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Abstract. All organizational functions carried out by classes can be accomplished in a simple and
natural way by object inheritance in classless languages, with no need for special mechanisms. A
single model—dividing types into prototypes and traits—supports sharing of behavior and extending

or replacing representations. A natural extension, dynamic object inheritance, can model behavioral
modes. Object inheritance can also be used to provide structured name spaces for well-known objects.
Classless languages can even express “class-based” encapsulation. These stylized uses of object
inheritance become instantly recognizable idioms, and extend the repertaggratiog principles

to cover a wider range of programs.

1 Introduction

Recently several researchers have proposed object models based on prototypes
and delegation instead of classes and static inheritance 2,191,115, 18]. These
proposals have concentrated on explaining how prototype-based languages allow
more flexible arrangements of objects. Although such flexibility is certainly desir-
able, many have felt that e prototype-based systems would be verficdit to
manage because of the lack ofamizational structure normally provided by
classes.

Organizing a lage object-oriented system requires several capabilities. Foremost
among these is the ability share implementation and state among the instances
of a data type and among related data types. The ability to define strict interfaces
to data types that hide and protect implementation is also useful wiaamzimg
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large systems. Finallyhe ability to use global names to refer to data types and to
categorize lage name spaces into structured parts for easier browsing are important
for managing the huge number of objects that exist inge labject-oriented
system.

In this paper we gue that programs in languages without classes are able to
accomplish these tasks just as well as programs in class-based languages. In partic-
ular, we show that:

« all organizational functions carried out by classes can be accomplished in a
very natural and simple way by classless languages,

 these gganizational functions can be expressed using objects and inheritance,
with no need for special mechanisms or an extralingual layer of data structures,

« the additional flexibility of prototype-based languages is a natural extension of
the possibilities provided by class-based systems, and finally

« exploiting this additional flexibility need not lead to unstructured programs.

The ideas presented here are based on the lessons we learned as we found ways
to oganize code inEB_F, a dynamically-typed prototype-based language [3, 4, 10,
18]. Accordingly we will illustrate the ideas using examples iLS but the ideas
could be applied as well to other classless languages providing similar inheritance
models.

2 Sharing

Programming in an object-oriented languaggdbyr revolves around specifying
sharing relationships: what code is shared among the instances of a data type and
what code is shared among similar data types.

2.1 Intra-T ype Sharing: Classes and raits Objects

The principal activity in object-based programming is defining new data types.
To define a simple data type, the programmer needs to specify the state and
behavior that are specific to each instance of the data type and the state and
behavior that are common ®h@ed by all instances of the type. For example, one
way to define a simple polygon data type is to specify that each polygon instance
contains a list of vertices and that all polygons share an operation to draw them-
selves.

In a typical class-based language, the class object defines a set of methods and
(class) variables that are shared by all instances of the class, and a set of (instance)
variables that are specific to each instance. For example, the polygon data type
could be implemented by a cld&sl ygon that defines dr aw method and spec-
ifies that its instances have a single instance variable namedi ces; the
Pol ygon metaclass would contaimaw method to create new polygon instances
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instance variables | vertices
methods | draw “draw on some display”

I

Polygon class

class a polygon
vertices | “list of points” | Instance

Figure 1a. Data types in a class-based language.

polygon traits

draw | “draw on some display”
copy “return a copy of the receiver”

prototypical T
polygon parent* |

vertices | “list of points”

vertices: —

Data Type = Prototype + Traits

Figure 1b. Data types in a classless language.

(see Figure 1a).dlinitialize a new instancglist of vertices, th€ol ygon class
could define a wrapper method named t i ces: that just assigned itsgurment

to theverti ces instance variable. This wrapper method is required in languages
like Smalltalk-86 [7] that limit access to an objestinstance variables to the
object itself.

