
Appeared in ACM SIGMOD Record 30, 1 (March 2001), pp. 78-83.

The Clio Project: Managing Heterogeneity

Renke J. Miller' Mauricio A. Hernbndez2 Laura M. Haas2 Lingling Yan2
C. T. Howard Ho2 Ronald Fagin2 Lucian Popa2

'Univ. of Toronto
miller@ cs. t oronto .edu

21BM Almaden Research Center
{ mauricio ,law a, lingling, ho,fagin, luci an} Qalmaden. i bm. corn

Abstract
Clio is a system for managing and facilitating the
complex tasks of heterogeneous data transformation
and integration. In Clio, we have collected to-
gether a powerful set of data management techniques
that have proven invaluable in tackling these diffi-
cult problems. In this paper, we present the underly-
ing themes of our approach and present a brief case
study.

1 Introduction
Since the advent of data management systems, the
problems of data integration and transformation have
been recognized as being ubiquitous and critically im-
portant. Despite their importance and the wealth
of research on data integration, practical integra-
tion tools are either impoverished in their capabili-
ties or highly specialized to a limited task or integra-
tion scenario. As a result, integration and transfor-
mation remain largely manual, time-consuming pro-
cesses. However, a careful examination of both in-
tegration tools and research proposals reveals an in-
teresting commonality in the basic data management
techniques that have been brought to bear on these
problems. This is a commonality that we believe has
not been sufficiently exploited in developing a gen-
eral purpose integration management tool. In the
Clio project, a collaboration between IBM Almaden
Research Center and the University of Toronto, we
have built a tool that automates the common, even
routine, data and structure management tasks under-
lying a wealth of data integration, translation, t rans
formation and evolution tasks.

We begin in Section 2 with a brief overview of
some of the problems we are addressing. In Section
3, we present an overview of the Clio architecture
and discuss how we support common requirements
for managing heterogeneous data. We present a brief

overview of how Clio can be used in a case study in
Section 4 and conclude in Section 5 with a brief de-
scription of the current direction of our work.

2 Data Integration, Transfor-
mation, and Evolution

Many modern data applications in data warehousing
and electronic commerce require merging, coalescing
and transforming data from multiple diverse sources
into a new structure or schema. Many of these a p
plications start with an understanding of how data
will be used and viewed in its new form. For in-
stance, in a data exchange scenario, the exchange
format may have been standardized (perhaps in the
form of a standard XML schema or DTD). Other ap-
plications may involve an integration step in which
the transformed or integrated structure is created.
The activities involved in many of these integration
or transformation scenarios can be grouped into three
broad categories.

Schema and Data Management At the core
of all integration tasks lies the representation, un-
derstanding and manipulation of schemas and the
data that they describe and structure. The specifics
of different integration proposals can vary dramat-
ically. However, all approaches require reasoning
about schemas, data and constraints. Often legacy
schemas are underspecified or have not been main-
tained to accurately and completely model the se-
mantics of a perhaps evolving data set. Since inte-
gration methodologies depend on the accuracy and
completeness of structural and semantic information,
they are best employed in an environment where
specified (and unspecified) schema information, con-
straints and relationships can be learned, reasoned
about and verified.

1

Correspondences Management A second step
common to all integration tasks is the understand-
ing of how different, perhaps independently devel-
oped, schemas (and data) are related. To support
this activity, a set of correspondences or “matches”
between schemas must be determined. In the schema
integration literature, this process is referred to as
determining “inter-schema” relationships [RRQQ] . In
model management, it is referred to as model match-
ing [BHPOO]. For example in the schemas of Figure
2, different terminology is used within the schema
(and perhaps within the data). Before we can in-
tegrate the two schemas (or before we can translate
data from one representation to the other), we must
have some understanding of how the schemas corre-
spond.

mated, is always complete, nor always accurate for
all possible schemas. As a result, it is important
to permit verification of the correspondences, either
manually or using a knowledge discovery technique.
Second, the sheer number of correspondences can be
enormous. No successful matching technique has em-
ployed solely relation or class level correspondences.
Rather, matching requires a fine grain specificatioii
of correspondences at the attribute (or even data)
level. As a result, any technique that uses manual
specification or verification of correspondences, must
necessarily be incremental in nature to permit a user
to work with large schema and large sets of corre-
spondences without being overwhelmed. An incre-
mental approach also facilitates the correction and
refinement of correspondences.

