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ABSTRACT

In this paper, we introduce and study a framework, cafledr

data exchangefor sharing and exchanging data between peers. .
This framework is a special case of a full-fledged peer data-ma 1 Introduction

agement system and a generalization of data exchange eéwee  geyera) different frameworks for sharing data betweengaddent
source schema and a target schema. The motivation behind peegiores have been formulated and investigated in deptta ex-

data exchange is to model authority relationships betw@®msp  changeis one of the conceptually simpler, yet technically chajlen
where a source peer may contribute data to a target peeifisgec

in the sense that minimal relaxations of them lead to inataitity.

using source-to-target constraints, and a target peer satauget-
to-source constraints to restrict the data it is willing éceive, but
cannot modify the data of the source peer.

A fundamental algorithmic problem in this framework is thudt
deciding the existence of a solution: given a source instamd a
target instance for a fixed peer data exchange setting, eatath

ing, such frameworks [8]. In a data exchange setting, data fr

a source schema are transformed to data over a target scleema a
cording to specifications given by source-to-target camsts. This
framework models a situation in which the target passivetgives
data from the source, as long as the source-to-target eantstare
satisfied. Data exchange is closely related to data iniegrft5].

In particular, data exchange systems can be used as builticks

in data integration systems, where data from a set of indkpen

get instance be augmented in such a way that the sourcedestan gqrces having no interaction with each other are transfdrto

and the augmented target instance satisfy all constrafiie set-
ting? We investigate the computational complexity of thebbem
for peer data exchange settings in which the constraintgiaes

by tuple generating dependencies. We show that this proidem
always in NP, and that it can be NP-complete even for “acyclic
peer data exchange settings. We also show that the dataexdtypl

of the certain answers of target conjunctive queries is MR;@nd
that it can be coNP-complete even for “acyclic” peer datdharge
settings.

After this, we explore the boundary between tractability am-
tractability for the problem of deciding the existence obéusion.
To this effect, we identify broad syntactic conditions oe tton-
straints between the peers under which testing for solsiigolv-
able in polynomial time. These syntactic conditions ineltioe im-
portant special case of peer data exchange in which theesoorc
target constraints are arbitrary tuple generating depesieg, but
the target-to-source constraints are local-as-view digrasies. Fi-
nally, we show that the syntactic conditions we identifiesl tight,

*On leave from UC Santa Cruz.

data in a global mediated schenReer data management systems
(PDMS) constitute a much more powerful and complex fram&wor
than data exchange, as they model a situation in which a numbe
of peers interact with each other and cooperate in sharidgean
changing data [14, 20, 19]. In a peer data management system,
there is no distinction between source and target, sincearpay
simultaneously act as a distributor of data (thus, a souze€)@nd

a recipient of data (thus, a target peer). In such a systesneth
lationship between peers is specified using constraintscirabe

in either direction (from one peer to another, and vice-agras-
stead of constraints in a single direction, as was the casata
exchange. Furthermore, each peer can be a stand-alonaskatab
system or a separate data integration system in which trensch

of the peer is a mediated global schema over a set of locatesur
accessible only by that peer.

The Peer Data Exchange Framework In this paper, we intro-
duce and study a framework, callpder data exchangevhich is a
generalization of data exchange and a special case of fiddded
peer data management system. This framework models aigituat
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ent roles and capabilities: one of them, called sbercepeer, is
an “authoritative” or “trusted” peer that can contributewndata,
while the other peer, called th@arget peer, imposes restrictions
on the data that it is willing to accept, but has no permission
capability to modify the data of the source peer. In a peea dat
change setting, the relationship between the two peerseisfsu
by constraints that go in either direction, that is, somesargce-
to-target constraints and others are target-to-sourcgti@nts. As
in data exchange, the source-to-target constraints gpehit data
a source peer is willing to exchange. Unlike data exchange; h
ever, the target is no longer a passive recipient of sourtzettiat



obey the source-to-target constraints. Instead, thettpegr uses
target-to-source constraints to impose restrictions enddta that
it is willing to receive; moreover, the target may have itsaata.
Suppose that we are given a source instance and a targetdesta
that may or may not satisfy the constraints of the settindygfcon-
straints are not satisfied, the goal then is to augment thetteata
in such a way that thgivensource instance and tia@gmentedar-
get instance satisfy all constraints between the two pesrsyell
as other existing target constraints. As an illustratitve, $ource
peer may be an authoritative genomic database, such as-Briss
[17], while the target peer may be a genomic database ma@tai
at a university under a different schema and populated veititous
data. At regular intervals of time, the university databaseill-
ing to receive new data from Swiss-Prot but cannot exporidang
back to Swiss-Prot. The target may restrict the data it iBngilto
receive to only Swiss-Prot data that it views as relevanhddethe
data received have to satisfy constraints that go in eitinectibn.

Algorithmic Problems The first fundamental algorithmic problem
in peer data exchange is that of decidingéhestence of a solution
More formally, a peer data exchange setting consists of eceou
schemaS, a target schem@, a set of source-to-target constraints
Yst, a set of target-to-source constraibis, and a sek; of target
constraints. Each such setting, gives rise to the followdegi-
sion problem: given a source instance and a target instaandhe
target instance be augmented in such a way that the givesesour
instance and the augmented target instance satisfy altragrts

of the peer exchange setting? The second fundamental thlgori
mic problem in peer data exchange is that of obtaitiregcertain

unions of conjunctive queries is in coNP. These complexityrils
turn out to be tight, because we exhibit peer data excharitiegse
as above for which testing for the existence of solutions s N
complete, while the data complexity of the certain answéron-
junctive queries is coNP-complete; actually, the lowerrzsihold
even for peer data exchange settings in which the “depegtlenc
graph between the relations of the peers is acyclic. We &leo s
that the same upper bounds hold even if the setting allowa &at
¥ of target constraints that is the union of a finite set of taegels
and a finiteweakly acyclicset of target tgds.

The complexity of testing for the existence of solutions anth-
puting the certain answers in peer data exchange settingtishe
compared and contrasted with the complexity of the samdgmab

for data exchange, which can be viewed as the special cagzpf p
data exchange in whick,; = ( (no target-to-source tgds) and
alsoJ = () (the target contains no data before the exchange). In-
deed, as shown in [8], there are polynomial-time algorithonest

for the existence of solutions and to compute the certaiwerss

of unions of conjunctive queries in every data exchangéngeit
which X, is a finite set of source-to-target tgds angis the union

of a finite set of target egds and a finite weakly acyclic seanjet
tgds. Moreover, it2; = 0 (no target constraints), then testing for
the existence of solutions is trivial for data exchangec¢esisolu-
tions always exist. There is also a sharp contrast withffetiged
peer data management systems, where, as shown in [14], tompu
ing the certain answers of conjunctive queries can be anciohde
able problem. Thus, from a computational point of view, Ea
exchange is more challenging than ordinary data exchangéeds

answersof queries posed over the target schema. The concept of intractable than full peer data management.

the certain answers has become the standard semanticsrgf que
answering in data integration [1, 15], data exchange [8], geer
data management [14]; this concept is also perfectly megéuim
peer data exchange.

In the sequel, we investigate these algorithmic problempéer
data exchange settings in which the constraints betweepethies
are given by a finite set of tuple-generating dependencgds)t
[3]. We also allow for target constraints in the form of tetrtgels
or target equality-generating dependencies (target edgisYefi-
nition, a tgd from one relational schema to another is a firder
formula of the formvx(p(x) — Jyv(x,y)), wherep(x) is a
conjunction of atomic formulas over the first schema ast, y)
is a conjunction of atomic formulas over the second. An atyual
generating dependency on a relational schema is a formutaeof
formVx(p(x) — 21 = 22), wherep(x) is a conjunction of atomic
formulas over the schema ang, z; are among the variables i
Tuple-generating dependencies have been used for specdgita
exchange between relational schemas [8, 7]; moreover, dhey
the core of the mapping specification language of the Clieszh
mapping and data exchange system [18]. Tuple-generatingnde
dencies generalize both the local-as-view (LAV) and th&alas-
view (GAV) constraints in data integration [15], since tloener
are tgds in whichp(x) is a single atomic formula, and the latter
are tgds in which)(x,y) is a single atomic formula. In their full
generality, tuple-generating dependencies are GlLgghal-and-
local-as-vievy constraints.