In a classless language, the polygon data type is defined sinAlgrgtotypical
pol ygon object is created as the first instance of the polygon type (see Figure 1b).
This object contains three slots: an assignable data slot neened ces, the
correspondinger ti ces: assignment slotand a constarpiarentslotg pointing
to another object that contains da aw method and acopy method. The

!Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

%Data slots in BLF may beassignable or constant. Data slots are assignable by virtue of being
associated with aassignment sot that changes the data slot’s contents when invoked. The assign-
ment slot's name is constructed by appending a colon to the data slot's name.

Sparent slots are indicated il syntax by asterisks following the slot name. Parent slots in the
figures of this paper are therefore indicated with asterisks.
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vertices slot in this prototype is initialized to a convenient default list of
vertices (e.g., a list of three points defining a triangle), making it usable as is and
thus serving as a programming example.

New polygons are created by sendingdbey message to an existing polygon
(such as the prototypical polygon), which fokines(shallow-copies) the receiver
polygon and then copies the internal vertex list. Since the protstyio¢S contain
default values, clones of the prototype are automatically initialized with these
values as well. In particulaihe same parent object is shared by each new polygon,
providing the common behavior for all polygons in the system.cdll these
shared parent objectiits objects Traits objects in a classless language provide
the same sharing capability as classes, and just as in a class-based language,
making changes to the behavior of all instances of a type is simple since the
common behavior is factored out into a single shared object.

In general, data types may be defined in a classless language by dividing the defi-
nition of the type into two objects: the prototypical instance of the type and the
shared traits object. The prototype defines the instance-specific aspects of the type,
such as the representation of the type, while the traits object defines common
aspects of all instances of the type. No special language features need to be added
to support traits objects—a traits object is a regular object shared by all instances
of the type using normal object inheritance. Since traits objects are regular objects,
they may contain assignable data slots which are then shared by all instances of the
data type, providing the equivalent of class variables.

Classless languages actually gain some descriptive power over class-based
languages by dividing the implementation of a data type into two separate objects.
If the data type is eaoncetetype (i.e. if instances of the data type will be created),
then both the traits object and the initial prototype object are defined. If, however
the type isabstract existing simply to define reusable behavior shared by other
types, then no prototypical instance need be defined. Alterndteigre is only
everoneinstance of a particular data type, such as with unique objectsi like
t r ue, andf al se, then the traits object need not be separated from the object at
all. Traditional class-based languages implicitly specify both the shared behavior
and the format of the class’ instances; without extra language mechanisms they
cannot distinguish between concrete, abstract, and singleton data types, with a
corresponding loss of descriptive andanizational power

2.2 Inter-Type Sharing: Subclasses and Refinements

Object-oriented languages with inheritance supgoférential programming
allowing new data types to be defined atedi#nces from existing data types. The
implementor of a new data type may specify that the type is equivalent to a combi-
nation of existing types, possibly with some additions and/or changes. For
example, a filled polygon type might be identical to the polygon type, except that
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drawing filled polygons is dérent from drawing unfilled polygons, and a filled
polygon instance needs extra state to hold its fill pattern.

In typical class-based languages, a class may be defined as a subclass of other
classes. The methods of the new class are the union of the methods of the super-
classes, possibly with some methods added or changed, and the instance variables
of the new class are the union of the instance variables of the superclasses, possibly
with some instance variables added. For example, filled polygons could be imple-
mented by &:i | | edPol ygon class that is a subclass of #@ ygon class (see
Figure 2a). Thd=i | | edPol ygon class overrides thér aw method, and speci-
fies an additional instance variable nanied | Pattern that allFi | | ed-

Pol ygon instances will have; theer t i ces instance variable is automatically
provided sincd=i | | edPol ygon is a subclass d?ol ygon. To initialize a new
instances fill pattern, thd=i | | edPol ygon class could define a wrapper method
namedfill Pattern: that assigned its gument to thefill Pattern
instance variable.

