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A schema mapping is a specification that describes how data structured under one schema (the

source schema) is to be transformed into data structured under a different schema (the target

schema). A fundamental problem is composing schema mappings: given two successive schema

mappings, derive a schema mapping between the source schema of the first and the target schema

of the second that has the same effect as applying successively the two schema mappings.

In this article, we give a rigorous semantics to the composition of schema mappings and investi-

gate the definability and computational complexity of the composition of two schema mappings. We

first study the important case of schema mappings in which the specification is given by a finite set

of source-to-target tuple-generating dependencies (source-to-target tgds). We show that the com-

position of a finite set of full source-to-target tgds with a finite set of tgds is always definable by a

finite set of source-to-target tgds, but the composition of a finite set of source-to-target tgds with a

finite set of full source-to-target tgds may not be definable by any set (finite or infinite) of source-

to-target tgds; furthermore, it may not be definable by any formula of least fixed-point logic, and

the associated composition query may be NP-complete. After this, we introduce a class of existen-

tial second-order formulas with function symbols and equalities, which we call second-order tgds,

and make a case that they are the “right” language for composing schema mappings. Specifically,

we show that second-order tgds form the smallest class (up to logical equivalence) that contains

every source-to-target tgd and is closed under conjunction and composition. Allowing equalities in

second-order tgds turns out to be of the essence, even though the “obvious” way to define second-

order tgds does not require equalities. We show that second-order tgds without equalities are not

sufficiently expressive to define the composition of finite sets of source-to-target tgds. Finally, we

show that second-order tgds possess good properties for data exchange and query answering: the
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chase procedure can be extended to second-order tgds so that it produces polynomial-time com-

putable universal solutions in data exchange settings specified by second-order tgds.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Relational
databases; query processing; H.2.5 [Database Management]: Heterogeneous Databases—Data
translation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Data exchange, data integration, composition, schema map-

ping, certain answers, conjunctive queries, dependencies, chase, computational complexity, query

answering, second-order logic, universal solution, metadata model management

1. INTRODUCTION & SUMMARY OF RESULTS

The problem of transforming data structured under one schema into data struc-
tured under a different schema is an old, but persistent problem, arising in
several different areas of database management systems. In recent years, this
problem has received considerable attention in the context of information inte-
gration, where data from various heterogeneous sources has to be transformed
into data structured under a mediated schema. To achieve interoperability,
data-sharing architectures use schema mappings to describe how data is to be
transformed from one representation to another. These schema mappings are
typically specified using high-level declarative formalisms that make it possi-
ble to describe the correspondence between different schemas at a logical level,
without having to specify physical details that may be relevant only for the
implementation (run-time) phase. In particular, declarative schema mappings
in the form of GAV (global-as-view), LAV (local-as-view), and, more generally,
GLAV (global-and-local-as-view) assertions have been used in data integration
systems [Lenzerini 2002]. Similarly, source-to-target tuple-generating depen-
dencies (source-to-target tgds) have been used for specifying data exchange
between a relational source and a relational target [Fagin et al. 2005a, 2005b];
moreover, nested (XML-style) source-to-target dependencies have been used in
the Clio data exchange system [Popa et al. 2002].

The extensive use of schema mappings has motivated the need to develop a
framework for managing these schema mappings and other related metadata.
Bernstein [2003] has introduced such a framework, called model management,
in which the main abstractions are schemas and mappings between schemas, as
well as operators for manipulating schemas and mappings. One of the most fun-
damental operators in this framework is the composition operator, which com-
bines successive schema mappings into a single schema mapping. The composi-
tion operator can play a useful role each time the target of a schema mapping is
also the source of another schema mapping. This scenario occurs, for instance,
in schema evolution, where a schema may undergo several successive changes.
It also occurs in peer-to-peer data management systems, such as the Piazza
System [Halevy et al. 2003], and in extract-transform-load (ETL) processes in
which the output of a transformation may be input to another [Vassiliadis et al.
2002]. A model management system should be able to figure out automatically
how to compose two or more successive schema mappings into a single schema
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mapping between the first schema and the last schema in a way that captures
the interaction of the schema mappings in the entire sequence. The resulting
single schema mapping can then be used during the run-time phase for var-
ious purposes, such as query answering and data exchange, potentially with
significant performance benefits.

Bernstein’s approach provides a rich conceptual framework for model man-
agement. The next stage in the development of this framework is to provide a
rigorous and meaningful semantics of the basic model management operators
and to investigate the properties of this semantics. As pointed out by Bernstein
[2003], while the semantics of the match operator have been worked out to
a certain extent, the semantics of other basic operators, including the compo-
sition operator, “are less well developed”. The problem of composing schema
mappings has the following general formulation: given a schema mapping M12

from schema S1 to schema S2, and a schema mapping M23 from schema S2 to
schema S3, derive a schema mapping M13 from schema S1 to schema S3 that
is “equivalent” to the successive application of M12 and M23. Thus, providing
semantics to the composition operator amounts to making precise what “equiv-
alence” means in this context. Madhavan and Halevy [2003] were the first to
propose a semantics of the composition operator. To this effect, they defined the
semantics of the composition operator relative to a class Q of queries over the
schema S3 by stipulating that “equivalence” means that, for every query q in
Q, the certain answers of q in M13 coincide with the certain answers of q that
would be obtained by successively applying the two schema mappings M12 and
M23. They then established a number of results for this semantics in the case in
which the schema mappingsM12 andM23 are specified by source-to-target tgds
(i.e., GLAV assertions), and the class Q is the class of all conjunctive queries
over S3. The semantics of the composition operator proposed by Madhavan and
Halevy [2003] is a significant first step, but it suffers from certain drawbacks
that seem to be caused by the fact that this semantics is given relative to a class
of queries. To begin with, the set of formulas specifying a composition M13 of
M12 and M23 relative to a class Q of queries need not be unique up to logical
equivalence, even when the class Q of queries is held fixed. Moreover, this se-
mantics is rather fragile, because as we show, a schema mapping M13 may be
a composition of M12 and M23 when Q is the class of conjunctive queries (the
class Q that Madhavan and Halevy focused on), but fail to be a composition
of these two schema mappings when Q is the class of conjunctive queries with
inequalities.

In this article, we first introduce a different semantics for the composition
operator and then investigate the definability and computational complexity
of the composition of schema mappings under this new semantics. Unlike the
semantics proposed by Madhavan and Halevy, our semantics does not carry
along a class of queries as a parameter. Specifically, we focus on the space
of instances of schema mappings and define a schema mapping M13 to be a
composition of two schema mappings M12 and M23 if the space of instances of
M13 is the set-theoretic composition of the spaces of instances of M12 and M23,
where these spaces are viewed as binary relations between source instances
and target instances. One advantage of this approach is that the set of formulas
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defining a composition M13 of M12 and M23 is unique up to logical equivalence;
thus, we can refer to such a schema mapping M13 as the composition of M12

and M23. Moreover, our semantics is robust, since it is defined in terms of the
schema mappings alone and without reference to a set of queries. In fact, it
is easy to see that the composition (in our sense) of two schema mappings is
a composition of these two schema mappings in the sense of Madhavan and
Halevy relative to every class of queries.

We explore in depth the properties of the composition of schema map-
pings specified by a finite set of source-to-target tuple-generating dependencies
(source-to-target tgds). A natural question to ask is whether the composition
of two such schema mappings can also be specified by a finite set of source-to-
target tgds; if not, in what logical formalism can it be actually expressed? On
the positive side, we show that the composition of a finite set of full source-
to-target tgds with a finite set of source-to-target tgds is always definable by
a finite set of source-to-target tgds (a source-to-target tgd is full if no existen-
tially quantified variables occur in the tgd). On the negative side, however, we
show that the composition of a finite set of source-to-target tgds with a finite
set of full source-to-target tgds may not be definable by any set (finite or in-
finite) of source-to-target tgds. We also show that the composition of a finite
set of source-to-target tgds with a finite set of full source-to-target tgds may
not even be definable in the finite-variable infinitary logic Lω

∞ω, which implies
that it is not definable in least fixed-point logic LFP; moreover, the associated
composition query can be NP-complete.

To ameliorate these negative results, we introduce a class of existential
second-order formulas with function symbols and equalities, called second-
order tgds, which express source-to-target constraints and which subsume the
class of finite conjunctions of (first-order) source-to-target tgds. We make a case
that second-order tgds are the right language both for specifying schema map-
pings and for composing such schema mappings. To begin with, we show that
the composition of two finite sets of source-to-target tgds is always definable by
a second-order tgd. Moreover, the composition of second-order tgds is also de-
finable by a second-order tgd, and we give an algorithm that, given two schema
mappings specified by second-order tgds, outputs a second-order tgd that de-
fines the composition. Furthermore, the conjunction of a finite set of second-
order tgds is equivalent to a single second-order tgd. Hence, the composition of
a finite number of schema mappings, each defined by a finite set of source-to-
target (second-order) tgds, is always definable by a second-order tgd. It should
be pointed out that arriving at the right concept of second-order tgds is a rather
delicate matter. Indeed, at first one may consider the class of second-order for-
mulas that are obtained from first-order tgds by Skolemizing the existential
first-order quantifiers into existentially quantified function symbols. This pro-
cess gives rise to a class of existential second-order formulas with no equalities.
Therefore, the “obvious” way to define second-order tgds is with formulas with
no equalities. Interestingly enough, however, we show that second-order tgds
without equalities are not sufficiently expressive to define the composition of
finite sets of (first-order) source-to-target tgds. In fact, our second-order tgds
(with equalities) form the smallest class of formulas (up to logical equivalence)
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for composing schema mappings given by finite sets of source-to-target tgds;
every second-order tgd defines the composition of a finite sequence of schema
mappings, each defined by a finite set of source-to-target tgds.

We then show that second-order tgds possess good properties for data ex-
change. In particular, the chase procedure can be extended to second-order
tgds so that it produces polynomial-time computable “universal solutions” (in
the sense of Fagin et al. [2005a]) in data exchange settings specified by second-
order tgds. As a result, in such data exchange settings the certain answers of
conjunctive queries can be computed in polynomial time.

In spite of the richness of second-order tgds, they form a well-behaved frag-
ment of second-order logic for composing schema mappings. As we noted earlier,
if the data exchange setting is defined by second-order tgds, then the certain
answers of every conjunctive query can be computed in polynomial time (by
doing the chase). By contrast, when the source schema is described in terms of
the target schema by means of arbitrary first-order views, there are conjunc-
tive queries for which computing the certain answers is an undecidable problem
[Abiteboul and Duschka 1998]. Thus, our second-order tgds form a fragment of
second-order logic that in some ways is more well-behaved than first-order logic.

There is a subtle issue about the choice of universe in the semantics of second-
order tgds. We take our universe to be a countably infinite set of elements that
includes the active domain. This is a natural choice for the universe, since
second-order tgds have existentially quantified function symbols and for this
reason, one needs sufficiently many elements in the universe in order to in-
terpret these function symbols without making any unnecessary combinatorial
assumptions. In fact, we show that as long as we take the universe to be fi-
nite but sufficiently large, then the semantics of a second-order tgd remains
unchanged from the infinite universe semantics.

We show that determining whether a given instance over the source and
target schema satisfies a second-order tgd is in NP and can be NP-complete.
This is in contrast with the first-order case, where such “model checking” can
be done in polynomial time.

Finally, we examine Madhavan and Halevy’s notion of composition, which we
refer to as “certain-answer adequacy”. Roughly speaking, a formula is certain-
answer adequate if it gives the same certain answers as the composition. A
formula σ that defines the composition (in our sense) is always certain-answer
adequate for every class Q of queries; however, other formulas that are not
logically equivalent to σ may also be certain-answer adequate for some classes
Q of queries. This is why we use the word “adequate”: logically inequivalent
choices may both be adequate for the job. We show that there are schema map-
pings where no finite set of source-to-target tgds is certain-answer adequate
for conjunctive queries. We also prove the following “hierarchy” of results about
certain-answer adequacy:

(A) A formula may be certain-answer adequate for conjunctive queries but not
for conjunctive queries with inequalities.

(B) A formula may be certain-answer adequate for conjunctive queries with
inequalities but not for all first-order queries.
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(C) A formula is certain-answer adequate for all first-order queries if and only
if it defines the composition (in our sense); furthermore, such a formula
is certain-answer adequate for all queries. It follows that if a formula is
certain-answer adequate for all first-order queries, then it is certain-answer
adequate for all queries.

2. BACKGROUND

In this section, we review the basic concepts from data exchange that we will
need.

A schema is a finite sequence R = 〈R1, . . . , Rk〉 of distinct relation symbols,
each of a fixed arity. An instance I (over the schema R) is a sequence 〈R I

1 , . . . , R I
k 〉

such that each R I
i is a finite relation of the same arity as Ri. We call R I

i the
Ri-relation of I . We shall often abuse the notation and use Ri to denote both
the relation symbol and the relation R I

i that interprets it.
Let S = 〈S1, . . . , Sn〉 and T = 〈T1, . . . , Tm〉 be two schemas with no rela-

tion symbols in common. We write 〈S, T〉 to denote the schema 〈S1, . . . , Sn,
T1, . . . , Tm〉. If I is an instance over S and J is an instance over T, then we
write 〈I, J〉 for the instance K over the schema 〈S, T〉 such that SK

i = SI
i and

T K
j = T J

j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
If K is an instance and σ is a formula in some logical formalism, then we

write K |= σ to mean that K satisfies σ . If � is a set of formulas, then we write
K |= � to mean that K |= σ for every formula σ ∈ �. Recall that a (Boolean)
query is a class of instances that is closed under isomorphisms [Chandra and
Harel 1982]. That is, if a structure is a member of the class, then so is every
isomorphic copy of the structure. If K is an instance and q is a query, then we
write K |= q to mean that K is a member of the class q of instances.

Definition 2.1. A schema mapping (or, in short, mapping) is a triple M =
(S, T, �), where S and T are schemas with no relation symbols in common and
� is a set of formulas of some logical formalism over 〈S, T〉.

Definition 2.2. Let M = (S, T, �) be a schema mapping.

(1) An instance of M is an instance 〈I, J〉 over 〈S, T〉 that satisfies every for-
mula in the set �.

(2) We write Inst(M) to denote the set of all instances 〈I, J〉 of M. Moreover,
if 〈I, J〉 ∈ Inst(M), then we say that J is a solution for I under M.

Several remarks are in order now. In the sequel, if M = (S, T, �) is a schema
mapping, we will often refer to S as the source schema and to T as the target
schema. The formulas in the set � express constraints that an instance 〈I, J〉
over the schema 〈S, T〉 must satisfy. We assume that the logical formalisms con-
sidered have the property that the satisfaction relation between formulas and
instances is preserved under isomorphism, which means that if an instance sat-
isfies a formula, then every isomorphic instance also satisfies that formula. This
is a mild condition that is true of all standard logical formalisms, such as first-
order logic, second-order logic, fixed-point logics, and infinitary logics. Thus,
such formulas represent queries in the sense of Chandra and Harel [1982]. An
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immediate consequence of this property is that Inst(M) is closed under isomor-
phism; that is, if 〈I, J〉 ∈ Inst(M) and 〈I ′, J ′〉 is isomorphic to 〈I, J〉, then also
〈I ′, J ′〉 ∈ Inst(M).

At this level of generality, some of the formulas in � may be just over the
source schema S and others may be just over the target schema T; thus, the set
� may include constraints over the source schema S alone or over the target
schema T alone, along with constraints that involve both the source and the
target schemas. We note that, although the term “schema mapping” or “map-
ping” has been used earlier in the literature (for instance, in Miller et al. [2000],
Madhavan and Halevy [2003]), it is a bit of a misnomer, as a schema mapping
is not a mapping in the traditional mathematical sense, but actually it is a
schema (although partitioned in two parts) together with a set of constraints.
Nonetheless, a schema mapping M = (S, T, �) gives rise to a mapping such
that, given an instance I over S, it associates the set of all instances J over T
that are solutions for I under M. Note also that the terminology “J is a solution
for I” comes from Fagin et al. [2005a, 2005b], where J is a solution to the data
exchange problem associated with the mapping M and the source instance I .

Schema mappings are often specified using source-to-target tgds. They have
been used to formalize data exchange [Fagin et al. 2005a, 2005b]. They have
also been used in data integration scenarios under the name of GLAV asser-
tions [Lenzerini 2002]. A source-to-target tuple-generating dependency (source-
to-target tgd) is a first-order formula of the form

∀x(φS(x) → ∃yψT (x, y)),

where φS(x) is a conjunction of atomic formulas over S, and where ψT (x, y) is
a conjunction of atomic formulas over T. We assume that every variable in x
appears in φS . A full source-to-target tuple-generating dependency (full source-
to-target tgd) is a source-to-target tgd of the form

∀x(φS(x) → ψT (x)),

where φS(x) is a conjunction of atomic formulas over S, and where ψT (x) is a
conjunction of atomic formulas over T. We again assume that every variable in
x occurs in φS .

Every full source-to-target tgd is logically equivalent to a finite set of full
source-to-target tgds each of which has a single atom in its right-hand side.
Specifically, a full source-to-target tgd of the form ∀x(φS(x) → ∧k

i=1 Ri(xi)) is
equivalent to the set consisting of the full source-to-target tgds ∀x(φS(x) →
Ri(xi)), for i = 1, . . . , k. In contrast, this property fails for arbitrary source-to-
target tgds, since the existential quantifiers may bind variables used across
different atomic formulas.

Example 2.3. Consider the following three schemas S1, S2 and S3. Schema
S1 consists of a single binary relation symbol Takes, that associates student
names with the courses they take. Schema S2 consists of a similar binary re-
lation symbol Takes1, that is intended to provide a copy of Takes, and of an
additional binary relation symbol Student, that associates each student name
with a student id. Schema S3 consists of one binary relation symbol Enrollment,
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that associates student ids with the courses the students take. Consider now
the schema mappings M12 = (S1, S2, �12) and M23 = (S2, S3, �23), where

�12 = {∀n∀c(Takes(n, c) → Takes1(n, c)),

∀n∀c(Takes(n, c) → ∃sStudent(n, s))}
�23 = {∀n∀s∀c(Student(n, s) ∧ Takes1(n, c) → Enrollment(s, c))}

The three formulas in �12 and �23 are source-to-target tgds. The second formula
in �12 is an example of a source-to-target tgd that is not full, while the other
two formulas are full source-to-target tgds. The first mapping, associated with
the set �12 of formulas, requires that “copies” of the tuples in Takes must exist
in Takes1 and, moreover, that each student name n must be associated with
some student id s in Student. The second mapping, associated with the formula
in �23, requires that pairs of student id and course must exist in the relation
Enrollment, provided that they are associated with the same student name.

Note that for a given set � of source-to-target tgds, checking whether an
instance 〈I, J〉 satisfies � can be done in polynomial time. (This is true in
general when � is a set of first-order formulas.) We shall contrast this with the
case of second-order tgds, the more expressive mapping language that we shall
introduce later. When � is a second-order tgd, checking if 〈I, J〉 satisfies � is
in NP and can be NP-complete (Theorem 5.7).

For the rest of this section, we shall review notions and results from Fagin
et al. [2005a] about data exchange. The data exchange problem associated with
M and a source instance I is to find a solution J over the target schema T.
For any schema mapping M, there may be many solutions for a given source
instance I over S. Let R be a schema and J , J ′ two instances over R. A function
h is a homomorphism from J to J ′ if for every relation symbol R in R and every
tuple (a1, . . . , an) ∈ R J , we have that (h(a1), . . . , h(an)) ∈ R J ′

. Given a schema
mapping M = (S, T, �) and a source instance I over S, a universal solution
for I under M is a solution J of I under M such that for every solution J ′ of
I under M, there exists a homomorphism h : J → J ′ with the property that
h(v) = v for every value v that occurs in I . Intuitively, universal solutions are
the “best” solutions among the space of all solutions for I . If � consists of source-
to-target tgds, then chasing I with � produces a universal solution J of I under
M. Furthermore, J can be computed in time polynomial in the size of I . (This
holds even in a more general setting that also includes target constraints.) We
will refer to this result several times during the technical development of this
paper. During the chase, target values may be introduced that do not appear in
the source instance; these are called nulls.

Given a schema mapping M = (S, T, �), an instance I over the source
schema S and a k-ary query q posed against the target schema T, the certain
answers of q on I with respect to M, denoted by certainM(q, I ), is the set of
all k-tuples t of values from I such that, for every solution J of I under M,
we have that t ∈ q(J ), where q(J ) is the result of evaluating q on J . If J is a
universal solution for I under M, and q is a union of conjunctive queries, then
certainM(q, I ) equals q(J )↓, which is the result of evaluating q on J and then
keeping only those tuples formed entirely of values from I (i.e., tuples that do
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not contain nulls). The equality certainM(q, I ) = q(J )↓ holds for arbitrarily
specified schema mappings M (as long as such a universal solution J exists).
Since a universal solution can be computed in time polynomial in the size of
I for schema mappings that contain only source-to-target tgds, it follows that
the certain answers of q on I with respect to such schema mappings can also
be computed in polynomial time.

3. THE SEMANTICS OF COMPOSITION

In this section, we define what it means for a schema mapping to be the com-
position of two schema mappings. In later sections, we will investigate under
what conditions such schema mappings exist and in what language they can
be defined.

If P1 and P2 are two binary relations, then by definition, the composition
P1 ◦ P2 of P1 and P2 is the binary relation

P1 ◦ P2 = {(x, y) : (∃z)((x, z) ∈ P1 ∧ (z, y) ∈ P2)}.
Clearly, if M = (S, T, �) is a schema mapping, then Inst(M) is a binary relation
between instances over S and instances over T. In what follows, we define
the concept of a composition of two schema mappings M12 and M23 using the
composition of the binary relations Inst(M12) and Inst(M23).

Definition 3.1. Let M12 = (S1, S2, �12) and M23 = (S2, S3, �23) be two
schema mappings such that the schemas S1, S2, S3 have no relation symbol in
common pairwise. A schema mapping M = (S1, S3, �13) is a composition of M12

and M23 if

Inst(M) = Inst(M12) ◦ Inst(M23),

which means that Inst(M) = {〈I1, I3〉 | there exists I2 such that 〈I1, I2〉 ∈
Inst(M12) and 〈I2, I3〉 ∈ Inst(M23)}.