Summary of Results Consider a fixed peer data exchange setting
in which X4 is a finite set of source-to-target tgds;, is a finite

set of target-to-source tgds, add = () (no target constraints).
Our first main result asserts that testing for the existerficlo-
tions is in NP, and that the data complexity of the certaimeans of

After this, we explore the boundary between tractability am-
tractability in peer data exchange settings.To this effeetidentify

a class of peer data exchange settings, denotéd,by;, for which
the existence of solutions can be tested in polynomial tifilee
classCirqct is defined by imposing syntactic conditions on the con-
straints between the peers; these conditions are extréutedgh

a careful examination of the impact of existentially quiied vari-
ables and of their relationship to other variables occgrimthe
constraints. Although the syntactic conditions used ta@€fi, o+
are rather technical};,..: itself is a broad class that contains sev-
eral important special cases of peer data exchange, imgutie
following two: the case in which the source-to-target tgosfall
tgds, and the case in which the target-to-source tgds aad-#me
view (LAV) constraints. Finally, we show that the syntaatandi-
tions we identified are tight, in the sense that minimal ralexs

of the conditions lead to intractability; th@,...: turns out to be a
maximal class of tractable peer data exchange settings.

Related Work There is an extensive literature on data integration
using sound, complete and exact views [1, 13, 15]. Seveifalrdi
ent frameworks and systems for sharing data in networksadg-in
pendent sources have also been formulated and studied,[8, 16
10, 11]. Calvanese et al. [6] and Franconi et al. [10, 11] psep

a semantics based on an epistemic interpretation of thareorts
between peers. This is in contrast to the first-order inetgpion
used in our work and in PDMS. Bertossi and Bravo [5] also use
first-order interpretations, but propose a semantics dfemn the
area of consistent query answering that is based on reaifEHis
approach has the advantage that data can be shared betveegn pe
even when there is no consistent solution satisfying alstraimts.
However, the complexity of the problem of obtaining certaim
swers is higher than in peer data excharigg-¢omplete vs. coNP-



complete), and no tractability results have been givenhiw $e-
mantics.

2. Peer Data Exchange Settings

This section contains the precise definitions of a peer datzemge
setting and the associated algorithmic problems, as welllagef
discussion of the relationship of peer data exchange gsttirith
data exchange settings and peer data management systems.

Preliminaries

A schemas a finite collectiorR = (R, ..., Ry) of relation sym-
bols, each of a fixed arity. Amstancel over R is a sequence
(RI,..., R}) such that eactR! is a finite relation of the same
arity as R;. We shall often useR; to denote both the relation
symbol and the relatiork! that interprets it. Given a tuple,
we denote byR(t) the association betweenand the relation?
where it occurs. LeS = (Si1,...,5,) andT = (T1,...,Tm)
be two disjoint schemas. We refer $oas thesourceschema and
to T as thetargetschema. We writéS, T') to denote the schema
(S1,...,Sn,T1,...,Tm). Instances ove$ will be calledsource
instances, while instances ovEmwill be calledtargetinstances. If
I is an instance ove$ and.J is an instance over, then we write
(I, .J) to denote the instanc& over (S, T) such thatS* = 57
andT =T/, for1 <i<mandl <j<m.

A source-to-target tuple-generating dependeftgyl) is a formula
of the formVx(p(x) — Jyv¥(x,y)), wherep(x) is a conjunc-
tion of atomic formulas over the source schefhand(x,y) is

a conjunction of atomic formulas over the target schémaSim-
ilarly, a target-to-source tgds a formula of the forn¥x(a(x) —
JyB(x,y)), wherea(x) is a conjunction of atomic formulas over
the target schem®, andj3(x, y) is a conjunction of atomic formu-
las over the target schenta For example, ifS contains a binary
relation £, and'T contains a binary relatio/, then the source-
to-target tgdvazVyVz(E(z,2) A E(z,y) — H(z,y)) transforms
pairs of nodes connected via dtpath of length 2 toH-edges.
Similarly, VaVy(H (z,y) — 3z(E(z,z) A E(z,y))) is a target-
to-source tgd that transfornf$-edges to pairs of nodes connected
via an E-path of length 2.

A target tgdis a formula of the formvx(p(x) — Jyx(x,y)),
where bothy(x) and x(x,y) are conjunctions of atomic formu-
las over the target schera A target equality-generating depen-
dency(egd) is a formula of the formix (¢ (x) — 21 = 22), where
»(x) is a conjunction of atomic formulas ovel and z1, z2 are
among the variables ir. Clearly, functional dependencies @h
are special cases of target egds. In what follows, we wikroft
drop the universal quantifiers in front of a dependency, amlic-
itly assume such quantification. However, we will write doalh
existential quantifiers.

Peer Data Exchange Settings and Solutions
DEFINITION 1. A peer data exchange (PDE) settiirgga quin-
tupleP = (S, T, Xst, Xts, X¢) Such that:
e S is asource schema afldis a target schema;
e Y, is a finite set of source-to-target tgds;
e Y, is a finite set of target-to-source tgds;

e Y, is afinite set of target tgds and target egds.

Receiving
Target Peer

Authoritative
Source Peer

/s /
o -

Can J be extended to a target instance J’
such that J’ satisfies 3, and (1,J’) satisfies

le U sz 7

Figure 1: lllustration of Peer Data Exchange

Given a source instandeand a target instancé of P, it may be

the case that!, J) violates the constraints . Thus, we will be
interested in finding instances, which we aalutions that satisfy

all constraints ofP. In peer data exchange the target peer is as-
sumed to be willing to accept data coming from an authovigati
trusted source. Therefore, we will consider solutions wlibe in-
stance of the target peer may be augmented with data conainyg fr
the source. However, the target peer does not have the @ytbior
ability to interfere with the source’s data, which therefoemain
unchanged.

DEFINITION 2. LetP = (S, T, X, X, 2¢) be a PDE set-
ting, I a source instance, anfla target instance. We say that a
target instance’ is asolution for(Z, J) in P if

e JC J:
o (I,J') E Zst USis;
[ ) Jl ':Et

This definition generalizes the notion of solution in datal@nge
settings [8] in two ways. The first and more significant onehes t
presence of the target-to-source dependentiges the second is
that the input has a target instanégin addition to the source in-
stancel. Thus, data exchange settings are a special case of PDE
settings where botk:; and.J are empty.

As noted earlier, tuple-generating dependencies are GL#W ¢
straints that generalizes both LAV and GAV constraints itada
integration systems. Our PDE framework, with target-tarse
dependencies, is able to capture GLAV with exact views ia dat
tegration systems [15]. The following source-to-targeiatelency
¢(x) — Jy1(x,y) and target-to-source dependentix,y) —
¢(x), where¢ and) can be interpreted as queries over the source
and target respectively, assert that the query over thettaomtains
exactly those tuples from the query over the source. It ig Easee
that in the case wherg is a single source relation, this expresses
LAV with exact views in data integration.

Although the definition of PDE setting involves two peersgan

be easily extended to a family of source peers exchanging dat
with the same target peer. Assume tRat...,S,, T are pair-
wise disjoint schemas. Anulti-PDE settingis a family P, =
(Sh T, Eslh Ztsl ; Etl ): ceey Pn - (Srm T, anh Etsn, ; Etn) of
PDE settings. Given instancés, . . ., I,, of the source peers, and
an instanceJ/ of the target peer, solution.J’ for ((I1,...,1I,), J)
inP1,..., P, is atarget instancd’ containingJ such that/’ is a
solution for (1., J) in Pp,, for everym < n. Note that, in defin-
ing multi-PDE settings, we could have allowed constraimtshe
sourcesS4, ..., S,, as well as constraints between these sources.



This, however, would have no impact on which target instarce
solutions, as the source instances have to remain unchanged

It is clear that/’ is a solution for((11,...,I,),J) in P1,...,Px
if and only if J' is a solution for(I; U --- U I,,, J) in the PDE
setting(S1U- - -USy, T, Xst, Xis, Xt ), WhereXe = Uy, —1 3,4,
Yis = Up—134s,,, andXy = U, 3, . Thus, every multi-PDE

Consider the PDE setting in Example 1.¢lfs the Boolean query
JzIy3z(H (z,y) A H(y,z)), thencertain(q, ({E(a,a)},0)) =

t r ue, whilecertain(q, ({E(a,b), E(b,¢), E(a,c)},0)) = f al se.
Relationship to PDMS

Peer data management systems (PDMS), formalized and dtuglie

setting can be simulated by a single PDE that has the same spac Halevy et al. [14], constitute a decentralized, extensitehitec-

of solutions as the original multi-PDE.