Filled polygons are defined similarly in a language without classes. A new filled
polygon traits object is created asefinemen(child) of the existing polygon traits
object (see Figure 2b). This traits object defines itsdwvawmethod. © complete
the definition of the new data type, a prototypical | edPol ygon object is
created that inherits from the filled polygon traits object. This object could contain
both averti ces data slot and &i |l | Pattern data slot, plus their corre-
sponding assignment slots. €Will revise this representation to avoid unnecessary
repetition of thever t i ces data slot in the next subsection.)

In general, a new data type in a classless language may be defined in terms of
existing data types simply bgfiningthe traits objects implementing the existing
data types with a new traits object that is a child of the existing traits objects. Object
inheritance is used to specify the refinement relationships, without needing extra
language features.

2.3 Representation Sharing: Instance ¥riable Extension and Data Paents

When defining a data type as an extension of some pre-existing data types,
frequently the instance-specific information of the existing data type should be
combined with some extra information particular to the new data type, to construct
the instance-specific information of the new data type. For example, a filled
polygon instance needs both the polygon information (the list of vertices) plus the
new filled-polygon-specific information (the fill pattern). Idealhe new data type
wouldn't need to repeat the instance-specific information it inherits from the
existing data types, but instead share the information; this would enhance the
malleability of the resulting system, since changing one datastygefesentation
causes all data types that inherit from the changed data type to be updated automat-
ically.
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instance variables | vertices
methods | draw “draw on some display”

Polygon class

class a polygon
vertices | “list of points” | instance

FilledPolygon class

superclass
instance variables | fillPattern
methods | draw “draw and fill on some display”

fillPattern: “assign fillPattern variable”

class
vertices | “list of points”
fillPattern | “fill pattern”

a filled polygon
instance

Figure 2a. Diferential programming in a class-based language:
subclassing, with implicit representation extension.

polygon traits

draw | “draw on some display”
copy “return a copy of the receiver”

prototypical
polygon parent*

vertices | “list of points”

vertices: —

filled polygon traits

parent*

prototypical draw |“draw and fill on some display”
filled polygon /V

parent*

vertices | “list of points”

vertices: —

fillPattern | “fill pattern”

fillPattern: —

Differential Programming = Refining Traits Objects

Figure 2b. Diferential programming in a classless language.
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polygon traits
draw | “draw on some display”

copy “return a copy of the receiver”
prototypical A
polygon
parent*
vertices | “list of points”
vertices: —
A
filled polygon traits
parent*
draw | “draw and fill on some display”
prototypical copy | “copy data parent, too”
filled polygon
dataParent*
dataParent: —
traitsParent*
fillPattern “fill pattern”
fillPattern: —

Representation Extension = Data Parents

Figure 3. Representation extension in a classless language.

Class-based languages do this well. When a subclass is defined, it automatically
inherits the instance variable lists from its superclasses; any instance variables
specified in the subclass are interpreteeb@snsion®f the superclasses’ instance
variables. This feature is illustrated by tfiel | edPol ygon example class that
extends the instance variables of Hod ygon superclass withfi | | Pat t ern
instance variable (see Figure 2a).

In a classless language with multiple inheritance we can provide similar func-
tionality usingdata paents Instead of manually repeating the data slot declara-
tions of the prototypes of the parent data types, as was done in the implementation
of filled polygons in Figure 2b, the new prototype rabhgie the representation of
its parent data types by inheriting from them. Thus, a better way to implement filled
polygons is to define thei | | edPol ygon prototype as a child of both the
fill edPol ygon traits objecandthepol ygon prototype object (see Figure 3).

A newcopy method is defined in tHa | | edPol ygon traits object to copy both
the receiver filled polygoandthe data parent polygon object, so that each instance
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of the filled polygon data type is implemented with two objects, one containing the
instances fill pattern and another containing its list of vertices.

Data parents explicitly implement the representation extension mechanism
implicit in traditional class-based languages. Since the data parent objects are
parents, data slots defined in the data parent are transparently accessed as if they
were defined in the receiver object without defining explicit forwarding methods.

By relying only on the ability to inherit state and to initialize a new olgjget'ents
to computed values, no special language mechanisms are needed to concatenate
representations.

