflective) program. Let P denote the text of this program. In order to execute
the program, we need a compiler or an interpreter capable of doing so, that
is, giving meaning to the program text. Let £ be a semantic function, which
intuitively denotes a compiler or an interpreter capable of executing a program
text. The result of £[P] (the application of £ to the program text denoted by P)
is a function, in other words, a directly executable program. To model the input
and output of a program, we will consider that this function takes as input an
initial environment and produces as output a final environment. This is a slight
shortcut, since what typically occurs is that the input data of a program is

24

first used to build the initial environment, and similarly, the final environment
is transformed to an output result (e.g. by printing). Therefore, we assimilate
data and environments.

The execution equation of a standard program is:

E[P](D) where &: Prog— (Env — Env) (NR)

Prog is the set of program texts (programs for short), and Env is the set of
environments (data for short). The result of £[P] is thus a function that takes
D (initial environment) as input to produce the result (final environment).

Now, let L be a metaprogram that also includes the program of the inter-
preter, P be a base-level program, and D be the base-level data given to P.
Then the execution of a reflective program is described as follows:

E[L)(P,D) where & : Prog — (Prog x Env — Env) (R)

The result of [L] is now a function that takes both P and D as input. In other
words, the metaprogram L is executed to interpret the base-level program P
with the data D.

Currying Currying is a method to change the arity of a function, named after
the logician H. B. Curry. The technique of currying was applied to the CLOS
MOP [53]. The idea is to make {[L] return a function that takes as single
parameter the program P (expression) and that returns yet another function
that takes as single parameter D (environment):

E[L)(P)(D) where &: Prog — (Prog — (Env — Env)) (@)

Currying by itself does not improve performance, and actually involves chang-
ing the MOP. But this technique allows the protocol implementor to cache the
intermediate result £[L](P) and reuse it later. This way, less metacomputation
is executed at runtime. Note that £[L](P) may even be computed in advance at
load or compile time.

The currying technique has its disadvantages: it requires transforming a pro-
tocol, hence making it difficult to use, and requires the language to provide
efficient lambda functions (so that applying cached functions actually represents
a gain).

Partial Evaluation Partial evaluation [22, 47] is a technique developed to
deal with late bindings that can be computed at compilation time. Given a
program and some statically-known input values, partial evaluation propagates
this knowledge within the program and computes an optimized version of the
program, semantically equivalent, that works on the unknown input values. For
instance, if Dy is the static input to P and Dy the unknown input, then ap-
plying a partial evaluator Pg yields a program P’ = £[Pg](P, Dy) such that:
E[P'](D2) = £[P](D1, Ds).

25

Several attempts have been made to apply this technique to “compile away
the metalevel” as much as possible. For instance, [3] propose an approximation
of the reflective tower of metacircular interpreters that relies on duplication and
sharing of environments among interpreters, which is then optimized through
partial evaluation. In [8], partial evaluation techniques are applied to eliminate
the use of the reflection API of Java as much as possible, resulting in notable
improvements in the execution of the serialization framework, for instance.

The basic idea is to partially evaluate the metalevel program with respect to
the base program. The execution model of the partial evaluator is:

¢[ElPe](L, P)](D) (PE)

Note that {[Pg](L, P) is equivalent to £[L](P) in the currying technique (ex-
pression (C)), except that it is a program text (to which ¢ must be applied
in order to be executed), not a (directly executable) function. Apart from the
benefit of not requiring lambdas, this approach has the benefit of not requiring
to change the protocol. However, this technique is extremely difficult to imple-
ment, as acknowledged by all researchers in this field. For instance, Asai et al. are
unable to reach fully automatic partial evaluation in their model. Much work
remains to be done for partial evaluation to become widely applicable.

Compile-time MOPs The compile-time MOP is a technique developed by
Shigeru Chiba, originally for bringing efficient reflective abilities to the compiled
language C++, called OpenC++ [15] (version 2). This technique was later on
transposed in the Java world with OpenJava [108] and Javassist [18, 19]. The idea
of a compile-time MOP is to generate a new program (text) from the application
of the metaprogram. A compile-time MOP hence substitutes the result of the
metaprogram (applied to the original program) for the original program:

E[ENLI(P)I(D) (CM)

Compared to currying, a compile-time MOP does not cache the function
returned from the application of the metaprogram. It is therefore much more
efficient, but is less dynamic, since it generates a program: the result of ([L](P)
is a new program text. The difference with partial evaluation is just that a
general-purpose partial evaluator is not used. Rather, this technique acts as a
partial evaluator specialized for L.

As mentioned in [66], although being a static metaprogramming technique,
compile-time MOPs do not imply that everything is done prior to execution. For
instance, Javassist exploits the fact that Java gives access to parts of program
text (class definitions) at load time, which occurs during execution. Javassist is
therefore a compile-time MOP operating at load time, also called a load-time
MOP. Metacomputations can also be moved to runtime, if dynamic compilation
is available. As argued in [49], “although it costs something to run the compiler
at runtime, runtime code generation can sometimes produce code that is enough
faster to pay back the dynamic compile costs”. The great impact of just-in-time

26

compilers in modern virtual machines, like for Java, actually confirms this fact,
all the more as their techniques are ever improving. Logically, attempts have been
made to build dynamic compile-time MOPs [69], operating as JIT compilers.

Finally, it is interesting to notice that compile-time MOPs can be used to
implement runtime MOPs: hook introduction can indeed be viewed as a static
metaprogramming technique. Chiba has shown how Javassist can be used to
quickly implement a simple runtime MOP [18]. In fact, compile-time MOPs
are advanced macro processing systems, which have the particularity that the
data structures used for processing are metaobjects, rather than abstract syntax
trees. Chiba has highlighted that this very difference makes compile-time MOPs
particularly well-suited to easily implement a large range of transformations of
object-oriented programs [17].

4.4 Partial Reflection

The idea of partial reflection was first motivated in the 1990 OOPSLA /ECOOP
workshop on Reflection and Metalevel Architectures in Object-Oriented Pro-
gramming [45]. First of all, Brian Smith asserted that there exists a continuous
spectrum of causal connection, between a base level and a metalevel. One end of
the spectrum represents traditional, non-reflective, systems, while at the other
end lie systems where the causal connection is full, like in 3-Lisp. In between
are partial connections, and Smith argued that this is where most real world
problems lie, and that research efforts should focus on this middle range. During
this workshop, the inefficiency of reflection was discussed. Reflection was said to
be inefficient because, as opposed to compilation, which consists in embedding a
set of assumptions, reflection retracts some of these assumptions. Having such
retractions everywhere, to achieve full reflection, is the cause for inefficiency.
Therefore the idea that careful consideration must be taken when choosing what
needs to be reflected upon was suggested: this is partial reflection. At that time,
nothing was indeed said about what it means for a system to be partially reflec-
tive, or what means should be provided to specify the partiality of reflection.