Example 3.2. Let M12 and M23 be the schema mappings defined in Exam-
ple 2.3. Define I1 by letting TakesI1 = {(Alice, Math), (Alice, Art)}. Define I2 by
letting TakesI2

1 = TakesI1 and StudentI2 = {(Alice, 1234)}. Here 1234 is Alice’s
student id. Define I3 by letting EnrollmentI3 = {(1234, Math), (1234, Art)}. It
is easy to verify that 〈I1, I2〉 ∈ Inst(M12) and that 〈I2, I3〉 ∈ Inst(M23). Hence,
〈I1, I3〉 ∈ Inst(M12)◦ Inst(M23). One of the main problems that we study in this
paper is how to find, and in what language, a schema mapping M = (S1, S3,
�13) that is a composition of M12 and M23, according to Definition 3.1. In other
words, we will be looking for �13 (involving only S1 and S3) such that an instance
〈I1, I3〉 is in Inst(M12)◦Inst(M23) if and only if 〈I1, I3〉 satisfies �13. A first guess
for �13 in the example we are considering might be the source-to-target tgd

∀n∀c(Takes(n, c) → ∃sEnrollment(s, c)). (1)

However, formula (1) does not correctly capture the composition, since in (1),
the student id s depends on both the student name n and the course c. But the
student id s is supposed to depend only on the student name n (more precisely,
(s, c) must be a tuple in the Enrollment relation for every course c where (n, c)
is in the Takes relation). In fact, we shall show (in the proof of Proposition 4.4)
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that in this example, the composition is not definable by any finite set of source-
to-target tgds.

Since Inst(M12) and Inst(M23) are closed under isomorphism, their compo-
sition Inst(M12) ◦ Inst(M23) is also closed under isomorphism. Consequently,
the class Inst(M12)◦Inst(M23) can be identified with the following query, which
we call the composition query of M12 and M23: the set of all instances 〈I1, I3〉
such that 〈I1, I3〉 ∈ Inst(M12)◦Inst(M23). Note that, according to Definition 3.1,
asserting that M = (S1, S3, �13) is a composition of M12 and M23 amounts to
saying that the composition query ofM12 andM23 is exactly the set of instances
over 〈S1, S3〉 that satisfy �13. In other words, this means that the composition
query of M12 and M23 is defined by the formulas in the set �13.

It is well known and easy to see that every query is definable by an infinitary
disjunction of first-order formulas. Specifically, for each finite structure satis-
fying the query, we construct a first-order formula that defines the structure
up to isomorphism and then take the disjunction of all these formulas. This
infinitary formula defines the query. Moreover, every query is definable by a set
of first-order formulas. Indeed, for each finite structure that does not satisfy
the query, we construct the negation of the first-order formula that defines the
structure up to isomorphism and then form the set of all such formulas. Note
that this is an infinite set of first-order formulas, unless the query is satisfied
by all but finitely many non-isomorphic instances. This set is equivalent to its
conjunction. Thus, every query is definable by an infinitary conjunction of first-
order formulas. It follows that a composition of two schema mappings always
exists, since, given two schema mappings M12 and M23, we can obtain a com-
position M = (S1, S3, �13) of M12 and M23 by taking �13 to be the singleton
consisting of an infinitary formula that defines the composition query of M12

and M23. Alternatively, we could take �13 to be the (usually infinite) set of
first-order formulas that defines the composition query of M12 and M23. Since
�13 defines the composition query, this composition �13 is unique up to logical
equivalence in the sense that if M = (S1, S3, �13) and M′ = (S1, S3, �′

13) are
both compositions of M12 and M23, then �13 and �′

13 are logically equivalent.
For this reason, from now on we will refer to the composition of M12 and M23,
and will denote it by M12 ◦ M23. We may also refer to �13 as the composition
of �12 and �23.

Since the composition query is always definable both by an infinitary for-
mula and by an infinite set of first-order formulas, it is natural to investigate
when the composition of two schema mappings is definable in less expressive,
but more tractable, logical formalisms. It is also natural to investigate whether
the composition of two schema mappings is definable in the same logical for-
malism that is used to define these two schema mappings. We embark on this
investigation in the next section.

4. COMPOSING SOURCE-TO-TARGET TGDS

In this section, we investigate the definability and computational complexity
of the composition of two schema mappings M12 and M23 in which the depen-
dencies �12 and �23 are finite sets of source-to-target tgds. We shall show the
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following results.

—If �12 and �23 are finite sets of full source-to-target tgds, then the composition
of M12 and M23 is also definable by a finite set of full source-to-target tgds.

—If �12 is a finite set of full source-to-target tgds and �23 is a finite set of
source-to-target tgds (not necessarily full), then the composition of M12 and
M23 is definable by a finite set of source-to-target tgds. In turn, this implies
that the associated composition query is polynomial-time computable.

—In contrast, if both �12 and �23 are finite sets of arbitrary source-to-target
tgds (not necessarily full), then the composition of M12 and M23 may not
even be first-order definable, and the associated composition query may be
NP-complete.

4.1 Positive Results

Our first positive result shows the good behavior of the composition of map-
pings, each of which is defined by finite sets of full source-to-target tgds. In the
following, whenever α is a formula in which variables z1, . . . , zl may occur, we
may use the notation α[z1 �→ a1, . . . , zl �→ al ] to denote the formula obtained
by replacing the variables z1, . . . , zl in α by a1, . . . , al , respectively.

PROPOSITION 4.1. Let M12 = (S1, S2, �12) and M23 = (S2, S3, �23) be two
schema mappings such that �12 and �23 are finite sets of full source-to-target
tgds. Then, the composition M12 ◦ M23 is definable by a finite set of full
source-to-target tgds. Consequently, the composition query of M12 and M23 is a
polynomial-time query.

PROOF. Without loss of generality, assume that each full source-to-target
tgd in �12 has a single atom in its right-hand side. We shall show that the
composition M12 ◦ M23 is the schema mapping (S1, S3, �13), where �13 is con-
structed as follows. For every full source-to-target tgd τ in �23 of the form
∀x((R1(x1)∧· · ·∧ Rk(xk)) → S(x0)), if for some i there is no full source-to-target
tgd in �12 of the form ∀zi(φi → Ri(ui)), then no tgd will be constructed from
τ . Otherwise, for each i with 1 ≤ i ≤ k and for for each selection of a full
source-to-target tgd in �12 of the form ∀zi(φi → Ri(ui)), create a tgd by replac-
ing each atom Ri(xi) in τ by the formula φi[ui �→ xi]. We thereby obtain a full
source-to-target tgd from S1 to S3 of the form

(∗) ∀z′∀x((φ1[u1 �→ x1] ∧ · · · ∧ φk[uk �→ xk]) → S(x0)).

In the above, z′ includes all the variables in φ1, . . . , φk that are not affected by
the replacements. We obtain a finite set �τ of full source-to-target tgds from S1

to S3 by allowing each Ri(xi), for 1 ≤ i ≤ k, in τ to be replaced in all possible
ways. Then �13 is the union of all these sets �τ , and it is a finite set, since �12

and �23 are both finite sets.
We now show that �13 gives the composition. We begin by showing that if

〈I1, I3〉 is in Inst(M12) ◦ Inst(M23), then 〈I1, I3〉 satisfies �13. For every full
tgd in �13 of the form (*), if there exist tuples a and b of values that replace,
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correspondingly, the variables in z′ and x, such that

(∗∗) I1 |= (φ1[u1 �→ x1] ∧ · · · ∧ φk[uk �→ xk]) [z′ �→ a, x �→ b],

we show that I3 |= S(x0)[x �→ b].
By the construction of tgds in �13, we know that there are full tgds ∀zi(φi →

Ri(ui)), for 1 ≤ i ≤ k, in �12, and a full tgd ∀x((R1(x1) ∧ · · · ∧ Rk(xk)) → S(x0))
in �23. We know that there is I2 such that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23.
Since 〈I1, I2〉 |= �12, we obtain from (**) that I2 |= Ri(xi)[x �→ b], for each i
with 1 ≤ i ≤ k. Since 〈I2, I3〉 |= �23, it then follows that I3 |= S(x0)[x �→ b].

For the converse, assume that 〈I1, I3〉 satisfies �13. Let 〈I1, I2〉 be the result
of chasing 〈I1, ∅〉 with the full tgds in �12. It is immediate that 〈I1, I2〉 |= �12, by
the properties of the chase. We need to show that 〈I2, I3〉 |= �23. Let ∀x((R1(x1)∧
· · · ∧ Rk(xk)) → S(x0)) be a full tgd in �23, and assume that there is a tuple b
of values such that I2 |= (R1(x1) ∧ · · · ∧ Rk(xk)[x �→ b]. We need to show that
I3 |= S(x0)[x �→ b].

Since 〈I1, I2〉 is the result of chasing 〈I1, ∅〉 with the full tgds in �12, it follows
that there are tgds ∀zi(φi → Ri(ui)), with 1 ≤ i ≤ k, in �12, and a tuple a of
values such that the above condition (**) is true. By the construction of �13,
we know that a tgd of the form (*) must exist in �13. Since 〈I1, I3〉 satisfies this
tgd, it follows from the condition (**) that I3 |= S(x0)[x �→ b]. This was to be
shown.

A special case of this proposition appeared in Beeri and Vardi [1984b, Lemma
2.3]. An inspection of the proof of Proposition 4.1 shows that the same construc-
tion yields the following result.

PROPOSITION 4.2. Let M12 = (S1, S2, �12) and M23 = (S2, S3, �23) be two
schema mappings such that �12 is a finite set of full source-to-target tgds and
�23 is a finite set of source-to-target tgds. Then the composition M12 ◦ M23 is
definable by a finite set of source-to-target tgds. Consequently, the composition
query of M12 and M23 is a polynomial-time query.

PROOF. The construction of �13 is the same as in the proof of Proposition 4.1,
with the only difference being that for every source-to-target tgd in �23 of the
form ∀x((R1(x1) ∧ · · · ∧ Rk(xk)) → ∃yS(x0, y)), and for every i with 1 ≤ i ≤ k
and for every full source-to-target tgd in �12 of the form ∀zi(φi → Ri(ui)), we
construct a tgd in �13 of the form:

(∗) ∀z′∀x((φ1[u1 �→ x1] ∧ · · · ∧ φk[uk �→ xk]) → ∃yS(x0, y)).

The rest of the proof remains the same as in the proof of Proposition 4.1.

Example 4.3. We now give an example that shows the use of algorithm of
Proposition 4.2. Consider the following three schemas S1, S2 and S3. Schema
S1 consists of a unary relation EmpAcme that represents the employees of Acme,
a unary relation EmpAjax that represents the employees of Ajax, and a unary
relation Local that represents employees that work in the local office of their
company. Schema S2 consists of a unary relation Emp that represents all em-
ployees, a unary relation Local1 that is intended to be a copy of Local, and a
unary relation Over65 that is intended to represent people over age 65. Schema
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S3 consists of a binary relation Office that associates employees with office
numbers, and a unary relation CanRetire that represents employees eligible
for retirement. Consider now the schema mappings M12 = (S1, S2, �12) and
M23 = (S2, S3, �23), where

�12 = {∀e(EmpAcme(e) → Emp(e)),

∀e(EmpAjax(e) → Emp(e)),

∀p(Local(p) → Local1(p))}.
�23 = {∀e(Emp(e) ∧ Local1(e) → ∃oOffice(e, o)),

∀e(Emp(e) ∧ Over65(e) → CanRetire(e)}.
The result �13 of applying the composition algorithm from the proof of Propo-
sition 4.2 is

�13 = {∀e(EmpAcme(e) ∧ Local(e) → ∃oOffice(e, o)),

∀e(EmpAjax(e) ∧ Local(e) → ∃oOffice(e, o))}.
Note that the first tgd of �23 is “used twice” (once when we replace Emp by
EmpAcme and once when we replace Emp by EmpAjax), and the second tgd of �23

is not used (since there is nothing from S1 to replace Over65 by).

It is easy to see that the same result holds for Proposition 4.1 (and Propo-
sition 4.2) when a sequence of more than two consecutive schema mappings is
considered. In other words, given a sequence M12, M23, . . . , Mk−1,k of schema
mappings where each schema mapping is specified by a finite set of full source-
to-target tgds, the composition M12 ◦ · · · ◦ Mk−1,k is also definable by a finite
set of full source-to-target tgds. If the last schema mapping Mk−1,k is specified
by a finite set of source-to-target tgds and all of the others are specified by a
finite set of full source-to-target tgds, then the composition M12 ◦ · · · ◦ Mk−1,k

is definable by a finite set of source-to-target tgds.

4.2 Negative Results

We now present a series of negative results associated with the composition of
schema mappings specified by source-to-target tgds.

PROPOSITION 4.4. There exist schema mappings M12 = (S1, S2, �12) and
M23 = (S2, S3, �23) such that �12 is a finite set of source-to-target tgds, �23 is a
finite set of full source-to-target tgds, and the following hold for the composition
M12 ◦ M23:

(1) M12 ◦M23 is not definable by any finite set of source-to-target tgds, but it is
definable by an infinite set of source-to-target tgds.

(2) M12 ◦M23 is definable by a first-order formula. Consequently, the composi-
tion query of M12 and M23 is a polynomial-time query.

PROOF. The two schema mappings that we use to prove the proposition are
the schema mappings M12 and M23 of Example 2.3. Assume that according to
the instance I1, a student with name n is taking courses c1, . . . , ck . According
to the second tgd of �12, this student n is assigned (at least one) student id s.
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According to �23, the instance I3 then contains tuples (s, c1), . . . , (s, ck). These
requirements are described by the following source-to-target tgd, which we
denote by φk :

∀n∀c1 · · · ∀ck(Takes(n, c1) ∧ · · · ∧ Takes(n, ck) →
∃s(Enrollment(s, c1) ∧ · · · ∧ Enrollment(s, ck)))

We next show that the composition M12 ◦M23 is given by M = (S1, S3, �13),
where �13 is the infinite set {φ1, . . . , φk , . . .} of source-to-target tgds.

Assume first that 〈I1, I3〉 ∈ Inst(M12)◦Inst(M23). This means that there is I2

over S2 such that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23. We need to show that 〈I1, I3〉 |=
φk , for each k ≥ 1. Assume that TakesI1 contains tuples (n, c1), . . . , (n, ck), where
n is a concrete student name, and c1, . . . , ck are concrete courses. Since 〈I1, I2〉 |=
�12, we obtain that TakesI2

1 contains the tuples (n, c1), . . . , (n, ck) and StudentI2

contains the tuple (n, s), for some value s. Since 〈I2, I3〉 |= �23, we then obtain
that EnrollmentI3 contains the tuples (s, c1), . . . , (s, ck). Hence, 〈I1, I3〉 |= φk .

Conversely, assume that 〈I1, I3〉 |= φk , for each k ≥ 1. We need to show
that there is I2 such that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23. We construct I2 as
follows’. We let StudentI2 be the set of all tuples (n, s) such that: (1) some tuple
(n, c) occurs in TakesI1 , (2) the set {c1, . . . , cl } is the set of all courses c such that
(n, c) appears in TakesI1 , and (3) s is such that EnrollmentI3 contains the tuples
(s, c1), . . . , (s, cl ). We note that s as in condition (3) must exist, whenever TakesI1

contains tuples (n, c1), . . . , (n, cl ). This is due to the fact that 〈I1, I3〉 satisfies φl .
Furthermore, we let TakesI2

1 = TakesI1 . It is immediate that 〈I1, I2〉 |= �12.
We now show that 〈I2, I3〉 |= �23. Indeed, assume that StudentI2 contains

a tuple (n, s), and that TakesI2

1 contains a tuple (n, c); we must show that the

tuple (s, c) is in EnrollmentI3 . By construction of TakesI2

1 , we know that (n, c) is
in TakesI1 . Let {c1, . . . , cl } be the set of all courses c′ such that (n, c′) is in TakesI1 ;
this set certainly contains c. By construction of StudentI2 , we know that s has
the property that EnrollmentI3 contains the tuples (s, c1), . . . , (s, cl ). Since c is
a member of {c1, . . . , cl }, it follows that the tuple (s, c) is in EnrollmentI3 , as
desired.

It can be verified that �13 is not equivalent to any finite subset of it. We
now show that, in fact, �13 is not equivalent to any finite set of source-to-target
tgds. The proof of this uses the chase as well as the concept of universal solu-

tion. Suppose there is a finite set �fin
13 of source-to-target tgds that is logically

equivalent to �13. Let Mfin = (S1, S3, �fin
13 ) and consider the following source

instance I1:

TakesI1 = {(n, c1), . . . , (n, cm)},
where n is some student name and c1, . . . , cm are the courses that this student
takes. We assume that m is a large enough number, that we shall specify shortly.

We construct an instance I3 over S3, by chasing (as in Fagin et al. [2005a])
the instance 〈I1, ∅〉 with the source-to-target tgds in �fin

13 , where ∅ is an empty

instance. The chase applies the source-to-target tgds in �fin
13 and adds into I3

all the necessary tuples whenever it finds a source-to-target tgd that is not
satisfied. This is repeated until all the source-to-target tgds are satisfied. Note
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that the chase terminates since we are chasing with source-to-target tgds. New
values, also called nulls, different from the source values in I1 and different
from any other values that may have been added earlier, may appear as part
of the tuples added in a chase step with a source-to-target tgd. These nulls are
used to replace the existentially quantified variables. Since I3 is the result of
the chase, it follows from a theorem in Fagin et al. [2005a] that I3 is a universal

solution for I1 under Mfin.
In particular, I3 is a solution for I1 under Mfin, that is, 〈I1, I3〉 |= �fin

13 . Since

�fin
13 and �13 are equivalent, we have that 〈I1, I3〉 |= �13, and in particular,

〈I1, I3〉 |= φm. It follows that EnrollmentI3 must contain a set of tuples of the
form (s, c1), . . . , (s, cm) for some value s. We now show that s cannot appear
among the values of I1. In other words, we show that s must be a null. For this,
we use the fact that I3 is universal.

Consider the following instance V over S3: EnrollmentV = {(S, c1), . . . ,
(S, cm)} where S is a null representing a student id. It is easy to see that

〈I1, V 〉 |= �13. Since �fin
13 and �13 are equivalent, it follows that 〈I1, V 〉 |= �fin

13

and, hence, V is a solution for I1 under Mfin. Since I3 is a universal solution

for I1 under Mfin, there must exist a homomorphism h from I3 to V such that
h(v) = v for every source value v. But every homomorphism from I3 to V is
forced to map s into the null S. Hence, s cannot be a source value (or, other-
wise, h(s) would have to be s). Thus, we showed that EnrollmentI3 contains a
set {(s, c1), . . . , (s, cm)} of tuples where s is a null.

Let l be the maximum number of atoms that are under the scope of existen-

tial quantifiers in any source-to-target tgd in �fin
13 . Since I3 is the result of the

chase with �fin
13 , it follows that a null in I3 can occur in at most l tuples. However,

if we take m to be larger than l , then the above obtained set {(s, c1), . . . , (s, cm)}
of tuples gives a contradiction. Therefore, �13 is not logically equivalent to any
finite set of source-to-target tgds.

Finally, the composition M12 ◦ M23 of the two schema mappings is defin-
able by the first-order formula ∀n∃s∀c(Takes(n, c) → Enrollment(s, c)). We shall
verify this in Example 5.1, where we show that a logically equivalent formula
defines the composition.

It is an interesting open problem to consider the complexity of deciding, given
schema mappings M12 and M23, each defined by finite sets of source-to-target
tgds, whether the composition M12◦M23 is definable by a finite set of source-to-
target tgds. In particular, it is not even clear whether this problem is decidable.

We have just given an example in which the composition is definable by an
infinite set of source-to-target tgds, but it is not definable by any finite set of
source-to-target tgds. There is also a different example in which the composition
is not definable even by an infinite set of source-to-target tgds. This is stated
in the next result, which amplifies the limitations of the language of source-to-
target tgds with respect to composition. A proof appears in Section 5.1, after
we develop the necessary machinery.

PROPOSITION 4.5. There exist schema mappings M12 = (S1, S2, �12) and
M23 = (S2, S3, �23) such that �12 consists of a single source-to-target tgd, �23 is
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a finite set of full source-to-target tgds, and the composition M12 ◦ M23 cannot
be defined by any finite or infinite set of source-to-target tgds.

In the example given in Proposition 4.4, the composition query is polynomial-
time computable, since it is first-order. In what follows, we will show that there
are schema mappings M12 and M23 such that �12 is a finite set of source-to-
target tgds, �23 consists of a single full source-to-target tgd, but the composition
query for M12 ◦ M23 is NP-complete. Furthermore, this composition query is
not definable by any formula of the finite-variable infinitary logic Lω

∞ω, which
is a powerful formalism that subsumes least fixed-point logic LFP (hence, it
subsumes first-order logic and Datalog) on finite structures (see Abiteboul et al.
[1995]).

THEOREM 4.6. There exist schema mappings M12 = (S1, S2, �12) and M23 =
(S2, S3, �23) such that �12 is a finite set of source-to-target tgds, each having at
most one existential quantifier, �23 consists of one full source-to-target tgd, and
such that the following hold for the composition M12 ◦ M23:

(1) The composition query of M12 and M23 is NP-complete.
(2) The composition M12 ◦ M23 is not definable by any formula of Lω

∞ω, and
hence of least fixed-point logic LFP.

PROOF. Later (Proposition 4.8), we shall show that the composition query
of schema mappings definable by finite sets of source-to-target tgds is always
in NP. As we now describe, NP-hardness can be obtained by a reduction of
3-COLORABILITY to the composition query of two fixed schema mappings. The
schema S1 consists of a single binary relation symbol E, the schema S2 consists
of two binary relation symbols C and F , and the schema S3 consists of one binary
relation symbol D. The set �12 consists of the following three source-to-target
tgds:

∀x∀ y(E(x, y) → ∃uC(x, u))

∀x∀ y(E(x, y) → ∃uC( y , u))

∀x∀ y(E(x, y) → F (x, y)).

Intuitively, C(x, u) means that node x has color u. The third tgd of �12 intuitively
copies the edge relation E into the relation F . Finally, �23 consists of a single
full source-to-target tgd:

∀x∀ y∀u∀v(C(x, u) ∧ C( y , v) ∧ F (x, y) → D(u, v)).

Intuitively, this tgd says that if u and v are the colors of adjacent nodes, then
the tuple (u, v) is in the “distinctness” relation D, which we shall take to consist
of tuples of distinct colors. Thus, if u and v are the colors of adjacent nodes, then
we are forcing u and v to be distinct colors.

Let I3 be the instance over the schema S3 with

DI3 = {(r, g ), (g , r), (b, r), (r, b), (g , b), (b, g )}.
In words, DI3 contains all pairs of different colors among the three colors
r, g , and b. Let G = (V , E) be a graph and let I1 be the instance over S1
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consisting of the edge relation E of G. We claim that G is 3-colorable if and only
if 〈I1, I3〉 ∈ Inst(M12) ◦ Inst(M23). This is sufficient to prove the theorem, since
3-COLORABILITY is NP-complete [Garey et al. 1976].

If G is 3-colorable, then there is a function c from V to the set {r, b, g} such
that for every edge (x, y) ∈ E, we have that c(x) �= c( y). Let I2 be the instance
over S2 with CI2 = {(x, c(x)) : x ∈ V } and F I2 = E. Clearly, 〈I1, I2〉 ∈ Inst(M12)
and 〈I2, I3〉 ∈ Inst(M23). Therefore, 〈I1, I3〉 ∈ Inst(M12) ◦ Inst(M23).