Integration tasks that involve matching often can-
not be fully automated since the syntactic represen- ~~~~i~~ Management The third step
tation of schema, metadata and data may not corn- is that of creating an operational mapping between
pletely convey the semantics of different data Sets. Such a mapping is a program or set of
AS a result, we must rely on an outside Source (either queries than can be used to translate data between
a user or a knowledge discovery technique) to Pro- the schemas. Creating and maintaining such lnag
vide some information about how different schema pings is today a largely manual (and extremely com-
(and data) correspond. There have been a host Of plex) process. In some integration scenarios, the
techniques developed for (partially) automating the mapping (perhaps a view definition) may be an arti-
matching task developed both for the specific Fob- fact of the transformation used. However, the map-
lem of schema integration [RRQgI and for the broader pings produced by a series of transformations and
model management task [BHPOOI. While differing in merging steps must be integrated and composed. In
the knowledge used and the reasoning Of knowledge many other applications, the integrated schema is
discovery techniques employed, at their core all these created independently of the source schema. Hence,
techniques learn or propose associations or correspon- mapping must be done independently [MEIHOO]. For
dences between components of different schemas. For instance, before a data warehouse can be loaded,
example, in Figure 2, there may be a corresPondence DBAs and consultants spend months determining
between Calls. Caller and References .Artifact what types of queries will be asked, and then design-
(perhaps Calls contains information about Program ing a schema that will readily support those queries.
functions which call each other and functions are T~ load the warehouse, they then must map
considered to be program artifacts in the warehouse pings between the warehouse schema and the under-
schema). Similarly, there may be a separate cone- lying data sources’ schemas. To deploy a global in-
SPondence between the file in which a function is formation system, experts first determine what infor-
defined (Function*Fi1e) and the Source Of a pro- mation it will present to the world, that is, what log-
gram artifact (References .Source). such ical structure (the transformation process), and then
spondences may be entered by a user, Perhaps using a create the view definitions (the mapping creation pro-
graphical interface such as the one supported in CliO cess) that map between the new schema and the data
[MHHOOI, or learned using a machine learning tech-
nique applied to the data Or schema names. These

sources. The focus in these schema mapping appli-
cations is on the discovery of a set of queries that

correspondences may in turn be given different in-
terpretations. Perhaps a correspondence means that
one attribute is a subset of the other- Or perhaps
it means that the two attributes are semantically re-
lated.

However, regardless of interpretation, there are
some characteristics that all matching approaches
share. First, no approach, whether manual or auto-

realizes the mapping [MHHOO].
Mapping management, like schema and corre-

spondence management, requires reasoning about
matches and schemas. The correspondence process
may not be sufficient to fully convey the semantics of
how schema are related. In the example mentioned
above, if Calls. Caller and References .Artifact
have been matched and if Function.File and

2

3 User

Figure 1: Clio’s Logical Architecture

Reference . Source have been matched (Figure 2),
these correspondences alone are not sufficient to
uniquely determine how data from the source will a p
pear in the target. In particular, details about how
source entities are paired or joined are left unspeci-
fied as are details of which source entities should be
included. Resolving such ambiguities requires rea-
soning about schemas and constraints and may result
in constraints or correspondences being modified or
added.

3 An Overview of Clio
Clio is a system for managing and facilitating the
complex tasks of heterogeneous data transformation
and integration. Note that Clio does not perform
schema integration per se. Rather, Clio supports the
generation and management of schemas, correspon-
dences between schemas and mappings (queries) be-
tween schemas. The logical architecture of Clio is de-
picted in Figure 1. Each management and reasoning
component makes use of a database management sys-
tem for storing knowledge gained about schemas and
integrations. Clio provides schema and data browsers
to elicit and obtain feedback from users and to allow
user to understand the results produced by each com-
ponent.

Schema Engine A typical session with Clio starts
with the user loading one or more schemas into
the system. These schemas are read from either
an underlying Object-Relational database, a legacy
source that has been wrapped with a Garlic Object-

Relational wrapper [TS97], or from an XML file with
an associated XML schema. The schemas may be
legacy schemas or they may include an integrated
schema produced manually or by an integration tool.
The schema engine is used to augment the schema
with additional constraint information, if necessary.
Currently, Clio makes use of metadata, including
query workloads (if available) and view definitions,
along with data. For example, in the absence of de-
clared constraints, we mine the data for possible keys
and foreign keys. Finally, the schemas are verified
by the user to ensure validity of generated informa-
tion. For example, a discovered foreign key or inclu-
sion dependency may hold on the current instance by
accident, that is to say, it may not necessarily hold
for all, or even most, instances. Clio permits such
corrections to be made by a user.

