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Abstract

Data exchange is the problem of taking data structured under a source schema and creating an
instance of a target schema that reflects the source data as accurately as possible. In this paper, we
address foundational and algorithmic issues related to the semantics of data exchange and to the
query answering problem in the context of data exchange. These issues arise because, given a source
instance, there may be many target instances that satisfy the constraints of the data exchange problem.

We give an algebraic specification that selects, among all solutions to the data exchange problem,
a special class of solutions that we catliversal We show that a universal solution has no more
and no less data than required for data exchange and that it represents the entire space of possible
solutions. We then identify fairly general, yet practical, conditions that guarantee the existence of
a universal solution and yield algorithms to compute a canonical universal solution efficiently. We
adopt the notion of the “certain answers” in indefinite databases for the semantics for query answering
in data exchange. We investigate the computational complexity of computing the certain answers in
this context and also address other algorithmic issues that arise in data exchange. In particular, we
study the problem of computing the certain answers of target queries by simply evaluating them on a
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canonical universal solution, and we explore the boundary of what queries can and cannot be answered
this way, in a data exchange setting.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In data exchangedata structured under one schema (which we cabhace schema
must be restructured and translated into an instance of a different scheargefachemp
Data exchange is used in many tasks that require data to be transferred between exist-
ing, independently created applications. The first systems supporting the restructuring and
translation of data were built several decades ago. An early such system was EXPRESS
[30], which performed data exchange between hierarchical schemas. The need for systems
supporting data exchange has persisted over the years. Recently this need has become more
pronounced, as the terrain for data exchange has expanded with the proliferation of web
data that are stored in different formats, such as traditional relational database schemas,
semi-structured schemas (for example, DTDs or XML schemas), and various scientific
formats. In this paper, we address several foundational and algorithmic issues related to
the semantics of data exchange and to the query answering problem in the context of data
exchange.

1.1. The data exchange problem

In a data exchange setting, we have a source sclsamnd a target schenTg where we
assume tha® andT are disjoint. Sincd can be an independently created schema, it may
have its own constraints that are given as aX3eatf sentences in some logical formalism
overT. In addition, we must have a way of modeling the relationship between the source
and target schemas. This essential element of data exchange is captsoeddeyto-target
dependenciethat specify how and what source data should appear in the target. These
dependencies are assertions between a source query and a target query. Formally, we have
a setX, of source-to-target dependenciekthe formVx(¢s(x) — x7(X)), where¢g(x)
is a formula in some logical formalism ov&and y1(x) is a formula in some (perhaps
different) logical formalism ovel . We assume that all of the variablesdmppear free in
¢s(x). We point out that schema mapping tools, such as Clio [26,27], permit the (semi-)
automatic discovery of such source-to-target dependencies. Other data translation tools
permit restricted forms of such dependencies to be specified in a rule language and, in
certain cases, to be automatically derived from “correspondence” rules between objects
[3].

Consider a fixed data exchange setting determinef), @y ~;, andX; as above. This
setting gives rise to the followingata exchange problengiven an instancé over the
source schem§, materialize an instanckover the target schenik such that the target
dependencied; are satisfied by, and the source-to-target dependencigsare satisfied
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by | andJ together. The source schema may also have dependencies that we assume are
satisfied by the given source instance. Hence, the source dependencies do not play any direct
role in defining the semantics of data exchange.

The first crucial observation is that there may be many solutions (or none) for a given
instance of the data exchange problem. Hence, several conceptual and technical questions
arise concerning the semantics of data exchange. First, when does a solution exist? If many
solutions exist, which solution should we materialize and what properties should it have, so
that it reflects the source data as accurately as possible? Finally, can such a “good” solution
be efficiently computed?

We consider the semantics of the data exchange problem to be one of the two main issues
in data exchange. We believe that the other main issue is query answering. Specifically,
suppose that] is a query over the target schemaandl is an instance over the source
schemaS. What does answering with respect td mean? Clearly, there is an ambiguity
arising from the fact that, as mentioned earlier, there may be many soldtfons and,
as a result, different such solutiohsnay produce different answeg$J). This conceptual
difficulty was first encountered in the contextinEompleteor indefinitedatabases, where
one hasto find the “right” answers to a query posed against a set of “possible” databases (see,
for instance[32]). An incomplete database can be thought of as the set of all databases
that satisfy a certain specification, that is, all databases that are “possible” for the given
specification. In this sense, the data exchange problem can be viewed as the problem of
exchanging data between a source databasel an incomplete database representing all
target instancedthat are solutions fdr(they satisfy the specifications of the data exchange
problem), except that one is interested in actually materializing one of these solutions. Now,
suppose that a query is posed against an incomplete database. There is general agreement
that in this context, the “right” answers are ttertainanswers, that is, the answers that occur
in the intersection of aly (J)’s, asJ varies over all “possible” databases. This notion makes
good sense for data exchange as well, where, as discussed above, the “possible” databases
are the solutiond for the instancd. It also has the benefit that the query semantics is
independent of the specific solution we select for data exchange. We thus adopt the certain
answers as the semantics of query answering in the data exchange setting and investigate
the complexity of computing the certain answers in the data exchange setting. A related
important question is whether the certain answers of a query can be computed by query
evaluation on the “good” target instance that we chose to materialize.

1.2. Data exchange vs. data integration

Before describing our results on data exchange, we briefly compare and contrast data ex-
change wittdata integrationFollowing the terminology and notation in the recent overview
[21], adata integration systens a triple (G, S, M), whereg is theglobal schemas is
the source schemaand M is a set ofassertiongelating elements of the global schema
with elements of the source schema. BGtandS are specified in suitable languages that
may allow for the expression of various constraints. In this generality, a data exchange set-
ting (S, T, Xy, 2;) can be thought of as a data integration system in wBiththe source
schemaT and X, form the global schema, and the source-to-target dependenclgs in
are the assertions of the data integration system. In practice, however, most data integration
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systems studied to date are eitlharal-as-view(LAV) systems orglobal-as-view(GAV)
systemq18,21,22]. In an LAV system, each assertionAt relates one element of the
source schem& to a query (a view) over the global schedamoreover, it is typically
assumed that there are no target constralits={ ). In a GAV system the reverse holds,
that is, each assertion i relates one element of the global schaga a query (a view)
over the source schenda Since the source-to-target dependengiggelate a query over
the source schengto a query over the target schegaa data exchange setting generalizes
both an LAV and a GAV system. In fact, it can be thought of géodal-and-local-as-view
(GLAV ) system [17,21].

The above similarities notwithstanding, there are important differences between data ex-
change and data integration. As mentioned earlier, in data exchange scenarios, the target
schema is often independently created and comes with its own constraints. In data inte-
gration, however, the global schergais commonly assumed to be a reconciled, virtual
view of a heterogeneous collection of sources and, as such, it is often assumed to have no
constraints. There has been, however, some recent work that considered the impact of target
constraints in data integration. This research includes, in particular, the work of Duschka
etal. [12], which showed how to compute maximally contained query plans of target queries
in an LAV data integration system with target full dependencies, and the work of Cali et al.
[6], which studied the impact of key and foreign key constraints on query answering in a
GAV system. A more significant difference between data exchange and data integration is
that in a data exchange setting we have to actually materialize a finite target instance that best
reflects the given source instance. In data integration no such exchange of data is required.
For query answering, both data exchange and data integration use the certain answers as
the standard semantics of queries over the target (global) schema. In data integration, the
source instances are used to compute the certain answers of queries over the global schema.
In contrast, in a data exchange setting, it may not be feasible to couple applications together
in a manner that data may be retrieved and shared on-demand at query time. This may
occur, for instance, in peer-to-peer applications that must share data, yet maintain a high
degree of autonomy. Hence, queries over the target schema may have to be answered using
the materialized target instance alone, without reference to the original source instance.
This leads to the following problem in data exchange: under what conditions and for which
gueries can the certain answers be computed using just the materialized target instance?

1.3. Motivation from Clio

The results presented here were motivated by our experience with Clio, a prototype
schema mapping and data exchange tool to whose development some of us have con-
tributed [26,27]. In Clio, source-to-target dependencies (forming a GLAV system) are
(semi)-automatically generated from a set of correspondences between the source schema
and the target schema; these dependencies can then be used in a data integration system
to compute the certain answers to target queries. Most of the applications we considered,
however, were decoupled applications that would have had to be rewritten to operate co-
operatively, as required in data integration. For this reason, early on in the development of
Clio, we recognized the need to go farther and, given a source instance, generate a single
“universal” target instance (satisfying the target dependencies) that was the result of the
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schema mapping. In designing the algorithms of Clio for creating the target instance, we
were guided mainly by our intuition rather than by formal considerations. It should be noted
that there is a long history of work on data translation that focuses on taking high-level,
data-independent translation rules and generating efficient, executable translation programs
[3,29,30]. Yet, we could not find a formal justification for the intuitive choices we made

in creating the target instance. In seeking to formalize this intuition and justify the choices
made in Clio, we were led to explore foundational and algorithmic issues related to the se-
mantics of data exchange and query answering in this setting. Clio supports schemas that are
relational or nested (XML). However, challenging issues already arise in the relational case.
For this reason, here we focus exclusively on data exchange between relational schemas;
extending this work to other types of schemas is the subject of on-going investigation.