A problem with class-based representation extension surfaces in languages with
multiple inheritance. If two superclasses define instance variables with the same
name, does the subclass contain different instance variables or are the super-
classes’ instance variables mped into one shared instance variable in the
subclass? For some programming situations, it may be correct to keefénendif
instance variables; for other situations, it may be necessary to share a single
instance variable. Dférent class-based languages that support multiple inheritance
answer this dffcult question difierently; some languages, like C++ [16, 17],
provide the programmer the option of doing eitla¢isome cost in extra language
complexity

Classless languages dbface this dilemmaSince the prototypical instance of
the data type is defined explicitihe programmer has complete control over each
type’s representation. If the new type should contain only one version of the data
slot, then the prototype just contains that one data slot. If several versions need to
be maintained, one per parent data type, then data parents may be used to keep the
versions of data slots with the same ndme.

2.4 Beyond Repesentation Sharing

Class-based languages automatically extend the representation of a subclass to
include its superclasses’ instance variables. Howehier automatic extension
may not always be desired. For example, an application might want to define a rect-
angle data type as a subtype of the polygon data type. The representation of the
rectangle might be four numbers (instead of a list of four vertices), and the draw
routine could be optimized for this special case.

Most class-based languages cannot define suBleca angl e class as a
subclass of thBol ygon class because tiRect angl e class would be extended
automatically with thd?ol ygon class’'ver ti ces instance variable.orfix this
problem, an additionaAbst r act Pol ygon class (with no instance variables)
must be defined as the common superclass ofRadtlygon andRect angl e;
the behavior common to all polygons would then be moved from the concrete

4SELF includes a message lookup rule (the sender path tiebreaker rule) that automatically disam-
biguates internal accesses to these data slots.
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Pol ygon class to thé\bst r act Pol ygon class (see Figure 4a). But this then
creates another problem: the code for abstract polygons can no longer access the
verti ces instance variable, even f&ol ygon instances. Only instances of

Pol ygon and its subclasses know about #teg t i ces instance variable. One
possible solution would be to define wrapper methods to acce&oltlygon
class’'verti ces instance variable from within thibst r act Pol ygon class;
theRect angl e class would define a method to construct a list of vertices from

its four numeric instance variables.

To avoid any problems with altering the representation of a class in a subclass,
only leaf classes should be concrete and define instance variables. All other non-
leaf classes should be abstract, defining no instance variables, and their code should
be written to invoke wrapper methods instead of explicit variable accesses. This
programming style would support reuse of code while still allowing the represen-
tation of a subclass to be fdifent from the representation of a superclass. But it
would sacrifice the ability to share representation information by concatenating the
instance variables of a class’ ancestors, and it would require the definition and use
of wrapper methods to access the instance variables. Thus, programs would be
more awkward to write and modify

Prototype-based languages can change the representation of refinements easily
In the rectangle example, the prototypicakt angl e object contains four data
slots and a parent slot pointing to the rectangle traits object, but tioekrde any
data parent slots (see Figure 4b). By not including a data parent to the prototypical
pol ygon object, the implementation is explicitly deciding not to base the repre-
sentation of rectangles on the representation of polygons.

The rectangle traits object overrides the polygon traits objecw method
with one that is tuned to drawing rectangles using the representation specific to
rectangles. @ preserve compatibility with polygons, the rectangle traits object
defines aver t i ces method to construct a list of vertices from the four numbers
that define a rectangle. This is particularly convenienEitFSince aver ti ces
message sent in a method in the polygon traits object would either access the
verti ces data slot of a polygon receiver or invoke ez t i ces method of a
rectangle receivewith no extra wrapper methods needed fowthiet i ces data
slot or modifications to the invoking methods. This convenienceasdatl by
SELF's uniform use of messages to access both state and behadia@ould be
adopted by other classless and class-based languages to achieve similar flexibility
Trellis/Owl [12, 13], a class-based language, also accesses instance variables using
messages and is able to change the representation of a subclass by overriding the
instance variables inherited from its superclasses with methods defined in the
subclass.