Conversely, assume that 〈I1, I3〉 is in Inst(M12) ◦ Inst(M23). This means
there exists an instance I2 over S2 such that 〈I1, I2〉 ∈ Inst(M12) and 〈I2, I3〉 ∈
Inst(M23). The first two source-to-target tgds in �12 state that for each node
n incident to an edge there exists some u such that C(n, u), while the third
source-to-target tgd in �12 asserts that the edge relation E is contained in F I2 .
We construct a coloring function c as follows. For each node n that is incident
to an edge we take c(n) = u, where u is picked arbitrarily among those u that
satisfy C(n, u). Since DI3 is the inequality relation on {r, g , b}, the full source-
to-target tgd in �23 enforces that for every edge of G, and no matter which u we
picked for a given n, the two vertices of that edge are assigned different colors
among the three colors r, g and b. Therefore, G is 3-colorable, as desired.

The above reduction of 3-COLORABILITY to the composition query of M12

and M23 belongs to a class of weak polynomial-time reductions known as
quantifier-free reductions, since the instance 〈I1, I3〉 of the composition query
can be defined from the instance G = (V , E) using quantifier-free formulas
(see Immerman [1999] for the precise definitions). Dawar [1998] showed
that 3-COLORABILITY is not expressible in the finite-variable infinitary logic
Lω

∞ω. Since definability in Lω
∞ω is preserved under quantifier-free reductions,

it follows that the composition query of M12 and M23 is not expressible in
Lω

∞ω. In turn, this implies that the composition query of M12 and M23 is not
expressible in least fixed-point logic LFP, since Lω

∞ω subsumes LFP on the
class of all finite structures (see Ebbinghaus and Flum [1999]).

Proposition 4.2 and Theorem 4.6 yield a sharp boundary on the definability of
the composition of schema mappings specified by finite sets of source-to-target
tgds. Specifically, the composition of a finite set of full source-to-target tgds with
a finite set of source-to-target tgds is always definable by a first-order formula
(and, in fact, definable by a finite conjunction of source-to-target tgds), while
the composition of a finite set of source-to-target tgds, each having at most
one existential quantifier, with a set consisting of one full source-to-target tgd
may not even be Lω

∞ω-definable. Similarly, the computational complexity of the
associated composition query may jump from solvable in polynomial time to
NP-complete.

The HOMOMORPHISM PROBLEM over the schema S is the following decision prob-
lem: given two instances I and J of S, is there a homomorphism from I to J? (Re-
call that a homomorphism from I to J is a function h such that for every relation
symbol R in S and every tuple (a1, . . . , an) ∈ R I , we have that (h(a1), . . . , h(an)) ∈
R J .) This is a fundamental algorithmic problem because, as shown by Feder and
Vardi [1998], all constraint satisfaction problems can be identified with homo-
morphism problems. In particular, 3-SAT and 3-COLORABILITY are special cases of
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the HOMOMORPHISM PROBLEM over suitable schemas. For instance, 3-COLORABILITY

amounts to the following problem: given a graph G, is there a homomorphism
from G to the complete 3-node graph K3? A slight modification of the proof of
the preceding Theorem 4.6 shows that for every schema S, the HOMOMORPHISM

PROBLEM over S has a simple quantifier-free reduction to the composition query
of two schema mappings specified by finite sets of source-to-target tgds.

PROPOSITION 4.7. For every schema S = 〈R1, . . . , Rm〉, there are schema map-
pings M12 = (S1, S2, �12) and M23 = (S2, S3, �23) such that �12 is a finite set of
source-to-target tgds and �23 is a finite set of full source-to-target tgds, with the
property that the HOMOMORPHISM PROBLEM over S has a quantifier-free reduction
to the composition query of M12 and M23.

PROOF. The schema S1 is the same as the schema S = 〈R1, . . . , Rm〉. The
schema S2 is 〈H, T1, . . . , Tm〉, where H is a binary relation symbol and each Ti

has the same arity as Ri, for 1 ≤ i ≤ m. The schema S3 is 〈P1, . . . , Pm〉, where
each Pi has the same arity as Ri, for 1 ≤ i ≤ m. The dependencies in �12 and
�23 are as follows:

�12 = {∀x1 · · · ∀xk1
(R1(x1, . . . , xk1

) → ∃ y1 · · · ∃ yk1
(H(x1, y1) ∧ · · · ∧ H(xk1

, yk1
))),

...

∀x1 · · · ∀xkm (Rm(x1, . . . , xkm ) → ∃ y1 · · · ∃ ykm (H(x1, y1) ∧ · · · ∧ H(xkm , ykm ))),

∀x(R1(x) → T1(x)),
...

∀x(Rm(x) → Tm(x))}
�23 = {∀x1∀ y1 · · · ∀xk1

∀ yk1

((H(x1, y1) ∧ · · · ∧ H(xk1
, yk1

) ∧T1(x1, . . . , xk1
)) → P1( y1, . . . , yk1

)),
...
∀x1∀ y1 · · · ∀xkm∀ ykm

((H(x1, y1) ∧ · · · ∧ H(xkm , ykm) ∧Tm(x1, . . . , xkm)) → Pm( y1, . . . , ykm))}.
Intuitively, the Ri relation is being copied into the Ti relation, for 1 ≤ i ≤ m,

and H(x, y) means that a homomorphism is mapping x to y .
Let I = 〈R I

1 , . . . , R I
m〉 and J = 〈R J

1 , . . . , R J
m〉 be two instances of S. Since S1

is the same as S, we have that I is an instance of S1. Let J ′ be the instance over
S3 where P J ′

i = R J
i , for 1 ≤ i ≤ m. (Thus, J ′ is the same as J except that the

relation names reflect schema S3 rather than S1.) It is easy to verify that there is
a homomorphism from I to J if and only if 〈I, J ′〉 is in Inst(M12)◦Inst(M23).

The next result establishes an upper bound on the computational complex-
ity of the composition query associated with two schema mappings specified
by finite sets of source-to-target tgds. It also shows that the composition
of two such mappings is always definable by an existential second-order
formula.

PROPOSITION 4.8. If M12 = (S1, S2, �12) and M23 = (S2, S3, �23) are schema
mappings such that �12 and �23 are finite sets of source-to-target tgds, then the
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composition query of M12 and M23 is in NP. Consequently, the composition
M12 ◦ M23 is definable by an existential second-order formula.

PROOF. To establish membership in NP, it suffices to show that if 〈I1, I3〉 ∈
Inst(M12)◦ Inst(M23), then there is an instance I2 over S2 that has size polyno-
mial in the sizes of I1 and I3, and is such that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23.

Suppose we have I1 and I3 as above. Then there is an instance J such that
〈I1, J〉 |= �12 and 〈J, I3〉 |= �23. Since �12 is a set of source-to-target tgds, the
schema mapping M12 is a data exchange setting with source S1 and target S2

(and no target dependencies). Moreover, by results of Fagin et al. [2005a], in this
data exchange setting there is a universal solution U for I1 of size polynomial in
the size of I1. By definition, a universal solution U for I1 has the property that,
for every solution for I1, there is a homomorphism h from U to that solution such
that h is the identity on values from I1. In particular, there is a homomorphism
h : U → J such that h(v) = v, for every value v from I1. Let I2 = h(U ). Clearly,
I2 is an instance over S2, has size at most the size of U , and is a subinstance of
J . Since (a) �12 is a set of source-to-target tgds, (b) 〈I1, U 〉 |= �12, and (c) h is
a homomorphism from U to I2 that is the identity on values from I1, we have
that 〈I1, I2〉 |= �12. Furthermore, since (a) �23 is a set of source-to-target tgds,
(b) 〈J, I3〉 |= �23, and (c) I2 is a subinstance of J , we have that 〈I2, I3〉 |= �23.

The fact that the composition query of M12 and M23 is in NP implies, by
Fagin’s Theorem [Fagin 1974], that the composition M12 ◦ M23 is definable on
instances 〈I1, I3〉 over 〈S1, S3〉 by an existential second-order formula, where the
existential second-order variables are interpreted over relations on the union
of the set of values in I1 with the set of values in I3.

We conclude this section by showing that the results of Proposition 4.8
may fail dramatically for schema mappings specified by arbitrary first-order
formulas.

PROPOSITION 4.9. There are schema mappings M12 = (S1, S2, �12) and
M23 = (S2, S3, �23) such that �12 consists of a single first-order formula, �23 is
the empty set, and the composition query of M12 and M23 is undecidable.

PROOF. We define M12 in such a way that 〈I1, I2〉 ∈ Inst(M12) precisely when
I1 is the encoding of a Turing machine and I2 represents a terminating compu-
tation of that Turing machine (thus, �12 consists of a first-order formula that
expresses this connection). We let the schema S3 consist of, say, a single unary
relation symbol, and let �23 be the empty set. So, the composition M12 ◦ M23

consists of all 〈I1, I3〉 where I1 is the encoding of a halting Turing machine,
and I3 is arbitrary. The result follows from the fact that it is undecidable to
determine if a Turing machine is halting.

5. SECOND-ORDER TGDS

We have seen in the previous section that the composition of two schema map-
pings specified by finite sets of source-to-target tgds may not be definable by a
set (finite or infinite) of source-to-target tgds. From Proposition 4.8, however, we
know that such a composition is always definable by an existential second-order
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formula. We shall show in this section that, in fact, the composition of schema
mappings, each specified by a finite set of source-to-target tgds, is always de-
finable by a restricted form of existential second-order formula, which we call
a second-order tuple-generating dependency (SO tgd). Intuitively, an SO tgd is
a source-to-target tgd suitably extended with existentially quantified functions
and with equalities. Every finite set of source-to-target tgds is equivalent to an
SO tgd. Furthermore, an SO tgd is capable of defining the composition of two
schema mappings that are specified by SO tgds. In other words, SO tgds are
closed under composition. Moreover, we shall show in Section 6 that SO tgds
possess good properties for data exchange. All these properties justify SO tgds
as the right language for representing schema mappings and for composing
schema mappings.

Example 5.1. The proof of Proposition 4.4 shows that for the two schema
mappings of Example 2.3 there is no finite set of source-to-target tgds that can
define the composition. At the end of the proof of Proposition 4.4, it was noted
that the composition is defined by the first-order formula ∀n∃s∀c(Takes(n, c) →
Enrollment(s, c)). If we Skolemize this formula, we obtain the following formula,
which is an SO tgd that defines the composition:

∃ f (∀n∀c (Takes(n, c) → Enrollment( f (n), c))) (2)

In this formula, f is a function symbol that associates each student name n
with a student id f (n). The SO tgd states that whenever a student name n is
associated with a course c in Takes, then the corresponding student id f (n) is
associated with c in Enrollment. This is independent of how many courses a
student takes: if student name n is associated with courses c1, . . . , ck in Takes,
then f (n) is associated with all of c1, . . . , ck in Enrollment.

We now verify that (2) does indeed define the composition. Assume first that
〈I1, I3〉 ∈ Inst(M12)◦ Inst(M23). Then there is I2 over S2 such that 〈I1, I2〉 |= �12

and 〈I2, I3〉 |= �23. We construct a function f 0 as follows. For each n such that
(n, c) is in TakesI1 , we set f 0(n) = s, where s is such that (n, s) is in StudentI2

(such s is guaranteed to exist according to the second source-to-target tgd in
�12, and we pick one such s). It is immediate that 〈I1, I3〉 satisfies the SO tgd
when the existentially quantified function symbol f is instantiated with the
constructed f 0. Conversely, assume that 〈I1, I3〉 satisfies the SO tgd. Then there
is a function f 0 such that for every (n, c) in TakesI1 we have that ( f 0(n), c) is in
EnrollmentI3 . Let I2 be such that StudentI2 = {(n, f 0(n) | (n, c) ∈ TakesI1} and
TakesI2

1 = TakesI1 . It can be verified that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23.

Example 5.2. This example illustrates a slightly more complex form of a
second-order tgd that contains equalities between terms. Consider the following
three schemas S1, S2 and S3. Schema S1 consists of a single unary relation
symbol Emp of employees. Schema S2 consists of a single binary relation symbol
Mgr1, that associates each employee with a manager. Schema S3 consists of a
similar binary relation symbol Mgr, that is intended to provide a copy of Mgr1.
and an additional unary relation symbol SelfMgr, that is intended to store
employees who are their own manager. Consider now the schema mappings
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M12 = (S1, S2, �12) and M23 = (S2, S3, �23), where

�12 = {∀e (Emp(e) → ∃mMgr1(e, m))} �23 = {∀e∀m (Mgr1(e, m) → Mgr(e, m)),
∀e(Mgr1(e, e) → SelfMgr(e))}.

It is straightforward to verify that the composition of M12 and M23 is M13,
where �13 is the following second-order tgd:

∃ f (∀e(Emp(e) → Mgr(e, f (e))) ∧
∀e(Emp(e) ∧ (e = f (e)) → SelfMgr(e))).

In fact, we shall derive this later when we give a composition algorithm.

We will use this example in Section 5.1 to show that equalities in SO tgds
are strictly necessary for the purposes of composition, and also to give a proof
for the earlier Proposition 4.5.

Before we formally define SO tgds, we need to define terms. Given a collection
x of variables and a collection f of function symbols, a term (based on x and f)
is defined recursively as follows:

(1) Every variable in x is a term.

(2) If f is a k-ary function symbol in f and t1, . . . , tk are terms, then f (t1, . . . , tk)
is a term.

We now give the precise definition of an SO tgd.1

Definition 5.3. Let S be a source schema and T a target schema. A second-
order tuple-generating dependency (SO tgd) is a formula of the form:

∃f((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn))), (3)

where

(1) Each member of f is a function symbol.

(2) Each φi is a conjunction of
• atomic formulas of the form S( y1, . . . , yk), where S is a k-ary relation

symbol of schema S and y1, . . . , yk are variables in xi, not necessarily
distinct, and

• equalities of the form t = t ′ where t and t ′ are terms based on xi and f.
(3) Each ψi is a conjunction of atomic formulas T (t1, . . . , tl ), where T is an l -ary

relation symbol of schema T and t1, . . . , tl are terms based on xi and f.
(4) Each variable in xi appears in some atomic formula of φi.

We may refer to each subformula ∀xi(φi → ψi) as a conjunct of the second-
order tgd; we may also use the shorthand notation Ci for this conjunct.

The fourth condition is a “safety” condition, analogous to that made for (first-
order) source-to-target tgds. As an example, the following formula is not a valid

1This definition is slightly different from that given in our conference version [Fagin et al. 2004].

Every SO tgd as defined here is an SO tgd as defined in Fagin et al. [2004], but not conversely.

However, every SO tgd as defined in Fagin et al. [2004] is logically equivalent to an SO tgd as

defined here.
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second-order tgd:

∃ f ∃g∀x∀ y(S(x) ∧ (g ( y) = f (x)) → T (x, y)).

The safety condition is violated, since the variable y does not appear in an
atomic formula on the left-hand side.

There is a subtlety in the definition of SO tgds, namely, the semantics of
existentialized function symbols.2 What should the domain and range of the
corresponding functions be? Thus, if we are trying to evaluate whether the
SO tgd (3) is satisfied by 〈I, J〉, what should the domain and range be for
the concrete functions that may replace the existentialized function symbols
in f? Perhaps the most obvious choice is to let the domain and range be the
active domain of 〈I, J〉 (the active domain of 〈I, J〉 consists of those values that
appear in I and/or J ). In the proof of Proposition 4.8, the existential second-
order variables are interpreted over relations on the active domain. But as we
shall see in Section 7.3, this choice of the active domain as the universe may
give us the “wrong answer”. Intuitively, if our instance 〈I, J〉 is 〈I1, I3〉, we may
wish the functions to take on values in the “missing middle instance” I2, which
may be much bigger than I1 and I3.

We define the semantics by converting each instance 〈I, J〉 into a structure
〈U ; I, J〉, which is just like 〈I, J〉 except that it has a universe U . The domain
and range of the functions is then taken to be U . We take the universe U to be a
countably infinite set that includes the active domain. The intuition is that the
universe contains the active domain along with an infinite set of nulls. Then,
if σ is an SO tgd, we define 〈I, J〉 |= σ to hold precisely if 〈U ; I, J〉 |= σ under
the standard notion of satisfaction in second-order logic (see, e.g., Ebbinghaus
and Flum [1999] or Enderton [2001]). The standard notion of satisfaction says
that if σ is ∃fσ ′, where σ ′ is first-order, then 〈U ; I, J〉 |= σ precisely if there is a
collection f0 of functions with domain and range U such that 〈U ; I, J〉 satisfies
σ ′ when each function symbol in f is replaced by the corresponding function in
f0. We may write 〈U ; I, J〉 |= σ ′[f �→ f0] to represent this situation, or simply
〈I, J〉 |= σ ′[f �→ f0] when the universe U is fixed and understood from the
context. As we shall see in Section 5.2, instead of taking the universe U to be
infinite, we can take it to be finite and “sufficiently large”.

Several remarks are in order now. First, SO tgds are closed under conjunc-
tion. That is, if σ1 and σ2 are SO tgds, then the conjunction σ1 ∧ σ2 is logically
equivalent to an SO tgd. This is because we simply rename the function sym-
bols in σ2 to be disjoint from those in σ1; then, if σ1 is ∃f1σ

′
1, and σ2 is ∃f2σ

′
2,

with f1 and f2 disjoint, the conjunction ∃f1σ
′
1 ∧ ∃f2σ

′
2 is logically equivalent to

∃f1∃f2(σ ′
1 ∧ σ ′

2). Of course, the fact that SO tgds are closed under conjunction
implies that every finite set of SO tgds is logically equivalent to a single SO tgd.
For this reason, when we consider schema mappings specified by SO tgds, it is
enough to restrict our attention to the case where the set �st consists of one SO
tgd. We will then identify the singleton set �st with the SO tgd itself, and refer
to �st as an SO tgd.

2This subtlety was pointed out to us by Sergey Melnik, in the context of domain independence

(which we shall discuss in Section 5.2).
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Second, it should not come as a surprise that every (first-order) source-to-
target tgd is equivalent to an SO tgd. In fact, it is easy to see that every source-
to-target tgd is equivalent to an SO tgd without equalities. Specifically, let σ be
the source-to-target tgd

∀x1 · · · ∀xm(φS(x1, . . . , xm) → ∃ y1 · · · ∃ ynψT (x1, . . . , xm, y1, . . . , yn)).
Then σ is equivalent to the following SO tgd without equalities, which is ob-
tained by Skolemizing σ :

∃ f1 · · · ∃ fn∀x1 · · · ∀xm(φS(x1, . . . , xm) →
ψT (x1, . . . , xm, f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))).

Given a finite set � of source-to-target tgds, we can find an SO tgd that is
equivalent to � by taking, for each tgd σ in �, a conjunct of the SO tgd to
capture σ as described above (we use disjoint sets of function symbols in each
conjunct, as before).

Third, we point out that every SO tgd is equivalent to an SO tgd in a “nor-
mal form” where the right-hand sides (i.e., the formulas ψi in (3)) are atomic
formulas, rather than conjunctions of atomic formulas. For example, consider
the SO tgd

∃ f ∀x(R(x) → (S(x, f (x)) ∧ T ( f (x), x))).

This SO tgd is logically equivalent to the SO tgd

∃ f (∀x(R(x) → S(x, f (x))) ∧ ∀x(R(x) → T ( f (x), x))).

This is unlike the situation for (first-order) source-to-target dependencies,
where we would lose expressive power if we required that the right-hand sides
consist only of atomic formulas and not conjunctions of atomic formulas. In our
composition algorithm that we shall present in Section 7, we begin by convert-
ing SO tgds to this normal form.

The next three subsections delve into further details on second-order tgds.
We first show that equalities are strictly needed in the definition of SO tgds (or
else we lose expressive power). We then show that the choice of the universe
for SO tgds does not really matter, as long as the universe contains the active
domain and is sufficiently large. The section concludes with a consideration of
the model-checking problem and how it differs from the first-order case.

5.1 The Necessity of Equalities in Second-Order TGDs

Our definition of SO tgds allows for equalities between terms in the formulas
φi, even though we just saw that SO tgds that represent first-order tgds do
not require equalities. The next theorem (or its corollary) tells us that such
equalities are necessary, since it may not be possible to define the composition
of two schema mappings otherwise. This theorem is stated in more generality
than simply saying that equalities are necessary, in order to provide a proof of
Proposition 4.5.

THEOREM 5.4. There exist schema mappings M12 = (S1, S2, �12) and M23 =
(S2, S3, �23) where �12 consists of a single source-to-target tgd, �23 is a finite set
of full source-to-target tgds, and the composition M12 ◦ M23 is given by an SO
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tgd that is not logically equivalent to any finite or infinite set of SO tgds without
equalities.

PROOF. Let S1, S2, S3, �12, �23, and �13 be as in Example 5.2. We need only
show that there is no finite or infinite set of SO tgds without equalities that is
logically equivalent to �13.

Define I1 by letting EmpI1 = {Bob}. Define I3 by letting MgrI3 = {(Bob, Susan)}
and SelfMgrI3 = ∅. Define I ′

3 by letting MgrI ′
3 = {(Bob, Bob)} and SelfMgrI ′

3 = ∅.
It is easy to see that 〈I1, I3〉 |= �13; intuitively, we let f (Bob) = Susan. It is also
easy to see that 〈I1, I ′

3〉 �|= �13, since SelfMgrI ′
3 does not contain Bob.

We shall show that every SO tgd without equalities that is satisfied by 〈I1, I3〉
is also satisfied by 〈I1, I ′

3〉. Since also 〈I1, I3〉 |= �13 but 〈I1, I ′
3〉 �|= �13, it follows

easily that �13 is not equivalent to any finite or infinite set of SO tgds without
equalities, which proves the theorem.

Let σ be an SO tgd without equalities that is satisfied by 〈I1, I3〉. The proof
is complete if we show that σ is satisfied by 〈I1, I ′

3〉. Assume that σ is

∃f ((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn))).

We begin by showing that SelfMgr does not appear in σ . Assume that SelfMgr
appears in σ ; we shall derive a contradiction. By the definition of an SO tgd, we
know that there is i and some term t such that SelfMgr(t) appears in ψi. Since
by assumption φi does not contain any equalities, it follows that φi contains only
formulas of the form Emp(x), with x a member of xi. So φi can be satisfied in I1,
by letting Bob play the role of all of the variables in xi. Since SelfMgrI3 is empty,
it follows that ψi is not satisfied under this (or any) assignment. Therefore, σ

is not satisfied in 〈I1, I3〉, which is the desired contradiction.
We conclude the proof by showing that 〈I1, I ′

3〉 satisfies σ . Let the role of
every function symbol in f be played by a constant function (of the appropriate
arity) that always takes on the value Bob. Consider a conjunct ∀xi(φi → ψi)
of σ . We must show that if φi holds in I1 for some assignment to the variables
in xi, then ψi holds in I ′

3 for the same assignment. It follows from the fourth
condition (the safety condition) in the definition of SO tgds that the conjuncts
of φi are precisely all formulas of the form Emp(x) for x in xi. Since φi holds in
I1, every variable x in xi is assigned the value Bob. Therefore, every term in
ψi is assigned the value Bob. Since by assumption ψi does not contain SelfMgr,
it follows that every conjunct in ψi is of the form Mgr(t1, t2). Since, as we just
showed, t1 and t2 are both assigned the value Bob, it follows that ψi holds in I ′

3.
This was to be shown.

Our desired result about the necessity of equalities in SO tgds is an imme-
diate corollary.