1.4. Summary of results

In Section 2, we formally introduce the data exchange problem. We then give an algebraic
specification that selects, among all possible solutions for a given source instance, a special
class of solutions that we calhiversal More precisely, a solution for an instance of the data
exchange problem is universal if it has homomorphisms to all solutions for that instance. We
show that a universal solution has “good” properties that justify its choice for the semantics
of the data exchange problem. We note that Cali et al. [6] studied GAV systems with key and
foreign key constraints at the target. By means of a logic program that simulates the foreign
key constraints, they constructec¢a@nonical databasewhich turns out to be a particular
instance of our notion of universal solution.

Given the declarative specification of universal solutions, we go on in Section 3 to identify
fairly general, yet practical, sufficient conditions that guarantee the existence of a universal
solution and yield algorithms to compute such a solution efficiently. Towards this goal, we
use the concept ofmeakly acyclicset of target dependencies; this concept is broad enough
to contain as special cases both sets of full tuple-generating dependencies (full tgds) [5]
and acyclic sets of inclusion dependencies [9]. In Section 3, we prove {&flf 2§,, 2;)
is a data exchange setting such that is a set of tgds and; is the union of a weakly
acyclic set of tgds with a set of equality generating dependencies (egds), then, given a
source instance, a universal solution to the data exchange problem exists if and only if a
solution exists. Moreover, for each data exchange sat8ng, 2, , 2,) satisfying the above
conditions, there is a polynomial-time algorithm that, given a source instance, determines
whether a solution to the data exchange problem exists and, if so, produces a particular
universal solution, which we call@nonicaluniversal solution. These results make use of
the classicathaseprocedure [5,23]. We note that, even though the chase has been widely
used in reasoning about dependencies, we have not been able to find any explicit references
to the fact that the chase can produce instances that have homomorphisms to all instances
satisfying the dependencies under consideration.

After this, in Sections 4 and 5, we study query answering in a data exchange setting.
We adopt the notion of the certain answers as the semantics of target queries (that is,
gueries posed over the target schema) and we investigate two separate, but interlinked,
issues. The first issue is to determine for which target queries the certain answers can be
obtained using the materialized target instance alone, while the second is to analyze the
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computational complexity of computing the certain answers of target queries. Note that the
study of query answering in this context involves three different parameters: a data exchange
setting(S, T, X, 2;), a target query, and a source instanéeHere, we focus on what

could be called (following Vardi'$33] taxonomy) thedata complexityf target queries in

an arbitrary, but fixed, data exchange setting. This means that we have a fixed data exchange
setting(S, T, 2§, 2;) and, for each target quegy we are interested in the computational
complexity of the following problem: given a source instahdind the certain answers of

g with respect td.

On the positive side, if the target quemyis a union of conjunctive queries, then it is
easy to show that the certain answergjafan indeed be obtained by evaluatipgn an
arbitrary universal solution. Moreover, universal solutions are the only solutions possessing
this property; this can be seen as further justification for our choice to use universal solutions
for data exchange. It also follows that, whenever a universal solution can be computed in
polynomial time, the certain answers of unions of conjunctive queries can be computed in
polynomial time (in particular, this is true when the dependencieg imnd; satisfy the
conditions identified in Section 3).

On the negative side, a dramatic change occurs when queries have inequalities. To begin
with, Abiteboul and Duschka [1] showed that in a LAV data integration system and with
conjunctive queries as views, computing the certain answers of conjunctive queries with
inequalities is a coNP-complete problem. Since this LAV setting is a special case of a data
exchange setting in which a canonical universal solution can be computed in polynomial
time, it follows that, unless B= NP, we cannot compute the certain answers of conjunctive
gueries with inequalities by evaluating them on a canonical universal solution (or on any
other polynomial-time computable universal solution). We take a closer look at conjunctive
gueries with inequalities by focusing on the number of inequalities. In [1], it was claimed
that in a LAV setting with conjunctive queries as views, computing the certain answers
of conjunctive queries with a single inequality is a coNP-hard problem. The reduction
given in that paper, however, is not correct; a different reduction in the unpublished full
version [2] shows that computing the certain answers of conjunctive queries with six (or
more) inequalities is a coNP-complete problem. We conjecture that the minimum number of
inequalities that give rise to such coNP-hardness results is two. Towards this, we show that
in the same LAV setting, computing the certain answersrobnsof conjunctive queries
with at most two inequalities per disjunct is a coNP-complete problem. We also show
that the problem of computing the certain answers for unions of conjunctive queries with
inequalities remains in cONP, as long as we consider data exchange s@timgs;, 2;)
in which X, is a set of egds and; is a union of a set of egds with a weakly acyclic set
of tgds. In proving this upper-bound result, we make use of an extension of the chase that
can handlalisjunctiveegds, in addition to tgds and egds. We call this chasdijenctive
chaseit is a special case of the chase with disjunctive embedded dependencies defined in
[10].

In contrast with the above-mentioned intractability results for the case of two inequali-
ties or more, we then show that for the data exchange setting, there is a polynomial-time
algorithm for computing the certain answers of unions of conjunctive queries with at most
oneinequality per disjunct (thus, the claim in [1] is false, unless RIP). Moreover, even
when the link between the source and the target has been severed, the certain answers of
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unions of conjunctive queries with at most one inequality per disjunct can be computed
from a given universal solution in time polynomial in the size of the universal solution.
We point out, however, that this computation cannot be carried out by simply evaluating
such queries on a canonical universal solution. Thus, the question arises as to whether the
certain answers of unions of conjunctive queries with at most one inequality per disjunct
can be computed by evaluating some other (perhaps more complex) first-order query on
a canonical universal solution. We prove an impossibility result, which provides a strong
negative answer to this question. It shows that there is a simple conjunctive qyuity

one inequality for which there is no first-order query such that the certain answers of

g can be computed by evaluatigg on a canonical universal solution. The proof of this
theorem makes use of a novel combination of Ehrenfeucht-Fraissé games and the chase.
This result shows that, although there is a polynomial-time algorithm for finding the certain
answers of, there is no SQL query™* that returns the certain answerspfhen evaluated

by a database engine on a canonical universal solution.

There is another way to view this impossibility result. Abiteboul and Duschka’s co-
NP completeness result implies that if2 NP, then there is a conjunctive quegywith
inequalities whose certain answers cannot be obtained by evaluating any first-order query
¢* on a canonical universal solution. We prove that the same conclusion holds even without
the assumption that 2 NP. Moreover, it holds even for a quegyvith only one inequality,
where we showed that there is a polynomial-time algorithm for obtaining the certain answers,
and hence the assumption#NP cannot help.

2. The data exchange problem

A schemais a finite collectionR = {Ry, ..., R} of relation symbols. Each relation
symbol has ararity, which is a positive integer. A relation symbol of arity is called
m-ary, and hagan distinct attributes which intuitively correspond to column names. An
instance | over the schenRis a function that associates to eaokary relation symbol
R; anmrary relation/ (R;). In the sequel, we will on occasion abuse the notation and use
R; to denote both the relation symbol and the relation that interprets it. Given attuple
occurring in a relatiorr, we denote byR(¢) the association betwed¢randR and call it a
fact An instance can be conveniently represented by its set of fad®sslf schema, then
adependency oveR is a sentence in some logical formalism ofRer

LetS = {S1,...,S,} andT = (T4, ..., T,} be two disjoint schemas. We refer &
as thesourceschema and to th§;’s as thesourcerelation symbols. We refer td as the
target schema and to th&;’s as thetarget relation symbols. Similarly, instances over
will be calledsourceinstances, while instances ovemwill be calledtargetinstances. I
is a source instance adds a target instance, then we writg J) for the instancé over
the schem&U T such thatk (S;) = 1(S;) andK (T;) = J(T}), fori <n andj <m.

A source-to-target dependenisya dependency of the forix(¢s(X) — y7(x)), where
¢<(x) is a formula, with free variables, of some logical formalism ove8 and y+(X) is
a formula, with free variableg, over some logical formalism ovér (these two logical
formalisms may be different). We use the notatiofor a vector of variablesy, ..., x.