An implementation of a data type in a classless language can specify whether to
extend the parent types’ representations when forming the news tgpeésenta-
tion by either including data parents that refer to some of the parent types’ repre-
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AbstractPolygon class
methods | vertices “access vertices variable” |

A
Polygon class
superclass
instvars | vertices
methods | vertices “access vertices variable”
vertices: “assign vertices variable”
class ' a polygon
vertices | “list of points” | instance
Rectangle class
superclass
instance variables | top, left, right, bottom
methods | draw “optimized draw”
vertices “construct a list from inst vars”

T

class '
top | “top coord”
left | “left coord”
right | “right coord”
bottom | “bottom coord”

arectangle
instance

Figure 4a. Representation modification in a class-based language.

sentations (as in the filled polygon example) or not (as in the rectangle example).
Both are natural and structured programming styles fostered by classless
languages. Class-based languages typically have a much mificaltdtfime
handling cases that &f from strict representation extension. As mentioned
above, Tellis/Owl is one notable exception. Languages with powerful metaclass
facilities, such as CLOS [1], are able to define metaclasses for subclasses that do
not inherit the instance variables of their superclasses, but this solution is much
more complex and probably more verbose than the simple solution in classless
languages.



ORGANIZING PROGRAMS WITHOUT CLASSES 47

polygon traits
draw | “draw on some display”

copy “return a copy of the receiver”
prototypical
polygon
parent* .
vertices | “list of points” rectangle traits
vertices: — parent* |

draw “draw rectangle efficiently”
vertices | “construct a list from coords”

prototypical

rectangle
parent*
left 0
left: —
right 100
right: —
top 0
top: —
bottom | 50
bottom:| «

Representation Modification = No Data Parents

Figure 4b. Representation modification in a classless language.

2.5 Dynamic Behavior Changes:
Changing An Instances Class and Dynamic Inheritance

Sometimes the behavior of an instance of a data type can be divided into several
different “modes” of behavior or implementation, with the state of the instance
determining the mode of behaviétor example, a boxed polygon (using straight
lines) has very diérent drawing methods than a smoothed polygon (using splines).

In many situations, the distinction in “behavior” may be completely internal to the
implementation of the data type, reflectingfeliént ways of representing the
instance depending on the current and past states of the object. A gglfitdng
collection might use radically dédrent representations depending on recent access
patterns, such as whether insertion has been more or less frequent than indexing,
even though the external interface to the collection remains unchanged.

One common way of capturing fdifent behavioral modes is to include a flag
instance variable defining the behavior mode, and testing the flag at the beginning
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of each method that depends on the behavior mode. This obscures the code for each
behavior mode, mging all behavior modes into shared methods that are sprinkled
with if-tests and case-statements. This code is analogous to programs simulating
object-oriented method dispatching: if-tests and case-statements are used to deter-
mine the type of the receiver of a “message.” Not surprisirilzly tests for
behavior modes sigfr from the same problems as flag tests for receiver types: it is
hard to add new behavior modes without modifying lots of code, it isgmwae

to write, and it is dffcult to understand a particular mode since its code is inter-
mixed with code for other behavior modes.

A better way of implementing behavior modes is to define each mode as its own
special subtype of the general data type, and use method dispatching and inherit-
ance to eliminate the flag tests. For example, the collection data type could be
refined into an empty collection data type and a non-empty collection data type,
using inheritance to relate the three types [8]. Howeklierbehavior mode of an
instance may change as its state changes: an empty collection becomes non-empty
if an element is added to it. This would correspond in a class-based language to
changing an objed’ class dynamicallyand in a prototype-based language to
changing an objed’parent dynamically

Most class-based languages do not allow an object to change its class, and those
that do face hard problems. Since the class of an object implicitly specifies its
representation, what happens to an object that changes its class to one that specifies
a different representation? An object could be restricted to change its class only to
those that have identical representations, but this wdatlow different behavior
modes to have didrent representations.