Algorithmic Problems in PDE Settings

Given a source instandeand a target instance of a PDE setting
P, a solution for(I, J) may or may not exist; furthermore, if a
solution exists, it need not be unique up to isomorphism.

ExAMPLE 1. LetP be a PDE setting in which the source schema

consists of a binary relation symbél, the target schema consists
of a binary relation symbalf, and the constraints are as follows:

o1 BE(z,2) NE(z,y) — H(z,y)
st H(z,y) — E(z,y)
3:: 0 (notarget constraints)

If I = {E(a,b),E(b,c)} andJ = (), then no solution fo(7, .J)
exists. IfI = {E(a,a)} andJ = , thenJ’ = {H(a,a)} is the
only solution for(I,J). If I = {E(a,b), E(b,c), E(a,c)} and
J = 0, then both{H (a,c)} and{H (a,b), H(b,c), H(a,c)} are
solutions for(Z, .J). (|

This example illustrates a striking difference betweem@athange
settings and peer data exchange settings. Specificallglafaex-
change setting has no target constraiits € ), then, for every
source instancé, a solution always exists. As seen above, how-
ever, this need not be true for peer data exchange settirtgs wi
¥, = (0 andJ = (. We will study in depth the problem of de-
ciding the existence of a solution in a peer data exchangegst
and we will unveil deeper differences between data exchange
peer data exchange.

DEFINITION 3. Assume thaP is a PDE setting. Thexistence-
of-solutions problem foP, denoted bySOL(P), is the following
decision problem: given a source instaricand a target instance
J, is there a solutiow” for (7, J) in P?

The other basic algorithmic problem that we will study ist thfeob-
taining thecertain answer®f target queries in PDE settings. The
definition of certain answers we use is an adaptation of Hredsird
concept used inincomplete databases [12, 21] and infoomatie-
gration [1, 15]; in our context, this means that the set oE%ble”
worlds is the set of all solutions for a given source instazuee a
given target instance in a PDE setting.

DEFINITION 4. LetP be a PDE setting angla query over the
target schema oP. Let alsol be a source instance adda target
instance. We say that a tuptes acertain answer of; on (I, J),
denotedt € certain(q, (I,.J)), if J' = q[t], for every solution
J' for (I, J) in P. We writecertain(q, (I, J)) to denote the set
of all certain answers af on (I, J). If ¢ is a Boolean query, then
certain(q, (I, J)) = true if J' & ¢, for every solutionJ’ for
(I,J)inP; otherwisecertain(q, (I, J)) = f al se. Note that ifg
is a Boolean query, then computing the certain answegsiothe
PDE settingP is a decision problem.

ture in which peers interact with each other in sharing amth@ng-

ing data. As mentioned in the Introduction, every PDE sgtitna
special case of a PDMS. In this section, we describe theioatat
ship between peer data exchange settings and peer dataenanag
ment systems in precise terms.

According to [14], a PDMSV with peersP, ..
lowing characteristics.

., P, has the fol-

e Each peerP; has its own schema which is disjoint from those of
the other peers, but visible to all other peers.

e The schema of each peer can be a mediated global schema over a
set of local sources that are accessible only by that pees éach

peer can be a data integration system). The relationshipeleet

the peer and its local sources is specified usiogage descriptions

that arecontainment description® C Q or equality descriptions

R = @, whereR is one of the relations in the schema of the peer
andQ@ is a query over the local sources of the peer.

e The relationship between peers is specified using three tgpe
peer mappingsinclusion mappingsequality mappingsanddefi-
nitional mappingswhere

1. Eachinclusion mapping is a containmént(.4;) C Q2(.Az2)
between conjunctive querigg; (A1) and Q2(.Az2), where
A1 and A, are subsets of the set of all relations in the schemas
of the peers.

2. Each equality mapping is an equali®}i (A1) = Q2(Az2)
between conjunctive queri€g; (A;) andQ2(Az) as above.

3. Each definitional mapping is a Datalog program with rules
having single relations from the schemas of the peers in both
the head and the body of each rule.

In the terminology of [14], adata instanceD of a PDMSN is
an assignment of values to both the local sources of eachapeer
to the relations of the schema of each peer. A data instéhise
consistenwith A and D if G and D satisfy all the specifications
given by the storage descriptions and the peer mappingé e
[14] for the precise definition). This concept captures vitraeans
for a data instancé&' to be asolutionfor a given data instanc® in
the PDMSN.

We now have all the necessary background to spell out the rela
tionship between peer data exchange settings and peer data m
agement systems. Indeed, et= (S, T, X, 3¢, X¢) be a PDE
setting. We claim that there is a PDME(P) with two peersS
andT such that the solutions for a given instancéPiressentially
coincide with the consistent data instances for a corredipgrdata
instance in\/(P). The specification of the PDM& (P) is as fol-
lows:

e The peer mappings of/(P) are given by the dependencies in
st UXes UX:. In particular, AV (P) has no definitional mappings.

e For every relation symbd$; in the schema a8, there is a local
relation symbolS; of the same arity aS;, and an equality storage
descriptionS; = S;.



e For every relation symbaol; in the schema ofl', there is a
local relation symbol’; of the same arity &), and a containment
storage descriptioft;” C 7).

Note that the schemas of the local sourceS ahd T in A/(P) are
replicas of the schemas 8fandT. Intuitively, the equality stor-
age descriptions fo8 capture the fact that in peer data exchange
the data of the source peer remain unchanged, whereas ttaéncon
ment storage descriptions far capture the fact that in peer data

exchange the data of the target peer may be augmented with new

data. Letl be a source instance and lEbe a target instance @.

It is now easy to verify thafS is a solution for(7, .J) in P if and
only if (I*,I),(J*, K) is a consistent data instance for the data
instance(I*, J*) of N'(P), wherel* and.J* are copies of and.J
over the local sources & andT.

In conclusion, every PDE setting can be viewed as a PDMS with
equality storage descriptiorts = S; for the source peer, contain-
ment storage descriptiorls” C T for the target peer, and peer
mappings given by the constraints of the PDE.

There are peer data management systems for which testitigefor
existence of solutions and computing the certain answeroief
junctive queries are undecidable problem as well [14]. W& wi
show that the state of affairs is quite different for peeradex-
change settings.

3. Complexity

Let P = (S, T, Xs, X¢s, 2¢) be a fixed peer data exchange set-
ting. In this section, we show that the existence-of-sohgiprob-
lem for P is in NP, whereX,; andX; are arbitrary finite sets of
source-to-target tgds and target-to-source tgds,>and assumed
to be the union of a finite set of target egds wittveakly acyclic
finite set of target tgds. For such settings, the data coritplek
the certain answers a@honotonequeries (in particular, unions of
conjunctive queries) is in coNP. We also show that there &€ P
settings with>; = () for which the existence-of-solutions problem
is NP-complete, and the data complexity of the certain arsal
conjunctive queries is coNP-complete.

These results about peer data exchange settings conteaptysh
both with results about peer data management systems amdewit
sults about data exchange settings. As mentioned eahee aire

of tgds over a fixed schema. Construct a directed graph,dctiée
dependency graphas follows: (1) there is a node for every pair
(R, A) with R a relation symbol of the schema ardan attribute
of R; call such a pairR, A) aposition (2) add edges as follows:
for every tgd¢(x) — Jy ¢(x,y) in X and for everyx in x that
occursin 1:

e For every occurrence afin ¢ in position (R, A;):

1. for every occurrence af in ¢ in position (S, B;), add
an edge R, 4;) — (S, By) (if it does not already ex-
ist).

2. in addition, for every existentially quantified varialle
and for every occurrence gfin v in position (", Cy),
add aspecial edgg R, A;) — (T, C) (if it does not
already exists).

Note that there may be two edges in the same direction be-
tween two nodes but exactly one of the two edges is special.
ThenX is weakly acycligf the dependency graph has no cy-
cle going through a special edge.