We assume that all of the variablesxrappear free inpg(x). A target dependency is a
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dependency over the target scheméhe formalism used to express a target dependency
may be different from those used for the source-to-target dependencies). The source schema
may also have dependencies that we assume are satisfied by every source instance. Note
that source dependencies may play an important role in deriving source-to-target depen-
dencieq27] or in optimizing the evaluation of source queries; however, they do not play
any direct role in defining the semantics of data exchange, because we take the source
instance to be given. Hence, we do not include source dependencies in our formalism for
data exchange.

Definition 2.1. A data exchange settin@, T, 2, 2;) consists of a source scherBaa
target schemd, a setX, of source-to-target dependencies, and a5aif target depen-
dencies. Thelata exchange problemssociated with this setting is the following: given a
finite source instanck find a finite target instancé such that(/, J) satisfiesX;; andJ
satisfiesX;. Such al is called asolution for lor, simply asolutionif the source instancke

is understood from the context. The set of all solutiond fisrdenoted by Sal).

Note that the input to a data exchange problem is a source instance only; the data exchange
setting itself (that is, source schema, target schema, and dependencies) is considered fixed.
For most practical purposes, and for most of the results of this fageach source-to-
target dependency i, is a tgd [5] of the form

VX(¢ps(X) — Iy (X, y)),

where ¢g(x) is a conjunction of atomic formulas ov&and 1 (X, y) is a conjunction
of atomic formulas oveiT. We assume that all of the variablesnappear ingg(x).
Note that these dependencies also subsume dependencies of th&{arg(x, X') —
Iyt (X, y)), where the formulabg(x, X') is a conjunction of atomic formulas ov8r and
where all of the variables appear inp5(x), since the above formulais logically equivalent
to VxVX'(¢s(X, X') — Jyyr(X,y)). Each target dependency k) is either a tgd (of the
form shown below left) or an ed®] (shown below right):

VX(P1(X) = IyYr(X,y))  VX(P1(X) = (x1 = x2)).

In the aboveg+(X) andy(x, y) are conjunctions of atomic formulas over where all

of the variables irx appear ing+(x), andxy, x2 are among the variables in Note that

data exchange settings with tgds as source-to-target dependencies include as special cases
both LAV and GAV data integration systems in which the views are s¢@tfland are

defined by conjunctive queries. It is natural to take the target dependencies to be tgds and
egds: these two classes together comprise the (embedded) implicational dependencies [13],
which seem to include essentially all of the naturally occurring constraints on relational
databases. However, it is somewhat surprising that tgds, which were originally “designed”
for other purposes (as constraints), turn out to be ideally suited for describing desired data
transfer.

2 Except for Propositiod.2
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For simplicity of presentation, we do not allow for constants to occur anywhere inside
the tgds and egds. However, all results of this paper can be suitably extended for such
dependencies. Also, in the rest of the paper we will usually drop the universal quantifiers in
front of a dependency, and implicitly assume such quantification. However, we will write
down all existential quantifiers.

The next example shows that there may be more than one possible solution for a given
data exchange problem. The natural question is then which solution to choose.

Example 2.2. Consider a data exchange problem in which the source schema has three
relation symbolsP, Q, R, each of them with attributed, B, C, while the target schema

has one relation symbdl also with attributesA, B, C. We assume that, = . The
source-to-target dependencies and the source instance are:

Xyt Pla,b,c) > 3Y3AZ T(a,Y,Z), I = {P(ao, by, cp),
Q(a,b,c) —» 3IX3U T(X, b, V), O(ag, bo, cp),
R(a,b,c) — VAW T(V, W, ¢), R(ag', by, co)}.

We observe first that the dependenciesjndo not completely specify the target instance.
Indeed, the first dependency requiresfavalue of a tuple irP to appear in thé column
of T, but it does not specify any particular values for vandC attributes. It should be
noted that such incomplete specification arises naturally in many practical scenarios of data
exchange (or data integration for that matter; d&521]). For our example, one possible
solution is:

J ={T (a0, Yo, Zo), T (X0, bo, Ug), T (Vo, Wo, co)},

whereXy, Yo, . .. represent “unknown” values, that is values that do not occur in the source
instance. We will call such valudabeled nullsand we will introduce them formally in

the next section. The second observation is that there may be more than one solution. For
example, the following are solutions as well:

J1={T(ao, bo, co)}, J2={T(ao, bo, Z1), T (V1, W1, co)}.

Inthe aboveZ;, V1 andWs are labeled nulls. Note thdt does not use labeled nulls; instead,
source values are used to witness the existentially quantified variables in the dependencies.
SolutionJ; seems to be less general thasince it “assumes” that all three tuples required

by the dependencies are equal to the tdabebo, co). This assumption, however, is not part

of the specification. Similarly, solutios, has extra information that is not a consequence

of the dependencies i, for the given source data. We argue that neithamor J> should

be used for data exchange. In contrdss the “best” solution: it contains no more and no

less than what the specification requires. We formalize this intuition next.

2.1. Universal solutions

Inthis section, we give an algebraic specification that selects, among all possible solutions,
a special class of solutions that we aatliversal As we will see, a universal solution has
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several “good” properties that justify its choice for the semantics of data exchange. Before
presenting the key definition, we introduce some terminology and notation.

We denote by Conghe set of all values that occur in source instances and we call them
constantsIn addition, we assume an infinite set \éivalues, which we calbbeled nulls
such that Van Const= @. We reserve the symbols I, I1, I, . .. for instances over the
source schem8 and with values in ConstWe also reserve the symbalsJ’, Ji, Jo, . ..
for instances over the target schemand with values in Const Var.

If R ={R1,..., Ry)isaschemaandd is an instance oveR with values in Const Var,
then VaKK) denotes the set of labelled nulls occurring in relationk.in

Definition 2.3. Let K1 and K> be two instances ové® with values in Const Var.

1. Ahomomorphism : K1 — K2 is a mapping from ConstVar(K1) to ConstuVar(K>)
such that: (1):(c) = ¢, for everyc € Const (2) for every factr; (¢) of K1, we have that
R;(h(1)) is a fact of K> (where, ift = (a1, ..., as), thenh(t) = (h(a1), ..., h(ay))).

2. Ky ishomomorphically equivaletit K> if there is a homomorphisi : K1 — K2 and
a homomorphismt’ : Ko — K.

Definition 2.4 (Universal solutiol. Consider a data exchange setti®T, 2y, 2,). If |
is a source instance, theruaiversal solution for lis a solutionJ for | such that for every
solutionJ’ for I, there exists a homomorphisim J — J'.

Example 2.5. The instanced; andJ, in Example2.2 are not universal. In particular, there
is no homomorphism fronf; to Jand also there is no homomorphism frdpto J. This fact
makes precise our earlier intuition that the instanbesndJ> contain “extra” information.
In contrast, there exist homomorphisms fréne bothJ; andJ>. Actually, it can be easily
shown thatl has homomorphisms to all solutions. Thdigs universal.

From an algebraic standpoint, being a universal solution is a property akin to being
aninitial structure [25] for the set of all solutions (although an initial structure for a set
IC of structures is required to haumiguehomomorphisms to all other structuresk).
Initial structures are ubiquitous in several areas of computer science, including semantics
of programming languages and term rewriting, and are known to have good properties (see
[25]). The next result asserts that universal solutions have good properties as well.

Proposition 2.6. Let(S, T, 2, 2;) be a data exchange setting

1. If 1 is a source instance and, J’ are universal solutions for, Ithen J andJ’ are
homomorphically equivalent

2. Assume thak; is a set of tgds. Let II’ be two source instance$ a universal solution
for I, and J’ a universal solution fod’. ThenSol(7) € Sol(I") if and only if there is a
homomorphisnt : J — J. ConsequentlySol(7) = Sol(/’) if and only if J andJ’ are
homomorphically equivalent

Proof. The first part follows immediately from the definitions. For the second part, assume
firstthat Sol{l) € Sol(I’). SinceJ € Sol(1), it follows thatJ € Sol(1’) and, hence, there is
a homomorphism : J* — J becausé’ is a universal solution fof’. Conversely, assume
that there is a homomorphisim: J* — J. Let J* be a solution fot. We must show that
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J* is a solution forl’, which amounts to showing that’, J*)EX;;, andJ*=2,. SinceJ*

is a solution forl, we already have that*=2,, so it suffices to show thatr’, J*)=2,,.
Consider a tgd'x(¢s(X) — Iyt (X, y)) in Xy, We must show thall’, J*)EVX(¢pg(X) —
Iyt (x,y)). Since(l’, J') satisfies this tgd, it follows that for every vec@of constants
from I’ such that/'E¢g(a), there is a vectob of elements of/’ such that/'Fy+(a, b).
SincelJ is a universal solution fol, there is a homomorphisi* : / — J*. Hence, the
compositiom* o i is a homomorphism froni’ to J*. Since atomic formulas are preserved
under homomorphisms arig o h(a) = a, it follows that J*Fy1(a, h* o h(b)). Thus,
(I', T*YEYX(ps(X) — FyyT(X,Y)), as desired. I

The first part of Propositio@.6 asserts that universal solutions are unigue up to homo-
morphic equivalence. The second part implies thatsfa universal solution for two source
instancesd and’, then Soll) = Sol(I’). Thus, in a certain sense, each universal solution
precisely embodies the space of solutions.