Classless languages, on the other hand, can be naturally extended to handle
dynamically-changing behavior modes by allowing an olggurents to change
at run-time; an object can inherit from fdifent behavior mode traits objects
depending on its state. If the representations of the behavior mofes déifa
parents can be used for behawiwwde-specific data slots; changing the behavior
mode would then require changing both the traits parent and the data parent (or
simply having the behavior mode data parent inherit directly from the behavior
mode traits object and changing just the data parentgUR thisdynamic inher-
itance comes for free with the basic object model. Since any data slot may be a
parent slot, and any data slot may have a corresponding assignment slot, any parent
slot may be assignable; an objegbarents are changed simply by assigning to
them.

In the polygon example, the boxédawmethod would be the same asdhew
method defined before in the polygon traits object; the smaodw method
would treat the vertices of the polygon as the sgir@ntrol points. The
pol ygon prototypes parent slot would be assignable and alternate between the
boxed polygon traits object and the smooth polygon traits object (see Figure 5).
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polygon traits

copy return a copy of the receiver
! f th iver”
boxed smooth
polygon traits polygon traits
parent parent
draw |“draw boxed polygon” draw | “draw smooth polygon”

prototypical

polygon arent
parent: —
vertices | “list of points”
vertices: —

Multiple Behavior Modes = Dynamic Inheritance

Figure 5. Multiple behavior modes in a classless language.

Behavior modes are naturally implemented in classless languages by using
dynamic inheritance to choose from a small set of parents. This style of program-
ming does not compromise the structure of the system; on the cpmitanymake
the structure and ganization of the systenlearer by separating out the various
modes of behaviorin contrast, the close coupling between a class and its
represetation prevent class-based languages from being extended naturally to
handle behavior modes.

3 Encapsulation

Languages with usetefined data types usually provide a means for a data type
to hide some of its attributes from other types. This encapsulation may be used to
specify an external interface to an abstraction that should biecteafby internal
implementation changes or improvements, isolating the dependencies between a
data type and its clients. Encapsulation may also be used to protect the local state
of an implementation of a data type from external alterations that might violate an
implementation invariant. Encapsulation thus can improve the structuregaad or
nization of the system as a whole by identifying public interfaces that should
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remain undected by implementation changes and allowing an implementation to
preserve its internal invariants.

Existing encapsulation models are based on either objects or types. In languages
with object-based encapsulation, such as the SmalltahisiOwl, and Eifel, the
only accessible private members are the recaiver languages with type-based
encapsulation, such as C++, the private. membeasipinstance of the type are
accessible from methods defined in the yfgpe-based encapsulation is signifi-
cantly more flexible, supporting binary methods that need access to the private data
of their aguments and initialization methods that need access to initialize the
private state of newly created objectsitht\bnly receivetbased encapsulation,
these situations require that initialization methods and wrapper methods be in the
external public interface to the type daly defeating the purpose of encapsulation
in the first place.

Since classless languages have no explicit classes or types, it would appear that
type-based encapsulation would be impossible to support, severely weakening any
encapsulation provided by the language. Perhaps surprisBgiliZ's visibility
rulesdo support a form of type-based encapsulation [5]. A method may access the
private slots of any of its descendants or ancestors, so that a method defined in a
traits object may access the private slots of all “instances” of the trait (i.e. clones of
prototypes inheriting from the traits object), just as methods defined in a C++ class
may access the private members of all instances of the class and its subclasses. In
effect, the traits object itself defines a “type,” with all descendant objects consid-
ered members of the type.

For example, in the polygon example before,ghéygon prototype objec$
verti ces: slot could be declared to be a private slot. This would prevent outside
objects from modifying a polygas'list of vertices, but would allow theopy
method defined in theol ygon traits object to send theer t i ces: method to
the new copied polygon object, since that new object is a descendant of the
pol ygon traits object. Similarlythe assignment slots for rectangle objects could
also be marked private to prevent unwanted external modification.