To facilitate this process, Clio makes use of a
graphical user interface to communicate information
to the user [YMHFOl]. In the Schema View mode,
users see a representation of the schemas including
any generated information. This view may be used
to edit or further augment the schema. In addition,
we provide a D a t a View mode, through which users
may see some example data from the schemas to fur-
ther help them understand the schemas. The data
view can be invaluable in helping users understand
opaque schema labels.

Correspondence Engine Given a pair of
schemas, the correspondence engine generates and
manages a set of candidate correspondences between
the two schemas. Currently, we make use of an
attribute classifier to learn possible correspondences
[HTOl]. Clio could (and may in the future) be
augmented to make use of dictionaries, thesauri,
and other matching techniques. The generated
correspondences can be augmented, changed or
rejected by a user using a graphical user interface
through which users can draw value correspondences
between attributes. Entering and manipulating
value correspondences can be done in two modes. In
the Schema View mode, users see a representation
of the schemas and create value correspondences
by selecting schema objects to be included in
a correspondence. The alternative Data View
mode offers a WYSIWYG interface that displays
example data for the attributes used in the cor-
respondences [YMHFOl]. The data view helps
a user check the validity of generated and user
entered information. Users may add and delete value
correspondences and immediately see the changes
reflected in the example data.

3

Artifact

Mapping Engine The mapping engine supports
the creation, evolution and maintenance of mappings
between pairs of schemas. A mapping is a set of
queries from a source schema to a target schema that
will translate source data into the form of the target
schema. Clio produces a mapping (or set of alterna-
tive mappings) that are consistent with the available
correspondences and schema information. The m a p
ping engine is therefore using information gathered
by both the schema engine and the correspondence
engine. As with the correspondences and schemas
constructs suggested by Clio, mappings are verified
using the data view to help users understand alter-
native mappings. Users see example data from se-
lected source tables and the contents of the target as
they would appear under the current mapping. Ex-
amples are carefully chosen to both illustrate a given
mapping (and the correspondences it uses) and to
illustrate the perhaps subtle differences between al-
ternative mappings [YMHFOl]. For example, in some
cases, changing a join from an inner join to an outer
join may dramatically change the data produced by
the mapping. In other cases, the same change may
have no effect due to constraints that hold on the
schemas.

To permit scalability and incremental invocation
of the tool, we also permit (partial) mappings to be
read and modified. Such mappings may be created by
a former session with Clio or by another integration
tool. For example, a user may have used Clio to map
a source and target schema. At a later time, after
the source schema has evolved, the user may again
invoke Clio to create a mapping from the modified
source to the target. The old mappings may be read
in and used as a starting point for the mapping pro-
cess. Modification is done using operations on data
examples, in the data view VMHFOl].

The mapping creation process is inherently inter-
active and incremental. Clio stores the current m a p
ping within its knowledge base and, through an in-
cremental mapping discovery algorithm, allows users
to extend and refine mappings one step at a time

Id Type SystemName Version Owner

[MHHOO]. For example, when value correspondences
are added, deleted or modified within the correspon-
dence engine, the mapping engine uses the new cor-
respondences or modification to update the mapping.
Similarly, in order to verify a particular mapping, the
mapping engine may invoke the schema engine to ver-
ify whether a specific constraint holds in a schema.

DataRef

4 A Data Warehouse Example

Fct 1 DataType Paramete

To illustrate our approach, we present an example
based on a proposed software engineering warehouse
for storing and exchanging information extracted
from computer programs [BGH99]. Such warehouses
have been proposed both to enable new program
analysis applications, including data mining appli-
cations [MG99], and to promote data exchange be-
tween research groups using different tools and soft-
ware artifacts for experimentation [HMPR97]. Fig-
ure 2 depicts a portion of a warehouse schema for
this information. This schema has been designed to
represent data about a diverse collection of software
artifacts that have been extracted using different soft-
ware analysis tools. The warehouse schema was de-
signed to be flexible and uses a very generic represen-
tation of software data as labeled graphs. Conceptu-
ally, software artifacts (for example, functions, data
types, macros, etc.) form the nodes of the graph. As-
sociations or references between artifacts (for exam-
ple, function calls or data references) form the edges.
Two of the main tables for artifacts and references
are depicted in the figure.