COROLLARY 1. There exist schema mappings M12 = (S1, S2, �12) and M23 =
(S2, S3, �23) where �12 and �23 are finite sets of source-to-target tgds, and the
composition M12 ◦ M23 is given by an SO tgd that is not equivalent to any SO
tgd without equalities.

We consider it quite interesting that allowing equalities in SO tgds is neces-
sary to make them sufficiently expressive. This is particularly true because the
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“obvious” way to define SO tgds does not allow equalities. Indeed, as we saw,
when we Skolemize a source-to-target tgd to obtain an SO tgd, no equalities
are introduced.

Because of the generality with which we stated Theorem 5.4, we obtain a
proof of Proposition 4.5.

PROOF OF PROPOSITION 4.5. This follows immediately from Theorem 5.4 and
the fact, noted earlier, that every source-to-target tgd is equivalent to an SO
tgd without equalities.

5.2 The Choice of Universe

In our definition of the semantics of SO tgds, we took the universe (which
serves as the domain and range of the existentially quantified functions) to
be a countably infinite set that includes the active domain. In this section,
we show that if instead of taking the universe to be infinite, we take it to be
finite but sufficiently large, then the semantics is unchanged. We also show that
the choice of the universe does not matter, as long as the universe contains the
active domain and is large enough.

Before we state and prove this theorem about the choice of the universe, we
need another definition, that we will make use of several times in this article.
Let x be a collection of variables and f a collection of function symbols. Similarly
to our earlier definition of terms, a term (based on x and f) of depth d is defined
recursively as follows:

(1) Every member of x and every 0-ary function symbol (constant symbol) of f
is a term of depth 0.

(2) If f is a k-ary function symbol in f with k ≥ 1, and if t1, . . . , tk are terms,
with maximum depth d − 1, then f (t1, . . . , tk) is a term of depth d .

THEOREM 5.6. Let σ be a second-order tgd. Then there is a polynomial p,
which depends only on σ , with the following property. If 〈I, J〉 is an instance
with active domain of size N, and if U and U ′ are sets (finite or infinite) that
each contain the active domain and are of size at least p(N ), then 〈U ; I, J〉 |= σ

if and only 〈U ′; I, J〉 |= σ .

PROOF. Let f be the collection of function symbols that appear in σ , and let x
be a collection of variables. It is straightforward to verify that for each d , there
is a polynomial pd with nonnegative coefficients, where pd depends only on f,
such that the number of terms based on x and f, of depth at most d , is at most
pd (m), where m is the size of x.

Let 〈I, J〉 be an instance with active domain D of size N . Let DI , of size
NI , be the active domain of I . We refer to the set of terms based on DI and f
as the Herbrand universe. For each s, let Hs denote the set of members of the
Herbrand universe of depth at most s.

Let σ be the SO tgd (3). Let U and U ′ be sets (finite or infinite) that each
contain the active domain and are of size at least pd (NI ). We shall show that
〈U ; I, J〉 |= σ if and only 〈U ′; I, J〉 |= σ . This is sufficient to prove the the-
orem, since the facts that NI ≤ N and that pd has nonnegative coefficients
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immediately imply that pd (NI ) ≤ pd (N ). Intuitively, the key to the proof is
that σ refers only to members of Hd . Assume without loss of generality that
the size |U ′| of U ′ is at most the size |U | of U . By renaming members of U if
necessary, we can assume that U ′ ⊆ U .

Assume first that 〈U ′; I, J〉 |= σ ; we shall show that 〈U ; I, J〉 |= σ . Since
〈U ′; I, J〉 |= σ , there is a collection f ′0 of functions with domain and range U ′

such that whenever 1 ≤ i ≤ n and xi �→ ai is an assignment of xi to members
of DI , we have 〈U ′; I, J〉 |= (φi → ψi)[f �→ f ′0, xi �→ ai]. Extend every function
f ′0 in f ′0 to a function f 0 with domain and range U by letting f 0(a) = f ′0(a)
for a ∈ U ′ and letting f 0(a) be an arbitrary member of U otherwise. Let f0

be the collection of these extensions f 0. It is easy to see that the interpre-
tation of the members of the Herbrand universe (of arbitrary depth), under
the assignment f �→ f0, lies in U ′, since each f 0 maps U ′ into U ′. Since ev-
ery term in φi → ψi refers to members of the Herbrand universe, and since
f0 and f ′0 agree on U ′. it follows that for 1 ≤ i ≤ n, we have 〈U ; I, J〉 |=
(φi → ψi)[f �→ f0, xi �→ ai]. Therefore, 〈U ; I, J〉 |= σ , which was to be
shown.

Conversely, assume that 〈U ; I, J〉 |= σ ; we shall show that 〈U ′; I, J〉 |= σ .
Since 〈U ; I, J〉 |= σ , there is a collection f0 of functions with domain and range
U such that whenever 1 ≤ i ≤ n and xi �→ ai is an assignment of xi to members
of DI , we have 〈U ; I, J〉 |= (φi → ψi)[f �→ f0, xi �→ ai]. For each f 0 in f0,
define the function f ′0 (with domain and range U ′) so that the interpretation
of members of Hd is the same using either f0 or f ′0 (the size of U ′ is big enough
that this is possible). Since every term in φi → ψi refers only to members of Hd ,
it follows that for 1 ≤ i ≤ n, we have 〈U ′, I, J〉 |= (φi → ψi)[f �→ f ′0, xi �→ ai].
Therefore, 〈U ′; I, J〉 |= σ , which was to be shown.

5.3 Model-Checking for Second-Order TGDs

We now show that model checking for second-order tgds, that is, verifying
whether a pair of source and target instances satisfies a second-order tgd, is
in NP and can be NP-complete. This is in contrast with the case of (first-order)
source-to-target tgds, for which model checking is always in polynomial time.

THEOREM 5.7. Let M = (S, T, σ ) be a schema mapping, where σ is an SO
tgd. The problem of deciding, given I and J, whether 〈I, J〉 satisfies σ , is in NP
and can be NP-complete.

PROOF. The NP upper bound follows immediately from the “easy direction”
of Fagin’s Theorem [Fagin 1974], along with the fact (Theorem 5.6) that the
universe can be taken to be of polynomial size. We now prove the lower bound.

Let the source schema S consist of a single binary relation symbol E, and
let the target schema T consist of a single binary relation symbol D. Let σ be
the SO tgd ∃ f (E(x, y) → D( f (x), ( f ( y))). We now show that the problem of
deciding if 〈I, J〉 |= σ is NP-complete.

Let J be the same as the instance I3 in the proof of Theorem 4.6. Thus, J is
the target instance with

DJ = {(r, g ), (g , r), (b, r), (r, b), (g , b), (b, g )}.
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In words, DJ contains all pairs of different colors among the three colors r, g ,
and b. Let G = (V , E) be a graph and let I be the instance over S1 consisting of
the edge relation E of G. We claim that G is 3-colorable if and only if 〈I, J〉 |= σ .
This is sufficient to prove the theorem, since 3-COLORABILITY is NP-complete.

Assume first that G is 3-colorable. Then there is a coloring function c that
maps members of V to the set {r, b, g} such that c(x) �= c( y) for every edge
(x, y) ∈ E. It is easy to see that 〈I, J〉 |= (E(x, y) → D( f (x), f ( y)))[ f �→ c].
Therefore, 〈I, J〉 |= σ .

Conversely, assume that 〈I, J〉 |= σ . Then, there is c such that 〈I, J〉 |=
(E(x, y) → D( f (x), f ( y)))[ f �→ c]. It is easy to see that c is a function that
maps members of V to the set {r, b, g} such that c(x) �= c( y) for every edge
(x, y) ∈ E. Therefore, G is 3-colorable.

Although model-checking for SO tgds can be NP-complete, there are practical
problems involving SO tgds other than model-checking. For example, in the two
important cases of data exchange and query answering, all that is needed is to
materialize the result of data exchange given a source instance or to compute
the answers to a target query given a source instance. We shall later show that
SO tgds have polynomial-time properties for such scenarios. Furthermore, we
shall also show that SO tgds compose. Thus, SO tgds form a good candidate for
the schema mapping language.

6. CHASE AND DATA EXCHANGE WITH SECOND-ORDER TGDS

Our main motivation for studying composition of schema mappings stems from
data exchange [Fagin et al. 2005a, 2005b]. A specific case of data exchange is one
in which we are given a source schema, a target schema, and a schema map-
ping specified by a finite set of source-to-target tgds. Given an instance over
the source schema, we are interested in materializing a target instance that
satisfies the specification. In the case of two or more successive data exchange
scenarios and when only a final instance over the final target schema is of inter-
est, we would like to avoid materializing intermediate instances, and hence use
the schema mapping that is the composition of the sequence of schema map-
pings. However, as we have argued so far, the language of source-to-target tgds
may no longer be appropriate in this case. We instead use second-order tgds.

In Section 6.1, we modify the classical chase technique [Beeri and Vardi
1984a] to handle SO tgds (rather than the usual first-order tgds). In Section 6.2,
we prove a technical lemma about chasing with SO tgds. We subsequently use
this lemma in Section 6.3 to show that the chase with SO tgds yields a universal
solution for data exchange (as is the case with first-order tgds [Fagin et al.
2005a]). We also show that chasing with SO tgds is a polynomial-time procedure
(polynomial in the size of the source instance). As a consequence, computing
the certain answers of conjunctive queries in data exchange settings specified
by SO tgds can be done in polynomial time.

6.1 The Chase with Second-Order TGDs

We first define ground terms and ground instances. Given a set V of values
and a collection f of function symbols, a ground term u over V and f is defined
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recursively as either a value of V or a function term of the form f (u1, . . . , uk),
where u1, . . . , uk are ground terms over V and f, and f is a k-ary function sym-
bol in f. A ground instance, with respect to V and f, is an instance whose values
are ground terms over V and f. Note that an instance (in the usual sense) with
values in V is also a ground instance over V and f (for every f). Homomor-
phisms are defined on ground instances in the same way they are defined on
usual instances. The only difference is that the domain of such homomorphisms
includes now all the ground terms over V and f.

Using an example, we illustrate next, informally, the chase with SO tgds.

Example 6.1. Consider the schema mapping M = (S, T, �st) where �st is
the following SO tgd:

∃ f (∀x∀ y (R(x, y) → U (x, y , f (x)))
∧ ∀x∀x ′∀ y∀ y ′ (R(x, y) ∧ R(x ′, y ′) ∧ ( f (x) = f (x ′)) → T ( y , y ′))).

Each of the formulas of the form ∀x(φ1 → φ2) that appear under the scope of
the existentially quantified functions can be thought of as a source-to-target
“tgd”. The difference from a normal source-to-target tgd is that now we can
have function terms in the relational atoms of φ2, as well as equality atoms in
φ1, and we do not have any existential quantifiers in φ2. Suppose now that we
are given a source instance I where R consists of the following three tuples:
(a, b), (a, c), and (d , e). The chase starts with an instance of the form 〈I, ∅〉 and
constructs an instance of the form 〈I, J〉 by applying all the “tgds” until these
“tgds” are all satisfied. A “tgd” is applied when the left-hand side φ of the “tgd”
can be mapped to I but the corresponding right-hand side ψ does not yet exist
in J , in which case we add it to J . By applying the first “tgd” in �st , for the
first tuple (a, b) of R we generate a tuple (a, b, f (a)) in U . In applying the same
“tgd”, this time for the tuple (a, c) of R, we generate (a, c, f (a)) in U (the same
ground function term f (a) appears again). Finally, for the last tuple (d , e) and
the same “tgd” we generate (d , e, f (d )) in U . Note that the values that may
now appear in tuples of J are ground terms over the set of source values of I
and over the singleton set { f } of function symbols.

To apply the second “tgd” in �st , we see that only the combinations f (a) =
f (a) and f (d ) = f (d ) can satisfy the equality f (x) = f (x ′). (Two ground terms
are treated as equal precisely if they are syntactically identical.) Hence, the
chase will generate the tuples (b, b), (b, c), (c, b), (c, c) and (e, e) in T .

At the end of the chase, the resulting instance satisfies all the “tgds”. This
instance is formed with source values together with ground function terms that
are added during the chase.

Note that we view each one of the ground function terms as a distinct value.
In practice, one can substitute the ground function terms with values from a
concrete domain such that the term structure is “forgotten”. For example, we
could replace all occurrences of the term f (a) in J with a null X . However,
such replacement is more of an implementation issue that is orthogonal to the
general concepts and results that we will give here.

We now give the formal details of the chase with second-order tgds. In the
following definitions, whenever we refer to a schema mapping M = (S, T, σ )
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where σ is a second-order tgd, we assume that σ has the general form:

∃f ((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn))).

For each i, we may, as before, denote the conjunct ∀xi(φi → ψi) of σ by Ci. We
start by defining the notion of homomorphism from an SO tgd to an instance.
We first introduce an auxiliary notion.

Definition 6.2. Let M be a schema mapping defined by a second-order tgd.
Let I be a source instance and let h be a function mapping the variables in xi
into values of I . Let t and t ′ be terms over xi and f. We say that the equality t = t ′

is satisfied in I under h if: (1) the equality is of the form x = x ′, and h(x) and h(x ′)
are the same value, or (2) the equality is of the form f (t1, . . . , tl ) = f (t ′

1, . . . , t ′
l )

where f is in f, and the equalities t1 = t ′
1, . . ., tl = t ′

l are satisfied in I under h.
(Note that the definition is recursive.)

Definition 6.3. Let M be a schema mapping defined by a second-order tgd.
Let I be a source instance and let h be a function mapping the variables in xi
into values of I . We say that h is a homomorphism from the conjunct Ci of σ

to the instance I if the following conditions hold: (1) for every relational atom
S( y1, . . . , yk) in φi, the tuple (h( y1), . . . , h( yk)) is in SI , and (2) every equality
in φi is satisfied in I under h. In the literature, what we call in this context
a homomorphism is sometimes called a valuation, or a variable assignment
[Abiteboul et al. 1995].

We extend h on terms in the natural way by defining h( f (t1, . . . , tl )) to be
f (h(t1), . . . , h(tl )) for every term f (t1, . . . , tl ) that occurs in ψi.

Definition 6.4 (Chase Step). Let M be a schema mapping defined by a
second-order tgd σ . Let V be a set of values and let I be an instance, with values
in V, over the source schema S. Furthermore, let J1 be a ground instance, with
respect to V and f, over the target schema T.

Assume that there is a homomorphism h from some conjunct Ci = ∀x(φi →
ψi) of σ into I with the property there is at least one atomic formula T (t1, . . . , tp)
in ψi such that (h(t1), . . . , h(tp)) is not a tuple in T J1 . We say that Ci can be
applied to 〈I, J1〉 with homomorphism h.

Furthermore, let J2 be the ground instance with respect to V and f that is
defined as follows: for every target relation T , let T J2 be the union of T J1 with
the set of all tuples (h(t1), . . . , h(tp)) where T (t1, . . . , tp) is an atomic formula in
ψi. We say that 〈I, J2〉 is the result of applying Ci to 〈I, J1〉 with h and write

〈I, J1〉 Ci ,h−→ 〈I, J2〉. We also call this a chase step.

In the following, as before, we will denote by ∅ an empty instance.

Definition 6.5 (Chase). Let M be a schema mapping where σ is a second-
order tgd, and let I be a source instance.

(1) A chase sequence of 〈I, ∅〉 with σ is a finite sequence of chase steps 〈I, Jk〉 Ck ,hk−→
〈I, Jk+1〉, for 0 ≤ k < m, with J0 = ∅ and Ck a conjunct of σ .

(2) A chase of 〈I, ∅〉 with σ is a chase sequence 〈I, Jk〉 Ck ,hk−→ 〈I, Jk+1〉, for 0 ≤
k < m, such that it is not the case that there is a conjunct Ci of σ and a
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homomorphism h where Ci can be applied to 〈I, Jm〉 with h. We say that
〈I, Jm〉 is the result of this chase.

It is easy to verify that if 〈I, J〉 is the result of some chase with a second-
order tgd σ then 〈I, J〉 satisfies σ . Indeed, we can take the universe U to be
the set of all the ground terms over V and f. (This universe includes the active
domains of I and J .) Then, 〈U ; I, J〉 satisfies σ . In particular, for each f in
f, we take the following interpretation: assuming that f is k-ary, we define
the value of f applied to u1, . . . , uk (where u1, . . . , uk are ground terms over V
and f) to be precisely the ground term f (u1, . . . , uk). It can be seen that under
this interpretation for f, we have that 〈U ; I, J〉 satisfies all the conjuncts of σ

(otherwise, additional chase steps would be applicable). Moreover, Theorem 5.6
says that we can change U to an arbitrary universe U ′ that includes the active
domain of I and J and is sufficiently large, and we still have that 〈U ′; I, J〉
satisfies σ .

We now make the following observation to compare and contrast chasing
with SO tgds and chasing with first-order tgds. Although complicated by the
presence of function symbols and equalities, chasing with SO tgds is at the same
time simpler than chasing with first-order tgds due to the following. There is
an explicit partitioning of the schema into the source schema S and the target
schema T; moreover, the source instance I is never changed during the chase
and the homomorphisms from conjuncts of σ that can apply during the chase are
all homomorphisms into I . Hence, it is possible to enumerate a priori, before the
chase, all the homomorphisms that will ever apply during the chase (since they
do not depend on J ). In fact, the number of homomorphisms can be precisely
bounded to be polynomial in the size of the given source instance. Consequently,
the chase with second-order tgds takes time polynomial in the size of I . We will
give a precise analysis in Section 6.3.

The above observation can also be used to give an equivalent, more declar-
ative, formulation of the chase with SO tgds.3 We make this precise by the
following proposition, which is an immediate consequence of the fact that all
homomorphisms that ever apply during the chase can be enumerated before
the chase.

PROPOSITION 6.6. Let σ be a second-order tgd and let I be an instance over
S. For each conjunct C of σ and each homomorphism h from C into I, let JC,h

be the ground instance that contains a tuple (h(t1), . . . , h(tp)) in T JC,h whenever
there is an atomic formula T (t1, . . . , tp) in the right-hand side of C. Then, the
following are equivalent:

(1) 〈I, Jm〉 is the result of a chase of 〈I, ∅〉.
(2) Jm consists of the union (relation by relation) of all JC,h over all conjuncts

C of σ and all homomorphisms h from C into I.

The above proposition also shows that for every two chases of 〈I, ∅〉 with a
second-order tgd σ , with results 〈I, J〉 and, respectively, 〈I, J ′〉, it is the case

3This formulation was suggested by one of the referees of this article.
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that J and J ′ are identical (since they are both equal to the union of instances
stated in (2)). In other words, chasing with second-order tgds is Church-Rosser.

6.2 A Basic Property of the Chase with Second-Order TGDs

We next prove a technical lemma about chasing with second-order tgds. This
lemma, that we shall subsequently use, is a variation of a known result in
the case of chasing with (first-order) tgds [Beeri and Vardi 1984a; Fagin et al.
2005a].

LEMMA 6.7. Let M = (S, T, σ ) be a schema mapping where σ is a second-
order tgd of the form:

∃f ((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn))).

Let 〈I ′, J ′〉 be an instance over the schema 〈S, T〉 such that 〈I ′, J ′〉 satisfies σ ,
that is, 〈U ′; I ′, J ′〉 satisfies σ , for a countably infinite universe U ′ that includes
the active domain. Moreover, let f0 be a collection of functions over U ′ such that

〈I ′, J ′〉 |=
∧

i

(∀xi(φi → ψi))[f �→ f0].

Let I be an instance over S, with values in some domain V, and let J1 and J2

be two ground instances with respect to V and f such that 〈I, J1〉 Ci ,h−→ 〈I, J2〉 is a
chase step with some conjunct Ci of σ and some homomorphism h. Assume that
g is a homomorphism from 〈I, J1〉 to 〈I ′, J ′〉 such that:

(∗) g ( f (u1, . . . , uk)) = f 0(g (u1), . . . , g (uk)),

for every ground function term f (u1, . . . , uk) over V and f.
Then, g is a homomorphism from 〈I, J2〉 to 〈I ′, J ′〉.
PROOF. We first show that the function g ◦ h from the variables xi of Ci to

U ′ satisfies the following two properties:

(1) for every atom S( y1, . . . , yk) in φi (where we recall that φi denotes the left-
hand side of the implication in Ci), the tuple (g ◦ h( y1), . . . , g ◦ h( yk)) is in
SI ′

, and

(2) for every equality t = t ′ in φi, we have that:

(∗∗) t[f �→ f0, xi �→ g ◦ h(xi)] = t ′[f �→ f0, xi �→ g ◦ h(xi)]

(i.e., the two members of the equation represent the same value of U ′).

We verify (1) first. Since h is a homomorphism from the conjunct Ci into I ,
it follows by Definition 6.3 that the tuple (h( y1), . . . , h( yk)) is in SI . Moreover,
g is a homomorphism from I to I ′. Hence, the tuple (g (h( y1)), . . . , g (h( yk))) is
in SI ′

.
As for property (2), we prove the following stronger statement: For every

equality t = t ′ that is satisfied in I under h, we have that condition (**) holds.
Since h is a homomorphism from Ci into I , it must be the case that every
equality of φi is satisfied in I under h. Therefore, property (2) is proven under
the assumption that the stronger statement holds.

The proof of the stronger statement is by induction on the structure of t = t ′.
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Base Case: The equality t = t ′ is of the form x = x ′. Then it must be the case
that h(x) = h(x ′) and therefore g ◦ h(x) = g ◦ h(x ′). This is the same as saying
that (**) holds for x = x ′.

Inductive Case: The equality t = t ′ is of the form f (t1, . . . , tl ) = f (t ′
1, . . . , t ′

l )
where f is in f and the equalities t1 = t ′

1, . . ., tl = t ′
l are satisfied in I under h.

By the inductive hypothesis, we have that:

t1[f �→ f0, xi �→ g ◦ h(xi)] = t ′
1[f �→ f0, xi �→ g ◦ h(xi)]

. . .

tl [f �→ f0, xi �→ g ◦ h(xi)] = t ′
l [f �→ f0, xi �→ g ◦ h(xi)].

It then follows that the following equality holds:

f 0(t1[f �→ f0, xi �→ g ◦ h(xi)], . . . , tl [f �→ f0, xi �→ g ◦ h(xi)])

=
f 0(t ′

1[f �→ f0, xi �→ g ◦ h(xi)], . . . , t ′
l [f �→ f0, xi �→ g ◦ h(xi)]).

But this equality is the same as saying that condition (**) holds for
f (t1, . . . , tl ) = f (t ′

1, . . . , t ′
l ). This concludes the proof of the inductive case.