Both class-based and prototype-based languages may provide features for encap-
sulation, even for type-based encapsulation. These features are more dependent on
the individual languages than whether the language includes classes or not.

4 Naming and Categorizing

Any system must be structured so that programs can name well-known objects
and data types and so that programmers can find objects and types. Objects and

SEiffel includes selective export clauses that allow object-based encapsulation to be extended to
type-based encapsulation for particular members.
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globals prototypes
nil polygon
;rllle Ir_ef{:tangle normal reference
alse is
lobby | =
47 T traits parent reference
lobby polygon .
globals* ! rectangle
prototypes* list
traits - integer
boolean
Figure 6. Name spaces are used for global references.

object inheritance support these tasks without explicit support from classes or
extralingual environment structures.

4.1 Naming Objects: Global \ariables and Name Spaces

Programs need to refer to well-known objects from marigréifit places in the
system. For example, a data type may need to be referenced from many places in
order to create new instances of the type or to define subtypes. Most class-based
languages associate a unique name with each class which may be uttered anywhere
in the program to refer to the class; normal instance objects have no explicit names.
In a classless language, prototypes and traits objects need to be globally accessible
(to clone new objects and to define new refining traits objects), but since these
objects are implemented by regular objects, they have no internal names.

In classless languages normal object inheritance may be used tordefiae
space objectahose sole function is to provide names for well-known objects. The
name of an object in a name space is simply the name of the slot that refers to the
object. Any object that inherits the name space object may refer to well-known
objects defined by the name spaceséyding a message to itsilat accesses the
appropriate slot of the name space objelhe scope of a name space is the set of
objects that inherit from it. The designers off@iencourage a similar strategy to
handle shared, possibly global constants, althoudgrelift language mechanisms
are used to handle other global names like class names.

8ln SELF, this approach is just as concise as global variables because state (e.g. well-known
objects) may be accessed using messages without defining wrapper functions, and because messages
sent toself are written with theelf keyword omitted. Thupol ygon is really a message sentsabf
that accesses data; this is just as concise as a global variable access.
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shapes prototypes collections prototypes

polygon list
rectangle array

prototypes T

shapes* !
collections*
lobby traits
globals* shapes*
prototypes* / collections*
traits ] system*

normal reference parent reference
—_— —_

Figure 7. Categorizing name spaces.

Figure 6 illustrates name spaces with part of the inheritance graph iglthe S
system. Thé obby objectis the “root” of the inheritance graph, since most objects
inherit from it and expressions typed in at tiE Sprompt are evaluated with the
| obby asself The pr ot ot ypes parent object is therefore inherited by most
objects and so provides succinct names for the prototypes of the standard data
types. The r ai t s object contains slots naming the traits objects in the system,
typically using the same name as the name for the data oeotypical instance.

For example, the expressi@ol ygon names the polygon prototype, and the
expressiortrai t s pol ygon names the polygon traits object. In the first case,
since the prototypes name space object is inherited via the jaddbygon yields

the contents of the polygon slot in that name space object; in the second case,
sendingt rai t s to the lobby gives the traits nhame space object, and sending
pol ygon to that object gives the polygon traits object.

4.2 Organizing Names: Categories

Large flat name spaces for globals are convenient for programs, but awkward for
programmers. Many systems provide features to hglgnize these name spaces
into smallercategoriesof names that break down the name spaces into digestible
chunks. For example, the Smalltalk-80 environment [6] supports a two-level struc-
ture for browsing classes, dividing up classes dgfdes categories

Classless systems using name space objects can be similarly broken down into
categories by subdividing name spaces into multiple parents. For example, the
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+ | “addition”

— | “subtraction”

/| “division”

integer traits
parent** = | “equals”
arithmetic* | w < “less than”
comparing*| — | > | “greater than”
functions*
factorial | “factorial function”

fibonacci | “fibonacci function”

Figure 8. Categorizing traits objects.