In this section, we first propose a formal definition of the execution model ad-
vocated by partial reflection. Then we discuss approaches to selective reification
(Section 4.4). The issue of how selectivity is defined is the subject of Section 4.4,
while Section 4.4 examines the problem of specifying the actual protocol between
base objects and metaobjects, including the shape of reifications.

Execution model We hereby formulate an attempt to describe the approach of
partial reflection with execution expressions, as in Section 4.3, with the objective
to clarify the difference and complementarity between partial reflection and other
approaches to efficient reflection. The idea of partial reflection is to precisely
select a subset of a program P to be reflected upon, say P,.. Conceptually, P, is
actually interpreted by a (localized) metalevel program L, while the rest of the
program, say P, is executed directly. Considering | P| as denoting the size of a
program P (e.g. in terms of structures and execution points), we can introduce

27

p as the degree of reflectivity of a partially-reflective program:

,_ I
P

p€10,1]

This arbitrary measure is an intuitive formalization of the fraction of reified
structures and execution points in a program. Since |P| = | P,| +| P/, it follows
that |Py| = (1 — p)|P|. In the partial reflection approach, execution is therefore
described by two coezisting expressions:

[P)(D) and E[L](P, D) (PR)

The left expression of (PR) describes the part of the program that is directly
executed and is therefore the same as (NR). The right expression describes the
reflected part of the program, and is therefore similar to (R). This double ex-
pression illustrates the fact that implementation techniques presented in the
previous section are not incompatible with partial reflection, since they can be
applied to make {[L](P., D) more efficient. The difference in perspective is also
highlighted, since partial reflection allows an hybrid execution model, made up
of two simultaneous execution expressions.

Approaches to partial reflection can therefore be discriminated based on the
possibilities they offer to specify p, as well as on the permanency of p (see
Section 4.2). Dynamic approaches that support dynamic binding at runtime will
typically make it possible to highly control the degree of reflectivity of a partially-
reflective application during execution. Conversely, fully static approaches will
provide means to fix p once and for all before execution.

Selective reification A major dimension of specifying the degree of reflectiv-
ity of an application lies in selectively specifying what should be reified in an
application. Considering a program P as a set of structures {s € Struct} and a
set of execution points {ep € ExecPoints}, p is determined by the function:

7 : {Struct, ExecPoints} — {True, False}

that specifies which structures and execution points of P should be reified. It
has to be noted that this definition of 7 is theoretical: most approaches do not
discriminate execution points as such but are restricted to selecting expressions
in the code (which can be seen as families of execution points). Some approaches
do not take structures into account, and yet others do not even give explicit
control over reified expressions.

For instance, Iguana [42] —the first approach to our knowledge aiming at
offering selective reification in a systematic, fine-grained, and flexible manner—
makes it possible to select program elements down to expressions (not execution
points). Metaobject protocols can be defined for some reification categories, and
be attached to structures or expressions in program code.

Conversely to Iguana, a large number of runtime reflective extensions are
only targeted at controlling method invocation. Most of these extensions, like

28

Dalang [117], Reflective Java [123], the ProActive MOP [12], MetaXa [56, 40] and
Guarand [77] (all in the context of Java), only make it possible to select which
classes are made reflective. However this selection does not mean that a class is
reified as such, but that all method invocations on (instances of) this class will
be reified: the set of execution points is implicit, determined at a coarse-grained
level, the class.

Definition approach Specifying what should be reified in an application con-
sists in telling the implicit MOP what to do. This can be done intrusively,
i.e. directly in base code, using an explicit MOP (Section 2.2) or annotations,
or non-intrusively, for instance via configuration files. This specification can be
either extensional or intentional.

An extensional definition means that the programmer is responsible for ex-
plicitly identifying particular elements that are reified by the implicit MOP. This
is usually done using an explicit MOP or annotations. For instance, the MOP
of ProActive [13] only gives access to the implicit MOP via the explicit MOP.
In Iguana [42], the task of (metaobject) protocol selection is done by placing an-
notations in the application source code in order to indicate reflective elements:
reifying the expression obj->method() using protocol P is done by manually
wrapping this expression as (obj->method() ==> P). OpenJava [107] also re-
lies on a kind of annotations placed in the source code.

A less intrusive, more declarative approach is used in, e.g. Kava [119], Re-
flective Java [123], and Iguana/J [84], with configuration files. For instance, Re-
flective Java provides a small script language to specify links between base and
metalevels. But still, most of the declaration is extensional (though not intrusive,
as opposed to annotations). Iguana/J allows a small level of intentionality by al-
lowing wildcards in its association declarations. Nevertheless, a fully-intentional
definition would rather require the possibility to define predicates over program
elements. Logic Metaprogramming [124, 125, 25] (LMP) is a brilliant example of
intentional definition, where logic facts and inference rules are used to determine
elements to reflect upon and associated metalevel computation. Intentional defi-
nition has been widely accepted in approaches to aspect-oriented programming,
presented in Section ?77.

Actual MOP definition With actual MOP definition, we refer to the definition
of the actual interface of metaobjects used by an implicit MOP. For instance,
an Iguana [42] metaobject controlling the invocation of methods has a method
named invoke that takes as parameters an object, a method pointer, and actual
invocation arguments packed in an array. Iguana/J [84] adopts a similar interface
too, except that the method name is execute, the order of parameters is not the
same, and the method pointer is rather a Method object, as provided by Java.
In Kava [119], the metaobject controlling field read accesses must have both a
beforePutField and an afterPutField method that take as parameters the
name of the accessed field and the field value.

29

All reflective systems therefore provide fixred MOPs: as flexible as they may
be, they impose the actual interfaces of metaobjects. Furthermore, since they
do not allow the precise selection of reified information, they all adopt a gen-
eral approach, reifying all the information describing the intercepted operation
(although the shape may change, between plain parameters, arrays, or object
wrappers). This is unfortunate when a metaobject actually does not need some
part of this information (or worse, if it does not need any information at all),
because reification has a cost, since it may imply repetitively constructing arrays
or instantiating some wrapper classes. Furthermore, these MOPs only reify the
information that describes the intercepted operation as implicitly conceived by
their designers.

Consider the case of Reflective Java [123]: it interestingly introduces the
notion of method categories, as a way to distinguish between reified method
invocations. In their script language, users can for instance specify that get
methods are of one category, while put methods are of another category. This
kind of classification is obviously interesting for better metalevel engineering.
However the way that it is done in Reflective Java is quite questionable: the
category information is passed at runtime to metaobjects as an extra parame-
ter, which is typically tested via a switch statement in order to determine the
corresponding metabehavior —a not-so-nice object-oriented programming prac-
tice indeed. Therefore, although Reflective Java already represents a progress
over other approaches that do not support such classification within a bunch of
reified operations, it further highlights the limitation of fixed MOPs. In the case
of categories, one would like to be able to have different metaobject methods
invoked depending on the category of the reified method invocation.