So far, we have shown that g ◦h is an assignment for the variables in xi with
values in U ′ such that properties (1) and (2) hold. This is the same as saying
that I ′ |= φi[f �→ f0, xi �→ g ◦ h(xi)]. Since 〈I ′, J ′〉 |= (∀xi(φi → ψi))[f �→ f0]
(where we recall that ψi denotes the right-hand side of the implication in Ci), it
must be the case that J ′ |= ψi[f �→ f0, xi �→ g ◦ h(xi)]. In other words, for every
atom T (t1, . . . , tp) of ψi, the tuple u, which is defined as

(t1[f �→ f0, xi �→ g ◦ h(xi)], . . . , tp[f �→ f0, xi �→ g ◦ h(xi)]),

is in T J ′
. But as we now show, this tuple u is the same as the tuple

(g ◦ h(t1), . . . , g ◦ h(tp)). First, for 1 ≤ l ≤ p, we have that h(tl ) = tl [xi �→
h(xi)], from the way h is defined on terms (see Definition 6.3). It follows that
g (h(tl )) = g (tl [xi �→ h(xi)], for 1 ≤ l ≤ p. Since g satisfies condition (*), it is
the case that

g (tl [xi �→ h(xi)]) = tl [f �→ f0, xi �→ g ◦ h(xi)],

for 1 ≤ l ≤ p. Hence, g ◦ h(tl ) = g (h(tl )) = tl [f �→ f0, xi �→ g ◦ h(xi)], for
1 ≤ l ≤ p. In other words, the tuple (g ◦ h(t1), . . . , g ◦ h(tp)) is the same as u.
Putting this together with the earlier fact that for every atom T (t1, . . . , tp) of
ψi, the tuple u is in T J ′

, we obtain that for every atom T (t1, . . . , tp) of ψi, the
tuple (g ◦ h(t1), . . . , g ◦ h(tp)) is in T J ′

.
We can show now that g is a homomorphism from 〈I, J2〉 to 〈I ′, J ′〉. It is

enough to show that the image, under g , of each of the “new ” tuples in J2, that
are added during the chase step with Ci and h, is a tuple in the corresponding
relation of J ′. Indeed, let (h(t1), . . . , h(tp)) be a “new” tuple of T J2 , for some atom
T (t1, . . . , tp) of ψi. We need to prove that (g (h(t1)), . . . , g (h(tp))) is in T J ′

. But
we have just shown this, for every atom T (t1, . . . , tp) of ψi. This concludes the
proof.
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6.3 Data Exchange and Query Answering with Second-Order TGDs

Let M = (S, T, �st) be a schema mapping where �st contains only source-to-
target tgds, and let I be a source instance over the schema S. It is known [Fagin
et al. 2005a] that chasing I with �st produces, in polynomial time in the size of
I , a universal solution for I under M. The next theorem asserts that a similar
result holds when we chase a source instance I with SO tgds.

THEOREM 6.8. Let M = (S, T, σ ) be a schema mapping where σ is an SO
tgd. Then for every source instance I over S, chasing 〈I, ∅〉 with σ terminates in
polynomial time (in the size of I) with a result 〈I, J〉. Moreover, J is a universal
solution for I under M.

PROOF. We first prove that the chase terminates in time polynomial in the
size of I . We consider M fixed. Let k be the maximum number of universally
quantified variables in a conjunct of σ , let n be the total number of distinct
values in I , and let c be the total number of conjuncts in σ . For a given conjunct
C of σ , there can be at most nk homomorphisms. Since there are c conjuncts,
the total number of homomorphisms from σ into I is at most c × nk . Each such
homomorphism can yield at most one chase step of I with σ . (Once a chase step
with a homomorphism h from a conjunct C is applied, then there cannot be
another chase step with the same homomorphism and same conjunct, because
all the “required” target tuples have already been added in the first chase step.)
Furthermore, I is not modified by the chase; hence, no new homomorphisms
can arise during the chase. Therefore, we can have at most c × nk chase steps.

We now estimate the time spent during one chase step. Let t be the maximum
number of atoms in ψ , over all conjuncts ∀x(φ → ψ) in σ . Let m be the total
number of tuples that will exist in the target after the chase. This number m
is bounded by the number of chase steps, which is c × nk , times the number of
tuples that can be added in one chase step, which is at most t. Thus, m is at
most t × c × nk .

At each chase step, we may spend c×nk ×q(n) time to search for an applicable
homomorphism. Here, c×nk is the maximum number of functions that we may
need to search through, while q(n) is the time to check whether such a function
is a homomorphism or not, using Definition 6.3. It is easy to verify that q is a
polynomial in n. (Note that we could actually reduce the above time c×nk ×q(n),
if we enumerate the list of all the candidate homomorphisms before the chase,
and then at each chase step we pick the next homomorphism from this list. This
is an optimization that does not affect the overall upper bound.) In addition, if
the chase step involves a conjunct ∀x(φ → ψ), for each of the atoms in ψ we need
to check whether the corresponding tuple already exists in the target, before
adding it into the target. This takes at most t (the maximum number of atoms in
ψ) times m (the maximum number of tuples in the target), or at most t2 ×c×nk .
Thus, the time spent at each chase step is at most t2 × c × nk + c × nk × q(n).

Overall, the time to chase is at most c × nk , the number of chase steps, times
t2 × c × nk + c × nk × q(n), the time spent at each chase step. This number is a
polynomial in the size of I .
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We now prove that J is a universal solution for I under M. We will make
use of Lemma 6.7. Assume that σ is of the form:

∃f ((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn))).

Let K be an arbitrary solution for I under M. Thus, 〈U ; I, K 〉 |= σ , where U is
the universe. Let f0 be a collection of functions over U such that

〈I, K 〉 |=
∧

i

(∀xi(φi → ψi))[f �→ f0].

Let us denote with V the set of values in I , and let g be the identity function
on V. We extend g to ground terms over V and f, by defining g ′(v) = g (v),
for every value v in V, and g ′( f (u1, . . . , uk)) = f 0(g ′(u1), . . . , g ′(uk)), for every
ground function term f (u1, . . . , uk) over V and f. It is immediate that g ′ is a
homomorphism from 〈I, ∅〉 to 〈I, K 〉 (since g is a homomorphism from I to I
and there are no tuples in the target side of 〈I, ∅〉).

By definition of g ′, we have that g ′ satisfies the condition (*) from Lemma 6.7,
where g ′ plays the role of g . Hence the lemma becomes applicable at every chase
step in the chase sequence from 〈I, ∅〉 to 〈I, J〉. We obtain that g ′ : 〈I, J〉 →
〈I, K 〉 is a homomorphism. In particular, g ′ is a homomorphism from J to K
satisfying g ′(v) = g (v) whenever v is in V. Since g is the identity function
on V, we obtain that g ′ is a homomorphism from J to K satisfying g ′(v) = v
whenever v is in V. Since K was picked to be an arbitrary solution of I under
M, we conclude that J is a universal solution for I under M.

The above theorem has an immediate but important consequence in terms
of query answering over the target schema. Let us recall the definitions of
conjunctive queries (with and without inequalities, since we will make use of
conjunctive queries with inequalities later), and unions of conjunctive queries.
A conjunctive query q(x) is a formula of the form ∃yφ(x, y) where φ(x, y) is a
conjunction of atomic formulas. If, in addition to atomic formulas, the conjunc-
tion φ(x, y) is allowed to contain inequalities of the form zi �= z j , where zi, z j

are variables among x and y, we call q(x) a conjunctive query with inequalities.
We also impose a safety condition, that every variable in x and y must appear
in an atomic formula, not just in an inequality. A union of conjunctive queries
is a disjunction q(x) = q1(x) ∨ · · · ∨ qn(x) where q1(x), . . . , qn(x) are conjunctive
queries.

It was shown in Fagin et al. [2005a] that if J is a universal solution for I under
M and q is a union of conjunctive queries, then certainM(q, I ) equals q(J )↓,
which is the result of evaluating q on J and then keeping only those tuples
formed entirely of values from I . The equality certainM(q, I ) = q(J )↓ holds for
arbitrarily specified schema mappings M. In particular, it holds for schema
mappings specified by SO tgds. This fact, taken together with Theorem 6.8,
implies the following result.

COROLLARY 6.9. Let M = (S, T, σ ) be a schema mapping where σ is an SO
tgd. Let q be a union of conjunctive queries over the target schema T. Then,
for every source instance I over S, the set certainM(q, I ) can be computed in
polynomial time (in the size of I).
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We point out an interesting contrast between the above result and one of
the results on query answering given in Abiteboul and Duschka [1998]. There
it was shown that when the source schema is described in terms of the target
schema by means of arbitrary first-order views, computing the certain answers
of conjunctive queries becomes undecidable. In contrast, our result shows that
although the schema mappings that we consider go beyond first-order, com-
puting the certain answers of unions of conjunctive queries remains in poly-
nomial time, as it is with schema mappings specified by source-to-target tgds
[Fagin et al. 2005a]. Thus, second-order tgds form a well-behaved fragment of
second-order logic, since for the purposes of data exchange and query answer-
ing, second-order tgds behave similarly to source-to-target tgds.

7. COMPOSABILITY OF SECOND-ORDER TGDS

As we saw in Theorem 4.5, sets of source-to-target tgds are not closed under
composition. By contrast, we show that SO tgds are closed under composition.
That is, given two schema mappings M12 and M23 where �12 and �23 are
SO tgds, the composition of M12 and M23 is always definable by an SO tgd.
We show this by exhibiting a composition algorithm in this section and then
showing that the composition algorithm is correct.

Algorithm Compose(M12, M23)

Input: Two schema mappings M12 = (S1, S2, �12) and M23 = (S2, S3, �23), where �12

and �23 are SO tgds.
Output: A schema mapping M13 = (S1, S3, �13), which is the composition of M12 and
M23 and where �13 is an SO tgd.

1. (Normalize the SO tgds in �12 and �23.)
Rename the function symbols so that the function symbols that appear in �12 are all
distinct from the function symbols that appear in �23. For notational convenience,
we shall refer to variables in �12 as x ’s, possibly with subscripts, and the variables
in �23 as y ’s, possibly with subscripts. Initialize S12 and S23 to each be the empty set.
Assume that the SO tgd in �12 is

∃f ((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn))).

Put each of the n implications φi → ψi , for 1 ≤ i ≤ n, into S12. We do likewise for

�23 and S23. Each implication χ in S12 has the form φ(x) → ∧k
j=1 R j (tj) where every

member of x is a universally quantified variable, and each tj, for 1 ≤ j ≤ k, is a
sequence of terms over x. We then replace each such implication χ in S12 with k
implications:

φ(x) → R1(t1), . . . , φ(x) → Rk(tk).

2. (Compose S12 with S23.)
Repeat the following until every relation symbol in the left-hand side of every formula
in S23 is from S1.
For each implication χ in S23 of the form ψ → γ where there is an atom R(y) in ψ
such that R is a relation symbol in S2, we perform the following steps to replace R(y)
with atoms over S1. (The equalities in ψ are left unchanged.) Let

φ1 → R(t1), . . . , φp → R(tp)

be all the implications in S12 whose right-hand side has the relation symbol R in it.
If no such implications exist in S12, we remove χ from S23. Otherwise, for each such
implication φi → R(ti), rename the variables in this implication so that they do not
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overlap with the variables in χ . (In fact, every time we compose with this implication,
we take a fresh copy of the implication, with new variables.) Let θi be the conjunction
of the equalities between the variables in R(y) and the corresponding terms in R(ti),
position by position. For example, the conjunction of equalities, position by position,
between R( y1, y2, y3) and R(x1, f2(x2), f1(x3)) is ( y1 = x1) ∧ ( y2 = f2(x2)) ∧ ( y3 =
f1(x3)). Observe that every equality that is generated has the form y = t where y is
a variable in �23 and t is a term based on variables in �12 and on f. Remove χ from
S23 and add p implications to S23 as follows: replace R(y) in χ with φi ∧ θi and add
the resulting implication to S23, for 1 ≤ i ≤ p.

3. (Remove variables originally in �23.)
For each implication χ constructed in the previous step, perform the following oper-
ation until every variable y from �23 is removed. Select an equality y = t that was
generated in the previous step (thus, y is a variable in �23, and t is a term based
on variables in �12 and on f). Remove the equality y = t from χ and replace every
remaining occurrence of y in χ by t.

4. (Construct M13.)
Let S23 = {χ1, . . . , χr} where χ1, . . . , χr are all the implications from the previous step.
Let �13 be the following SO tgd:

∃g (∀z1χ1 ∧ · · · ∧ ∀zrχr )

where g is the collection of all the function symbols that appear in any of the im-
plications in S23, and where the variables in zi are all the variables found in the
implication χi , for 1 ≤ i ≤ r.
Return M13 = (S1, S3, �13).

The need in Step 2 for taking a fresh copy of an implication φi → R(ti) in S12

with new variables each time we compose with it, rather than simply renaming
the variables once at the beginning, arises when we compose this implication
with an implication χ in S23 where the relational symbol R appears multiple
times in the left-hand side of χ .

It is straightforward to verify that in Step 3, every variable y originally
in �23 is indeed removed, so that the only remaining variables are among
the variables x originally in �12. This is because every variable y originally
in �23 that is in an implication χ that remains after Step 2 appears in an
equality y = t that is introduced in Step 2. Then y is removed in Step 3.
It follows easily that the safety condition of Definition 5.3 continues to hold,
and so the algorithm generates second-order tgds that are valid according to
Definition 5.3.

Note that the number of formulas in the set S13, and hence the size of �13, is
exponential in the maximum number of relational atoms that can appear in the
left-hand side of an implication in �23. In Section 7.2, we give an exponential
lower bound, which shows that this exponentiality is unavoidable.

We can make use of the algorithm to compose schema mappings where �12

and �23 are specified by finite sets of source-to-target tgds by first transforming
each of �12 and �23 into an SO tgd (by using the Skolemization described in
Section 5) and then passing the resulting schema mappings to the composition
algorithm.

Example 7.1. We illustrate the steps of the composition algorithm using the
schema mappings of Example 5.2. We transform �12 and �23 into the following
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SO tgds, �′
12 and �′

23:

�′
12 : ∃ f (∀e(Emp(e) → Mgr1(e, f (e)))) �′

23 : ∀e∀m(Mgr1(e, m) → Mgr(e, m))∧
∀e(Mgr1(e, e) → SelfMgr(e))

We run the composition algorithm with M12 = (S1, S2, �′
12) and M23 =

(S2, S3, �′
23). After Step 1, the sets S12 and S23 consist of the following implica-

tions:

S12 : Emp(e) → Mgr1(e, f (e)) S23 : Mgr1(e, m) → Mgr(e, m)
Mgr1(e, e) → SelfMgr(e)

In Step 2, we first replace the Mgr1 atom of the first implication χ in S23 by using
the implication in S12. The variable e of the implication in S12 is renamed to e0

so that it does not overlap with the variables of χ . The result of this replacement
is:

Emp(e0) ∧ (e = e0) ∧ (m = f (e0)) → Mgr(e, m).

Next, we replace the Mgr1 atom of the second implication by using the impli-
cation in S12. The variable e of the implication in S12 is renamed to e1 before
the replacement occurs. So after Step 2, the set S23 contains two implications,
as follows:

Emp(e0) ∧ (e = e0) ∧ (m = f (e0)) → Mgr(e, m)

Emp(e1) ∧ (e = e1) ∧ (e = f (e1)) → SelfMgr(e).

In Step 3, if we first remove the variable e in both implications, we are left with
the following two implications:

Emp(e0) ∧ (m = f (e0)) → Mgr(e0, m)

Emp(e1) ∧ (e1 = f (e1)) → SelfMgr(e1).

In Step 3, if we then remove the variable m from the first implication, we are
left with the following two implications, which we denote by χ1 and χ2:

χ1 : Emp(e0) → Mgr(e0, f (e0))

χ2 : Emp(e1) ∧ (e1 = f (e1)) → SelfMgr(e1).

Therefore, after Step 4, the algorithm returns M13 = (S1, S3, �13) where �13

is the following SO tgd:

∃ f (∀e0 χ1 ∧ ∀e1 χ2).

After substituting for χ1 and χ2, we obtain exactly the SO tgd that was shown
in Example 5.2 (except with the variables renamed).

We note that in this example (unlike the example described immediately
after the composition algorithm), it was not really necessary to rename the
variable e of the implication in S12 once as e0, and another time as e1: it could
simply have been renamed to e0 at the beginning and not be renamed again.

7.1 Correctness of the Composition Algorithm

We now show that the above composition algorithm is correct; that is, given
two schema mappings specified by second-order tgds, the algorithm returns a
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second-order tgd that is indeed their composition. This completely proves our
earlier statement that second-order tgds are closed under composition. The cor-
rectness proof uses the chase with second-order tgds introduced in Section 6.1.

THEOREM 7.2. Let M12 = (S1, S2, �12) and M23 = (S2, S3, �23), where �12

and �23 are SO tgds. Then the algorithm Compose(M12, M23) returns a schema
mapping M13 = (S1, S3, �13) such that �13 is an SO tgd and M13 = M12 ◦M23.

PROOF. Instead of working with �13, it is convenient to work with a slightly
different but logically equivalent version �∗

13. We obtain �∗
13 from �12 and �23

by making two changes to the composition algorithm. The first change is to
eliminate Step 3. The second change is to modify Step 4 of the algorithm by
letting g be the collection of all the function symbols that appear in �12 or �23.
Thus, some of these existentialized function symbols may not appear in the body
(the first-order part) of �∗

13. It is easy to verify that �∗
13 is logically equivalent

to �13. Because of the elimination of Step 3 of the composition algorithm, �∗
13

is not necessarily an SO tgd (it may violate the safety condition). However, it is
more convenient for us to prove that �∗

13 defines the composition than to prove
directly that �13 defines the composition. Since �∗

13 is logically equivalent to �13,

this is sufficient to prove our desired result that �13 defines the composition.4

Let T12 be the body of �12. So �12 is ∃fT12, where f consists of the function
symbols that appear in �12. Similarly, let T23 be the body of �23, and let T ∗

13

be the body of �∗
13. In order to simplify notation, we assume (without loss of

generality) that each conjunct in �12 is of the form ∀x(φ(x) → R(t)) for a re-
lation symbol R. If �12 is not of this form, then as we noted earlier, it can be
equivalently rewritten in this form (and this is essentially what Step 1 in the
algorithm does for �12).

To show that the schema mapping M13 generated by the algorithm satisfies
M13 = M12 ◦ M23, we need to show that for every I1 over schema S1 and for
every I3 over schema S3, we have that 〈I1, I3〉 |= �∗

13 if and only if there is an
I2 over schema S2 such that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23.

PROOF OF THE “ONLY IF” DIRECTION. Assume that 〈I1, I3〉 |= �∗
13, that is,

〈U ; I1, I3〉 |= �∗
13, for a countably infinite universe U that includes the val-

ues in I1 and I3. We show that there is an I2 such that 〈I1, I2〉 |= �12 and
〈I2, I3〉 |= �23, for the same choice U of the universe, that is, 〈U ; I1, I2〉 |= �12

and 〈U ; I2, I3〉 |= �23. We take Ic
2 such that 〈I1, Ic

2〉 is the result of chasing 〈I1, ∅〉
with �12. As we remarked right after Definition 6.5, we have that 〈I1, Ic

2〉 |= �12,
where the universe is the set of ground terms over V and f, where V is the set
of values in I1.

Let g0 be the collection of concrete functions over U such that 〈I1, I3〉 |=
T ∗

13[g �→ g0]. By assumption, the function symbols f that appear in �12 are all

in g. We denote by f0 those functions in g0 that replace function symbols in f.

4Although the formula �∗
13

is not an SO tgd under the definition given in this article, it is an SO

tgd under the definition given our conference version [Fagin et al. 2004]. This is the difference,

mentioned in Footnote 1, between the definition of SO tgds in this article and in the conference

version.
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We now take I2 to be the instance that is obtained from Ic
2 by instantiating

each ground term u of Ic
2 with the concrete value that results when we “evaluate”

all the function terms in u by using the concrete functions f0. It is easy to see
that I2 is an instance whose values are in U . Furthermore, it is easy to verify
that 〈I1, I2〉 |= T12[f �→ f0]. In particular, we also have that 〈U ; I1, I2〉 |= �12.
We will now show that 〈U ; I2, I3〉 |= �23.

Let f ′ be the collection of all the existentially quantified function symbols
in �23. We can assume without loss of generality that each f ′ in f ′ appears
in a conjunct of �23. We show that there are functions f ′0 over U such that
〈I2, I3〉 |= T23[f ′ �→ f ′0]. In particular, this shows that 〈U ; I2, I3〉 |= �23. By
construction of �∗

13, each f ′ in f′ appears among g as some g . We take f ′0 to be

g0.
We now show that 〈I2, I3〉 |= T23[f ′ �→ f ′0]. We need to show that for every

conjunct ∀y(ψ → γ ) in �23, we have that 〈I2, I3〉 |= (∀y(ψ → γ ))[f ′ �→ f ′0].
Assume that a is a sequence of values of I2 such that I2 |= ψ[f ′ �→ f ′0, y �→ a].
Moreover, we can assume without loss of generality that ψ is of the form

R1(y1) ∧ · · · ∧ Rk(yk) ∧ θ ,

where the first k literals are the relational atoms of ψ and θ is the conjunction
of the equalities in ψ . The variables in yp, for each p with 1 ≤ p ≤ k, appear
among the variables in y. (Also recall that the only terms that appear in such
relational atoms are variables, by the definition of a second-order tgd.)

Since I2 |= ψ[f ′ �→ f ′0, y �→ a], it must be the case that I2 contains a tuple
ap in Rp, for each p with 1 ≤ p ≤ k. Here, ap is a subtuple of a, consisting of
the sequence of values of a that replace the variables in yp. We also have that
all the equalities in θ are true when y is replaced by a and f ′ is replaced by
f ′0. That is, for each equality t = t ′ in θ , we have that t[f ′ �→ f ′0, y �→ a] and
t ′[f ′ �→ f ′0, y �→ a] represent the same value.

We know that 〈I1, Ic
2〉 is the result of chasing 〈I1, ∅〉 with �12, and I2 is the

result of the subsequent “evaluation” of the ground terms in Ic
2 by using f0.

Thus, it must be the case that for each tuple ap, with 1 ≤ p ≤ k, there is some
conjunct ∀xp(φp(xp) → Rp(tp)) in �12 such that there is a homomorphism hp

from this conjunct into I1 such that ap is the result of “evaluating” hp(tp) by
using f0. By the definition of a homomorphism from a conjunct into an instance,
it must be the case that I1 |= φp(hp(xp)), for every p with 1 ≤ p ≤ k. Let h be
the union of h1, . . . , hk . Thus, h acts on the union x of the variables in x1, . . . ,
xk, and h(x) is defined to be hp(x), whenever x is among xp. (The variables in
xi and xj are assumed to be disjoint, for every i and j with 1 ≤ i < j ≤ k.) We
obtain that

I1 |= (φ1(x1) ∧ (y1 = t1) ∧ · · · ∧ φk(xk) ∧ (yk = tk)) [x �→ h(x), y �→ a, f �→ f0].