3. Computing universal solutions

Checking the conditions in Definition 2.4 requires implicitly the ability to check the
(infinite) space of all solutions. Thus, it is not clear, at first hand, to what extent the notion
of universal solution is acomputable one. This section addresses the question of how to check
the existence of a universal solution and how to compute one (if one exists). In particular,
we show that the classical chase can be used for data exchange and that every finite chase,
if it does not fail, constructs a universal solution. If the chase fails, then no solution exists.
However, in general, for arbitrary sets of dependencies, there may not exist a finite chase.
Hence, in Section 3.2 we introduce the class of weakly acyclic sets of tgds, for which the
chase is guaranteed to terminate in polynomial time. For such sets of dependencies, we
show that: (1) the existence of a universal solution can be checked in polynomial time, (2)
a universal solution exists if and only if a solution exists, and (3) a universal solution (if
solutions exist) can be produced in polynomial time.

3.1. Chase: canonical generation of universal solutions

Intuitively, we apply the following procedure to produce a universal solution: start with
an instance/, ¢) that consists of for the source, and of the empty instance for the target;
then chasel, ) by applying the dependenciesiy, andX, in some arbitrary order and for
as long as they are applicable. This process may fail (as we shall see shortly, if an attempt
to identify two constants is made) or it may never terminate. But if it does terminate and
if it does not fail, then the resulting instance is guaranteed to satisfy the dependencies and,
moreover, to be universal (Theorem 3.3).

We next define chase steps. Similar to homomorphisms between instances, a homomor-
phism from a conjunctive formuld(x) to an instancd is a mapping from the variablego
Constu Var(J) such that for every atorR(x, .. ., x,) of ¢, the factR(h(x1), ..., h(x,))
is in J. The chase that we use is a slight variation of the classical notion of chase with tgds
and egds of [5], except that here we chase with instances rather than symbolic tableaux.
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Definition 3.1 (Chase step LetK be an instance.

(tgd) Letd be a tgdp(x) — Iyy(X,y). Leth be a homomorphism fromp(x) to K such
that there is no extension bfto a homomorphism’ from ¢ (x) A (X, y) to K. We say
thatd can be applied to K with homomorphism h

Let K’ be the union oK with the set of facts obtained by: (a) extendmtp /4’ such
that each variable ip is assigned a fresh labeled null, followed by (b) taking the image
of the atoms of) unders’. We say thathe result of applying d to K with Is K/, and

write K 5 k.

(egd) Letd be an egdp(x) — (x1 = x2). Let h be a homomorphism fronp(x) to K
such thati(x1) # h(x2). We say thatl can be applied to K with homomorphismkie
distinguish two cases.

e If both i(x1) andh(xp) are in Consthen we say thathe result of applying d to K

with his “failure”, and writek 25 1.

e Otherwise, letK’ be K where we identifyi(x1) andi(x2) as follows: if one is a
constant, then the labeled null is replaced everywhere by the constant; if both are
labeled nulls, then one is replaced everywhere by the other. We sapé¢hasult of

applying d to K with hs K’, and writeK LR g

In the definition K ah g (including the case whelkE’ is 1) is called achase step/\Ve
next define chase sequences and finite chases.

Definition 3.2 (Chasd. LetX be a set of tgds and egds, andKebe an instance.

e A chase sequence of K withis a sequence (finite or infinite) of chase sthsfl’;hi Kiyi1,
withi =0,1,..., with K = Kg andd; a dependency i&x.

e A finite chase of K witl> is a finite chase sequenég ah Kit+1,0<i < m, with the
requirement that either (&,, = L or (b) there is no dependendy of 2 and there is
no homomorphisni; such that/; can be applied t&,, with ;. We say thaik,, is the
result of the finite chase. We refer to case (a) as the caséadirg finite chaseand we
refer to case (b) as the case dfeccessful finite chase

In general, there may not exist a finite chase of an instance (cyclic sets of dependencies
could cause infinite application of chase steps). Infinite chases can be defined as well, but
for this paper we do not need to do so. Also, different chase sequences may yield different
results. However, each result, if not satisfies.

For data exchange, we note first that, due to the nature of our dependencies, any chase se-
guence that starts wittZ, #) does not change or add tupleslinThen, if a finite chase
exists, its result(/, J) is such that) is a solution. Furthermore] is universal, a fact
that does not seem to have been explicitly noted in the literature on the chase. The next
theorem states this, and also states that the chase can be used to check the existence of
a solution.

Theorem 3.3. Assume a data exchange setting whgjeconsists of tgds andl; consists
of tgds and egds
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1. Let (1, J) be the result of some successful finite chasd ,af) with 2; U 2,. Then Jis
a universal solution
2. If there exists some failing finite chase(éf @) with X, U ;, then there is no solution

The proof of the theorem makes use of the following basic property of a chase step. (This
property was implicitly proved and used[i,24], in slightly more restricted settings than
ours and in different contexts.)

Lemma 3.4. Let K4 ﬂi K> be a chase step whei, # L. Let K be an instance such
that (i) K satisfies d andii) there exists a homomorphism : K1 — K. Then there exists
a homomorphismy : K> — K.

Proof. Casel:disatgdp(x) — Jyy(x, y). By the definition of the chase stép; ¢(x) —
K1 is a homomorphism. Composing homomorphisms yields homomorphisms; thus

hioh:¢pX) — K
is a homomorphism. Sind¢€ satisfied, there exists a homomorphism
R ) Ap(X,y) — K

such that:’ is an extension ofi; o &, that ish’/(xX) = h1(h(x)). For each variablg in vy,
denote by, the labeled null replacingin the chase step. Defirke on Var K») as follows:
ha(A) = ha(A), if A € Var(Ky1), andha(A,) = B (y) foryiny.

We need to show thdt, is a homomorphism fronk, to K, which means thai, maps
facts ofK; to corresponding facts #f. For facts ofK; that are also iK1 this is true because
h1 is a homomorphism. LeE(Xg, Yo) be an arbitrary atom in the conjunctign (Herexg
andyg contain variables i andy, respectively.) Thek > contains, in addition to any facts
of K3, afactT(k(xo), Ay,). The image undek; of this fact is, by definition o, the fact
T(h1(h(Xp)), I (Yo)). Sinceh’ (xg) = h1(h(Xo)), this is the same aB(h’(Xp), 7’ (Yo)). But
k" homomorphically maps all atoms ¢fA y, in particularT (Xo, Yo), into facts ofK. Thus,
h2 is a homomorphism.

Case2: dis an egdgp(X) — (x1 = x2). Asin Case 1lsi1o0h : ¢(X) — K isa
homomorphism. We takk; to beh1. We need to ensure thaj is still a homomorphism
when considered fronk, to K. The only way that:1 can fail to be a homomorphism on
K> is if h1 mapsh(x1) andh(xp) into two different constants or labeled nullskofBut this
is not the case, sinde€ satisfiesd and sohy(h(x1)) = h1(h(x2)). O

The proof of Theorer3.3 is based on Lemma 3.4 and on the observation that the identity
mapping is a homomorphism frotd, @) to (I, J'), for every solution/’. We give the full
details next.

Proof of Theorem 3.3. Part 1: It follows from Definition 3.2 that/, J) satisfiesX; U 2.
Since X, uses only target relation symbols, it follows thhtatisfies;. Let J' be an
arbitrary solution. Thus(Z, J') satisfiesX; U X,. Moreover, the identity mapping id
(I,%) — (I,J"y is a homomorphism. By applying Lemma 3.4 at each chase step, we
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obtain a homomorphisrh : (I, J) — (I, J'). In particular,h is also a homomorphism
from Jto J'. Thus,Jis universal.