It should be noted that weakly acyclic sets of tgds includa syge-
cial case sets of full tgds, that is, tgds of the fovtx(p(x) —
1(x)) in which no existentially quantified variables occur in the
right-hand side. They also include acyclic sets of inclnglepen-
dencies as a special case.

To obtain the complexity upper bounds, we extend the chase pr
cedure in [8] to what we call solution-awarechase procedure that
chases an instance with tgds and with another given instdris
procedures chases an instat#€evith a set of tgds and at the same
time uses values from a given instankg (thought of as a “so-
lution”) that containsK and satisfies the tgds at hand. Instead of
creating labeled nulls to witness the existential variafdéa tgd
during a chase step,salution-aware chase stapses values from
the given “solution”K” to witness the existential variables. These
values are guaranteed to exist sif¢econtainsk and satisfies the
tgds. Note that values frofi” are used only when a chase step is
applied with a tgd that contains existential variables. fiflewing

is the definition ofsolution-aware chase stegnd solution-aware
chase sequence

DEFINITION 6. (Solution-aware chase steplet K; be an in-
stance.

PDMS for which these problems are undecidable [14]. For data (tgd) Letd be a tgdvx(4(x) — Jyi(x,y)). Let K be an in-

exchange settings in which,; is an arbitrary finite set of source-
to-target tgds antll; is the union of a finite set of target egds with a
weakly acyclic finite set of target tgds (recall that in datatenge
settings there are no target-to-source tgds), these pnstaee solv-
able in polynomial time [8]. In fact, iE3; = (), then the existence-
of-solutions problem is trivial, as solutions always exist

3.1 Upper Bound

The concept of aveakly acyclicset of target tgds was introduced
in [8] and used to show that tlehase procedurgerminates in poly-
nomial time on such sets of tgds. Intuitively, weak acytjids a
syntactic condition placed on sets of tgds to ensure thaasecstep
does not use labeled nulls from an attribute to create neelddb
nulls in the same attribute. This ensures that the chasessegqus
finite.

DEFINITION 5. [8] (Weakly acyclic set of tgds)Let 3 be a set

stance that contain&; such thatk satisfiesd. Let h be a
homomorphism fromp(x) to K; such that there is no ex-
tension ofh to a homomorphisnd’ from ¢(x) A ¥(x,y)
to K. We say thatl can be applied td<; with homomor-
phismh and solutionk, or simply,d can be applied td<;
with homomorphism if K is understood from context.

Let K> be the union ofi; with the set of facts obtained by
taking the image of) under a homomorphisth’ whereh’

is an extension of such that each variable yis assigned
a value inK and the image of the atoms gfunderh’ are
atoms inK. We say thathe result of applyingl to K; with

h and solutionk is K>, and write 1 AL K>. We drop
K and write Ky Ll K> if K is understood from context.
(egd) Letd be an egd/x(¢(x) — (x1 = z2)). Leth be a homo-
morphism from¢(x) to K such thath(z1) # h(z2). We

say thatd can be applied td<; with homomorphisnk. We
distinguish two cases.



e If both h(x1) andh(z2) are in_Consthen we say that
the result of applyingl to K; with h is “failure” , and

. d,h
write K1 — L.
Otherwise, letK» be K; where we identifyh(z1) and
h(z2) as follows: if one is a constant, then the labeled
null is replaced everywhere by the constant; if both are
labeled nulls, then one is replaced everywhere by the
other. We say thahe result of applyingl to K with i

is K>, and writeK Sk Ks.

DEFINITION 7. (Solution-aware chase) et X be a set of tgds
and egds. Lef be an instance anll’ be an instance that contains
K and satisfies the set of tgdsih

e A solution-aware chase sequence Iéfwith ¥ and K’ is
a sequence (finite or infinite) of solution-aware chase steps

K; gt i+1, Withi = 0,1,..., with K = Ky andd; a
dependency ifx.

A finite solution-aware chase d@f with 3 and K’ is a finite

solution-aware chase sequelﬁe% Kit1,0 <i<m,
with the requirement that either (d&,, = L or (b) there

is no dependency; of ¥ and there is no homomorphisim
such thati; can be applied té,,, with h;. We say thaf<,, is

the result of the finite solution-aware chase. We refer te cas
(a) as the case offailing finite solution-aware chasand we
refer to case (b) as the case ofaccessful finite solution-
aware chase

LEMMA 1. Let ¥ be the union of a finite set of egds with a
weakly acyclic finite set of tgds on some schema. Then thists ex
a polynomialp(z) having the following property: if{ and K’ are
instances such thak”’ containsk, and such that’ satisfies the
tgds in3, then the length of every solution-aware chase sequence
of K with 3 and K is bounded by(|K|), where| K| is the size of
K.

Using Lemma 1, we can show that whenever a solutior(fot/)
exists in a PDE in whicl; is the union of a finite set of egds with a
weakly acyclic finite set of tgds, then a “small” solution rhesist,
where “small” means that its size is polynomially boundedtHsy
size of (, J).

LEMMA 2. LetP = (S, T, X, X+, X¢) be a PDE setting in
which ¥, is the union of a finite set of egds with a weakly acyclic
finite set of tgds. Lef be a source instance and be a target
instance such thaf satisfiesy;. If there exists a solutiot/’ for
(I, J), then there exists a solutiofi* for (I, .J) that is contained
in J" and has size bounded by a polynomial in the sizd of).

Using Lemmas 1 and 2, we can easily derive the following tesul
THEOREM 1. LetP = (S, T, X, X, X¢) be a PDE setting

in whichZ; is the union of a finite set of egds with a weakly acyclic

finite set of tgds. The existence-of-solutions prob&®h(7P) for

Pisin NP.

PROOFR From Lemma 2, if there is a solution f¢7, .J), then
there is a solutior{, J*) that is polynomial in the size dff, J).
Checking that(Z, J*) = X, (J*,I) | 3w andJ™ = X¢ can
be done in polynomial time in the size @f, J) since the peer data
exchange is fixed. (]

By definition, a query; is monotonef it is preserved under the ad-
dition of tuples, that s, it € ¢(K) andK C K, thent € q(K").
Clearly, unions of conjunctive queries are monotone gserie

THEOREM 2. LetP = (S, T, X4, X, X¢) be a PDE setting
in which3Z; is the union of a finite set of egds with a weakly acyclic
finite set of tgds. 1§ is a monotone query ovéF, then computing
the certain answers af is in coNP.

PROOF. Lett be ak-ary tuple froml and supposeé ¢
certair(q, (1, J)). It suffices to show that there is a solutidfi
that is polynomial in the size dff, J) andt ¢ ¢(J*). Sincet ¢
certair(g, (I, J)), there is a solutiow” such that ¢ ¢(.J"). From
Lemma 2, it follows that there is a solutiofi* that is polynomial
in the size of(Z, .J) and.J* is contained in/’. Sinceq is monotone
andt & q(J'), it follows thatt ¢ ¢(J*). O

3.2 Lower Bound

We show next that there are PDE settings with no target cainssr
in which testing for the existence of solutions is NP-hard] eom-
puting the certain answers of target conjunctive querieidP-
hard. Although this result could be derived from [1, Theot®r]
and [13, Theorem 8], we give a self-contained proof usingraga
ularly simple reduction from the IGQUE problem whose features
we will analyze later on.

THEOREM 3. There exists a peer data exchange setfihgith
3, = 0 such that testing for the existence of solutions is a NP-
complete problem. Moreover, there is a Boolean conjuncfivery
g such that the decision problem of computing the certain answ
of ¢ in P is coNP-complete.

PrROOF (Sketch) From Theorem 1, we know that the problem
is in NP. The NP-hardness is established via a reduction fhem
CLIQUE problem: given a grapl and a positive integel, does
G contain a k-clique? As usual graphis a structures = (V, E),
whereV is a set of nodes anl C V2 is binary relation that is
symmetric and irreflexive (no self-loops).