As new software analysis tools are developed, the
data from these tools must be mapped into this inte-
grated schema. In Figure 2, we also give a relational
representation of an example source schema. This
schema was imported using a wrapper built on top of
output files produced by a program analysis tool. The
wrapper produces a flat schema with no constraints.
Clio’s schema engine is used to suggest a set of keys
and foreign keys that hold on the data. Foreign keys
are depicted by dashed lines. Key attributes are un-

4

derlined. The user may use Clio’s Schema View to
browse, edit or augment this schema information.

To start the correspondence process, if the ware-
house is populated with data, our correspondence en-
gine will apply an attribute matching algorithm to de-
termine potential correspondences based on the char-
acteristics of the values of different attributes. For ex-
ample, if values in Calls.Caller in the source and
References. Artif act are all UNIX file pathnames
(that is, a sequence of mainly alphanumeric tokens
separated by ’/’s with perhaps one token having a ’.’
extension), our mining algorithm would suggest that
these attributes match [HTOl]. If the warehouse is
not populated with data, and the user cannot provide
a few example values, then correspondences may be
entered using our Schema View as suggested in Fig-
ure 3. It is unlikely that a mining technique based
solely on schema labels will be effective for this ex-
ample since it is not obvious, even using ontology
or dictionary based techniques, that Calls. Caller
should be matched with References. Art if act.

Suppose the user had only entered the first four cor-
respondences (fl -f4) indicating how function call in-
formation corresponds to the warehouse schema. Us-
ing the discovered schema information together with
these correspondences, Clio’s mapping engine may
produce the following two mappings. The first popu-
lates the Source attribute of the target with the File
attribute of the caller function (Mapping S1). The
second populates the Source attribute of the target
with the File attribute of the called function (M a p
ping 5’2). Note that correspondence f4 maps the re-
lation name into the ReferenceType value, effectively
transforming schema to data [Mi198]. The left-outer
join is used to ensure information is not lost in the
mapping. That is, Clio will prefer mappings that
map every function (whether it participates in the
Calls relation or not) to a target value.

s1: SELECT C.Caller, C.Callee, relname(C), F.File
FROH
WHERE C.Caller = F.Name

FROH
WHERE C.Callee = F.Name

Function F left outer join Calls C

sz: SELECT C.Caller, C.Callee, relname(C) , F.File
Function F left outer join Calls C

To validate and choose among these mappings, Clio
will illustrate this mapping using the data view. Ex-
ample data will be selected and displayed for the user.
The examples will illustrate the differences in the join
paths used in each mapping selected by Clio. Hence,
to illustrate S1, an example will be used of a function
that calls a t least one function but is itself not called
(such a function will appear in the target associated

with its callee using S1, but not using 5’2). Similarly,
an example will be used of a function that is called
by at least one function but does not call another
function. Of course, such examples are used only if
they are available in the data source. Once a join
path is selected (perhaps 5’1 is selected), examples
are also used to determine if the mapping should be
a left-outer join or if the user only wishes References
to be populated with functions that appear in Calls
(an inner join) [YMHFOl].

Once the user is happy with this (partial) map-
ping, she may proceed incrementally by entering
more value correspondences, by using operations
on data examples to refine the current mapping
[YMHFOl], or by reinvoking the correspondence en-
gine. Due to space limits we only illustrate this fi-
nal option. Clio may make use of a (partial) map-
ping to deduce additional correspondences. Given
the mapping Sl and the discovered constraints on
S, Clio can infer that DataRef .Fct also may cor-
respond to Reference .Art if act. Similarly, if the
attribute matching algorithm was applied to the
source attributes alone, a value correspondence be-
tween Function. File and DataType . File may have
already been deduced within the source schema. This
correspondence is not based on the two attributes
containing the same values necessarily. Rather, it is
an indication that the values share similar character-
istics and therefore may (possibly) have a semantic
relationship. Based on this information, Clio may
propose fs and fs as potential correspondences. The
mapping engine may then search for potential join
paths to use in mapping data reference information
to the warehouse.