Part2: Let (7, J) 2% | bethe last chase step of a failing chase. Tthetust be an egd
of X;, say¢p(X) — (x1 = x2), andh : ¢(X) — J is a homomorphism such thatx;) and
h(x2) are twodistinctconstantg; and, respectively;;. Suppose that there exists a solution
J'. Following the same argument as in Part 1, we see that the identity homomorphism id
(1,%) — (I, J’) implies, by Lemma3.4, the existence of a homomorphigm (I, J) —
(I, J'). Theng o h : ¢(x) — J’ is a homomorphism. Sinc# is assumed to satisfy, it
must be the case thath(x1)) = g(h(x2)) and thusg(c1) = g(c2). Homomorphisms are
identities on Constand sa:; = c¢2, which is a contradiction. [

For Part 1 of Theorem 3.3, we refer to such a solufiasa canonical universal solutian
In further examples and proofs, when sulkis unique (up to isomorphism), we will also
use the termhe canonical universal solutiohVe now give a simple example that shows
that there need not be a unique canonical universal solution, even when there are no target
dependencies.

Example 3.5. Consider a data exchange problem where the source schema has two unary
relation symbold® andQ, and the target schema has one unary relation syRdobt >,

consist of the two source-to-target dependengies — R(x) andQ(x) — IYR(Y), and

letX; = 0. Letl = {P(a), Q(a)}. If we chase first with the first dependency, we obtain the
canonical universal solutiofQ (a)}, with only one tuple. If we chase first with the second
dependency, we obtain the canonical universal solytidiY), Q(a)} with two tuples, one

of which has a null. So there is not a unique canonical universal solution.

We note that a canonical universal solution is similar, in its construction, to the represen-
tative instance defined in the work on the universal relation [24§. It is also similar to
the canonical database of Cali et al. [6] defined in a more restricted setting, that of GAV
with key and foreign key constraints.

The following is an example of a cyclic set of inclusion dependencies for which there
is no finite chase; thus, we cannot produce a universal solution by the chase. Still, a finite
solution does exist. This illustrates the need for introducing restrictions on the class of
dependencies that are allowed in the target.

Example 3.6. Consider the data exchange setti8gT, 2y;, 2;) as follows (this scenario
is also graphically but informally shown in Fi@). The source schenthas one relation
DeptEmp(dpt_id , mgr_name, eid ) listing departments with their managers and their
employees. The target scheaas a relatiomept (dpt_id ,mgr_id , mgr_name) for
departments and their managers, and a separate relation foremoye@sd , dpt_id ).
The source-to-target and target dependencies are:

2 = { DeptEmp(d, n, e¢) — IM (Dept (d, M, n) A Empe, d)) },
2, = {Dept (d, m,n) — AD Emgm, D),
Empe,d) — IM3AN Dept (d, M, N) }.
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Dept
DeptEmp dpt_id -
dpt_id — mgr_id . u
mgr_nam mgr_name ‘\‘ |
eid o
Emp
eid 47"
dpt_id -~

| = {DeptEmp (CS, May, E003)}

Fig. 1. Data exchange with infinite chase.

Assume now that the source instamdes one tuple iDeptEmp, for departmen€CSwith
manageMary and employe&003. Chasind/, #) with X, yields the target instance:

J1 = {Dept (CS M, Mary), EmgEQ003 C9S)},

whereM is a labeled null that instantiates the existentially quantified variable of the tgd, and
encodes the unknown manager id\édry. However,J; does not satisfy,; therefore, the

chase does not stop &t. The first tgd inX; requiresM to appear irmpas an employee id.

Thus, the chase will adBmp@ M, D) whereD is a labeled null representing the unknown
department in which Mary is employed. Then the second tgd becomes applicable, and so on.
It is easy to see that there is no finite chase. Satisfying all the dependencies would require
building an infinite instance:

J = { Dept (CS M, Mary), EmE003 CS), Emg M, D),
Dept (D, M', N'), ... }.

On the other hand, finite solutions exist. Two such examples are:

J' = {Dept (CS E003 Mary), Emg E003 CS)},
J" ={Dept (CS M, Mary), Emg E003 CS), EmaM, C9)}.

However, neithet/’ nor J” are universal: there is no homomorphism frafmto J” and
there is no homomorphism frooh” to J’. We argue that neither should be used for data
exchange. In particulay’ makes the assumption that the manager iMafy is equal to
E003, whileJ” makes the assumption that the department in whiahy is employed is the
same as the departme@9 thatMary manages. Neither assumption is a consequence of
the given dependencies and source instance. It can be shown fimtemiversal solution
exists for this example.

We next consider sets of dependencies for which every chase sequence is guaranteed to
reach its end after at most polynomially many steps (in the size of the input instance). For
such sets of dependencies it follows that checking the existence of a solution, as well as
generating a universal solution, can be carried out in polynomial time.
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3.2. Polynomial-length chase

We first discuss sets dill tgds (tgds with no existentially quantified variables). It has
been proven iff5] that every chase sequence with a Betf full tgds has at most finite
length. Moreover every chase has the same result. It is simple to show that the length of the
chase is bounded by a polynomial in the size of the input instance (the dependencies and the
schema are fixed). Also, any set of egds can be addEanvithout affecting the uniqueness
of the result or the polynomial bound. Although full tgds enjoy nice properties, they are
not very useful in practice. Most dependencies occurring in real schemas are non-full, for
example, foreign key constraints or, more generally, inclusion dependencies [7]. It is well
known that chasing with inclusion dependencies may not terminate in geeyalic sets
of inclusion dependenci¢g] are a special case for which every chase sequence has a length
that is polynomial in the size of the input instance. Such dependencies can be described
by defining a directed graph in which the nodes are the relation symbols, and such that
there exists an edge froRto Swhenever there is an inclusion dependency fiRto S
A set of inclusion dependencies is acyclic if there is no cycle in this graph. We define next
weakly acyclic sets of tgda notion that strictly includes both sets of full tgds and acyclic
sets of inclusion dependencies. This notion is inspired by the definition of weakly recursive
ILOG [20], even though the latter is not directly related to dependencies. Informally, a set
of tgds is weakly acyclic if it does not allow for cascading of labeled null creation during
the chase.

This concept first arose in a conversation between the last author and Deutsch in 2001.
Preliminary reports on this concept appeared independently in [15] (the conference version
of this article) and in [11] (in the latter paper, under the tenstraints with stratified-
witness.

Definition 3.7 (Weakly acyclic set of tgiisLet 2~ be a set of tgds over a fixed schema.
Construct a directed graph, called ttependency graplas follows: (1) there is a node for
every pair(R, A) with Ra relation symbol of the schema aA@n attribute oR; call such
pair (R, A) aposition (2) add edges as follows: for every tgdx) — Jyy(x,y) in 2 and
for everyxin x thatoccursin y:
e For every occurrence ofin ¢ in position(R, A;):

(a) for every occurrence ofin y in position(S, B;), add an edgér, A;) — (S, Bj)

(if it does not already exist);

(b) in addition, for every existentially quantified varialgland for every occurrence gf
iny in position(T, Cy), add aspecial edgé€Rr, A;) = (T, Cy) (ifitdoes not already
exist).

Note that there may be two edges in the same direction between two nodes, if exactly one
of the two edges is special. Théhis weakly acyclidf the dependency graph has no cycle
going through a special edge.

Intuitively, Part (a) keeps track of the fact that a value may propagate from position
(R, A;) to position(S, B;) during the chase. Part (b), moreover, keeps track of the fact
that propagation of a value int@, B;) also creates a labeled null in any position that has
an existentially quantified variable. If a cycle goes through a special edge, then a labeled
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(Dept, dpt_id)

(Dept, mgr_id),

(b)

Fig. 2. Dependency graphs for: (a) a set of tgds that is not weakly acyclic, (b) a weakly acyclic set of tgds.

null appearing in a certain position during the chase may determine the creation of another
labeled null, in the same position, at a later chase step. This process may thus continue
forever. Note that the definition allows for cycles as long as they do not include special
edges. In particular, a set of full tgds is a special case of a weakly acyclic set of tgds (there
are no existentially quantified variables, and hence no special edges).

Example 3.8. Recall Example.6. The dependency graphbf is shown in Fig. 2(a). The

graph contains a cycle with two special edges. He¥)de not weakly acyclic and therefore

a finite chase may not exist (as seen in Example 3.6). On the other hand, let us assume that
we know that each manager of a department is employed satihedepartment. Then we
replace the seX, by the set”], where

X = { Dept (d, m,n) — Emgm, d),
Emple, d) — AM3N Dept (d, M, N) }.

The dependency graph Bf, shown in Fig. 2(b), has no cycles going through a special edge.
Thus, 2 is weakly acyclic. As Theorem 3.9 will show, it is guaranteed that every chase
sequence is finite. For Example 3.6, one can see that the chaseit 2 stops with result
J”.Thus,J” is universal. Note that foy” to be universal it was essential that we explic-

itly encoded in the dependencies the fact that managers are employed by the department
they manage. Finally, we remark thaf is an example of a set of inclusion dependen-
cies that, although weakly acyclic, is cyclic according to the definition of Cosmadakis and
Kanellakis [9].