High flexibility in specifying the MOP —in its most essential meaning of
information bridge between base objects and metaobjects— has therefore not
been addressed by runtime reflective systems. A possible reason for this, apart
from the fact that it may not have been identified as a key issue by runtime MOP
designers, may reside in the difficulty of making this decision accessible to users.
If we consider compile-time and load-time MOPs, only Javassist version 2 and
above [19] actually makes it possible to extract whatever piece of information
from a base-level program in a convenient manner.

5 Open Implementations

Since the beginning of this chapter, reflection has always been considered in the
context of programming languages. Even though we have discussed the notion
of reflective applications that exhibit specifically-tailored reflective capabilities,
as motivated by [30], the focus has always been to reify elements of programs
related to their structure (as defined by the language) or their execution seman-
tics. This section discusses a more general notion of reflection, which led to the
introduction of open implementations. Section 5.1 is an introduction to the con-
cept, Section 5.2 explains why open implementations are important, and finally,

30

Section 5.3 surveys techniques and approaches for providing open implementa-
tions.

5.1 Implementational Reflection and Open Implementations

Ramana Rao first established that the conceptual framework of reflection may
be useful not only for building programming languages but also for building mal-
leable systems of all kinds [82]. Indeed, as he remarks, most significant systems
do not only depend on the language constructs and semantics, but also on the
other systems they make use of. Rao therefore reformulates the framework of
reflection in terms of a system’s implementation. To the concept of computa-
tional reflection, he opposes that of implementational reflection, and to that of
reflective architecture, that of open implementation:

Implementational reflection
Reflection that involves inspecting and/or manipulating the im-
plementational structures of other systems used by a program.

Two observations can help understand the relation between computational re-
flection and implementational reflection [82]. On the one hand, a language in-
terpreter is itself the implementation of a language: this suggests that compu-
tational reflection is a special case of implementational reflection. On the other
hand, the interface of any system can be seen as a language®, and the implemen-
tation of the system as an interpreter for that language: this now suggests that
implementational reflection is a special case of computational reflection. Rao
logically suggests that computational reflection and implementational reflection
are just different characterization of the same essential capability.

As with computational reflection, basic access to implementational aspects
of a system does not make it an open implementation as such. The difference is
similar to that made between reflective facilities and fully reflective architectures
(Section 1.4). Recall that a language with a reflective architecture allows much
more open-ended access to the implementation of a language [64], in particu-
lar by allowing users to write code that is called by the language interpreter.
Therefore the concept of a reflective architecture can be reformulated in terms
of the implementation of a system, and leads to the concept of open implemen-
tation [82]:

Open implementation

A system with an open implementation provides (at least) two
linked interfaces to its clients: a base-level interface to the func-
tionality of the system similar to the interface of other such
systems, and a metalevel interface that reveals some aspects of
how the base-level interface is implemented.

8 This statement by Rao, also mentioned elsewhere [45], might be a slight overstate-
ment indeed: the interface of a system may be more precisely viewed as a vocabulary
rather than as a language as such, although there is a language behind the correct
use of this vocabulary.

31

base level interface

| b L ,i _ metalevel

| | 1 .
I_—'_]’*:***ﬂ:]’fift interface

Fig. 4. A system with an open implementation. (From [Rao, 1991].)

One of the roles of the metalevel interface is to specify points at which users
can add code that implements some base-level behavior with different semantics
and/or performance (Fig. 4). Rao notices that the causal connection require-
ment of reflection is straightforwardly met since metalevel code actually directly
implements aspects of the base level. Indeed, reflective systems providing meta-
object protocols are open implementations of interpreters (e.g. [53, 31]), and
systems providing compile-time MOPs are open implementations of compilers
(e.g. [58, 15]).

Patrick Steyaert has proposed a very interesting account of reflection [91],
which is entirely based on open implementations rather than on a tower of
metacircular interpreters. This work is focused on open implementations for pro-
gramming languages, proposing a framework for object-based languages. In [26],
this approach is used to construct the reflective tower based on open implemen-
tations, bringing a cleaner understanding of reflection. In his PhD dissertation,
Steyaert actually uses open implementations as a criteria to differentiate a lan-
guage with reflective facilities from a language with a reflective architecture: the
former only requires implementational access to the metasystem, while the latter
derives from access to the metalevel interface of an open-implemented metasys-
tem. The open implementation of a programming language is implemented in
one language, called the implementation language, and actually implements a
set of languages (depending on the metalevel interface), called the engendered
languages. He further argues that not every open implementation is suitable as
the basis for a reflective architecture, introducing the notion of open implemen-
tations with reflective potential. Such potential consists in that “all first class
values (primitive values, functions, objects, etc.) can freely travel between im-
plementation language and engendered language, and that both languages can
transparently use each others first class values”. This property is known as lin-
guistic symbiosis [46].

The idea of metacircularity, which refers to the fact that an interpreter is
written in the same language that it interprets, does not really fit well in the
realm of open implementations. Rao discusses this issue in the context of Sil-
ica, a window system: although the metalevel of Silica is written in the same

32

language used to implement its base level, it is indeed not written in the base-
level “language” that it provides. Actually, it does not even make sense to write
a window system in the “window system language” that it implements. This
observation seems to apply as well to all systems that are not programming
language interpreters.

5.2 Why Implementations Should Be Opened Up

The idea to expose implementation details to clients may seem in a first place
highly contradictory to traditional software design principles. The so-called black-
boz abstraction principle is a basic tenet of software design that states that a
module should expose its functionality but hide its implementation. Following
this principle, issues of the implementation of an interface are not part of client’s
concerns, and should therefore be completely hidden from them.

However, as argued in [50], any concrete implementation of a high-level sys-
tem requires fixing a number of tradeoffs. In addition, the higher the level of a
system is, the more tradeoffs there are [52]. As a matter of fact, it is not possible
to provide a single, fixed, closed implementation of such a system that will satisfy
all users. This is particularly true when considering performance characteristics.
In the context of programming languages, this was first noticed by Wirth:

“I found a large number of programs perform poorly because of the lan-
guage’s tendency to hide “what is going on” with the misgquided intention
of “not bothering the programmer with details.”.” [121]

A classical example used to illustrate the need to control implementation strate-
gies is that of the way instances are implemented in a class-based language [53].
Consider a class Position with two instance variables x and y, and a class
Person with potentially a thousand instance variables, corresponding to the
many properties that can actually describe a given person. It is clear that the
ideal implementation strategy for these two classes are completely different. For
Position, an array-like strategy is ideal, providing compact storage and quick
access to both variables. For Person, on the other hand, a hashtable-like strat-
egy would be more appropriate, avoiding to allocate a high amount of memory
when it is highly probable that not all variables will be used.