Let P be the following peer data exchange setting. The source
schemaS consists of three binary relatiori3, S and E, while the
target schemd consists of a single 4-ary relatidh. There are no
target dependencies, that Is; = (). The constraints betweeh
andT are as follows:

Est .
Ets :

D(x,y) — 323wP(z,2,y,w)
P(x7 Z7 y7 w) - E(Z7 w)
P(a,z,y,w) A Pz, 2,y u') — S(z,2)

Given a graphG = (V, E) and a positive integek, we con-
siderk distinct elementsy, .. ., ax, and form the source instance
I(G,k) = (D, S, E), whereD = {(as,a;) | 1 <i <k, 1<

j < k,i # j} is the inequality relation oqa1,...,axr} and
S = {(v,v) | v € V}is the equality relation on the sé&t of
nodes ofG. The target instancd is defined to be empty. Intu-
itively, the tgd inX,; associates each pair of elementsy) in D
with a pair of elementsz( w) through the relatiorP. The first tgd
in 3, asserts thatz(, w) is an edge inF and the second tgd ;s
asserts that an elementdn, . . . , ax cannot be associated with two
distinct nodes irG.



It is now easy to verify tha€' has ak-clique if and only if there is
a solution for(1(G, k), 0) in P.

Let g be the Boolean queryzP(z,z, x,z). We use the same re-
duction above for the coNP-hardness of the certain answiegs o
assuming that thé distinct elements are drawn fro, the node
set of G. If V' contains less thah nodes, one could exterid to k
nodes. ltis is easy to verify that contains &-clique if and only

if certain(q, (I(G, k),0)) =fal se. O

In [14], it was shown that if in a PDMS all storage description
are containment descriptions and all peer mappings arasioci
mappings with an acyclidependencgraph, then the certain an-
swers of conjunctive queries are computable in polynonimaét
Thedependencgraph of a PDMS is the directed graph with nodes
the relations of the peers, and edges between two relaitosisd

R if there is an inclusion peer mappir@; (A1) C Q2(Az) such
that P occurs inQ1 (A1) and R occurs inQ2(Az). Note that the
PDE setting used in the reduction of Theorem 3 has incluséam p
mappings with an acyclic dependency graph, yet the problem o
computing certain answers is coNP-hard. The jump in complex
ity arises due to the fact that in PDE settings the sourceuiest
can never change, which means that the constraints placgtien
age descriptions in the source are not containment deisergpbut
equality descriptions.

4. A Large Tractable Class

In this section, we identify syntactic conditions on PDEtisgs
with no target constraints that yield polynomial-time aigfams for
deciding the existence of solutions. As seen in the prooftefoF
rem 3, even such strong topological conditions as the azgchf
the dependency graph of source and target relations caoaot g
antee tractability of these problems. Instead, we conslifiarent
conditions that are derived by taking a closer look at thetertial
quantifiers in the constraints of the PDE setting.

DEFINITION 8. LetP = (S, T, X, %, 0) be a PDE setting
with no target constraints.
e We say that the-th position of a relation symbdl’ of T is
markedif X contains a source-to-target tgd

o(x) — IyY(x,y)

such thafl’(z1, ..., zi, ..., zs) is one of the conjuncts af(x,y),
andz; is one of the existentially quantified variablgs

e We say that a variable is marked in a target-to-source tgd
a(x) — Iwh(x, w)
of X;, if one of the following two holds:

1. z appears at a marked position of a conjunct¢k)
2. z is one of the existentially quantified variables

Note that the two conditions in the definition of a marked able
are mutually exclusive.

To illustrate the concepts of marked position and markethkbe,
let us consider a PDE setting having the following constsain

Est : S($17$2) — EyT(Ihy)
Yo 0 T(x1,m2) — JwS(w,z2)

In this setting, the only marked position is the second pmsiof
T, while the marked variables of the target-to-source depecyl
arexs andw.

Let us also consider the PDE setting in the proof of Theorese8u
in the reduction from the QQUE problem:

Yot D(z,y) — FzFwP(x, z,y,w)
Ses Pla, 2y, w) — Bz w)
P(z,z,y,w) A P(z, 2,y ,w') — S(z,2")

In this setting, the marked positions are the second andotinehf
position of P. The marked variables of the first tgd Yy are z
andw, and the marked variables for the second tgilinarez, w,
2, andw’.

We now introduce the clas%...t, which is the focus of this sec-
tion. Below, if a(x) — Iwp(x, w) is a tgd inXZ.,, we will refer
to a(x) as theleft-hand sideof the tgd, and taw3(x, w) as the
right-hand sideof the tgd.

DEFINITION 9. LetP = (S, T, X, %, D) be a PDE setting
with no target constraints. We say tiate Cirq.t if

1. For every tgdD in X, every marked variable db appears
at most once in the left-hand side bf

and

2. One of the following two conditions holds:

2.1 The left-hand side of every tgd ¥ consists of exactly
one literal;

or

2.2. For every tgdD in X:s and for every pair of marked
variablesz andy of D that appear together in a conjunct of
the right-hand side ab,

either

(a) x andy appear together in some conjunct of the left-hand
side of D

or
(b) z andy do not appear at all in the left-hand sidelof

Admittedly, the definition of the clag, .. is quite technical. We
arrived at it after carefully analyzing the causes of intadity in
numerous concrete PDE settings, such as the one used irdthe re
tion from the Q.1IQUE problem. To convey some feeling f6¥,qct,
we should point out that it is a rather broad class that costsev-
eral interesting families of PDE settings as subclasses.

Note thatC:r.c: is, in effect, the union of two different classes:
the first is the class of PDE settings that satisfy conditidnsand
(2.1), while the second is the class of PDE settings thagfgaton-
ditions (1) and (2.2). The first of these classes can be destes
the class of PDE setting8 = (S, T, X, X+, 0) in which every
target-to-source tgd is has exactly one literal in its heftid side
which has no repeated variables. Hence, this is the clas®Bf P
settings in which the target-to-source tgds are localiag-{LAV)
dependencies, an important class in data integration [15].

The second class contains as a subclass the family of all RBE s
tingsP = (S, T, X, 3is, ) in which every source-to-target tgd



is afull tgd, which means that it is of the forga(x) — ¥(x). In-
deed, if every source-to-target tgd is full, then the onlyked vari-
ables are the ones that are existentially quantified in sarget-to-
source tgd. If two such variables appear together in thd-highd
side of some target-to-source tdd, then neither appears in the
left-hand side ofD, hence condition (2.2) (b) is satisfied.

We are now ready to state the main result of this section.

THEOREM 4. LetP be a PDE setting i€;rqc:. Then,SOL(P),
the problem of testing for the existence of solutions isadmésin
polynomial time.

The proof of Theorem 4 uses properties of the chase procedidre
homomorphism techniques. An outline of this proof will beegi
in the next section. In the remainder of this section, weveeri
some corollaries and then show that, in a certain seéhsgs; is a
maximal class of tractable PDE settings.

COROLLARY 1. LetP = (S, T, X, X5, 0) be a PDE setting
with no target constraints. [, is a set of full dependencies, then
testing for the existence of solutions is solvable in palyiabtime.

COROLLARY 2. LetP = (S, T, X, X5, 0) be a PDE setting
with no target constraints. If every target-to-source degency of
Yts has exactly one literal on its left hand side which has no re-
peated variables, then testing for the existence of saistis solv-
able in polynomial time.

We now show that the conditions definidg...: are tight, in the
sense that minimal relaxations of them lead to intractabiliet us
consider again the PDE setting used in the proof of Theoréir 3,
which SCL(P) is NP-complete:

Yot D(z,y) — Fz3wP(x, z,y,w)
Ses Pla,zy,w) — Bz w)
P(z,z,y,w) A P(z, 2.y, w') — S(2,2)

As seen earlier, the marked variablesXaf arez andw (for the
first tgd), andz, w, z’, andw’ (for the second tgd). Not surpris-
ingly, this PDE setting does not belong@e...¢, since it violates
both condition (2.1) and condition (2.2) in Definition 9. HBleevi-
olations, however, are minimal. Indeed, condition (2. iidated
because just one of the target-to-source tgds has two aigjumits
left-hand side. Furthermore, condition (2.2) is violatedduse the
marked variables andz’ appear in the only literal of the right-hand
side of the second target-to-source tgd, but do not appgattter
in one of the conjuncts of the left-hand side; nonetheldss; are
at distance two of each other, as they are “connected” viadhe
ablex. Thus, the condition of being adjacent in Baifman graph
of the variables in the left-hand side of the tgd cannot bexesd to
even being connected via a path of length two.