Putting this together with the earlier observation that all the equalities in θ

are true when y is replaced by a and f ′ is replaced by f ′0, we obtain that

(∗) I1 |= (φ1(x1) ∧ (y1 = t1) ∧ · · · ∧ φk(xk) ∧ (yk = tk) ∧ θ )

[x �→ h(x), y �→ a, f �→ f0, f ′ �→ f ′0].
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Since by assumption the function symbols g consist precisely of the function
symbols in f along with those in f ′, condition (*) is equivalent to:

(∗∗) I1 |= (φ1(x1) ∧ (y1 = t1) ∧ · · · ∧ φk(xk) ∧ (yk = tk) ∧ θ )

[x �→ h(x), y �→ a, g �→ g0].

By the composition algorithm (Step 2), and by the fact that there is some
conjunct ∀xp(φp(xp) → Rp(tp)) in �12 for each p with 1 ≤ p ≤ k, we are
guaranteed that �∗

13 contains a conjunct that is obtained from the conjunct
∀y(ψ → γ ) in �23, by replacing each of the literals Rp(yp) in ψ with the con-
junction φp(xp) ∧ (yp = tp). Thus, �∗

13 contains the following conjunct:

∀x∀y((φ1(x1) ∧ (y1 = t1) ∧ · · · ∧ φk(xk) ∧ (yk = tk) ∧ θ ) → γ ).

We know by assumption that 〈I1, I3〉 |= T ∗
13[g �→ g0]. Together with condition

(**), this last fact implies that I3 |= γ [y �→ a, f ′ �→ f ′0]. We used here that
the variables in x do not appear in γ ; we also used the fact that the function
symbols that are in g but not in f ′ do not appear in γ (thus, their instantiations
do not matter).

Thus, given that I2 |= ψ[f ′ �→ f ′0, y �→ a] for some arbitrary tuple a of values,
we have concluded that I3 |= γ [f ′ �→ f ′0, y �→ a]. It follows that 〈I2, I3〉 |=
(∀y(ψ → γ ))[f ′ �→ f ′0]. This concludes the “only if” direction in the proof.

PROOF OF THE “IF” DIRECTION. Assume that 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23.
By Theorem 5.6, if we take a large enough U that includes the active domains
of I1, I2 and I3, we have that 〈U ; I1, I2〉 |= �12 and 〈U ; I2, I3〉 |= �23. We will
show that 〈U ; I1, I3〉 |= �∗

13.
As in the proof of the “only if ” direction, let f, f ′ and g denote the collections

of existentially quantified function symbols in �12, �23 and �∗
13, respectively.

We know that there are concrete functions f and f ′ over U such that 〈I1, I2〉 |=
T12[f �→ f0] and 〈I2, I3〉 |= T23[f ′ �→ f ′0]. By the composition algorithm, each
function symbol g in g is either (1) a function symbol f that occurs in �12 and
therefore is in f, or (2) a function symbol f ′ that occurs in �23 and therefore is
in f ′. In the first case, we take g0 to be f 0. In the second case, we take g0 to
be f ′0. We now show that 〈I1, I3〉 |= T13[g �→ g0].

By the composition algorithm, every conjunct in �∗
13 has the form C, which

we define to be

∀x∀y((φ1(x1) ∧ (y1 = t1) ∧ · · · ∧ φk(xk) ∧ (yk = tk) ∧ θ ) → γ ),

obtained from a conjunct

∀y((R1(y1) ∧ · · · ∧ Rk(yk) ∧ θ ) → γ )

in �23 and k conjuncts

∀x1(φ1(x1) → R1(t1)), . . . , ∀xk(φk(xk) → Rk(tk))

in �12. Here, the variables x consist precisely of the variables in x1, . . . , xk,
while the variables y consist precisely of the variables in y1, . . . , yk.
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We need to show that 〈I1, I3〉 |= C[g �→ g0]. Assume that a and b are se-
quences of values such that

(i) I1 |= (φ1(x1)∧(y1 = t1)∧· · ·∧φk(xk)∧(yk = tk)∧θ ) [x �→ a, y �→ b, g �→ g0].

To complete the proof, it suffices to show that I3 |= γ [x �→ a, y �→ b, g �→ g0].
This is the same as saying that

(ii) I3 |= γ [y �→ b, f ′ �→ f ′0].

Here we made use of the fact that the variables in x do not occur in γ . We also
made use of the fact that every function symbol g in g that occurs in γ is some
f ′ in f ′, and we had earlier picked g0 to be equal to f ′0.

We know that 〈I1, I2〉 |= T12[f �→ f0]. This implies, in particular, that
〈I1, I2〉 |= ∀xp(φp(xp) → Rp(tp))[f �→ f0], for each p with 1 ≤ p ≤ k. From
(i) we derive that I1 |= φp(xp)[x �→ a], for each p with 1 ≤ p ≤ k. It follows that
I2 |= Rp(tp)[x �→ a, f �→ f0], for each p with 1 ≤ p ≤ k. At the same time, we
can also derive from (i) that yp[y �→ b] and tp[x �→ a, f �→ f0] represent the
same tuple of values, for each p with 1 ≤ p ≤ k. Here we made use of the fact
that every function symbol g in g that occurs in tp is some f in f, and we had
earlier picked g0 to be equal to f 0. We obtain that

I2 |= (R1(y1) ∧ · · · ∧ Rk(yk))[y �→ b].

Furthermore, from (i), we know that for every equality t = t ′ in θ , we have
that t[y �→ b, g �→ g0] and t ′[y �→ b, g �→ g0] represent the same value. (Since
θ is from �23, the variables in x do not occur in θ and therefore their values
do not matter.) We now make use of the fact that every function symbol g
in g that occurs in θ must occur in f ′ as some f ′, and that we had earlier
picked g0 to be f ′0. We can therefore infer that all the equalities in θ are
satisfied when y is replaced by b and f ′ is replaced by f ′0. We thus obtain the
following:

(iii) I2 |= (R1(y1) ∧ · · · ∧ Rk(yk) ∧ θ ) [y �→ b, f ′ �→ f ′0].

We know that 〈I2, I3〉 |= T23[f ′ �→ f ′0]. This implies, in particular, that 〈I2, I3〉 |=
∀y(R1(y1) ∧ · · · ∧ Rk(yk) ∧ θ → γ )[f ′ �→ f ′0]. Together with (iii), this implies the
earlier statement (ii). This concludes the “if” direction in the proof.

7.2 The Size of the Composition Formula

Assume that M13 = M12 ◦ M23 where M13 = (S1, S3, �13). We may refer to
�13 as the composition formula. When we defined our composition algorithm,
we noted that the size of the composition formula that we constructed might be
exponential. We now prove an exponential lower bound, which shows that this
exponentiality is unavoidable.

PROPOSITION 7.3. There are schema mappings M12 = (S1, S2, �12) and
M23 = (S2, S3, �23), where �12 and �23 are finite sets of full source-to-target
tgds, such that if M12 ◦ M23 = (S1, S3, �13), then every set �′

13 of source-to-
target tgds that is logically equivalent to �13, and every SO tgd �′

13 that is
logically equivalent to �13, is of size exponential in the size of �12 ∪ �23.
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PROOF. Let S1 consist of the unary relation symbols R1, . . . , Rn and
R ′

1, . . . R ′
n. Let S2 consist of the unary relation symbols S1, . . . , Sn, and let S3

consist of the unary relation symbol T . Let �12 consist of the full source-to-
target tgds Ri(x) → Si(x), for 1 ≤ i ≤ n, and the full source-to-target tgds
R ′

i(x) → Si(x), for 1 ≤ i ≤ n. Let �23 consist of the single full source-to-target
tgd S1(x) ∧ · · · ∧ Sn(x) → T (x). Let �13 consist of all of the source-to-target tgds
of the form U1(x)∧· · ·∧Un(x) → T (x), where Ui is either Ri or R ′

i, for 1 ≤ i ≤ n.
It is straightforward to verify that M12 ◦ M23 = (S1, S3, �13). Let �′

13 be a set
of source-to-target tgds that is logically equivalent to �13. We shall show that
�′

13 contains at least 2n members. A similar proof show that if �′
13 is an SO tgd,

then it contains at least 2n conjuncts. This is sufficient to prove the theorem.
We first show that the left-hand side of every member of �′

13 must contain at
least one of Ri or R ′

i, for each i. Assume not; we shall derive a contradiction. Let
τ be a member of �′

13 such that there is i for which τ does not contain Ri and
τ does not contain R ′

i. Let I be a source instance (an S1 instance) that consists
of the facts R j (0) and R ′

j (0) for each j �= i, but where the Ri and R ′
i relations

are empty. Let J be a target instance (an S3 instance) where the T relation
is empty. It is clear that 〈I, J〉 satisfies �13, since every member of �13 contains
either Ri or R ′

i in its left-hand side. However, 〈I, J〉 does not satisfy τ , since
when every variable appearing in the left-hand side of τ takes on the value 0,
the left-hand side of τ is satisfied but the right-hand side of τ is not (since the T
relation of J is empty). Since 〈I, J〉 satisfies �13 but does not satisfy �′

13, this
contradicts the assumption that �′

13 is logically equivalent to �13. So indeed,
the left-hand side of every member of �′

13 must contain at least one of Ri or R ′
i,

for each i.
We now show that for each of the 2n vectors x = (x1, . . . , xn) where each xi is

either 0 or 1, there is a member σx of �′
13 such that for each i, the left-hand side

of σx contains Ri precisely if xi = 0, and the left-hand side contains R ′
i precisely

if xi = 1. Assume not; we shall derive a contradiction. Let y = ( y1, . . . , yn) be
a specific 0, 1 vector where this condition is violated, that is, where �′

13 has
no such member σy. Let I be a source instance that contains exactly n facts,
namely, for each i, the fact Ri(0) when yi = 0 or the fact R ′

i(0) when yi = 1,
Let J be a target instance where the T relation is empty. We now show that
〈I, J〉 satisfies every member of �′

13. Let τ be an arbitrary member of �′
13. From

what we showed earlier, we know that the left-hand side of τ must contain at
least one of Ri or R ′

i, for each i. Since also τ is not of the form σy, it follows that
either there is i such that yi = 0 and τ contains R ′

i, or yi = 1 and τ contains
Ri. Therefore 〈I, J〉 satisfies τ , since the left-hand side of τ is never satisfied in
I , no matter what the choice is of the variables in the left-hand side of τ . Since
τ is an arbitrary member of �′

13, it follows that 〈I, J〉 satisfies �′
13. Now �13 has

a member γ of the form σy. It is easy to see that 〈I, J〉 does not satisfy γ , and
so 〈I, J〉 does not satisfy �13. Since 〈I, J〉 satisfies �′

13 but does not satisfy �13,
this contradicts the assumption that �′

13 is logically equivalent to �13.
Since �′

13 contains a member σx for each of the 2n vectors x = (x1, . . . , xn)
where each xi is either 0 or 1, and since it is clear that each such member σx
is distinct, it follows that �′

13 contains at least 2n members. This was to be
shown.

ACM Transactions on Database Systems, Vol. 30, No. 4, December 2005.



1036 • R. Fagin et al.

7.3 Failure of the Active Domain Semantics

In our definition of the semantics of SO tgds, we took the universe (which
serves as the domain and range of the existentially quantified functions) to be
a countably infinite set that includes the active domain. (We later showed that
a finite but large enough universe that includes the active domain also suffices.)
In this section, we show that if we were to instead take the universe to be simply
the active domain, then an SO tgd that results after applying the composition
algorithm might have a meaning that is different from that of composition. We
also include a discussion on domain independence of SO tgds. Let us refer to
our usual semantics as the “infinite universe semantics”, and let us refer to the
semantics where the universe is taken to be the active domain as the “active
domain semantics”.

Example 7.4. We consider a slight variation of Example 5.2, with the fol-
lowing schemas S1, S2 and S3. Schema S1 consists of a single unary relation
symbol Emp of employees. Schema S2 consists of a single binary relation sym-
bol Mgr, associating each employee with a manager. Schema S3 consists of a
single unary relation symbol SelfMgr, intended to store employees who are
their own manager. Consider the schema mappings M12 = (S1, S2, �12) and
M23 = (S2, S3, �23), where

�12 = {∀e (Emp(e) → ∃mMgr(e, m))} �23 = {∀e(Mgr(e, e) → SelfMgr(e))}.
It is easy to verify that the composition algorithm tells us that the composition
of M12 and M23 is M13 = (S1, S3, �13), where �13 is the following second-order
tgd:

∃ f (∀e(Emp(e) ∧ (e = f (e)) → SelfMgr(e))). (4)

In the infinite universe semantics, this formula (4) is equivalent to “Truth”, that
is, formula (4) is a tautology that holds for every choice of 〈I1, I3〉. This is because
we can simply select an arbitrary function f such that f (e) �= e for every e in
the domain. Then the left-hand side Emp(e) ∧ (e = f (e)) is false for every e, and
so ∀e(Emp(e) ∧ (e = f (e)) → SelfMgr(e)) holds for this f . And indeed, “Truth”
is the right answer for the composition of M12 and M23, as we now show. Let
I1 be an arbitrary instance of schema S1 and let I3 be an arbitrary instance of
schema S3. To show that the composition is indeed “Truth”, we must show that
〈I1, I3〉 is in the composition. Define the instance I2 of schema S2 by letting Bob
be some element different from every member of EmpI1 , and letting MgrI2 contain
all tuples (e, Bob), where e is in EmpI1 . Then 〈I1, I2〉 |= �12 and 〈I2, I3〉 |= �23,
and so 〈I1, I3〉 is in the composition, as desired.

We now show that in the active domain semantics, the formula (4) is not
equivalent to “Truth”. Therefore, the formula (4) given by the composition
algorithm, does not have the right meaning, of composition, under the active
domain semantics. We need only show that there is an instance I1 of schema
S1 and an instance I3 of schema S3 such that 〈I1, I3〉 does not satisfy (4) in the
active domain semantics.

Define I1 by letting EmpI1 contain the single element Alice. Define I3 by letting
SelfMgrI3 be empty. The active domain is {Alice}, and there is only one function
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with domain and range {Alice}, namely the function f 0 where f 0(Alice) =
Alice. Using this function f 0 (the only function available) for f , the left-hand
side Emp(e) ∧ (e = f (e)) is satisfied when e is Alice, but the right-hand side
SelfMgr(e) is not. So 〈I1, I3〉 does not satisfy the formula (4) in the active domain
semantics, which was to be shown.

A formula is said to be domain independent if its truth does not depend
on the choice of universe, as long as the universe contains the active domain.
Fagin [1982] was the first to observe that the safety condition for first-order
dependencies (that every universally quantified variable must appear in the
left-hand side) makes them domain independent. This comment applies to the
(first-order) source-to-target tgds we consider. However, it follows from Exam-
ple 7.4 that SO tgds are not domain independent. Thus, in this example, let
U ′ = {Alice}, which is the active domain, and let U = {Alice, Bob}. It follows eas-
ily from the discussion in Example 7.4 that 〈U ; I, J〉 |= �13 but 〈U ′; I, J〉 �|= �13.
Therefore, the SO tgd �13 is not domain independent.5 On the other hand, our
earlier Theorem 5.6 implies that SO tgds obey a limited form of domain in-
dependence: the choice of universe does not matter, as long as it contains the
active domain and is sufficiently large.

8. SO TGDS ARE EXACTLY THE NEEDED CLASS

We have introduced SO tgds since (1) every finite set of (first-order) source-to-
target tgds is logically equivalent to an SO tgd and (2) SO tgds are closed under
composition. We therefore obtain the following theorem.

THEOREM 8.1. The composition of a finite number of schema mappings, each
defined by a finite set of source-to-target tgds, is defined by an SO tgd.

In this section, we prove a converse to Theorem 8.1. Specifically, we prove
the following theorem.

THEOREM 8.2. Every SO tgd defines the composition of a finite number of
schema mappings, each defined by a finite set of source-to-target tgds.

We note that in Theorem 8.2, the “intermediate” schemas depend on the
SO tgd. We now show that Theorem 8.2 gives us the next theorem. This next
theorem shows the naturalness and “inevitability” of the class of SO tgds.

THEOREM 8.3. SO tgds form the smallest class (up to logical equivalence)
that contains every source-to-target tgd and is closed under conjunction and
composition.

PROOF. We already noted that every source-to-target tgd is logically equiv-
alent to an SO tgd, and that the conjunction of a pair of SO tgds is logically
equivalent to an SO tgd. Also, Theorem 7.2 tells us that the composition of two
schema mappings, each defined by an SO tgd, is defined by an SO tgd. These

5Sergey Melnik pointed out to us that SO tgds are not necessarily domain independent, using

essentially this example.
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facts tell us that, up to logical equivalence, the class of SO tgds contains every
source-to-target tgd and is closed under conjunction and composition.

We now show that the class of SO tgds is (up to logical equivalence) the
smallest such class. Let Y be a class that contains every source-to-target
tgd and is closed under conjunction and composition. We must show that for
each SO tgd σ there is a member of Y that is logically equivalent to σ . By
Theorem 8.2, there are finite sets �12, . . . , �n(n+1) of source-to-target tgds such
that σ defines the composition of the mappings given by �12, . . . , �n(n+1). For
each i, with 1 ≤ i ≤ n, since �i(i+1) is a finite set of source-to-target tgds, and
since Y contains each member of �i(i+1) and is closed under conjunction, it
follows that Y contains the conjunction of the members of �i(i+1). Since Y is
closed under composition, Y contains the composition formula of the schema
mappings defined by �12, . . . , �n(n+1). But this composition formula is logically
equivalent to σ . So there is a member of Y that is logically equivalent to σ . This
was to be shown.

It remains to prove Theorem 8.2. We shall prove Theorem 8.2 by proving
a slightly stronger theorem. Before we state this stronger theorem, we need a
definition. The depth of a term is as defined in Section 5.2. We define the nesting
depth of an SO tgd σ to be the largest depth of the terms that appear in σ . For
example, let σ be the SO tgd

∃ f ∃g (S(x, y) → T (x, f ( y), g (x, f ( y))).

Then σ has nesting depth 2, since the term with the largest depth that appears
in σ is g (x, f ( y)), which has depth 2.

We shall prove the following theorem, which immediately implies
Theorem 8.2.

THEOREM 8.4. Every SO tgd of nesting depth r defines the composition of
r + 1 schema mappings, each defined by a finite set of source-to-target tgds.

PROOF. It is instructive to first prove this theorem for some special cases,
to get the idea of the construction. Let σ ′ be the formula ∀x(S(x) →
T ( f (x), g (x), f (g (x))), and let σ be the SO tgd ∃ f ∃gσ ′. Thus, σ is

∃ f ∃g∀x(S(x) → T ( f (x), g (x), f (g (x))).

Define �12 to consist of the following source-to-target tgds:

∀x(S(x) → S1(x))

∀x(S(x) → ∃ y F1(x, y))

∀x(S(x) → ∃ yG1(x, y)).

Intuitively, we take S1 to copy S, we take F1(x, y) to encode f (x) = y , and we
take G1(x, y) to encode g (x) = y . Intuitively, the second dependency has the
effect of guaranteeing that f (x) is defined whenever S(x) holds, and the third
dependency has the effect of guaranteeing that g (x) is defined whenever S(x)
holds.
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Define �23 to consist of the following source-to-target tgds:

∀x(S1(x) → S2(x))

∀x∀ y(F1(x, y) → F2(x, y))

∀x∀ y(G1(x, y) → G2(x, y))

∀x∀ y(G1(x, y) → ∃z F2( y , z)).

Intuitively, we take S2 to copy S1, F2 to copy F1, and G2 to copy G1. Intuitively,
the fourth dependency has the effect of guaranteeing that f ( y) is defined for
all y in the range of g .

Define �34 to consist of the following source-to-target tgd:

∀x∀ y∀ y ′∀z((S2(x) ∧ F2(x, y) ∧ G2(x, y ′) ∧ F2( y ′, z)) → T ( y , y ′, z)). (5)

Intuitively, formula (5) says

∀x∀ y∀ y ′∀z((S(x) ∧ ( f (x) = y) ∧ (g (x) = y ′) ∧ ( f ( y ′) = z) → T ( y , y ′, z)). (6)

In turn, formula (6) says

∀x(S(x) → T ( f (x), g (x), f (g (x))). (7)

Note that formula (7) is exactly the “body” of σ .
We now show that 〈I1, I4〉 |= σ if and only if there are I2, I3 such that 〈I1, I2〉 |=

�12, 〈I2, I3〉 |= �23, and 〈I3, I4〉 |= �34. This is sufficient to prove the theorem in
this special case. Assume first that 〈I1, I4〉 |= σ . So there are f 0, g0 such that
〈I1, I4〉 |= σ ′[ f �→ f 0, g �→ g0]. We see from Theorem 5.6 that we can assume
without loss of generality that the universe is finite. Define I2 by taking S1 to
equal S, taking F1(a, b) to hold in I2 precisely is f 0(a) = b, and taking G1(a, b)
to hold in I2 precisely if g0(a) = b. Define I3 by taking S2 to equal S, taking F2

to equal F1, and taking G2 to equal G1. Note that I2 and I3 are finite, because
of our assumption that the universe is finite. It is straightforward to verify that
〈I1, I2〉 |= �12, 〈I2, I3〉 |= �23, and 〈I3, I4〉 |= �34.

Assume now that 〈I1, I2〉 |= �12, 〈I2, I3〉 |= �23, and 〈I3, I4〉 |= �34. Let U (the
universe) be a countably infinite set that includes all values that appear in any
of I1, I2, I3, or I4. Define f 0(a) for a in U as follows. If there is some b such that
F2(a, b) holds in I3, then let f 0(a) be an arbitrary value of b such that F2(a, b)
holds in I3. (Note that this is reminiscent of our choice of the coloring function in
the proof of Theorem 4.6.) For all other a in U , let f 0(a) be an arbitrary member
of U . Define g0(a) for a in U as follows. If there is some b such that G2(a, b) holds
in I3, then let g0(a) be an arbitrary value of b such that G2(a, b) holds in I3. For
all other a in U , let g0(a) be an arbitrary member of U . It is straightforward
to verify that 〈I1, I4〉 |= σ ′[ f �→ f 0, g �→ g0]. So 〈I1, I4〉 |= σ , as desired.

We note that if we were to apply our composition algorithm to find the result
of composing the schema mappings defined by �12, �23 and �34, we would
obtain a different formula than σ (although this formula is logically equivalent
to σ ). In particular, when we convert the source-to-target tgds in �12 and �23

to SO tgds, we would introduce different Skolem functions for dealing with the
tgd ∀x(S(x) → ∃ y F1(x, y)) of �12 and the tgd ∀x∀ y(G1(x, y) → ∃z F2( y , z)) of
�23. However, it is possible to use the same Skolem function in both cases. The
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reason is, intuitively, that because of the tgd ∀x∀ y(F1(x, y) → F2(x, y)) of �23,
the Skolem function needed for the tgd ∀x∀ y(G1(x, y) → ∃z F2( y , z)) of �23

can simply be an extension to a larger domain of the Skolem function needed
for the tgd ∀x∀ y(G1(x, y) → ∃z F2( y , z)) of �12.