We now state the main result regarding weakly acyclic sets of tgds.

Theorem 3.9. Let 2 be the union of a weakly acyclic set of tgds with a set of egds. Then
there exists a polynomial in the size of an instance K that bounds the length of every chase
sequence of K with.

Proof. We give the proof for the case whehdoes not have any egds. The addition of egds
does not essentially change the argument and we leave the details to the interested reader.
For every nod€R, A) in the dependency graph &f, define anncoming pathto be any

(finite or infinite) path ending iR, A). Define thaankof (R, A), denoted by rani®, A),

as the maximum number of special edges on any such incoming path. Siacgeakly

acyclic, there are no cycles going through special edges. ThusRadk is finite. Letr
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be the maximum, over all position®, A), of rank R, A), and letp be the total number

of positions(R, A) in the schema (equal to the number of nodes in the graph). The latter
number is a constant, since the schema is fixed. Morepigeat mosip. Thusr is not only

finite but bounded by a constant. The next observation is that we can partition the nodes in
the dependency graph, according to their rank, into subbégtd/1, ..., N, wheren; is

the set of all nodes with rank Let n be the total number of distinct values (constants or
labeled nulls) that occur in the instankeLet K’ be any instance obtained frokhafter

some arbitrary chase sequence. We prove by inductiaritenfollowing claim:

For every i there exists a polynomi@l; such that the total number of distinct values that
occur in K’ at positions that are restricted to be ¥, is at mostQ; (n).

Base caself (R, A) is a position inNg, then there are no incoming paths with special
edges. Thus no new values are ever created at posRioa) during the chase. Hence, the
values occurring irk’ at position(R, A) are among tha values of the original instandé
Since this is true for all the positions My, we can then tak@o(n) = n.

Inductive caseThe first kind of values that may occur K’ at a position ofN; are
those values that already occurkrat the same position. The number of such values is at
mostn. In addition, a value may occur ik’ at a position ofV; for two reasons: by being
copiedfrom some position inV; with j # i, during a chase step, or by beiggnerated
as a new value (labeled null), also during a chase step. We count first how many values
can be generated. L&R, A) be some position oN;. A new value can be generated in
(R, A) during a chase step only due to special edges. But any special edge that may enter
(R, A) must start at a node iVg U --- U N;_1. Applying the inductive hypothesis, the
number of distinct values that can exist in all the node®/gnuU - - - U N;_1 is bounded
by P(n) = Qo(n) +--- 4+ Q;—_1(n). Letd be the maximum number of special edges that
enter a position, over all positions in the schema. Then for every choidevafues in
No U --- U N;_1 (one value for each special edge that can enter a position) and for every
dependency ik there is at most one new value that can be generated at po&ition).

(This is a consequence of the chase step definition and of how the special edges have been
defined.) Thus the total number of new values that can be generat&d #) is at most

(P(n))? x D, whereD is the number of dependenciesin Since the schema antiare

fixed, this is still a polynomial im. If we considerall positions(R, A) in N;, the total
number of values that can be generated is at most(P (n))? x D wherep; is the number

of positions inN;. Let G(n) = p; x (P(n))? x D. Obviously,G is a polynomial.

We count next the number of distinct values that can be copied to positia¥sfodm
positions ofN; with j # i. Such copying can happen only if there are non-special edges
from positions inV; with j # i to positions inN;. We observe first that such non-special
edges can originate only at nodesiNg U --- U N;_1, that is, they cannot originate at
nodes inN; with j > i. Otherwise, assume that there exists i and there exists a non-
special edge from some position 8§ to a position(R, A) of N;. Then the rank ofR, A)
would have to be larger than which is a contradiction. Hence, the number of distinct
values that can be copied in positionsMgf is bounded by the total number of values in
NoU---UN,;_1, which is P (n) from our previous consideration. Putting it all together, we
cantakeQ;(n) = n + G(n) + P(n). SinceQ; is a polynomial, the claim is proven.

In the above claimi is bounded by the maximum ramkwhich is a constant. Hence,
there exists a fixed polynomi&) such that the number of distinct values that can exist in
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K’, over all positions, is bounded ¥ (n). In particular, the number of distinct values that
can exist inK’ at a single position is also bounded @yn). Then the total number of tuples
that can exist in one relation ik’ is bounded byQ(n)? since the maximum number of
attributes in one relation is bounded p{recall thatp is the total number of positions in the
schema). It follows that the total number of tuples that can exit'jrover all relations, is

at mosts x Q(n)?, wheresis the number of relations in the schema. This is a polynomial
in n sinces andp are assumed to be constant. Finally, since every chase step with a tgd
adds at least some tuple ¥, it follows that the length of any chase sequence is at most

s x (Qm)r. O

Corollary 3.10. Assume a data exchange setting whEyeis a set of tgdsand 2; is the

union of a weakly acyclic set of tgds with a set of egds. The existence of a solution can be
checked in polynomial time. If a solution exjgteen a universal solution can be produced

in polynomial time.

4. Query answering

As stated earlier, we adopt the notion of certain answers for the semantics of query
answering. We first give the formal definition of this notion and then address the problem
of whether and to what extent the certain answers of a query over the target schema can be
computed by evaluating some query (same or different) on a universal solution.

Definition 4.1. Let (S, T, 2y, 2;) be a data exchange setting.

e Letqbe ak-ary query, fork >0, over the target schenfaand| a source instance. The
certain answers of g with respect tpdenoted bycertain(g, I), is the set of alk-tuples
t of constants from such that for every solutiod of this instance of the data exchange
problem, we have thate ¢(J).

e In particular, letq be a Boolean (that is, 0-ary) query over the target sch€raad| a
source instance. If we let trusenote the set with one O-ary tuple and fademote the
empty set, then(J) = trueandg (J) = falseeach have their usual meanings for Boolean
queriesy. Note thatcertain(g, I) = truemeans that for every solutiahof this instance
of the data exchange problem, we have th@t) = true moreovercertainq, /) = false
means that there is a solutidrsuch thay; (J) = false

On the face of it, the definition of certain answers entails a computation over the entire
set of solutions of a given instance of the data exchange problem. Since this set may very
well be infinite, it is desirable to identify situations in which the certain answers of a query
g can be computed by evaluatimgon a particular fixed solution and then keeping only
the tuples that consist entirely of constants. More formallyg i ak-ary query andl is
a target instance, then let us defip@), to be the set of alk-tuplest of constants such
thatt € ¢(J). We extend the notation to Boolean queries by agreeing thasi& Boolean
query, themy (/)| = q(J) (= trueor false.

A conjunctive query (x) over a schem®& is a formula of the forndy¢(x, y) where
¢ (X, y) is a conjunction of atomic formulas ovB. If, in addition to atomic formulas, the



108 R. Fagin et al. / Theoretical Computer Science 336 (2005) 89-124

conjunctiong(x, y) is allowed to contain inequalities of the form# z;, wherez;, z; are
variables among andy, we call¢(x) a conjunctive query with inequalitieé union of
conjunctive queriegwith inequalitie$ is a disjunctiorny (x) = g1(X) V - - - V ¢, (X) where
q1(X), ..., g, (X) are conjunctive queries (with inequalities).

The next proposition characterizes universal solutions with respect to query answering,
when the queries under consideration are unions of conjunctive queries. First, it shows that
certain(g, I) = ¢(J), wheneverd is a universal solution anglis a union of conjunctive
gueries. Concrete instances of this result in the LAV setting have been establighgd in
Another instance of this result has also been noted for the GAV setting with key/foreign
key constraints in [6]. The proposition shows that evaluation of conjunctive queries on an
arbitrarily chosen universal solution gives precisely the set of certain answers. Moreover,
the second statement of the proposition shows that the universal solutions are the only
solutions that have this property. This is further justification for using universal solutions
for data exchange.

Proposition 4.2. Consider a data exchange setting walas the source schema as the
target schema, and such that the dependencies in th&seasd X, are arbitrary.
1. Let g be a union of conjunctive queries over the target schEnifd is a source instance
and J is a universal solutigrthen certairlg, 1) = g(J), .
2. Let | be a source instance and J be a solution such that for every conjunctive query q
overT, we have that certai@, /) = ¢(J). Then J is a universal solution

Proof. Part 1: Letq be ak-ary query that is a union of conjunctive queries and le¢ a
k-tuple of constants from the source instahck ¢ € certain(g, I), thenr € ¢(J), since
Jis a solution. Conversely, assume that ¢ (J) . Thent consists only of constants. Also
there exists a conjunctive queBy¢(x,y) that is a disjunct ofy and a homomorphism
g : ¢(X,y) — J such thatg(x) = . Let J' be an arbitrary solution. Sinckis a universal
solution, there is a homomorphisin: J — J'. Thenh o g is @ homomorphism from
¢(x,y) to J'. Homomorphisms are identities on constants, héngex)) = h(r) = ¢.
Thusr € g(J').