Next, we show that the intractability boundary is crossetiifjet
constraints are allowed. In the following two PDE settintise
source-to-target and target-to-source constraintsfgdltie condi-
tions of Cirqace @and yet the existence-of-solutions problem is NP-
hard for these settings.

Consider the following PDE setting:

Yot D(z,y) — Iz3wP(x, z,y,w)
e Pz, z,y,w) APz, 2,y w') — 2=2'
s 0 Pz, z,y,w) — E(z,w)

The QLIQUE problem is reducible to the existence-of-solutions prob-
lem for this PDE setting, yets: andX;, satisfy conditions (1) and
(2.1) of Definition 9. Note that this setting contains a singirget
egd.

Next, consider the following PDE setting:

Yo S(z,w) — S'(z,w)

D(z,y) — FzTwP(z, z,y,w)
S0 P(zyz,y,w) APz, 2y, w') — S'(2,2")
Sis o S'(z,2") — S(z,2)

Pz, z,y,w) — E(z,w).

Again, the Q.IQUE problem is reducible to the existence-of-solutions
problem p for this PDE setting, y&ts; andX;, satisfy conditions

(1) and (2.1) of Definition 9. Note that the target constraggntain

a single full tgd.

Finally, we show that the intractability boundary is alsossed
if we allow disjunctions in the right-hand side of targetstource
tgds. For this, consider the following PDE setting:

Yot E(z,y) — FuC(z,u)
E(z,y) — E'(z,y)

Ses 1 E'(z,y) AC(z,u) A C(y,v) —
(R(u) A B(v)) V (R(u) A G(v)V
(B(u) A G(v)) V (B(u) A R(v))V
(G(u) AN R(v)) V (G(u) A B(v))

The source relations a8, R, B, andG, while the target relations
are E' andC. Given a graphE, we construct a source instance
consisting ofE, R = {r}, G = {g} and B = {b}; we also take
the target instancé to be empty. It easy to see thats 3-colorable

if and only if there is a solution for this PDE setting. Notath
andX;, satisfy conditions (1) and (2.2) of Definition 9, and there
are no target constraints.

5. Outline of the Proof of Theorem 4

In this section, we outline the proof of the tractability ukgpre-
sented in Theorem 4 of last section. We present an algoritiam t
decides the existence-of-solutions problem for PDE ggtin the
classCirqct, @and outline why it is a correct polynomial-time algo-
rithm for this task.

The algorithm relies on the chase procedure and homomanphis
techniqueg. The chase procedure is used to construct a “repre-
sentative” instance, which we cdll,», that can be used to decide
the existence-of-solutions problem for a giveh J) and a fixed
PDE settingP. The instance .., is representative in the sense
that we show thaBCL () can be reduced to the problem of check-
ing whether there is a homomorphism fraim,,, to I. Although

the latter problem is NP-complete in general, we will pravattit

is tractable wher .., is obtained by chasing the dependencies of
a PDE setting in the clag,qct-

The instancd..., is obtained by chasing the input instan¢és.J)
with the dependencies;; and.;s of the PDE setting (recall that
3¢ is empty inCiract). More precisely, let], J.q.» ) be the result of
chasing(Z, J) with the source-to-target dependencles. Then,
Icqrn is a source instance such thidtq, , Ican ) is the result of chas-
ing (Jean, @) with the target-to-source constraints.. Notice that,
sincel.. is obtained by chasing tgds, it may contain null values.

'From now on, we will assume the definition of the chase proce-
dure given in [9] (that is, the chase is no longer solutioraaa).



The next theorem establishes the connection bet@ekriP) and
the problem of checking whether there is a homomorphism be-
tweenl.,, andl.

THEOREM 5. LetP be a PDE setting such that for every tgd
D in 34, every marked variable dD appears at most once in the
left-hand side ofD. Let I be a source instance, anfibe a target
instance. Let/.., be such tha(l, J..) is the result of chasing
(I, J) with ;. LetI.qn be such thalJean, Ican) is the result
of chasing(Jcan, @) with X¢5. Then, there exists some solution for
(I, J) in P iff there is some homomorphism fraim,,, to I.

Before giving the proof of this theorem, we introduce someilau

iary results. The next lemma shows that, when there are gettar
to-source dependencies, the result of cha&ing’) with the source-
to-target dependencies is an instance that has a homorsor phi

every solution. The proof, which we omit for lack of spaceais
straightforward adaptation of the proof of Theorem 3.3 ¢f [9

LEMMA 3. Let’P be a PDE setting wherEs, consists of tgds,
andX; andX;s are empty. Lef be a source instance (which may
contain null values), and lef be a target instance. L&, Jcan)
be the result of chasingl, J) with X.;. Then, there is a homo-
morphism fromJeq» 10 Jsor, fOr every solutionJs,,; for (1,.J) in
P.

The next lemma states that if there is a homomorphism between

two instancesk and K’, and we chase them with a set of tgds
to obtain instance¢, and L', then there is some homomorphism
betweenL andL’. It follows easily from Lemma 3.4 of [9].

LEMMA 4. LetX be a set of tgds. Lek and K’ be instances
(which may contain null values) such that there is a homotmisrp
from K to K’. Let L be the result of chasing with 3, and L’ be
the result of chasing<’ with . Then, there is a homomorphism
fromLto L'.

In the proof of Theorem 5, we will construct an instankg,, that

is a solution to the PDE setting. The instan&g,, is the result
of applying a homomorphism t0 Jearn. To show thatJimg is

a solution for the PDE setting, we rely on the following prape
which we shall show in Lemma 5: whenever a chase rule applies t
a set of tuples off;g, it also applies to the corresponding tuples
of Jean. More precisely, letX be a set of tuples of .., andY” be

a set of tuples off;g such that:(X) = Y. Whenevey” satisfies
the left-hand side of a dependenby so mustX. It is easy to see
that this property does not hold in general. For examplesicien

a tgd that maps paths of length two of the target to the source:
T (:E, y) A TQ(yv Z) - S(LE, Z) LetX = {Tl(A7 B)7 T2(C7 D)}

be a set of tuples of..,, and leth be a homomorphism such that
h(A) = A, h(B) = B, h(C) = Bandh(D) = D. LetY =
h(X), that isY = {T1(A, B),T>(B, D)}. Clearly,Y satisfies
the left-hand side of the tgd, bi¥ does not. Note that variable
appears in two literals of the tgd and the null valiiandC' appear

at the positions ofy in the tuples ofX. It is easy to show that null
values appear only at positions where there is a markedbleria
Therefore, the variablg is a marked variable that appears twice in
the left-hand side of the tgd. This, however, violates ctioil

of classCirqc: (Definition 9). We show next that if condition 1 of
Ciract IS satisfied, we get the desired property.

3

i

] = Ll
chase(Jsol, Xts)

I can

chase(Jean, Xts)

Jcan
chase(IU J, Xs)

- Jsol

solution for (1, J)

Figure 2: A diagram to illustrate Theorem 5

LEMMA 5. LetP be a PDE setting such th& satisfies condi-
tion 1 of the definition of:,..:. Consider a dependency Bf of
the formvx oy (x) — Jy Bs(x,y). LetI be a source instance, and
J be a target instance. Lel., be such tha(l, Je.») is the re-
sult of chasing(Z, J) with X:. Leth be a function that preserves
constants. Let/img = h(Jean). Assume that there are tuples
Ty (C1)7 A 7Tm(Cm) in Jimg such thatT1 (C1)7 R ,Tm(cm) ':
at(x). Then, there are tuple®i(di), ..., Tm(dm) in Jean SUCh
that71(d1),...,Tm(dm) FE ar(x), andh(d;) = c; for1 <i <
m.

We are now ready to prove Theorem 5.

PROOF (=) We will illustrate this direction of the proof with
the diagram of Figure 2. Lek,,; be a solution fof7, .J) in P. Let
I’ be a source instance such tidt,;, I") is the result of chasing
(Jso1, ®) with 3,5. We will show that there is a homomorphism
from I..., to I (arrow 4 in the diagram), by composing a homo-
morphism froml ..., to I’ (arrow 2) with a homomorphism fror
to I (arrow 3).