A nefast effect of the black-box abstraction is that when facing similar issues,
clients usually “code around” the problem either by re-implementing an appro-
priate version of a module or by using existing modules in contorted ways [50]. A
reverse approach to the black-box abstraction is the so-called white-box approach,
which consists in exposing each and every detail of a system’s implementation.
For instance, an object-oriented program distributed under an open source li-
cense makes it possible for users to tune the system according to their needs.
However, giving access to the source code, although object-oriented, is not a
guarantee that the implementation is well-enough structured to allow users to
benefit from accessing it [82].

The open implementation approach therefore advocates to open up the im-
plementation, but to do so in a principled, disciplined way [82, 50]. The idea is not

33

to make it possible for users to arbitrarily alter the implementation of a system.
Using reflection parlance, an open implementation reifies some aspects of imple-
mentation, leaving others implicit [82]. An open implementation actually makes
it possible to “re-make” some of the tradeoffs in the system to better suit their
needs [52], as well as customizing behavior. As a matter of fact, object-oriented
programming, thanks to inheritance and polymorphism, is a particularly useful
paradigm for developing open implementations. Therefore, an open implementa-
tion provides a well-defined interface to the implementation of the system. This
interface can be exploited to create either useful semantical variations or efficient
implementations for particular situations. As Rao argues, “explicitly focusing on
the metalevel as a separate and first-class interface to export to the user forces
a greater attention to exposing important design and implementation choices”.

Kiczales has coined this framework as the dual interface framework. Under
this framework, the client first writes a base program through the traditional
interface, and then, if necessary, writes a metaprogram through the “adjust-
ment interface” to customize the underlying implementation to meet the needs
of the base program. He makes an enlightening digression to explain the intu-
ition behind this model, based on a parallel between programming and physics,
introducing the notion of physically correct computing [50]:

“There is a deep difference between what we do and what mathematicians
do. The ‘abstractions’ we manipulate are not, in point of fact, abstract.
They are backed by real pieces of code, running on real machines, con-
suming real energy and taking up real space. To attempt to completely
ignore the underlying implementation is like trying to completely ignore
the laws of physics; it may be tempting but it won’t get us very far.
Instead, what is possible is to temporarily set aside concern for some (or
even all) of the laws of physics. This is what the dual interface model
does: In the base-level interface we set physics aside, and focus on what
behavior we want to build; in the meta-level interface we respect physics
by making sure that the underlying implementation efficiently supports
what we are doing. Because the two are separate, we can work with one
without the other, in accordance with the primary purpose of abstraction,
which is to give a handle on complerity. But, because the two are cou-
pled, we have an effective handle on the underlying implementation when
we need it. I like to call this kind of abstraction, in which we sometimes
elide, but never ignore the underlying implementation ‘physically correct
computing’.”

Finally, another interest of opening up implementations is that the system
need not provide direct support for functionalities that only some users want.
Users can provide these for themselves using the metalevel interface. This point
was particularly critical for Kiczales et al. as they were working on the CLOS
standard, facing a traditional dilemma: needs of backward compatibility that
were contradictory to important goals of an improved design, allowing both
extensibility and efficiency. Opening up CLOS, thanks to the CLOS MOP, made

34

it possible to support a “CLOS region”, rather than a single “CLOS point” [53],
hence solving the dilemma they were facing.

5.3 Providing Open Implementations

Providing an open implementation of a system is naturally a more challenging
task than simply providing a standard, closed implementation. In this section
we first discuss the particularity of open implementation design. Then we review
open implementation interface styles that have been identified in the literature.
We subsequently discuss the kind of techniques that can be useful to open im-
plementations. Finally, the crucial issue of locality is analyzed.

Designing the metalevel interface In [52], interesting elements about the
particularities of MOP design versus traditional language design are discussed.
We hereby generalize this discussion, by contrasting open implementation (rather
than just MOP) design versus traditional system (rather than just programming
language) design.

Open System AN

@ Ch> e

/)

,
.
,
,
.
.
,
.
,

Fig. 5. Contrasting traditional system design (left) and open implementation design
(right). (Adapted from [Kiczales et al., 1993].)

A system designer typically considers a range of use cases and features the
system should support elegantly. The system is designed accordingly. This pro-
cess will generally be iterative and ad hoc, but the point is that the designer is
working with two different levels of design at the same time: the level of design-
ing particular use cases in terms of a given system, and the level of designing the
system itself to support the lower-level design processes. This is illustrated on
the left part of Fig. 5. Open implementation design is similar, with the addition
of yet one more level of design process. In this case, the designer is not thinking
about a single system that can be used to handle the use cases, but rather a
whole range of systems, that can support an even wider set of use cases. This is
illustrated on the right part of Fig. 5.

Therefore, the first question that pops up when designing an open implemen-
tation is what range of implementations users should be able to specify [58]. As

35

Kiczales puts it, “opening an implementation critically depends on understand-
ing not just one implementation the clients might want, but also the various
kinds of variability around that point they might want” [50]. Not surprisingly,
getting a clear understanding of the desired implementation space is inherently
iterative. It is indeed difficult to reach enough generality and fine enough granu-
larity to generate a wide variety of implementations. This fact tends to sustain
the idea that there may not be any single perfect open implementation design.
Iterative refinement is the way to go, but as Kiczales highlights, user feedback
and complaints about previous systems and implementations take on tremen-
dous value in this quest. The CLOS MOP is acknowledged to be the fruit of
continuous refinement based on the feedback from a large community over five
years [53, 52].

An important objective of an open implementation is that users should be
able to describe the aspects of the implementation that they care about, without
talking about others: this is locality, an important issue that we actually already
discussed in the context of reflective systems (Section 3). For instance, meta-
objects per object or per class, group-wide reflection, hybrid group reflection,
fine-grained MOPs and other approaches to the metalink can all be viewed as
experiments with locality [50]. We shall come back on this issue at the end of
this section on open implementations.

Open implementation interface styles In a study on open implementation
design, Kiczales et al. presented three open implementation interface styles that
are recurrent alternatives when trying to conceive open implementations [54].
These three styles for module interface design are given unfortunate names of B,
C, and D (when style A is the black-box design). We will rather refer to them as
declarative style, strategy style and layered style, respectively (we believe these
names match the characterization done by the authors):

declarative style: the interface makes it possible for the user to describe, in a
simple declarative language, the expected usage of the module.

strategy style: the user is given the possibility to choose the appropriate strat-
egy in a fixed list of available strategies.

layered style: the user may, in addition to selecting one of the built-in strate-
gies, provide a new strategy.

It has to be noted that all these styles are optional, in the sense that the user
is left with the possibility of not declaring, selecting or providing anything, and
get a default implementation strategy.