We now modify our example to allow an equality. Let us take σ1 to be

∃ f ∃g∀x((S(x) ∧ ( f (x) = g (x))) → T ( f (x), g (x), f (g (x))).

Thus, σ1 is the result of adding the equality f (x) = g (x) to the left-hand side
of σ . We then take �′

12 to be �12, and �′
23 to be �23. We take �′

34 to consist of
the following source-to-target tgd:

∀x∀ y∀z((S2(x) ∧ F2(x, y) ∧ G2(x, y) ∧ F2( y , z)) → T ( y , y , z)).

Thus, �′
34 is the result of replacing y ′ by y in �34. We then have, similarly to

before, that 〈I1, I4〉 |= σ1 if and only if there are I ′
2, I ′

3 such that 〈I1, I ′
2〉 |= �′

12,
〈I ′

2, I ′
3〉 |= �′

23, and 〈I ′
3, I4〉 |= �′

34. In fact, we can define I ′
2 and I ′

3 with the same
definitions as we gave for I2 and I3 earlier.

We now give the argument in the general case. Let σ be an SO tgd with nest-
ing depth r, with source schema S and target schema T. Let us write σ as ∃fσ ′,
where σ ′ is first-order. We must define r +2 schemas S1, . . . , Sr+2. We let S1 be S
and let Sr+2 be T. For every k-ary relation symbol S of S, and for 2 ≤ i ≤ r+1, we
let the schema Si contain a new k-ary relation symbol Si−1. For every k-ary func-
tion symbol f that appears in σ , and for 2 ≤ i ≤ r +1, we let the schema Si con-
tain a new (k +1)-ary relation symbol Fi−1. We say that Fi−1 represents f in Si.

We now define the sets �i(i+1) for 1 ≤ i ≤ r + 1. We first define the set �12.
For every k-ary relation symbol S of S, we let �12 contain the source-to-target
tgd ∀x1 · · · ∀xk(S(x1, . . . , xk) → S1(x1, . . . , xk)). Next, we let �12 contain source-
to-target tgds that guarantee, intuitively, that each of the function symbols of
σ is defined on the active domain of the instance of schema S. Thus, for every
(k + 1)-ary relation symbol F1 of S1 that represents a k-ary function symbol of
σ in S2, and for every combination of choices of atomic formulas from S1 and
every combination of choices of variables v1, . . . , vk that appear in these atomic
formulas, we let �12 contain a source-to-target tgd that guarantees that there
is y such that F1(v1, . . . , vk , y) holds. For example, if F1 is a ternary relation
symbol that represents a binary function symbol of σ in S2, and if R and S are
binary relation symbols of S, then �12 contains the source-to-target tgd

∀x1∀x2∀x3∀x4((R(x1, x2) ∧ S(x3, x4)) → ∃ y F1(x2, x3, y)).

We now define the sets �i(i+1) for 2 ≤ i ≤ r. For every k-ary re-
lation symbol S of S, we let �i(i+1) contain the source-to-target tgd
∀x1 . . . ∀xk(Si−1(x1, . . . , xk) → Si(x1, . . . , xk)). For every k-ary function sym-
bol f that appears in σ , we let �i(i+1) contain the source-to-target tgd
∀x1 · · · ∀xk(Fi−1(x1, . . . , xk+1) → Fi(x1, . . . , xk+1)), where Fi−1 is the relation
symbol that represents f in Si, and Fi is the relation symbol that represents
f in Si+1. Next, we let �i(i+1) contain source-to-target tgds that, intuitively,
guarantee, just as we did in the case of �12, that each of the function symbols
of σ is defined on the active domain of the instance of schema Si. For example,
if Gi is a ternary relation symbol that represents a binary function symbol of
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σ in Si+1, and if R is a binary relation symbol of S (so that Ri−1 is a binary
relation symbol of Si) and Fi−1 is a binary relation symbol that represents a
unary function symbol of σ in Si, then �i(i+1) contains the source-to-target tgd

∀x1∀x2∀x3∀x4((Ri−1(x1, x2) ∧ Fi−1(x3, x4)) → ∃ yGi(x1, x4, y)).

Note that we did not bother with putting all of these source-to-target tgds into
�23 in our example at the beginning of the proof, since they were not all needed.

Finally, we define the set �(r+1)(r+2). For each conjunct Cj of σ , where Cj is
∀xj(φ j → ψ j ), we shall define full source-to-target tgds τ ′

j (with left-hand side
L′

j and right-hand side R ′
j ) and τ j (with left-hand side L j and right-hand side

R j ), and we let �(r+1)(r+2) consist of the tgds τ j . The difference between τ ′
j and

τ j is that in constructing τ ′
j , we shall neglect the equalities that appear in Cj ;

we shall then obtain τ j by modifying τ ′
j to take into account the equalities. We

begin by defining, for every term t that appears in Cj , a terminal variable vt

and a formula β ′
t . If t is a variable x, then vt and β ′

t are both x. If t is the term
f (t1, . . . , tk), then we take the terminal variable vt to be a new variable, and
recursively define β ′

t to be Fr (vt1
, . . . , vtk , vt), where Fr represents f in Sr+1.

The left-hand side L′
j of τ ′

j is a conjunction of the following formulas:

Sr (x1, . . . , xp), for every atomic formula S(x1, . . . , xp) that appears in φ j

β ′
t , for every term t that appears in Cj (including as a subterm).

We can assume without loss of generality that ψ j consists of a single atomic
formula T (t1, . . . , tm). The right-hand side R ′

j of τ ′
j then is taken to be

T (vt1
, . . . , vtm).

We now describe how we obtain τ j from τ ′
j . Let X j be the set of equalities

t = t ′ that appear in Cj , and let X ′
j be the set of equalities in the transitive,

symmetric, reflexive closure of X j . Then, the terms that are the left-hand side
or right-hand side of equalities in Cj form equivalence classes based on X ′

j (so
that t and t ′ are in the same equivalence class when the equality t = t ′ appears
in Cj ). For each equivalence class, select one term from that equivalence class
to be the “representative” of that equivalence class. If some member of the
equivalence class is a variable, then let a variable be the representative. If t
and t ′ are in the same equivalence class and if t is the representative of that
equivalence class, then form τ j by replacing every occurrence of vt ′ in τ ′

j by
vt (do this in parallel for each equivalence class). For each term t, denote the
formula in τ j that was obtained from β ′

t under this replacement by βt .
We now show that 〈I1, Ir+2〉 |= σ if and only if there are I2, I3, . . . , Ir+1 such

that 〈Ii, Ii+1〉 |= �i(i+1) for 1 ≤ i ≤ r + 1. This is sufficient to prove the theorem.
Assume first that 〈I1, Ir+2〉 |= σ ; we shall show that there are I2, I3, . . . , Ir+1

such that 〈Ii, Ii+1〉 |= �i(i+1) for 1 ≤ i ≤ r + 1. Find f0 such that

〈I1, Ir+2〉 |= σ ′[f �→ f0].

In particular, for each conjunct Cj of σ ′, we have

〈I1, Ir+2〉 |= Cj [f �→ f0]. (8)

We see from Theorem 5.6 that we can assume without loss of generality that
the universe is finite. Define I2 by taking the S1 relation of I2 to equal the S
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relation of I1, for each relation symbol S of S, and taking F1(a1, . . . , ak , b) to hold
in I2 precisely if f 0(a1, . . . , ak) = b, for each function symbol f that appears in
σ , where F1 is the relation symbol that represents f in S2. Note that F1 is finite,
by our assumption on the universe. For 3 ≤ i ≤ r+1, define Ii by taking the Si−1

relation of Ii to equal the S relation of I1, for each S in S, and taking the Fi−1 re-
lation of Ii to equal the F1 relation of I2, for each Fi−1 that represents a function
symbol f of σ in Si. It is easy to see that by construction of I2, . . . , Ir+1, we have
〈Ii, Ii+1〉 |= �i(i+1) for 1 ≤ i ≤ r + 1. We now show that 〈Ir+1, Ir+2〉 |= �(r+1)(r+2).

Let σ̂ be the result of replacing each relation symbol S that appears in
the left-hand side of a conjunct of σ ′ by Sr , let Ĉ j be the conjunct of σ̂ that
corresponds to Cj , and let φ̂ j be the left-hand side of Ĉ j . Since the Sr relation
of Ir+1 equals the S relation of I1, it follows from (8) that

〈Ir+1, Ir+2〉 |= Ĉ j [f �→ f0]. (9)

By construction, Fr (a1, . . . , ak , b) holds in Ir+1 precisely if f 0(a1, . . . , ak) = b,
for each function symbol f that appears in σ . Let τ j be the member of �(r+1)(r+2)

that corresponds to the clause Cj of σ . We must show that 〈Ir+1, Ir+2〉 |= τ j .
Let Cj be ∀xj(φ j → T (t1, . . . , tm)). Let v �→ v0 be an assignment of entries

of Ir+1 to the terminal variables where vt and vt ′ are assigned the same values
if t and t ′ are in the same equivalence class. Let xj �→ x0

j be the assignment

of entries of Ir+1 to members of xj determined by v �→ v0 (recall that xj ⊆ v
since vx is simply x for variables x). To prove that 〈Ir+1, Ir+2〉 |= τ j , we need
only show that if

Ir+1 |= L j [v �→ v0], (10)

then

Ir+2 |= R j [v �→ v0]. (11)

It is sufficient to restrict to assignments v �→ v0 of the type we have described,
since if t and t ′ are in the same equivalence class, then at most one of vt or vt ′

appears in L j .
Now L j is obtained from L′

j by replacing certain variables vt ′ by variables

vt where t and t ′ are in the same equivalence class. Since in this case, v0
t = v0

t ′ ,
it follows that (10) is equivalent to the statement

Ir+1 |= L′
j [v �→ v0]. (12)

By the same argument, it follows that (11) is equivalent to the statement
Ir+2 |= R ′

j [v �→ v0], that is,

Ir+2 |= T (vt1
, . . . , vtm)[v �→ v0]. (13)

We are trying to show that (10) implies (11). Since (10) is equivalent to (12)
and since (11) is equivalent to (13), we need only show that (12) implies (13).
Assume that (12) holds; we must show that (13) holds.
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We now show by induction on depth that if t is a term that appears in Cj ,
then

v0
t = t

[
xj �→ x0

j , f �→ f0]. (14)

The base case of depth 0 is immediate, since then t is one of the vari-
ables in xj. We now prove the inductive step. Assume that t is the term
f (t1, . . . , tk). Let ai denote ti[xj �→ x0

j , f �→ f0], for 1 ≤ i ≤ k. Then

t[xj �→ x0
j , f �→ f0] = f 0(a1, . . . , ak). We must show that v0

t = f 0(a1, . . . , ak).

Since Fr (vt1
, . . . , vtk , vt) is the conjunct β ′

t of L′
j , we see from (12) that

Ir+1 |= Fr (vt1
, . . . , vtk , vt)[v �→ v0]. (15)

By inductive assumption, for 1 ≤ i ≤ k, we have v0
ti

= ai. By our construction

of the Fr relation of Ir+1, it then follows from (15) that v0
t = f 0(a1, . . . , ak), as

desired. This completes the induction, and so completes the proof that (14) holds.
Now φ̂ j is the conjunction of certain atomic formulas (all of whose variables

are in xj) and certain equalities between terms. The atomic formulas in φ̂ j are
guaranteed to hold in Ir+1 under the assignment xj �→ x0

j because of (12) and the

fact that these same atomic formulas appear in L′
j . Whenever t = t ′ is an equal-

ity that appears in φ̂ j , we have v0
t = v0

t ′ by definition of the assignment v �→ v0.
So by (14), it follows that t and t ′ take on the same value in the assignment
xj �→ x0

j , f �→ f0. Hence, both the atomic formulas of φ̂ j and the equalities of φ̂ j

are guaranteed to hold in Ir+1 under the assignment xj �→ x0
j , f �→ f0. That is,

Ir+1 |= φ̂ j
[
xj �→ x0

j , f �→ f0]. (16)

From (9) and (16) and the fact that φ̂ j is the left-hand side of Ĉ j , it follows that
the right-hand side of Ĉ j also holds, that is,

Ir+2 |= T (t1, . . . , tm)
[
xj �→ x0

j , f �→ f0]. (17)

From (14) and (17), we obtain (13), as desired. This completes the proof that
〈Ii, Ii+1〉 |= �i(i+1) for 1 ≤ i ≤ r + 1.

Assume now that 〈Ii, Ii+1〉 |= �i(i+1) for 1 ≤ i ≤ r + 1; we shall show that
〈I1, Ir+2〉 |= σ . Let U (the universe) be a countably infinite set that includes all
values that appear in one or more of the Ii ’s. For each k-ary function symbol f
that appears in σ , define f 0(a1, . . . , ak) for a1, . . . , ak in U as follows: If there
is some b such that Fr (a1, . . . , ak , b) holds in Ir+1, then let f 0(a1, . . . , ak) be an
arbitrary value of b such that Fr (a1, . . . , ak , b) holds in Ir+1. For every other
choice of a1, . . . , ak in U , let f 0(a1, . . . , ak) be an arbitrary member of U .

To prove that 〈I1, Ir+2〉 |= σ , we need only show that (8) holds for each j .
Thus, assume

I1 |= φ j
[
xj �→ x0

j , f �→ f0]; (18)

we must show that (17) holds. Since φ̂ j is the result of replacing each relation
symbol S of φ j by Sr , and since the Sr relation of Ir+1 equals the S relation of
I1, it follows from (18) that (16) holds.
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For simplicity of notation, let us denote t[xj �→ x0
j , f �→ f0] by t0. We now

show, by induction on s with 1 ≤ s ≤ r, that �12, . . . , �s(s+1) assure that if t
is a term f (t1, . . . , tk) of depth s, then Fs(t0

1 , . . . , t0
k , t0) holds in Is+1 (and in

particular t0 appears in Is+1).
Let us consider first the base case s = 1. In this case, t0

1 , . . . , t0
k are each

members of the active domain of I1, and �12 guarantees that there is b such
that F1(t0

1 , . . . , t0
k , b) holds in I2. By our construction of f 0, it then follows that

F1(t0
1 , . . . , t0

k , t0) holds in I2.
The inductive step is similar. Let t be the term f (t1, . . . , tk) of depth s + 1,

where s < r. Then t1, . . . , tk each have depth at most s, and so by inductive
hypothesis, �12, . . . , �s(s+1) assure that t0

1 , . . . , t0
k appear in Is+1. Then �(s+1)(s+2)

guarantees additionally that there is b such that Fs+1(t0
1 , . . . , t0

k , b) holds in Is+2.

By our construction of f 0, it then follows that Fs+1(t0
1 , . . . , t0

k , t0) holds in Is+2.
This completes the induction. Therefore, �12, . . . , �r(r+1) assure that if t is a term
f (t1, . . . , tk) that appears in Cj , then Fr (t0

1 , . . . , t0
k , t0) holds in Ir+1. That is,

Ir+1 |= Fr (t1, . . . , tk , t)
[
xj �→ x0

j , f �→ f0]. (19)

For each terminal variable vt , define the assignment v �→ v0 via (14). Note
that this assignment agrees with the assignment xj �→ x0

j if t is a variable.
From (14) and (19), we obtain (15).

We now show that (12) holds. The formula L′
j is the conjunction of cer-

tain atomic formulas Sr (x1, . . . , xp) and formulas β ′
t . The atomic formulas

Sr (x1, . . . , xp) in L′
j are guaranteed to hold in Ir+1 under the assignment

xj �→ x0
j (and hence under the assignment v �→ v0) because of (16) and the

fact that these same atomic formulas appear in φ̂ j . From (15), we see that the
formula β ′

t holds under this assignment. So (12) holds, as desired.
Because of (16), we know that whenever t = t ′ is an equality that ap-

pears in φ̂ j , necessarily t and t ′ take on the same value in the assignment
xj �→ x0

j , f �→ f0. So by (14), we know that vt and vt ′ take on the same value in the

assignment v �→ v0. Therefore, it follows as before that (10) is equivalent to (12),
and (11) is equivalent to (13). Hence, since (12) holds, it follows that (10) holds,

Since 〈Ir+1, Ir+2〉 |= τ j , and since (10) tells us that the left-hand side of τ j

holds under the assignment v �→ v0, it follows that the right-hand side of τ j

also holds, that is, (11) holds. Hence, since (11) is equivalent to (13), we know
that (13) holds. Since (13) and (14) hold, it follows that (17) holds. This was to
be shown. This completes the proof that 〈I1, Ir+2〉 |= σ .

It is interesting to note that every source-to-target tgd in �i(i+1) in our proof,
for 1 ≤ i ≤ r, has a single existential quantifier, and every source-to-target tgd
in �(r+1)(r+2) in our proof is full. This may seem counterintuitive, especially if
we start with a source-to-target tgd with multiple existential quantifiers, and
convert it to an equivalent SO tgd, and then apply the algorithm in the proof of
Theorem 8.4. How can we get away with such sets �i(i+1)? Let us consider one
more example.

Example 8.5. Let τ be the source-to-target tgd

∀x(S(x) → ∃ y∃zT (x, y , z)).
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Then, an equivalent SO tgd is

∃ f ∃g∀x(S(x) → T (x, f (x), g (x))).

When we apply the algorithm in the proof of Theorem 8.4, we obtain the fol-
lowing sets �12 and �23 of source-to-target tgds. The set �12 consists of:

∀x(S(x) → S1(x))

∀x(S(x) → ∃ y F1(x, y))

∀x(S(x) → ∃ yG1(x, y)).

The set �23 consists of:

∀x∀ y∀z((S1(x) ∧ F1(x, y) ∧ G1(x, z)) → T (x, y , z)).

Then the schema mapping defined by the source-to-target tgd τ with two
existential quantifiers is equivalent to the composition of the schema mapping
defined by �12 (where each source-to-target tgd has only one existential quan-
tifier) and �23 (where the only source-to-target tgd is full).

9. CERTAIN-ANSWER ADEQUACY

In this section, we compare and contrast our notion of composition with a differ-
ent notion of composition that was introduced by Madhavan and Halevy [2003],
and further explore their notion.

9.1 Certain-Answer Equivalence

Before introducing Madhavan and Halevy’s notion of composition, it is worth-
while to introduce a more general notion, that of certain-answer equivalence
of schema mappings. This notion is independent of composition, and is a more
“relaxed” notion of equivalence for schema mappings than logical equivalence.
We will then formulate Madhavan and Halevy’s notion of composition in terms
of certain-answer equivalence.

Definition 9.1. Let M = (S, T, �st) and M′ = (S, T, �′
st) be schema map-

pings from S to T, and let q be a query. We say thatM andM′ are certain-answer
equivalent with respect to q (and that �st and �′

st are certain-answer equivalent
with respect to q) if certainM(q, I ) = certainM′ (q, I ) for all instances I over S.
Let Q be a class of queries. We say that M and M′ are certain-answer equiva-
lent with respect to Q (and that �st and �′

st are certain-answer equivalent with
respect to Q) if M and M′ are certain-answer equivalent with respect to q for
each q in Q.

It is clear that if �st and �′
st are logically equivalent, then they are

certain-answer equivalent for every class Q of queries. What about the con-
verse? If Q is sufficiently rich (e.g., if Q is the class of conjunctive queries),
and if �st and �′

st are certain-answer equivalent with respect to Q, are �st

and �′
st necessarily logically equivalent? The next proposition says that the

answer is “No.”. Thus, certain-answer equivalence is weaker than logical
equivalence.

ACM Transactions on Database Systems, Vol. 30, No. 4, December 2005.



1046 • R. Fagin et al.

PROPOSITION 9.2. There are schema mappings M = (S, T, �st) and M′ =
(S, T, �′

st), where �st and �′
st are second-order tgds that are not logically equiv-

alent, such that M and M′ are certain-answer equivalent with respect to con-
junctive queries.

PROOF. Let M = (S, T, �st), where S, T, and �st are, respectively, S1, S3,
and the composition formula �13 from Example 5.2. Thus, �st is

∃ f (∀e(Emp(e) → Mgr(e, f (e))) ∧
∀e(Emp(e) ∧ (e = f (e)) → SelfMgr(e))).

Let �′
st be the second-order tgd that results from dropping the second clause of

�st . Thus, �′
st is ∃ f (∀e(Emp(e) → Mgr(e, f (e)))). Let I be an arbitrary instance of

schema S, and let 〈I, J0〉 be the result of chasing 〈I, ∅〉 with �st . It is easy to see
that 〈I, J0〉 is also the result of chasing 〈I, ∅〉 with �′

st . By Theorem 6.8, J0 is a
universal solution for I under both M and M′. As we noted in Section 2, it was
shown in Fagin et al. [2005a] that if q is a conjunctive query (or even a union of
conjunctive queries), then q(J )↓ = certainM(q, I ) when J is a universal solution
for I . Therefore, q(J0)↓ = certainM(q, I ), and similarly, q(J0)↓ = certainM′ (q, I ),
when q is a conjunctive query. So certainM(q, I ) = certainM′ (q, I ). Therefore, �st

and �′
st are certain-answer equivalent with respect to conjunctive queries. So

we need only show that �st and �′
st are not logically equivalent. Let I1 and I3 be

as in the proof of Theorem 5.4. As noted there, 〈I1, I3〉 �|= �st . However, it is easy
to see that 〈I1, I3〉 |= �′

st . So indeed, �st and �′
st are not logically equivalent.

By way of contrast, the next proposition says that this difference between
certain-answer equivalence and logical equivalence does not arise when we
consider sets of source-to-target tgds instead of SO tgds.

PROPOSITION 9.3. Assume that M = (S, T, �st) and M′ = (S, T, �′
st) are

schema mappings where �st and �′
st are sets of source-to-target tgds. Then M

and M′ are certain-answer equivalent with respect to conjunctive queries if and
only if �st and �′

st are logically equivalent.

PROOF. One direction is immediate: logical equivalence implies certain-
answer equivalence (with respect to every class of queries, in fact). For the
converse, assume that certainMst (q, I ) = certainM′

st
(q, I ), for every instance I

over S and for every conjunctive query q over T. Let I be an arbitrary in-
stance over S and let J and J ′ be universal solutions for I with respect to
Mst and M′

st , respectively (such universal solutions can be obtained from I
by chasing with Mst and M′

st , respectively). As noted in the proof of Proposi-
tion 9.2, it was shown in Fagin et al. [2005a] that if q is a conjunctive query,
then q(J )↓ = certainMst (q, I ). Similarly, q(J ′)↓ = certainM′

st
(q, I ). Since by as-

sumption, certainMst (q, I ) = certainM′
st
(q, I ), it follows that q(J )↓ = q(J ′)↓. So

q(J )↓ = q(J ′)↓, for every conjunctive query q.
From the last equality we will derive next that J and J ′ are homomorphically

equivalent. That is, we shall show that there is a homomorphism h from J to J ′

such that h(c) = c for every value c of J that is among the values of I , and there
is a similar homomorphism in the other direction. To prove the existence of the
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first homomorphism, we construct the following canonical conjunctive query qJ

associated with J . Let c1, . . . , cn be the distinct elements of J that appear in I
and let d1, . . . , dm be all the distinct remaining elements of J (the nulls of J ).
Let ψ be the conjunction of all atomic formulas over x1, . . . , xn, y1, . . . , ym that
hold in J when xi plays the role of ci and y j plays the role of d j , for each i and
j . For example, R(c2, d4) holds in J if and only if one conjunct in ψ is R(x2, y4).
Then we define qJ (x1, . . . , xn) to be ∃ y1 · · · ∃ ymψ .