Part2: Letg” be thecanonicalconjunctive query associated witki.e.,¢” is the Boolean
conjunctive query obtained by taking the conjunction of all the facisroivhich the labeled
nulls are replaced by existentially quantified variables). Mewaing’, I) = ¢’ (J), =
q” (J), where the first equality follows from our assumption abh@nd where the second
equality follows from the fact thag’ is a Boolean query. Since algd (/) = trug we
havecertain(g”, I) = true Therefore, ifJ’ is an arbitrary solution, thep’ (J') = true
As first shown by Chandra and Merlj8], this implies the existence of a homomorphism
h:J — J'.HenceJis universal. O

In the preceding Proposition 4.2, the quepycan be a finite or an infinite union of
conjunctive queries. Thus, this proposition holds for arbitrary Datalog queries.
The following result follows from Corollary 3.10 and Part 1 of Proposition 4.2.

Corollary 4.3. Assume a data exchange setting whEggis a set of tgdsand 2, is the
union of a weakly acyclic set of tgds with a set of egds. Let g be a union of conjunctive
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queries. For every source instancdhe set certaity, ) can be computed in polynomial
time in the size of.l

Conjunctive queries with inequalitie¥he state of affairs changes dramatically when
conjunctive queries with inequalities are considered. The next proposition shows that there
is a simple Boolean conjunctive quegywith inequalities such that no universal solution
can be used to obtain the certain answerg b evaluatingg on that universal solution.

This proposition also shows that in this particular case, there is another conjunctive query
g* with inequalities such that the certain answerg ofin be obtained by evaluatigg on
the canonical universal solution.

Proposition 4.4. Let S be a binary source relation symp®la binary target relation sym-

bol, S(x, y) — 3z(T(x, z) A T(z, y)) a source-to-target dependen@nd q the following

Boolean conjunctive query with one inequali@yx3y(7 (x, y) A(x # y)).

1. There is a source instance | such that certain/) = false butq(J) = true for every
universal solution J o

2. Letg™ be the querdx3y3z(T (x,z) AT (z,y) A (x # y)).If lis a source instance and
Jis the canonical universal solutipthen certairig, 1) = g*(J).

Proof. Part 1: Letl be the source instance withiS) = {(a, a)}, wherea is some constant.
Note thatcertain(g, I') = false because/1(T) = {(a, a)} is a solution and (J;) = false
LetJbe an arbitrary universal solution. We will prove th& ) = trueby showing that/ (7')
must contain two tupleé&:, X) and (X, a) with a # X. Towards this goal, first note that
J must contain two tuples of the forga, X) and(X, a), becausd is a solution. Consider
now the solution/, with J2>(T) = {(a, b), (b, a)}, whereb # a. SincelJ is a universal
solution, there is a homomorphigmfrom J to J». It follows thatJ (7') must contain two
tuples of the form(a, X) and (X, a) with X # a, since, otherwise, a) € J(T) and
(h(a), h(a)) = (a,a) ¢ J2(T).

Part 2: Let| be a source instance addbe the canonical universal solution (it is easy to
see that in this case, the canonical universal solution is unique up to isomorphism). We have
to show thatertain(q, I) = ¢*(J). For this, we consider two cases.

Casel: I(S) has a tuplea, b) with a # b. If J’ is an arbitrary solution, thed’(T)
contains two tuplegaz, X) and(X, b). If X = a, thenJ’(T) contains(a, b) with a # b; if
X # a, thenJ'(T) contains(a, X) with a # X. In either case, we have thatJ’) = true,
hencecertain(g, I) = true Moreover, in either case we have tla@tJ) = true sinceJ,
being a solution, must contain two tuples of the fam X) and(X, b), anda # b. Note
that the only property o we used here was that it is a solution.

Case2: I (S) has no tuplda, b) with a # b. Hence [ (S) is a relation consisting entirely
of reflexive tupleqa, a). If J' is the solution with/'(T) = I(S), theng(J’) = falseand,
consequentlycertain(g, /) = false At the same time, the canonical universal solution
consists of tuples of the forrt, X,,), (X,, a) such that(a, a) € 1(S), where a different
labeled nullX, is used for each constaatConsequentlyy*(J) = false O

In view of Propositiord.4, we address next the question of whether, given a conjunctive
query with inequalities, it is always possible to find a query (not necessarily the same) that
computes the certain answers when evaluated on a canonical universal solution.
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5. Query answering: complexity and inexpressibility

It is known that in LAV data integration systems, computing the certain answers of
conjunctive queries with inequalities is a coNP-hard problgmt follows that in the data
exchange setting, it is not possible to compute the certain answers of such gueyies
evaluatingg (or any associated quegy* with polynomial-time evaluation) on a canonical
universal solution or on any universal solution that is generated in polynomial time (unless
P = NP). In Section 5.1, we take a closer look at conjunctive queries with inequalities. First,
we show (Theorem 5.2) that, in the data exchange setting, the problem of computing the
certain answers for unions of conjunctive queries with inequalities is in coNP. Surprisingly,
we show (Theorem 5.12) that there is a polynomial-time algorithm that computes the certain
answers of unions of conjunctive queries with at most one inequality per disjunct. This is
an optimal result because we also show (Theorem 5.11) that it is coNP-hard to compute the
certain answers of unions of conjunctive queries with at most two inequalities per disjunct.

In the case of unions of conjunctive queries with at most one inequality per disjunct, the
certain answers can be computed in polynomial time from an arbitrary universal solution.
However, Section 5.2 shows (with no unproven complexity-theoretic assumptions such as
P # NP) that there is a conjunctive quegywith one inequality whose certain answers
cannot be computed by rewritirgyto a first-order query;* and then evaluating™ on
a canonical universal solution. We begin by formally introducing the decision problem
associated with the computation of the set of certain answers.

Definition 5.1. Let (S, T, 2y, 2;) be a data exchange setting.

1. Letq be ak-ary query over the target schemaComputing the certain answers of q
is the following decision problem: given a source instahoeger S and ak-tuplet of
constants fron, is it the case that € certain(q, 1)?

2. Letq be a Boolean query over the target schem&omputing the certain answers of
g is the following decision problem: given a source instahoeerS, is it the case that
certain(g, I) = true?

3. LetC be a complexity class an@ a class of queries over the target schémalVe say
that computing the certain answers of queriesdnis in C if for every queryg € Q,
computing the certain answers®fs in C. We say thatomputing the certain answers
of queries inQ is C-completdf it is in C and there is at least one query Q such that
computing the certain answersafs aC-complete problem.

Thus, computing the certain answers &fary querygis a decision problem. One can also
consider a related function problem: given a source insthiicel the setertain(g, I). The
latter problem has a polynomial-time reduction to the former, since there are polynomially
manyk-tuples froml and so we can compute the settain(g, I) by going over each such
k-tuplet and deciding whether or note certain(g, 7).

5.1. Computational complexity

Since the complexity-theoretic lower bounds and inexpressibility results presented in
the sequel hold for LAV data integration systems with sound views defined by conjunctive
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queries, we review the definition of this type of data integration system firsR\Adata
integration system with sound views defined by conjunctive qusaespecial case of a data
exchange settingS, T, Xy, X;) in which X; = ¢ and each source-to-target dependency in
2, isatgd of the forn®; (x) — Jyy1 (X, y), wheresS; is some relation symbol of the source
schemés andy/ is an arbitrary conjunction of atomic formulas over the target schEma
In what follows, we will refer to such a setting simply akAV setting

5.1.1. An upper bound

Abiteboul and Duschkf] showed that in the LAV setting, computing the certain answers
of unions of conjunctive queries with inequalities is in coNP. We extend this by showing
that the same upper bound holds in the general data exchange setting, piyitea set
of tgds andX; is a union of a set of egds with a weakly acyclic set of tgds.

Theorem 5.2. Consider a data exchange setting in whic}) is a set of tgds and; is a
union of a set of egds with a weakly acyclic set of tgds. Let g be a union of conjunctive
gueries with inequalities. Then computing the certain answers of gosNHP.

We first note that, in the particular case when all the tgds;iare full, the theorem can
be proved by using the “small model property”. Intuitively, the small model property says
that if there is a “witness” to the satisfaction or failure of some property, then there is a
“witness” of bounded size (essentially this argument was usgl fior the LAV setting).
However, for the more general case when the tgds,imay have existentially quantified
variables, the proof is more involved. It is based on an extension of the chase, that we call
thedisjunctive chasand define shortly.