[54] then discusses the associated tradeoffs and types of appropriate situations
of these styles. The declarative style has the advantage of not constraining the
implementation, but it makes it difficult for the client to know how the provided
information influences the module strategy. This approach is most appropriate
when it is easy to choose an effective implementation strategy if the client behav-
ior is known. Conversely, with the strategy style, the client precisely selects the
strategy to use. However, he might choose badly. This style is appropriate when

36

there is a few candidate implementation strategies, but it is difficult to choose
among them automatically. Finally, in the layered style the module adopts the
strategy provided by the client. It has the same advantage as the strategy style,
but introduces a higher level of complexity for both parties: designing a module
to support replaceable strategies might be difficult, and it might be hard as well
for the client to build a new strategy. Therefore this approach is most adequate
when it is not feasible for the module to implement all strategies that might be
useful to the clients. It actually has the advantage of being a layered interface
design, in the sense that it subsumes both the black-box style (if the user does
not specify anything), and the strategy style (if the user is satisfied with a built-
in strategy). This makes layering a good technique to balance ease of use and
power.

Reflection and open implementations The different interface styles we have
just discussed may typically be implemented explicitly, via the use of design
patterns: for instance, the strategy design pattern [37] is a good candidate for
implementing the strategy and layered open implementation interface styles.
However, as Rao mentions, the architecture or facilities prescribed by the meta-
level interface must not prevent efficient and effective implementation of the base
level [82]. What Rao is pointing at is that providing ezplicit representations of
any aspect of a system’s implementation (e.g. through strategy objects) may
have consequences for the resulting efficiency of the system. Therefore, explicit
reification may not always be appropriate. Rao hence underlines that lazy reifi-
cation, or reification on demand, is a typical strategy for making implementation
state explicit.

An interesting observation is then made: reflective capabilities of an object-
oriented language is a possible implementation technique for lazy reification, as
we have seen since the beginning of this chapter. In other words, metaobject
protocols are a possible approach to selectively reify some elements of a system’s
implementation in order to open it. This idea is further discussed in [42]. The
MOP-based approach is contrasted to an extremist open implementation ap-
proach where most of the implementation aspects are reified. Using fine-grained
MOPs (Section 3.2), metalevel objects are exposed for certain features of the
underlying (black-box) system, precisely selected by the client of the system.
Furthermore, since metaobjects can be changed at runtime, dynamic adaptation
of the selected features can be achieved through dynamic rebinding of metalevel
objects. Therefore, the loop is closed: open implementations come from a gen-
eralization of the ideas of computational reflection to any kind of system, and
computational reflection can be used to achieve open implementations.

Mastering Locality: Towards Aspect-Oriented Programming The issue
of locality has been recurrently mentioned since the beginning of this chapter.
In [52], five coarse notions of locality are discussed, which are neither sharp nor
orthogonal, but yet useful to talk about this rather intuitive notion. Again, they

37

are discussed in the context of metaobject protocols, but we generalize to the
case of open implementations:

— feature locality refers to the fact that an open implementation should provide
access to individual features of the base system;

— textual locality means that convenient means should be provided for users
to indicate what behavior of the base system they would like to be different;

— object locality is the possibility to affect the implementation on a per-object
basis;

— strategy locality refers to the possibility to affect individual parts of an im-
plementation strategy;

— implementation locality points to the fact that a simple customization should
be simple to implement: good default implementation must be provided,
along with means for incremental deviation from that default.

In an obstinate effort to understand the issue of locality, Kiczales actually
ended up proposing Aspect-Oriented Programming, discussed in the next sec-
tion. We hereby would like to report on the early manifestations of the underlying
intuition, which is made explicit in [50]. Kiczales makes an analogy with a dis-
cussion between humans to get some insight on the problems that appear when
trying to concretely work with the dual interface framework: when a provider and
a client discuss, they most of the time do so “at the base level”, i.e. they actually
talk about the functionality of a system. But from time to time, they go “meta”
and start talking about how functionality should be achieved, and other non-
functional requirements. The following insightful observations are hence made:

“l...] very often, the concepts that are most natural to use at the meta-
level cross-cut those provided at the base level.”

“l...] We are, in essence, trying to find a way to provide two effective
views of a system through cross-cutting localities.”

“[...] The structure of complex systems is such that it is natural for people
to make this jump from one locality to another, and we have to find a
way to support that.”

[50]

At that time, only the problem was formulated. Apart from recognizing that
the dual-interface framework might therefore very well evolve to a multi-interface
framework, no sketch of a solution was given to this locality issue. A few years
later, and after a bunch of concrete case studies, the first paper presenting
Aspect-Oriented Programming [55] was published at ECOOP.

References

[1] P. America, editor. Proceedings of the 5th European Conference on Object-
Oriented Programming (ECOOP 91), volume 512 of Lecture Notes in Computer
Science, Geneva, Switzerland, July 1991. Springer-Verlag.

38

2]

M. Ancona, W. Cazzola, G. Dodero, and V. Gianuzzi. Channel reification: a
reflective model for distributed computation. In Proceedings of IEEE Interna-
tional Performance Computing, and Communication Conference (IPCCC 98),
pages 32-36. IEEE Computer Society Press, Feb. 1998.

K. Asai, S. Matsuoka, and A. Yonezawa. Duplication and partial evaluation — for
a better understanding of reflective languages. Lisp and Symbolic Computation,
9(2/3):203-241, 1996.

H. P. Barendregt. The Lambda Calculus: Its Syntar and Semantics. North-
Holland, 1984.

G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran,
N. Parlavantzas, and K. Saikoski. A principled approach to supporting adap-
tation in distributed mobile environments. In Proceedings of the International
Symposium on Software Engineering for Parallel and Distributed Systems (PDSE
2000), pages 3—-12, Limerick, Ireland, 2000.

D. G. Bobrow, R. P. Gabriel, and J. L. White. CLOS in context — the shape of
the design space. In Paepcke [80], pages 29-61.

K. A. Bowen. Meta-level techniques in logic programming. In Proceedings of the
International Conference on Artificial Intelligence and its Applications, Singa-
pore, 1986.

M. Braux and J. Noyé. Towards partially evaluating reflection in Java. In
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, pages 2-11, Boston, MA, USA, Jan. 2000. ACM Press. ACM
SIGPLAN Notices, 34(11).

J.-P. Briot and P. Cointe. Programming with explicit metaclasses in SmallTalk-
80. In OOPSLA 89 [79], pages 419-431. ACM SIGPLAN Notices, 24(10).

J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and distribution in
object-oriented programming. ACM Computing Surveys, 30(3):291-329, Sept.
1998.

A. G. Bromley. The evolution of Babbage’s calculating engines. Annals of the
History of Computing, 9(2):113-136, April-June 1987.

D. Caromel, F. Huet, and J. Vayssiere. A simple security-aware MOP for Java.
In A. Yonezawa and S. Matsuoka, editors, Proceedings of the 3rd International
Conference on Metalevel Architectures and Advanced Separation of Concerns
(Reflection 2001), volume 2192 of Lecture Notes in Computer Science, pages
118-125, Kyoto, Japan, Sept. 2001. Springer-Verlag.