Recall thatJ.. is obtained by chasing only the dependencies of
Yst. Thus, by Lemma 3 above, there is a homomorphism from
Jean t0 €very solution. In particular, sincg,; is a solution, there

is @ homomorphism fronVcq, to Jso; (arrow 1 of the diagram).
By Lemma 4, there is a homomorphism frai,,, to I’ (arrow 2

of the diagram). SincéJs.., I') is the result of chasingJ,.., 0)
with ;5 only, by Lemma 3, there is a homomorphism fréhto I
(arrow 3 in the diagram).

(«=) Let h be a homomorphism fror.,.,, to I. We shall construct
an instance/;,,, and show that;,, is a solution for(1, J) in P.
We defineJ;,,4 as the result of applying the following functidry
to Jean:

e hy(z)=h(z)if x € Dom(Ican) N Dom(Jean)

e hy(zx)=aif x € Dom(Jean) — Dom(Ican)

where Dom(Icarn) and Dom(Jeqrn) denote the active domain of
Ican andJeqn, respectively. In order to show thay,, , is a solution
for (1, J)in P, we will show thatthat/ C Jinmg, (I, Jimg) = Zst,
and(Jimg, I) = Sts.

Since (I, Jean) is oObtained by chasingl, J) with ¥,;, we have
thatJ C J.qn. SinceJ is an instance without null values, ahg
preserves constants;(J) = J. Therefore,J C Jip,.



Algorithm Exi st sSol uti onp(I,J): boolean
Let J.an be such thatl, Jeqr) is the result of
chasing(1, J) with 3.
Let I.qn be such thatJean, Ican) is the result of
chasing(Jean, ) with 34.
for each blockis of .4, do
if there is no homomorphism froifx to I then
return f al se
end if
end for
return true

Figure 3: Algorithm Exi st sSol uti on

Consider a tgd ok, of the formVx.¢s(x) — Jy.¢i(x,y). As-
sume that there is somesuch thatl = ¢.(c). Notice thatc is
a vector of constants fromom(I), sincel is an instance with-
out null values. Sincél, J..») is the result of chasingl, J) with
Yst, we have thatl, Jean) = Xs:. Therefore Jean = 9¥:(c, d),
for somed. SinceJimg = h(Jean), by is @ homomorphism from

Jean 10 Jimg. Since conjunctive queries are preserved under homo-

morphismshs(Jean) | ¥i(hs(c), hs(d)). Sinceh; preserves
constantshy(c) = c. Thus,Jimg = ¥¢(c,e), for somee. We
conclude that!, Jimg) = Zet.

Consider a tgd ofZ;s of the formVx ax(x) — Ty Bs(x,y).
Assume that there is somein Dom(Jimg) such that/i,, =
at(c). By Lemma 5, it follows that/.a, = a+(d), for somed
in Dom(Jean) Wherec = h(d). Sincel.q, is obtained from the
chase of(Jean, ) with X5, we have thalJean, lcan) = Sts.
Thus, there is some such that/.... = (s(d,e). Sinceh is a ho-

momorphism from/ ., to I, and conjunctive queries are preserved

under homomorphisms, it is the case tiat= 3s(h(d), h(e)).
Sincec = h(d), we have that = j;(c,f), for somef. There-
fore, (Jimg, I) = Zts.

SinceJ C Jimg, (I, Jimg) E Zst, and (Jimg, I) E Xis, We
conclude that/;,4 is a solution for(Z, J) in P. [

We now present the algorithBxi st sSol ut i onp(Z, J) (shown

in Figure 3) which decides whether there is a solution(far.J)

in the PDE setting®. The algorithm first partitiong..,, into a set
of instances that we cdlllocks Then, it checks whether there is a
homomorphism from each block @f., to I. The notion ofblock

is adapted from [7] and defined as follows.

DEFINITION 10. LetK be an instance. Thgraph of the nulls
of K is an undirected graph in which: (1) the nodes are all thesnull

PrRoOPOSITION 1. There is a homomorphism from,, to I if
and only if there exists a homomorphism frdmto I for every
block s of I.qn.

In order to show that the algorithm runs in polynomial timeP®E
settings of clas€:,q.:, we must prove that the problem of check-
ing the existence of a homomorphism from each blocgf, to
I'isin P. We prove this by showing that every block &f,,, has
a constant number of null values. If there are source-wetade-
pendencies only, the result follows easily. Although theutestill
holds in the presence of target-to-source tgds, the proofuish
more involved (Theorem 6 next). The polynomial running tiofie
the algorithm follows from the fact that the problem of chiegkfor
the existence of a homomorphism from an instance with a aohst
number of null values to an arbitrary instance is tractable.

THEOREM 6. Let P be a PDE setting that satisfies condition
2 of the definition of;,..:. LetI be a source instance, anflbe
a target instance. Lef..,, be such tha{(I, Je.,) is the result of
chasing(I, J) with 4. LetIcqn be such thatJean, Ican) is the
result of chasing Jean, @) with 3. Then, every block of tuples of
I.qn has a constant number of null values.

Note that we only assume one of the two conditions of the defini
tion of Cirace (condition 2). In turn, condition 2 is split into two
subconditions: 2.1 and 2.2. The proof of Theorem 6 consists o
two parts. In the first, we assume subcondition 2.1, and shat t
every block ofI.., has a constant number of null values. In the
second part, we do the same assuming subcondition 2.2.

The next lemma will be used in the first part of the proof of Theo
rem 6. It states that, assuming that the PDE satisfies sulticond
2.1, every block ofl.., is the result of chasing exactly one block
of Jean. The proof is by induction in the size of the blocks/ef...

LEMMA 6. Let P = (S, T, X, X¢s, 2¢) be a PDE setting
such thatP satisfies condition 2.1 of the definition@f...:. Letl
be a source instance, anfibe a target instance. Lek..., be such
that (1, Jean) is the result of chasing!l, J) with X,,. Let ..., be
such that(Jean, Ican) is the result of chasingJcan, @) with 3.
Let I be a block off...,. Then, there exists a block of tuplés of
Jean SUCh thatl is the result of chasings with 3.

PROOF Base caseAssume thafs has exactly one tuplé(c).
Since every dependency Bf.; has exactly one literal on the left-
hand sideS(c) is the result of chasing exactly one tuple®f. ..

Inductive step. Let S(c) be atuple of/s. LetI;; = Iz — {S(c)}.
By inductive hypothesis, every tuple & is in the result of chasing
some blockJi of Jean. Sincelp is a block of tuples and(c) €

of K, and (2) there is an edge between two nulls whenever the nulls 1, there is some tuplé’(c’) in Iz such thatS(c) andS’ (c’) share

appear together in some tuple &f

We say that< is ablock of tuple®f K if K5 is a maximal subset
of K that satisfies one of the following conditions: (1) theresexi
a connected componeftin the graph of the nulls o such that
every tuple ofKz has some null value fror; or (2) there are no
null values inK 5.

The correctness of the algorithm follows from the next psifpon
and Theorem 5.

some null valuew.

Assume thatw is a null value fromVar(J.qan). Since every de-
pendency of:; has exactly one literal on the left-hand sidé¢)
is the result of chasing exactly one tugdlg¢d) of Jeqrn. Similarly,
S’(c’) is the result of chasing exactly one tupié(d’) of Jean.
Sincew appears irc andc’, andw is a null from J..,, w occurs
ind andd’. SinceS’(c’)isin Iz, T'(d") isin Jz. Thus,T(d) is
also inJg. Consequently/ is the result of chasing with X;.

Assume thatw is a null value such thab ¢ Var(Jean). There-
fore,w is a null that is newly created during the chase/gf,, with



Yts. That is,w is created due to an existentially-quantified vari-
able of a tgd ofJ;s. Since every dependency Bf. has exactly
one literal on the left-hand sidé,(c) and S’(c’) are in the result
of chasing exactly one tupl&(d) of J..,,. SinceS’(c¢’) is in I,
T(d) isin Jz. Consequently/; is the result of chasingz with
Y. O

The next two lemmas will be used in the second part of the proof
of Theorem 6 (i.e., assuming that the PDE satisfies subgondit
2.2). Recall that the null values @f.,, may be created during the
chase of the dependencies of eithigg or 5. All the null values
that are created during the chase of dependenci&s:ofppear in
Jean- The following lemma states that, for every blobk of 7.4,

the null values of/ that were created during the chaseht not
only appear inJ.., but they also come from exactly one block of
Jean. The proof is by induction in the size of the blocks/gf,,.