It is easy to see that the tuple (c1, . . . , cn) is in qJ (J )↓. Since qJ (J )↓ = qJ (J ′)↓,
it follows that (c1, . . . , cn) is in qJ (J ′)↓. Hence, there must be a valuation from
the variables x1, . . . , xn, y1, . . . , ym of qJ to values of J ′ such that all atoms of
ψ are mapped homomorphically (i.e., preserving relations) into tuples of J ′,
and moreover xi is mapped to ci for each i. Given the construction of qJ from
J , we obtain a homomorphism h from J to J ′ such that h(ci) = ci for each
i. Since c1, . . . , cn are all the values of J that occur in I , we obtain that h is a
homomorphism from J to J ′ such that h(c) = c for every value c of J that occurs
in I . A symmetric argument shows the existence of a similar homomorphism
from J ′ to J .

We now show that �st and �′
st are logically equivalent. Let I and K be

arbitrary instances over S and T. Assume that 〈I, K 〉 |= �st . In other words, K
is a solution for I with respect to Mst . Let J and J ′ be universal solutions for
I , with respect to Mst and M′

st , respectively. The universality of J implies that
there is a homomorphism g from J to K such that g (c) = c for every value c of J
that occurs in I . Moreover, we have shown that J and J ′ are homomorphically
equivalent. In particular, there is a homomorphism h′ from J ′ to J such that
h′(c′) = c′ for every value c′ of J ′ that occurs in I . Composing homomorphisms
yields homomorphisms. We thus obtain a homomorphism k from J ′ to K that
moreover satisfies k(c′) = c′ for every value c′ of J ′ that is in I . Furthermore,
we have that 〈I, J ′〉 |= �′

st , since J ′ is in particular a solution for I with respect
to M′

st .
Finally, we use the following property of source-to-target tgds, which can be

easily verified: if 〈I, J ′〉 satisfies a source-to-target tgd τ and there is a homo-
morphism from J ′ to K that maps values of I into themselves, then 〈I, K 〉 also
satisfies τ . Applying this property to the above I , J ′ and K and the set �′

st
of source-to-target tgds, we obtain that 〈I, K 〉 |= �′

st . We have shown that if
〈I, K 〉 |= �st , then 〈I, K 〉 |= �′

st . We thus proved that �st logically implies �′
st .

A symmetric argument shows the reverse implication.

We now define Madhavan and Halevy’s notion of composition using our ter-
minology and notation. Let M12 and M23 be schema mappings, with M12 =
(S1, S2, �12) and M23 = (S2, S3, �23). Assume that M13 = (S1, S3, �13) and
M′

13 = (S1, S3, �′
13) are schema mappings, where M13 is the composition

M12 ◦ M23. Let q be a query. We say that �′
13 is certain-answer adequate for q

(with respect to M12, M23) if �13 and �′
13 are certain-answer equivalent with

respect to q. Let Q be a class of queries. We say that �′
13 is certain-answer ade-

quate for Q (with respect to M12, M23) if �′
13 is certain-answer adequate for q

(with respect toM12,M23) for each q inQ. Thus, �′
13 is certain-answer adequate

for Q (with respect to M12, M23) precisely if certainM13
(q, I ) = certainM′

13
(q, I )
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for all instances I over S1 and all queries q in Q. Intuitively, certain-answer
adequacy says that the certain answers of queries in Q (over S3) with respect
to an instance I of S1 are the same whether we use the schema mappings M12

and M23 or the schema mapping M′
13 to arrive at the answers. Madhavan and

Halevy used certain-answer adequacy as their notion of composition. They were
especially interested in the case where Q is the class of conjunctive queries.

The next proposition follows immediately from the definition of certain-
answer adequacy.

PROPOSITION 9.4. Let M12 and M23 be schema mappings, and let �13 be the
composition formula. Let q be an arbitrary query. Then �13 is certain-answer
adequate for q with respect to M12, M23.

Note that in Proposition 9.4, we make no assumption on M12 and M23, such
as that �12 and �13 are sets of source-to-target tgds.

We now show that in some situations, there exists �′
13 that is certain-answer

adequate but not logically equivalent to the composition formula �13. This is
why we use the word “adequate”: logically inequivalent choices may both be
adequate for the job.

THEOREM 9.5. There are schema mappings M12 = (S1, S2, �12) and M23 =
(S2, S3, �23), where �12 and �23 are finite sets of source-to-target tgds, and there
are two logically inequivalent formulas that are each certain-answer adequate
for conjunctive queries with respect to M12, M23.

PROOF. Let M12 and M23 be as in Example 5.2. Let �13 and �′
13 be, respec-

tively, �st and �′
st from the proof of Proposition 9.2. Let M13 = (S1, S3, �13)

and M′
13 = (S1, S3, �′

13). The proof of Proposition 9.2 shows that �13 is the
composition formula, that M13 and M′

13 are certain-answer equivalent with
respect to conjunctive queries, and �13 and �′

13 are logically inequivalent. So
�13 and �′

13 are logically inequivalent formulas that are each certain-answer
adequate for conjunctive queries with respect to M12, M23. This proves the
theorem.

9.2 Dependence of Certain-Answer Adequacy on the Class of Queries

In this section, we explore the dependence of certain-answer adequacy on the
class of queries. We prove the following results:

(A) A formula may be certain-answer adequate for conjunctive queries but not
for conjunctive queries with inequalities.

(B) A formula may be certain-answer adequate for conjunctive queries with
inequalities but not for all first-order queries.

(C) A formula is certain-answer adequate for all first-order queries if and only
if it is (logically equivalent to) the composition formula. It follows that if
a formula is certain-answer adequate for all first-order queries, then it is
certain-answer adequate for all queries.

Since the composition formula is certain-answer adequate for all queries, we
see from (B) that there is a scenario where there are two different formulas
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(namely, the formula guaranteed by (B) and the composition formula) that are
both certain-answer adequate for conjunctive queries with inequalities. This
strengthens the result we already had (Theorem 9.5) that there is a scenario
where there are two different formulas that are both certain-answer adequate
for conjunctive queries.

We now prove these results. We begin by proving (A).

THEOREM 9.6. There are schema mappings M12 = (S1, S2, �12) and M23 =
(S2, S3, �23), where �12 and �23 are finite sets of source-to-target tgds, and where
there is a formula that is certain-answer adequate for conjunctive queries with
respect to M12, M23 but not certain-answer adequate for conjunctive queries
with inequalities with respect to M12, M23.

PROOF. Let M12 and M23 be as in Example 5.2. Let σ be

∃ f (∀e(Emp(e) → Mgr(e, f (e))) ∧
∀e(Emp(e) ∧ (e = f (e)) → SelfMgr(e))).

As shown in Example 5.2, σ is the composition formula. In the proof of
Proposition 9.2, we gave a formula (in fact, an SO tgd) that was denoted by
�st that is certain-answer equivalent to σ with respect to conjunctive queries
but is not logically equivalent to σ . We now give another formula (in this case,
not an SO tgd) such that σ and σ ′ are certain-answer equivalent with respect
to conjunctive queries, but are not certain-answer equivalent with respect to
conjunctive queries with inequalities. This is sufficient to prove the theorem,
since it implies that σ ′ is certain-answer adequate for conjunctive queries with
respect to M12, M23 but not certain-answer adequate for conjunctive queries
with inequalities with respect to M12, M23.

Let σ ′ be the following formula:

∃ f (∀e(Emp(e) → Mgr(e, f (e))) ∧
∀e(Emp(e) ∧ (e = f (e)) → SelfMgr(e)) ∧
∀e∀e′(Emp(e) ∧ Emp(e′) ∧ ( f (e) = f (e′)) → (e = e′))).

Thus, the only difference between σ and σ ′ is that σ ′ requires that the existen-
tialized function f be one-to-one on the domain of the Emp relation.

We now show that σ and σ ′ are certain-answer equivalent with respect to
conjunctive queries. Let M13 = (S1, S3, σ ) and M′

13 = (S1, S3, σ ′). Let I be
an instance over S1, and let q be a conjunctive query. We must show that
certainM13

(q, I ) = certainM′
13

(q, I ). Since σ ′ logically implies σ , it follows easily
that certainM13

(q, I ) ⊆ certainM′
13

(q, I ). We now show the reverse inclusion. Let
t be a tuple in certainM′

13
(q, I ). That is,

t ∈
⋂

{q(J ) : 〈I, J〉 ∈ Inst(M′
13)} (20)

It is easy to see that t contains no nulls. Let 〈I, J0〉 be a result of chasing 〈I, ∅〉
with σ . Since the chase process associates a unique null with each syntactically
different term generated during the chase process, it follows that J0 satisfies
not just σ but also σ ′. So from (20), it follows that t ∈ q(J0). Since t contains no
nulls, we have t ∈ q(J0)↓. Since J0 is a universal solution for I under M13 (by
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Proposition 6.8) and q is a conjunctive query, it follows as before that q(J0)↓ =
certainM13

(q, I ). Therefore, t ∈ certainM13
(q, I ), as desired.

We show next that σ and σ ′ are not certain-answer equivalent with respect
to conjunctive queries with inequalities. Let q be the query ∃ y1∃ y2(( y1 �= y2) ∧
Mgr(x1, y1) ∧ Mgr(x2, y2). Then q is a conjunctive query with inequalities. Let
I be {Emp(Alice), Emp(Bob)}. Since σ ′ forces f (Alice) �= f (Bob), it follows easily
that

certainM′
13

(q, I ) = {(Alice, Bob), (Bob, Alice)}.
However, certainM13

(q, I ) = ∅, since one solution J (for which 〈I, J〉 |= σ ) is

{Mgr(Alice, Alice), Mgr(Bob, Alice), SelfMgr(Alice)},
where there is no tuple that satisfies q. Therefore,

certainM13
(q, I ) �= certainM′

13
(q, I ). (21)

Hence, σ and σ ′ are not certain-answer equivalent with respect to q, which is
a conjunctive query with inequalities. This was to be shown

Theorem 9.6 says that a formula may be certain-answer adequate for con-
junctive queries but not certain-answer adequate for conjunctive queries with
inequalities. This brings up the natural question as to whether a formula that is
certain-answer adequate for conjunctive queries with inequalities is necessar-
ily certain-answer adequate for all queries, or at least for all first-order queries.
The next theorem says that this is not the case.

THEOREM 9.7. There are schema mappings M12 = (S1, S2, �12) and M23 =
(S2, S3, �23), where �12 and �23 are finite sets of source-to-target tgds, and where
there is a formula that is certain-answer adequate for conjunctive queries with
inequalities with respect to M12, M23 but not certain-answer adequate for all
first-order queries with respect to M12, M23.

PROOF. Let S1 be a schema with three unary relation symbols A1, B1, C1; let
S2 be a schema with three unary relation symbols A2, B2, C2; and let S3 be a
schema with three unary relation symbols A3, B3, C3. Consider now the schema
mappings M12 = (S1, S2, �12) and M23 = (S2, S3, �23), where

�12 = { ∀x(A1(x) → A2(x)), �23 = { ∀x(A2(x) → A3(x)),
∀x(B1(x) → B2(x)), ∀x(B2(x) → B3(x)),
∀x(C1(x) → C2(x)) } ∀x(C2(x) → C3(x)) }

Then the composition formula �13 is

∀x((A1(x) → A3(x)) ∧ (B1(x) → B3(x)) ∧ (C1(x) → C3(x)).

Let �′
13 be the conjunction of �13 with ∀x(C3(x) → ∃ y((A3( y) ∨ B3( y)). We

shall show that �′
13 is certain-answer adequate for conjunctive queries with

inequalities with respect to M12, M23 but not certain-answer adequate for all
first-order queries with respect to M12, M23.

We first show that �′
13 is certain-answer adequate for conjunctive queries

with inequalities with respect to M12, M23. Let q be a conjunctive query with
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inequalities. Define M13 = (S1, S3, �13) and M′
13 = (S1, S3, �′

13). We must show
that

certainM13
(q, I ) = certainM′

13
(q, I ). (22)

If either the A1 or B1 relation of I is nonempty, then it is easy to see that for
every J , we have 〈I, J〉 |= �13 if and only if 〈I, J〉 |= �′

13, which implies that (22)
holds. So we are done unless the A1 and B1 relations of I are empty. Assume that
the A1 and B1 relations of I are empty. If q contains some conjunct of the form
A3(x) or some conjunct of the form B3(x), then it is easy to see that the left-hand
side and right-hand side of (22) are both empty, and hence equal. Therefore,
assume that q contains only inequalities and formulas of the form C3(x). By the
safety condition on conjunctive queries with inequalities, for every inequality
x �= y that appears in q, the formulas C3(x) and C3( y) appear in q. Let q∗ be
the result of replacing each occurrence of C3 by C1. It is easy to see that both
the left-hand side and right-hand side of (22) contain precisely the tuples t
such that q∗(t) holds in I . So once again, the left-hand side and right-hand side
of (22) are equal. This concludes the proof that �′

13 is certain-answer adequate
for conjunctive queries with inequalities with respect to M12, M23.

Finally, we show that �′
13 is not certain-answer adequate for all first-order

queries with respect to M12, M23. Let q be the first-order query C3(x) →
∃ y((A3( y) ∨ B3( y)). We shall show that �′

13 is not certain-answer adequate for
q with respect to M12, M23. Let I = {A3(0)}. Then

certainM′
13

(q, I ) = {0}, (23)

since for each J where 〈I, J〉 |= �′
13, we have 0 ∈ q(J ). However,

certainM13
(q, I ) = ∅, (24)

since if we let J = {C3(0)}, then we see that 〈I, J〉 |= �13 and q(J ) = ∅. It follows
from (23) and (24) that

certainM13
(q, I ) �= certainM′

13
(q, I ).

Thus, �′
13 is not certain-answer adequate for q with respect to M12, M23. This

concludes the proof.

Theorems 9.6 and 9.7 both demonstrate that there is a formula that is
certain-answer adequate for all queries in a class Q1 but not for a richer class
Q2. The next theorem will be used to prove that onceQ1 consists of all first-order
queries, there is no such class Q2.

THEOREM 9.8. Let M12 and M23 be schema mappings. The only formula (up
to logical equivalence) that is certain-answer adequate for all first-order queries
with respect to M12, M23 is the composition formula.

PROOF. We shall show that there is at most one formula that is certain-
answer adequate for all first-order queries. Since, by Proposition 9.4, we know
that the composition formula is certain-answer adequate for every query with
respect to M12, M23, this is sufficient to prove the theorem.

Assume that there are two formulas �′
13 and �′′

13 that are each certain-answer
adequate for all first-order queries with respect to M12, M23. We must show
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that �′
13 and �′′

13 are logically equivalent. Assume that 〈I, J〉 |= �′
13; we shall

show that 〈I, J〉 |= �′′
13.

Let �13 be the composition formula. Assume that M12 = (S1, S2, �12) and
M23 = (S2, S3, �23). Define M13 = (S1, S3, �13), M′

13 = (S1, S3, �′
13), and M′′

13 =
(S1, S3, �′′

13). Let q be an arbitrary first-order query. Since �′
13 is certain-answer

adequate for q, we have

certainM13
(q, I ) = certainM′

13
(q, I ). (25)

Similarly, since �′′
13 is certain-answer adequate for q, we have

certainM13
(q, I ) = certainM′′

13
(q, I ). (26)

It follows from (25) and (26) that

certainM′
13

(q, I ) = certainM′′
13

(q, I ). (27)

Let c1, . . . , cn be the distinct elements of I that appear in J , and let d1, . . . , dm

be the distinct remaining elements of J . Let ψ1 be the formula that is the
conjunction of all atomic formulas and negations of atomic formulas over
x1, . . . , xn, y1, . . . , ym that hold in J when xi plays the role of ci, and y j plays the
role of d j , for each i, j . For example, if R(c3, d9) holds in J , then one conjunct
is R(x3, y9). If R(c3, d9) does not hold in J , then one conjunct is ¬R(x3, y9).
Let ψ2 be the conjunction of all of the inequalities xi �= x j for i �= j , all of the
inequalities yi �= y j for i �= j , and all of the inequalities xi �= y j . Let ψ3 be the
formula

∀x((x = x1) ∨ (x = x2) ∨ · · · ∨ (x = xn) ∨ (x = y1) ∨ (x = y2) ∨ · · · ∨ (x = ym)).

Let φ′ be the formula ψ1 ∧ ψ2 ∧ ψ3, let φ be the formula ∃ y1 · · · ∃ ymφ′,
and let q be the query ¬φ. Then (c1, . . . , cn) is not in certainM′

13
(q, I ), since

J |= φ′[x1 �→ c1, . . . , xn �→ cn]. So by (27), we know that (c1, . . . , cn) is not in
certainM′′

13
(q, I ). This means that there is J ′ where 〈I, J ′〉 |= �′′

13 such that
J ′ |= φ′[x1 �→ c1, . . . , xn �→ cn]. But by the design of φ, we know that J ′ is iso-
morphic to J under an isomorphism that maps each member of I onto itself.
Hence, 〈I, J ′〉 is isomorphic to 〈I, J〉. Since 〈I, J ′〉 |= �′′

13, and since 〈I, J ′〉 is
isomorphic to 〈I, J〉, it follows that 〈I, J〉 |= �′′

13. This was to be shown.

COROLLARY 9.9. Let M12 and M23 be schema mappings, and let φ be a for-
mula that is certain-answer adequate for all first-order queries with respect to
M12, M23. Then φ is certain-answer adequate for every query with respect to
M12, M23.

PROOF. Let φ be a formula that is certain-answer adequate for all first-order
queries with respect to M12, M23. Theorem 9.8 says that φ is the composition
formula. Proposition 9.4 then says that φ is certain-answer adequate for every
query with respect to M12, M23.

Note that in Theorem 9.8 and Corollary 9.9, as in Proposition 9.4, we make
no assumption on M12 and M23, such as that �12 and �13 are sets of source-
to-target tgds.
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An examination of the proof of Theorem 9.8 shows that the proof actually
shows the stronger result that the only formula that is certain-answer adequate
for all ∀∃ first-order queries is the composition formula.

9.3 The Inadequacy of Finite Sets of TGDs

Our earlier Proposition 4.4 tells us that in some cases, the composition is not
definable by any finite set of source-to-target tgds. A natural question at this
point is whether a finite set of tgds is always sufficient for certain-answer ad-
equacy for conjunctive queries when the schema mappings M12 and M23 are
finite sets of tgds. Our next result answers this question negatively.

THEOREM 9.10. There are schema mappings M12 = (S1, S2, �12) and M23 =
(S2, S3, �23), where �12 and �23 are finite sets of source-to-target tgds, where
no finite set of source-to-target tgds is certain-answer adequate for conjunctive
queries with respect to M12, M23.

PROOF. The proof is based on the proof of Proposition 4.4. As in that proof,
the schema mappings that we use to prove the theorem are M12 and M23 of
Example 2.3. Let �13 be the composition formula, and let M13 = (S1, S3, �13).
Let I1 be as in the proof of Proposition 4.4. Let qm be the conjunctive query

∃ y(Enrollment( y , x1) ∧ · · · ∧ Enrollment( y , xm)).

It follows from the proof of Proposition 4.4 that (c1, . . . , cm) ∈ certainM13
(qm, I1).

Let �fin
13 be a finite set of source-to-target tgds, and let Mfin

13 = (S1, S3, �fin
13 ). It

follows from the proof of Proposition 4.4 that (c1, . . . , cm) �∈ certainMfin
13

(qm, I1)

if m is sufficiently large. So certainM13
(qm, I1) �= certainMfin

13

(qm, I1) if m is suffi-

ciently large. Hence, �fin
13 is not certain-answer adequate for conjunctive queries

with respect to M12, M23.

We note that Madhavan and Halevy gave an example where an infinite set
of tgds is certain-answer adequate for conjunctive queries but no finite subset
of it is. The above Theorem 9.10 shows a stronger negative example where no
finite set of tgds whatsoever suffices for certain-answer adequacy.

9.4 Contrasting Our Approach with Madhavan and Halevy’s Approach

We close this section with some comparisons between our notion of composition
and Madhavan and Halevy’s notion (which we call certain-answer adequacy).
Our approach has the following advantages over theirs:

(1) Our approach is, we feel, more natural than theirs, in that the intent in
both cases is to capture the notion of composition, and we do that directly.

(2) Our approach is sufficiently powerful to capture theirs, in that the
composition formula is always certain-answer adequate for every query
(Proposition 9.4).

(3) Certain-answer adequacy is defined relative to a class Q of queries,
whereas the composition formula is not. The class Q of queries matters,
as demonstrated by Theorem 9.6, which says that there is a formula that is
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Table I. Differences between SO tgds and source-to-target tgds

Schema Certain Equivalence Same

Mapping Model Universal Answers as Certain-answer

Language Compose? Checking Solution for CQs Equivalence for CQs?

source-to-target tgds No PTIME PTIME PTIME Yes

SO tgds Yes NP, can be NP-complete PTIME PTIME No

certain-answer adequate for conjunctive queries but not certain-answer ad-
equate for conjunctive queries with inequalities.

(4) There may be logically inequivalent formulas that are each certain-answer
adequate for conjunctive queries (Theorem 9.5), whereas the composition
formula is unique (up to logical equivalence).

(5) An infinite set � of tgds may be required for certain-answer adequacy for
conjunctive queries (Theorem 9.10), whereas an SO tgd, which is finite, suf-
fices to define the composition. Madhavan and Halevy give a representation
for this infinite set � that is sometimes finite. We note that SO tgds always
serve as such a finite representation.

10. CONCLUSIONS

We have introduced what we believe to be the right notion of the composition of
two schema mappings. We have also introduced second-order tgds, which are a
generalization of finite sets of source-to-target tgds, but with function symbols
and equalities. We believe that second-order tgds are the right language for
specifying and composing schema mappings. We show that second-order tgds
are robust, in that the composition of mappings, each given by a second-order
tgd, is also given by a second-order tgd. By contrast, when the mappings are
each given by a finite set of source-to-target tgds, their composition may not be
definable by even an infinite set of source-to-target tgds. We show that second-
order tgds form the smallest class (up to logical equivalence) that contains every
source-to-target tgd and is closed under conjunction and composition. We also
show that second-order tgds possess good properties for data exchange. As in
the case of data exchange with a finite set of source-to-target tgds, a universal
solution for a fixed data exchange setting, specified with a second-order tgd,
can be computed in polynomial time. Consequently, the certain answers for
conjunctive queries can also be computed in polynomial time. Table I summa-
rizes some of the differences between second-order tgds and source-to-target
tgds.
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