D. Caromel, W. Klauser, and J. Vayssiere. Towards seamless computing and
metacomputing in Java. Concurrency Practice and Exzperience, 10(11-13):1043—
1061, Sept. 1998.

W. Cazzola. Evaluation of object-oriented reflective models. In Proceedings
of ECOOP Workshop on Reflective Object-Oriented Programming and Systems
(EWROOP 98), 12th European Conference on Object-Oriented Programming
(ECOOP 98), 1998.

S. Chiba. A metaobject protocol for C+-+. In Proceedings of the 10th Inter-
national Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 95), pages 285-299, Austin, Texas, USA, Oct. 1995.
ACM Press. ACM SIGPLAN Notices, 30(10).

S. Chiba. Implementation techniques for efficient reflective languages. Technical
Report 97-06, Department of Information Science, University of Tokyo, 1997.
S. Chiba. Macro processing in object-oriented languages. In Proceedings of
Technology of Object-Oriented Languages and Systems (TOOLS Pacific ’98),
pages 113-126, Australia, November 1998. IEEE Computer Society Press.

[18]

[19]

[20]

[21]

[23]

[24]

39

S. Chiba. Load-time structural reflection in Java. In E. Bertino, editor, Proceed-
ings of the 14th European Conference on Object-Oriented Programming (ECOOP
2000), number 1850 in Lecture Notes in Computer Science, pages 313-336,
Sophia Antipolis and Cannes, France, June 2000. Springer-Verlag.

S. Chiba and M. Nishizawa. An easy-to-use toolkit for efficient Java bytecode
translators. In F. Pfenning and Y. Smaragdakis, editors, Proceedings of the 2nd
ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Com-
ponent Engineering (GPCE 2003), volume 2830 of Lecture Notes in Computer
Science, pages 364-376, Erfurt, Germany, Sept. 2003. Springer-Verlag.

P. Cointe. Metaclasses are first class: the ObjVLisp model. In Meyrowitz [74],
pages 156-162. ACM SIGPLAN Notices, 22(12).

P. Cointe, editor. Proceedings of the 2nd International Conference on Metalevel
Architectures and Reflection (Reflection 99), volume 1616 of Lecture Notes in
Computer Science, Saint-Malo, France, July 1999. Springer-Verlag.

C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Proceedings
of the 20th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 493-501, Charleston, South Carolina, Jan. 1993.
ACM Press.

K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools
and Applications. Addison-Wesley, 2000.

W. De Meuter. Agora: The scheme of object-orientation, or, the simplest MOP
in the world. In I. Moore, J. Noble, and A. Taivalsaari, editors, Prototype-based
Programming: Concepts, Languages and Applications, pages 247-272. Springer-
Verlag, 1999.

K. De Volder and T. D’Hondt. Aspect-oriented logic meta-programming. In
Cointe [21], pages 250-272.

K. de Volder and P. Steyaert. Construction of the reflective tower based on open
implementations. Technical Report VUB-PROG-TR-95-01, Vrije Universiteit
Brussels, Belgium, Jan. 1995.

J. des Rivieres. The secret tower of CLOS. In Proceedings of the OOP-
SLA/ECOOP 90 Workshop on Reflection and Metalevel Architectures in Object-
Oriented Programming, Oct. 1990.

J. des Rivieres and B. C. Smith. The implementation of procedurally reflective
languages. In Proceedings of the Annual ACM Symposium on Lisp and Func-
tional Programming, pages 331-347, Aug. 1984.

E. W. Dijkstra. The structure of THE multiprogramming system. Communica-
tions of the ACM, 11(5):341-346, May 1968.

R. Douence and M. Siidholt. On the lightweight and selective introduction of
reflective capabilities in applications. In Proceedings of the ECOOP 2000 Work-
shop on Reflection and Metalevel Architectures, 2000.

R. Douence and M. Siidholt. A generic reification technique for object-oriented
reflective languages. Higher-Order and Symbolic Computation, 14(1):7-34, 2001.
J.-C. Fabre and S. Chiba, editors. Proceedings of the ACM OOPSLA 98 Work-
shop on Reflective Programming in Java and C++, Oct. 1998.

J.-C. Fabre, V. Nicomette, T. Pérennou, R. J. Stroud, and Z. Wu. Implement-
ing fault tolerant applications using reflective object-oriented programming. In
Proceedings of the 25th International Symposium on Fault- Tolerant Computing,
pages 489-498, Pasadena, CA, USA, June 1995. IEEE Computer Society Press.
J. Ferber. Computational reflection in class based object oriented languages. In
OOPSLA 89 [79], pages 317-326. ACM SIGPLAN Notices, 24(10).

40

[35]

[36]

[46]

B. Foote and R. E. Johnson. Reflective facilities in Smalltalk-80. In OOPSLA
89 [79], pages 327-335. ACM SIGPLAN Notices, 24(10).

D. P. Friedman and M. Wand. Reification: Reflection without metaphysics. In
Proceedings of the Annual ACM Symposium on Lisp and Functional Program-
ming, pages 348-355, Aug. 1984.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley, October 1994.

A. Goldberg and A. Kay. Smalltalk-72 instruction manual. Technical Report
SSL-76-6, Xerox Palo Alto Research Center, Palo Alto, California, 1976.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementa-
tion. Addison-Wesley, 1983.

M. Golm and J. Kleinéder. Jumping to the meta level, behavioral reflection can
be fast and flexible. In Cointe [21], pages 22-39.

B. Gowing and V. Cahill. Making meta-object protocols practical for operating
systems. In Proceedings of the 4th International Workshop on Object Orientation
in Operating Systems, pages 52-55, 1995.

B. Gowing and V. Cahill. Meta-object protocols for C++: The Iguana approach.
In Kiczales [51], pages 137-152.

M. Halpern. Binding. In Encyclopedia of Computer Science, page 125. Chapman
& Hall, 1993.

B. Hayes. The post-OOP paradigm. American Scientist, 91(2):106-110, March-
April 2003.

M. H. Ibrahim. Report of the workshop on reflection and metalevel architectures
in object-oriented programming. In N. Meyrowitz, editor, Proceedings of the 5th
International Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA/ECOOP 90), Ottawa, Canada, Oct. 1990. ACM
Press. ACM SIGPLAN Notices, 25(10).

Y. Ichisugi, S. Matsuoka, and A. Yonezawa. RbCl: A reflective object-oriented
concurrent language without a run-time kernel. In Proceedings of the Interna-
tional Workshop on Reflection and Meta-level Architectures, pages 24—35, Tokyo,
Japan, Nov. 1992.

N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. International Series in Computer Science. Prentice Hall,
1993.

A. Kay. Software: Art, engineering, mathematics, or science? Foreword in the
book ”Squeak: Object-Oriented Design with Multimedia Applications”, by Mark
Guzdial, Prentice Hall, 2001.