5 Conclusion
We have discussed Clio, a system for managing data
transformation and integration under development at
IBM Almaden. Clio’s Integration Engine is composed
of three components (Schema, Correspondence, and
Mapping Engine) that interact with our internal
mapping knowledge base and with the user to pro-
duce the desired mapping. Our initial implementa-
tion of Clio includes most of the functionalities of
the Correspondence Engine and the Mapping Engine
described in this paper. Using the GUI’s Schema
View, users can draw correspondences among the se-
lected source and target schemas and review the re-
sulting mapping query (which is currently expressed
as an SQL View). The initial implementation of the
Schema Engine includes schema readers for relational
and XML Schema sources. Augmentation of these

5

Figure 3: Value correspondences used to map between the source schema the warehouse schema

schemas is possible through a knowledge discovery
module that searches for keys and referential con-
straints using the underlying data.

We envision a number of extension to the Mapping
Engine. The mapping algorithm used in our proto-
type can only handle correspondences from flat rela-
tional source schemas into either relational or nested
target schemas. We are working on generalizing
this algorithm to handle correspondences from nested
source schemas into nested target schemas. The next
version of the system will be able to use source and
target data constraints in combination with the input
correspondences to validate the mapping (i.e., detect
inconsistencies) and logically infer new mappings. If
inconsistencies arise after the user enters a value cor-
respondence, Clio should be able to explain the prob-
lem (e.g., violation of a key constraint) and suggest
fixes (e.g., modifying the correspondence or relaxing
a constraint). We are also looking into the ability to
invert mappings (when possible) which would allow
Clio to be used for bi-directional exchange of data.

Ultimately, we view Clio as an extensible man-
agement platform on which we can build a host of
new integration and transformation techniques in-
cluding perhaps a robust query facility for schemas,
correspondences and mappings (for example, to per-
mit users to ask questions about mappings and their
properties). An important theme in Clio, which we
expect to continue, has been the use of data to help
users to understand the results produced by each rea-
soning component.

References
[BGH99] I. T. Bowman, M. W. Godfrey, and R. C.

Holt. Connecting Software Architecture Re-
covery Frameworks. In Proceedings of the
First International Symposium on Construct-
ing Software Engineering Tools (CoSET’99),
Los Angeles, May 17-18 1999.

P. A. Bernstein, A. Y Halevy, and R. A. Pot-
tinger. A Vision for Management of Complex
Models. SIGMOD Record, 29(4):55-63, 2000.

[BHPOO]

[HMNt 991

[HMPR97]

[HTOl]

FIG991

WHHOO]

[Mi1981

[RR99]

[TS97]

[YMHFOl]

L. M. Haas, R. J. Miller, B. Niswonger,
M. Tork Roth, P. M. Schwarz, and E. L. Wim-
mers. Transforming Heterogeneous Data with
Database Middleware: Beyond Integration.
IEEE Data Engineering Bulletin, 22(1):31-
36, 1999.
M. J. Harrold, R. J. Miller, A. Porter, and
G. Rothermel. A Collaborative Investiga-
tion of Program-Analysis-Based Testing and
Maintenance. In International Workshop
on Experimental Studies of Software Mainte-
nance, pages 51-56, Bari, Italy, October 1997.
H. C. T. Ho and X. Tian. Automatic Classi-
fication of Database Columns Using Feature
Analysis. Submitted for publication, 2001.
R. J. Miller and A. Gujarathi. Mining for
Program Structure. International Journal on
Software Engineering and Knowledge Engi-
neering, 9(5):499-517, 1999.
R. J. Miller, L. M. Haas, and M. Hernhdez.
Schema Mapping as Query Discovery. In
Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB), pages 77-88, Cairo, Egypt,
September 2000.
R. J. Miller. Using Schematically Heteroge-
neous Structures. ACM SIGMOD I n t ? Conf.
on the Management of Data, 27(2):189-200,
June 1998.
S. Ram and V. Ramesh. Schema Integra-
tion: Past, Current and Future. In A. Elma-
garmid, M. Rusinkiewicz, and A. Sheth, edi-
tors, Management of Heterogeneous and Au-
tonomous Database Systems, pages 119-155.
Morgan Kaufmann Publishers, 1999.
M. Tork Roth and P. Schwarz. Don’t Scrap It,
Wrap It! A Wrapper Architecture for Legacy
Data Sources. In Proc. of the Int’l Conf. on
Very Large Data Bases (VLDB), pages 266-
275, Athens, Greece, August 1997.
L. Yan, R. J. Miller, L. Haas, and R. Fagin.
Data-Drivien Understanding and Refinement
of Schema Mappings. Submitted for publica-
tion, 2001.

6