LEMMA 7. Let P = (S, T, Y., X¢s, 2¢) be a PDE setting
such thatP satisfies condition 2.2 of the definition@f.4.:. LetI
be a source instance, anfibe a target instance. Lek..., be such
that (I, Jean) is the result of chasingl, J) with X;. LetIcq, be
such that(Jean, Ican) is the result of chasing.Jean, ) with 3.
Let Iz be a block ofl..,. Then, there exists a block of tuplés
of Jean such that for every null value in Var(Iz) N Var(Jean),
w € Var(Jg).

PROOF Base caseAssume thafs has exactly one tuplé(c).
Assume that there are null valuesandz in S(c) such thatv and
z appear inJ.qn. Let D be the dependency &f;, such thatS(c)
is the result of chasing some tupl€s(d.), ..., Tm (dm) Of Jean
with D. Let h be a homomorphism frorff (x1), ..., Tm (Xm)
to 71 (d1),...,Tm(dm). Letz, andz. be variables such that
h(zw) = w andh(z.) = z. Since there are null values at the
position ofx,, andx in Jean, ., andz, are marked variables in
D. Sincew andz appear inS(c), z., andz. appear together in a
literal of the right-hand side ab. SinceD satisfies condition 2.2
of Ctract, ¢ andx,, appear together in some liter)(x) of the
left-hand side ofD. Thus,w andz appear together in some tuple
Ti(d;) of Jean. Thereforew and z belong to the same block of
Jcan-

Inductive step. Let S(c) be atuple of/. Let Iz = Iz — {S(c)}.
By inductive hypothesis, there exists a blagk of J.., such that
every null value o ar(I3) N Var(Jean) isin Var(Jgz). Assume
that there is some null value i$i(c). By definition of block, there
is some tupleS’(c’) in Iz such thatS(c) and S’(c¢’) share some
null valuew.

Assume thatv does not appear id.q. Let D be the dependency

of ¥, such thatS(c) is the result of chasing some tuples.bf..

with D. Sincew does not occur in/.., it is at a position ofc

that corresponds to a marked variable which does not appé¢iae i
left-hand side ofD (i.e., an existentially-quantified variable bX).
SinceP satisfies condition 2.2 of the definition 6f,...:, none of

the nulls ofS(c) correspond to marked variables that appear on the
left-hand side ofD. Thus, none of the nulls of(c) are inJean,

and we are done.

Assume thato appears in.q,. Sincew appears irs’(c’), wis in
Var(Js). Assume that there is some null valuom Dom (Jean)
such that: occurs inS(c) andz is distinct fromw. We must prove
now thatz appears in/ar(Jz). Let D be the dependency &,

such thatS(c) is the result of chasing tuplés (d1), . . ., T (dm)
of Jean With D, for somedy, ..., d,,. Leth be a homomorphism
from 71 (x1), ..., Tom(xm) t0 T1(d1), ..., T (dm). Letz, and
x. be variables such that(z.,) = w andh(z.) = z. Since there
are null values at the position af, andz. in Jegn, T, andzx.
are marked variables iP. Sincew andz appear inS(c), x.,, and
x, appear together in a literal of the right-hand side/af Since
D satisfies condition 2.2 af¢rqct, ©- andxz,, appear together in
some literalT;(x) of the left-hand side oD. Thus,w andz ap-
pear together in some tupkg(d;) of Jean. Sincew € Var(Jg),
Ti(ds) isin Js. Thus,z appears in/z. [

The following lemma states that, if the PDE satisfies coadift.2
of Ciract, then the null values of each block come from the chase
of either tgds of,; or X;s, but not both.

LEMMA 8. LetP be a PDE setting such th& satisfies condi-
tion 2.2 of the definition of:..:. LetI be a source instance, and
J be atarget instance. Lek..., be such thafl, J...) is the result
of chasing(7, J) with X;. Let I.., be such tha{Jean, Ican) IS
the result of chasing.J.an, ?) with X:5. Then, for every block of
tuplesi of I.qx, exactly one of the following holds:

e all the null values ofl are in J.qn

e none of the null values diz are in Jean

PROOF Assume that some null value 6% is fromVar(Jean).
Assume thatlz has some null values) and z such thatw ¢
Var(Jean) andz € Var(Jean). By definition of block, there
is a connected componeftof the graph of the nulls of.q,, such
that> andw are nodes oB. Thus, there are null values andz’ in
B such thaty’ & Var(Jean), 2 € Var(Jean), andw’ andz’ are
adjacent inB. Thereforeaw’ andz’ appear together in some tuple
S(c) of I.an. Let D be the dependency &f:s that, when chased,
causes the addition &f(c) to Ican. Sincez’ isin Var(Jean), itis
at a position ot that corresponds to a marked variable that appears
in the left-hand side oD. Sincew’ is notinJ..n», itis at a position
of ¢ that corresponds to a marked variable which does not appear
in the left-hand side oD (i.e., an existentially-quantified variable
of D). Thus,P violates condition 2.2 of the definition @, qc:;
contradiction. [

We are now ready to prove Theorem 6. First, we claim that
has a constant number of tuples. Sirces an instance without
null values, all the null values aof are created when chasing ex-
actly one dependency df,;. That is, there is a rulé of the
form Vx.¢s(x) — Jy.¢:(x,y) such that all tuples ofz are in
Y¢(c,d), for somec andd. The size ofy, depends on the size
of the dependency (which is assumed to be constant). Therefo
there is a constant number of tuplesjig.

Let Iz be a block of tuples of ... Assume thafP satisfies con-
dition 2.1 of the definition of:,..:. By Lemma 6, there exists a
block of tuplesJz of J..., such thatls is the result of chasing
with X;5. SinceJg has a constant number of tuples ahdis the
result of chasing/z with X5, I3 has a constant number of tuples.
Consequently/ has a constant number of null values.

Now, assume thaP satisfies condition 2.2 of the definition of
Ciract. First, assume that none of the null valuesigfare from
Var(Jean). Then, all the null values ofz are created due to



existentially-quantified variables of dependenciesyef. Since
each step of the chase creates new null values for the etahgn
quantified variables, all the tuples 6% are created when chasing
exactly one dependency &f;s. That is, there is a rul® of the
form vx a;(x) — Ty Bs(x,y) such that all tuples ofz are in
Bs(c,d). The size ofg, depends on the size of the dependency
(which is assumed to be constant). Therefore, there is damns
number of tuples ins. Consequently, there is a constant number
of null values inI. Second, assume th&t contains some null
value fromVar(Jean). Let N be the set of null values that appear
in Iz and inJ.... By Lemma 7, there exists a block of tuplés of
Jean SUCh that every null value a¥ appears in/z. SinceJg has a
constant number of tupled] has a constant number of null values.
Sincels contains some null value froWar(Jean), Dy Lemma 8,
Var(Ig) = N.

6. Conclusions

We have introduced a framework for data sharing among indepe
dent peers which is a generalization of data exchange and-a sp
cial case of peer data management. Peer data exchange raodels
scenario in which a target peer receives data from an auton®m
source and has no authority to modify the data of the souree pe
Nonetheless, the target peer may specify what data it isSngill
to receive, and the exchange makes use of source-to-tanget a
target-to-source schema mappings. Within this concdptsah-

ple yet powerful framework, we have shown that the existence
of-solutions problem is NP-complete. We have also expldhed
boundary between tractability and intractability, andniiféed a
broad class of PDE settings for which the existence of smisti
can be tested in polynomial time. We plan to further delieghts
boundary and also investigate tractable extensiods,of that in-
clude target constraints.

We have also shown that the problem of obtaining certain arsw
in peer data exchange is coNP-complete for unions of cotijnc
queries. This is in contrast to peer data management, whéese i
undecidable; and to data exchange, where it is tractablel&eo
investigate the complexity of computing certain answersHDE
settings inC:rqc+ and to find classes of PDE settings with target
constraints for which the problem of obtaining certain a@sns
tractable. Finally, we wish to explore alternative senw@ntvhen
there is no solution. A semantics for query answering baseti®
semantics of repairs has been proposed [5]. However, thedaoy
between tractability and intractability for this semastiemains
largely unexplored.
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