D. Keppel, S. J. Eggers, and R. R. Henry. A case for runtime code generation.
Technical Report 91-11-04, Department of Computer Science and Engineering,
University of Washington, Nov. 1991.

G. Kiczales. Towards a new model of abstraction in software engineering. In
Proceedings of the IMSA 92 Workshop on Reflection and Metalevel Architectures.
Akinori Yonezawa and Brian C. Smith, editors, 1992.

G. Kiczales, editor. Proceedings of the 1st International Conference on Metalevel
Architectures and Reflection (Reflection 96), San Francisco, CA, USA, Apr. 1996.
G. Kiczales, J. M. Ashley, L. Rodriguez, A. Vahdat, and D. G. Bobrow. Meta-
object protocols: Why we want them and what else they can do. In Paepcke
[80], pages 101-118.

G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

[54]

41

G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda, A. Mendhekar, and G. Murphy.
Open implementation design guidelines. In Proceedings of the 19th International
Conference on Software Engineering (ICSE 97), pages 481-490, Boston, Mas-
sachusetts, USA, 1997. ACM Press.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, edi-
tors, Proceedings of the 11th European Conference on Object-Oriented Program-
ming (ECOOP 97), volume 1241 of Lecture Notes in Computer Science, pages
220242, Jyvaskyla, Finland, June 1997. Springer-Verlag.

J. Kleinéder and M. Golm. MetaJava: An efficient run-time meta architecture
for Java. In Proceedings of the International Workshop on Object Orientation in
Operating Systems (IWOOS 96). IEEE Computer Society Press, 1996.

J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in SOAR: The anatomy
of a general learning mechanism. Machine Intelligence, 1(1):11-46, 1986.

J. Lamping, G. Kiczales, L. H. R. Jr., and E. Ruf. An architecture for an
open compiler. In Proceedings of the IMSA 92 Workshop on Reflection and
Meta-Level Architectures, pages 95-106. Akinori Yonezawa and Brian C. Smith,
editors, 1992.

T. Ledoux. OpenCorba: a reflective open broker. In Cointe [21], pages 197-214.
T. Ledoux and N. Bouragadi-Saddani. Adaptability in Mobile Agent Systems
using Reflection. RM 2000, Workshop on Reflective Middleware, Apr. 2000.

H. Lieberman. Using prototypical objects to implement shared behavior in
object-oriented systems. In N. Meyrowitz, editor, Proceedings of the 1st Inter-
national Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 86), pages 214-223, Portland, Oregon, USA, Oct. 1986.
ACM Press. ACM SIGPLAN Notices, 21(11).

P. Maes. Computional reflection. PhD thesis, Artificial intelligence laboratory,
Vrije Universiteit, Brussels, Belgium, 1987.

P. Maes. Concepts and experiments in computational reflection. In Meyrowitz
[74], pages 147-155. ACM SIGPLAN Notices, 22(12).

P. Maes and D. Nardi, editors. Meta-Level Architectures and Reflection. North-
Holland, Alghero, Sardinia, Oct. 1988.

J. Malenfant, C. Dony, and P. Cointe. A semantics of introspection in a reflec-
tive prototype-based language. Lisp and Symbolic Computation, 9(2,3):153-180,
1996.

J. Malenfant, M. Jacques, and F.-N. Demers. A tutorial on behavioral reflection
and its implementation. In Kiczales [51], pages 1-20.

K. V. Marke. The Use and Implementation of the Representation Language KRS.
PhD thesis, Vrije Universiteit Brussels, Belgium, Apr. 1988.

H. Masuhara, S. Matsuoka, and A. Yonezawa. An object-oriented concurrent re-
flective language for dynamic resource management in highly parallel computing.
In IPSJ SIG Notes, volume 94-PRG-18, 1994.

S. Matsuoka, H. Ogawa, K. Shimura, and H. T. Y. Kimura, K. Hotta. OpenJIT
— a reflective Java JIT compiler. In Fabre and Chiba [32], pages 16-20.

S. Matsuoka, T. Watanabe, and A. Yonezawa. Hybrid group reflective archi-
tecture for object-oriented concurrent reflective programming. In America [1],
pages 231-250.

J. McAffer. Meta-level architecture support for distributed objects. In Inter-
national Workshop on Object-Orientation in Operating Systems (IWOOS 95),
1995.

42

[72]
[73]
[74]

[75]

[76]

[77]

[78]

J. McAffer. Meta-level programming with CodA. In Olthoff [78], pages 190-214.
J. McAffer. Engineering the meta-level. In Kiczales [51], pages 39-61.

N. Meyrowitz, editor. Proceedings of the 2nd International Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA 87), Or-
lando, Florida, USA, Oct. 1987. ACM Press. ACM SIGPLAN Notices, 22(12).
H. Okamura and Y. Ishikawa. Object location control using meta-level program-
ming. In M. Tokoro and R. Pareschi, editors, Proceedings of the 8th European
Conference on Object-Oriented Programming (ECOOP 94), volume 821 of Lec-
ture Notes in Computer Science, pages 299-319. Springer-Verlag, July 1994.

H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A distributed programming
system with multi-model reflection framework. In Proceedings of the Interna-
tional Workshop on Reflection and Meta-level Architectures, pages 36—47, Tokyo,
Japan, Nov. 1992.

A. Oliva and L. E. Buzato. The design and implementation of Guarana. In
Proceedings of the 5th USENIX Conference on Object-Oriented Technologies €
Systems (COOTS 99), pages 203—216, San Diego, CA, USA, May 1999.

W. G. Olthoff, editor. Proceedings of the 9th European Conference on Object-
Oriented Programming (ECOOP 95), volume 952 of Lecture Notes in Computer
Science, Aarhus, Denmark, Aug. 1995. Springer-Verlag.

Proceedings of the 4th International Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 89), New Orleans, Louisiana,
USA, Oct. 1989. ACM Press. ACM SIGPLAN Notices, 24(10).

A. Paepcke, editor. Object-Oriented Programming: The CLOS Perspective. MIT
Press, 1993.

D. Parnas. On the criteria for decomposing systems into modules. Communica-
tions of the ACM, 15(12):1053-1058, Dec. 1972.

R. Rao. Implementational reflection in Silica. In America [1], pages 251-266.
B. Redmond and V. Cahill. Iguana/J: Towards a dynamic and efficient reflective
architecture for Java. In ECOOP 2000 Workshop on Reflection and Metalevel
Architectures, June 2000.

B. Redmond and V. Cahill. Supporting unanticipated dynamic adaptation of
application behavior. In B. Magnusson, editor, Proceedings of the 16th European
Conference on Object-Oriented Programming (ECOOP 2002), number 2374 in
Lecture Notes in Computer Science, pages 205-230, Mélaga, Spain, June 2002.
Springer-Verlag.