pr ot ot ypes name space object could be broken down into several name space
subobjects, one for each kind of prototype. The originalt ot ypes name space

object contains parent slots referring to the name space subobjects; the name of
each slot is the name of the category

Thesecomposite hname spackshave just like a flat name space from the point
of view of the program referring to global objects, since the categories are parents
of the original name space object. (For example, the mepsdgayon will still
yield the prototypical polygon, even when the name space has been broken up into
the categories as in Figure 7.) Howewénce the name spaces are actually struc-
tured into multiple objects, the programmer may browse them (using the facilities
available for browsing objects) and use both the slot names and the object structure
to locate objects of interest and to understand thanization of the system.
Composite name spaces may have any humber of levels of structure, and need not
be balanced (some categories may be subcategorized while others are not). A
single object may be categorized in severdediht ways simultaneously simply
by defining slots in multiple categories that all refer to the object. This flexibility is
a natural consequence of using normal objects for categorization.

Global variables are not the only name spaces that need to be broken up for
programmers. Individual data types are a sort of name space for methods, and these
name spaces may bedarenough to require their own categorization. The Small-
talk-80 environment again provides a two-level structure fgarmezing the
methods within a class intoethod categories

For classless languages, the same techniquesdaniring lage name space

objects may be applied togamize lage traits objects. Each traits object may refer
to parent subobjects that define some category of the slots of the traits object; the
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name of each parent slot is the name of that subobject category (see Figure 8).
Again theseeomposite traits objecextend to any number of levels of structure.

4.3 Extensional vs. Intensional Names and Categorization

By using name space objects and message passing to access global objects, an
objects “name” becomes the sequence of message sends needed to reachlit. W
this anextensional namesince it is derived from the structure of the system.
Languages with internal class names, on the other handjrtamsional names
since classes are given explicit names by the programmer that may not be related
to the structure of the system. Similadgitegorizing name spaces and traits objects
using the object structure éxtensional categorizationvhile using browser data
structures to describe the categorization of classes and methadasional cate-
gorization

Extensional names have a number of advantages over intensional names:

* No extra language or environment features are needed to support extensional
names or categories.

» Extensional names have additional interpretatiorxpessions that evaluate
to the named obje¢and so may be used within a program to access the object)
and agaths to each the named obje@nd so may be used in the browser to
navigate to the object).

* The data structures defining intensional names for programmers can become
inconsistent with the global variable names used by programs. For example,
the internal names for classes and the data structures used by the environment
to find a class’ subclasses can become incorrect if the global variable referring
to the class is renamed or if the inheritance hierarchy is changed without
updating the browsks data structures. No such inconsistency can exist with
extensional names, since they are derived from the actual structure of the
system.

The only restriction associated with extensional names is that they must be legal
expressions in the language (since an olg@etime must be described in the object
structure). This restriction has not been a problem in our system, and we feel that
the advantages of extensional naming over intensional naming are much more
important.

5 Conclusion

Classes are not necessary for structure since objects themselves can provide it:
traits objects provide behavisharing facilities for their instances and refine-
ments, encapsulation mechanisms can provide type-based encapsulation without
needing explicit types or classes, and structured hame space objects provide names
for programs to use and for people to browseitd objects and name space objects
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are no diferent than other objects, but their stylized use becomes an idiom that is
instantly recognizable by the programmeamnguages without classes can structure
programs as well as languages with classes.

Additionally, certain properties of traditional class-based systems conspire to
hinder some kinds of useful structures that are handled naturally by classless

systems. Since a class implicitly extends its superclasses’ representations, it is hard

to define a subclass thatersthe representation defined by its superclasses. Class-
less languages define a typepresentation explicitly using prototype objects, and

so are able to implement both representation extension and representation alter-
ation naturally Because the representation of an object in a class-based system is
so tied up with the objest’class, it is difcult to implement dynamic behavior

modes. Classless languages may use dynamic inheritance in a structured way to

implement these behavior modes as a natural extension of static inheritance.

Languages without classes can structure many programs better than languages with

classes.
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