F. Rivard. Smalltalk: a reflective language. In Kiczales [51], pages 21-38.

M. Ségura-Devillechaise, J.-M. Menaud, G. Muller, and J. Lawall. Web cache
prefetching as an aspect: Towards a dynamic-weaving based solution. pages
110-119.

M. Shapiro, P. Gautron, and L. Mosseri. Persistence and migration for C++
objects. In S. Cook, editor, Proceedings of the 3rd European Conference on
Object-Oriented Programming (ECOOP 89), British Computer Society Work-
shop Series, pages 191204, Nottingham (GB), July 1989. The British Computer
Society, Cambridge University Society.

S. K. Shrivastava, G. N. Nixon, and G. D. Parrington. An overview of the Arjuna
distributed programming system. IEEE Software, 8(1):66-73, Jan. 1991.

B. C. Smith. Reflection and semantics in a procedural language. Technical
Report 272, MIT Laboratory of Computer Science, 1982.

B. C. Smith. Reflection and semantics in Lisp. In Proceedings of the 14th Annual
ACM Symposium on Principles of Programming Languages (POPL), pages 23—
35, Jan. 1984.

[91]

[92]
[93]

[94]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

43

P. Steyaert. Open Design of Object-Oriented Languages — A Foundation for
Specializable Reflective Language Frameworks. PhD thesis, Vrije Universiteit
Brussels, Belgium, 1994.

R. J. Stroud. Transparency and reflection in distributed systems. ACM Operating
System Review, 22(2):99-103, Apr. 1993.

R. J. Stroud and Z. Wu. Using metaobject protocols to implement atomic data
types. In Olthoff [78], pages 168-189.

R. J. Stroud and Z. Wu. Advances in Object-Oriented Metalevel Architectures
and Reflection, chapter Using Metaobject Protocols to Satisfy Non-Functional
Requirements, pages 31-52. CRC Press, 1996.

B. Stroustrup. The C++ Programming Language. Addison Wesley, third edition,
1997.

SUN Microsystems. The Java Language Specification, 1996.

SUN Microsystems. The Java Native Code API, 1996.

SUN Microsystems. Object Serialization, 1998.

SUN Microsystems. Remote Method Invocation, 1998.

SUN Microsystems. Dynamic Prozy Classes, 1999.

SUN Microsystems. Java Platform Debugger Architecture, 1999.

SUN Microsystems. Reflection API Documentation, 1999.

SUN Microsystems. Enterprise JavaBeans Technology, 2000.

SUN Microsystems. Java HotSpot Technology, 2004.

E. Tanter, M. Ségura-Devillechaise, J. Noyé, and J. Piquer. Altering Java se-
mantics via bytecode manipulation. In D. Batory, C. Consel, and W. Taha,
editors, Proceedings of the 1st ACM SIGPLAN/SIGSOFT Conference on Gen-
erative Programming and Component Engineering (GPCE 2002), volume 2487 of
Lecture Notes in Computer Science, pages 283-298, Pittsburgh, PA, USA, Oct.
2002. Springer-Verlag.

E. Tanter, M. Vernaillen, and J. Piquer. Towards transparent adaptation of mi-
gration policies. In 8th ECOOP Workshop on Mobile Object Systems (EWMOS
2002), Mélaga, Spain, June 2002.

M. Tatsubori. An extension mechanism for the Java language. Master’s thesis,
University of Tsukuba, Japan, 1999.

M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A class-based
macro system for Java. In 1st OOPSLA Workshop on Reflection and Software
Engineering (OORaSE 99), volume 1826 of Lecture Notes in Computer Science,
pages 117-133, Denver, USA, 2000. Springer-Verlag.

A. M. Turing. On computable numbers with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42(2):230-265,
1936.

A. M. Turing. Correction to: On computable numbers with an application to
the entscheidungsproblem. Proceedings of the London Mathematical Society,
43(2):544-546, 1937.

J. Vayssiere. Une architecture de sécurité pour les applications réflexives — Ap-
plication & Java. PhD thesis, Université de Nice Sophia Antipolis, 2002.

J. von Neumann. The Computer and the Brain. Yale University Press, June
1958.

M. Wand and D. P. Friedman. The mystery of the tower revealed: a non-reflective
description of the reflective tower. Lisp and Symbolic Computation, 1(1):11-37,
1988.

44

[114]

[120]
[121]
[122]
[123]
[124]

[125]

[126]

[127]

[128]

T. Watanabe and A. Yonezawa. Reflection in an object-oriented concurrent lan-
guage. In N. Meyrowitz, editor, Proceedings of the 3rd International Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA 88), pages 306-315, San Diego, California, USA, Sept. 1988. ACM Press.
ACM SIGPLAN Notices, 23(11).

T. Watanabe and A. Yonezawa. An actor-based metalevel architecture for group-
wide reflection. In Proceedings of the REX School/Workshop on Foundations of
Object-Oriented Languages (REX/FOOL), Lecture Notes in Computer Science,
pages 405-425, Noordwijkerhout, the Netherlands, May 1990. Springer-Verlag.
D. Weinreb and D. Moon. Lisp machine manual. Symbolics, Inc., 1981.

I. Welch and R. J. Stroud. Dalang - a reflective Java extension. In Proceedings
of the OOPSLA 99 Workshop on Reflective Programming in C++ and Java,
Vancouver, Canada, Oct. 1998.

I. Welch and R. J. Stroud. From Dalang to Kava — the evolution of a reflective
Java extension. In Cointe [21], pages 2-21.

I. Welch and R. J. Stroud. Kava - using bytecode rewriting to add behavioral
reflection to Java. In Proceedings of USENIX Conference on Object-Oriented
Technologies and Systems (COOTS 2001), pages 119-130, San Antonio, Texas,
USA, Jan. 2001.

R. W. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning.
Artificial Intelligence, 13(1,2), 1980.

N. Wirth. On the design of programming languages. Information Processing 74,
1974.

Z. Wu. A New Approach to Implementing Atomic Data Types. PhD thesis,
Cambridge University, 1994.

Z. Wu. Reflective Java and a reflective component-based transaction architec-
ture. In Fabre and Chiba [32].

R. Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Proceedings of TOOLS-USA 98, page 112, 1998.

R. Wuyts. A Logic Meta-Programming Approach to Support the Co-FEvolution
of Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

Y. Yokote. The ApertOS reflective operating system: The concept and its im-
plementation. In Proceedings of the 7th International Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA 92),
pages 414-434, Vancouver, British Columbia, Canada, Oct. 1992. ACM Press.
ACM SIGPLAN Notices, 27(10).

A. Yonezawa, editor. ABCL: An Object-Oriented Concurrent System, Computer
Systems Series. The MIT Press, 1990.

C. Zimmermann. Advances in Object-Oriented Metalevel Architectures and Re-
flection. CRC Press, 1996.