To decide whether € certain(g, I), we substitute: into the queryq to obtain a Boolean
query. We thereby reduce the problem of deciding whethercertain(q, 7) for arbitrary
gueriesq to the problem of deciding whetheertain(q, I) = truefor Boolean queries.
Hence, we can assume tltpis a Boolean query. We know thaqtis equivalent to a query
of the formg1 Vv g2, wheregq; is the disjunction of a sef of conjunctive queries with no
inequalities, andy; is the disjunction of a sef’ of conjunctive queries each with at least
one inequality. Each element 6f has the form:

3x (d)(X) A (/i\(xi1 # x?))) :

where¢(X) is a conjunction of atomic formulas. Hence, it is easy to see that the negation
of g2 is equivalent to the conjunction of a gebf formulas of the form:

WX (d)(x) — <\i/(xl-l = x,?)>> .

We will call such formulaglisjunctive egdsAs in the case of tgds and egds, for simplicity,
we will drop the universal quantifiers in front of a disjunctive egd. Note that an egd is a
particular case of a disjunctive egd where the right-hand side of the logical implication sign
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has only one equality. We observe next the following fact (easy to verify):

Lemma 5.3. The following statements are equivalent

(1) certain(g, I) = false

(2) There exists a solutios* for | such that/* satisfies E and’* does not satisfy any of
the conjunctive queries in.C

Next we will show that the problem of deciding the above condition (2) is in NP, under
the conditions stated in Theore®r2. Theorem 5.2 follows then immediately. To prove the
membership in NP of the aforementioned problem, we need to define first the disjunctive
chase. Deutsch and Tannen [10] introduced an extension of the classical chase in order to
make use, in the process of query optimization, of a very general class of dependencies
with disjunction, called disjunctive embedded dependencies (DEDs). For our purposes, we
need an extension only to deal with disjunctive egds, which are a particular case of DEDs.
Hence, the next definition is a particular case of the definition in [10]. We note, however,
that the subsequent properties of the chase that we prove and then use in this subsection
are new.

Definition 5.4 (Disjunctive chase st¢p LetK be an instance and lebe a disjunctive egd

d(X) = ((xf =x2) v .-+ v (x} = x7)). Denote byes, . ..., ¢ the following egds obtained
frome ¢x) - (x1 =x2),...,p(x) — (x} = xP), and call them the egdsssociated
with e.

Leth be a homomorphism fromi(x) toK such thati(x}) # h(x?), ..., h(x}) # h(x?).
We say thae can be applied to K with homomorphisniNote that it is also the case that each
of e1, ..., ¢; can be applied t& with homomorphisnh, by Definition3.1. For eachi =

1,...,1, letK; be the result of applying; to K with homomorphisnh (i.e., K i K;) ac-

cording to Definition 3.1. (Note that some of tkg's can bel .) We distinguish two cases:

e Ifallof Ky, ..., K; arel then we say thahe result of applying e to K withiks “failure”
and writek % {L}, or simply K SO

e Otherwise, letK;,, ..., Ki, be those elements in the 9k, ..., K;} that are notlL.
We say thathe result of applying e to K with ts the sef{X;,, ..., K;,}, and write

Jh
K =5 (Kip. ... K, ).

Note that in the case wherhas only one term in the disjunction the above definition de-
generates to DefinitioB.1. Thus a chase step with an egd is a particular case of a disjunctive
chase step. For such chase steps, we will use, as convenience may dictate, either the notation

K % K, asin Definition 3.1 or the full notatiofl % {K;,}. In addition to chase steps
with (disjunctive) egds, we will continue to use chase steps with tgds as in Definition 3.1.

. . d.h . d,h
For such chase steps, we will use either the notatioR> K’ or the notatiorKk — {K'}.
We next define the finite disjunctive chase.

Definition 5.5 (Disjunctive chasge Let X be a set of tgds and egds and Eebe a set of
disjunctive egds, and lé&t be an instance.
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e A chase tree of K witlt' U E is a tree (finite or infinite) such that:
e therootisK, and

o for every nodeX; in the tree, le{K;,, ..., K;,} be the set of its children. Then there

must exist some dependendyin 2 U E and homomorphisnin such thatk; 2h

{Kjl’ e, Kjr}'3
o A finite disjunctive chase of K with U E is a finite chase tree with the requirement that
each leafK,, satisfies either (aK,, = L or (b) there is no dependendyin X U E and
there is no homomorphisimsuch thatl can be applied t&,, with h.

As with the traditional chase, there may not exist in general a finite disjunctive chase of
an instance. However, if the tgds involved are required to form a weakly acyclic set then
we can prove the following proposition, which is similar to Theoi@s

Proposition 5.6. Let X be the union of a weakly acyclic set of tgds with a set of egds. Let E
be a set of disjunctive egdsnd let K be a instance. Then every chase tree of K WithE

is finite. Moreoverthere exists a polynomial in the size of K that bounds the depth of every
such chase tree

Proof. Let E’ be the set of all egds that are associated with some disjunctive égtlefT

be an arbitrary chase treel§fwith X U E. Then every path of that starts at the root forms

a chase sequenceléf in the sense of DefinitioB.2, where the dependencies involved are
from 2 U E’. Since the tgds il¥’ form a weakly acyclic set, we can then use Theorem 3.9
to conclude that there exists a polynomial in the siz& ¢iiat bounds the length of every
such path. O

We prove next that condition (2) in Lemma 5.3 can be verified by checking first that a
universal solution exists (by Corollary 3.10 this can be done in polynomial time under the
given assumption that the tgds of the data exchange setting form a weakly acyclic set) and
then by using the disjunctive chase on the universal solution. More precisely, we prove the
following proposition.

Proposition 5.7. Assume a data exchange setting wheygeis a set of tgdsand 2, is the
union of a weakly acyclic set of tgds with a set of egds. Morearethe target schema
assume a set E of disjunctive egds and a set C of Boolean conjunctive queries. Let | be a
source instance. Then the following are equivalent
(i) There exists a solutioi* for | such that/* satisfies E and’* does not satisfy any of
the conjunctive queries in.C
(i) There exists a universal solution J farthere exists a finite disjunctive chase T of J
with X; U E, and there exists a leaf* £ | of T such that/* does not satisfy any of
the conjunctive queries in.C

3 Note that such a chase step can be either a disjunctive chase step as in D&iftiiodis a disjunctive egd)
or a “traditional” chase step as in Definiti@il (if d is an egd or tgd, and §& ;,, ..., K.} is a singleton set).
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The proof of Propositiors.7 uses the following extension of Lemma 3.4, for the case
of a chase step with a (disjunctive) egd. To handle chase steps with tgds, the proof of
Proposition 5.7 will use directly Lemma 3.4.

eh

Lemma 5.8. LetK — {Kj,, ..., K;,} be anon-failing disjunctive chase step. Ikt be
an instance such tha* satisfies e and there exists a homomorphisnK — K*. Then
there existg € {i1,...,i,} suchthatg : K; — K* is a homomorphism

Proof. Assume that the disjunctive egdis: ¢(xX) — ((x} = x2) v --- v (x} = x?)).
Thenh is a homomorphism frong(x) to K, and{is, ..., i,} is the set of those indicgs

among{1, ..., !} such thatk e’—]; K;andK; # L. We first note thag o i : ¢(X) —

K* is a homomorphism. Sinck* satisfiese, there exists somg¢ € {1,...,[} such that
g(h(x})) = g(h(sz.)). We show next tha§ € {i1,...,i,}. In other wordsj is such that

K; # 1. Suppose towards a contradiction tigt = L. SincekK ; is the result of applying

the egce; to K with homomorphisni, it must be the case thh(x}) =c1 andh(x]?) = co,
wherec; andc; are two distinct constants. On the other hand, we hdve) = g(c2),

which impliesc1 = ¢z (since homomorphisms preserve constants). We have thus reached
a contradiction. Hencg < {i1, ..., i,}. We need to ensure thgis still a homomorphism
when considered frork ; to K*. The only difference betweeki; andK is the identification

of h(le.) andh(sz) within K ;. Hence, the only way thafcan fail to be a homomorphism

onk;isifg mapsh(x}) andh(sz.) into two different constants or labeled nulls©f. But
this cannot happen, singeh(x7)) = g(h(x?)). O

Proof of Proposition 5.7. We prove first that (i) implies (ii). Assume that (i) is true. Since
the tgds inX; form a weakly acyclic set, it is the case that any chase mjthu X, of (1, @)
terminates (by Theorem 3.9). Moreover there can be no failing chase, since otherwise there
would be no solution at all, by Theorem 3.3, and hence (i) would be false. Thus, the result
of the chase (any chase) willy, U 2; provides a universal solutiah

Proposition 5.6 implies that a finite disjunctive chasef J with X, U E must exist.
We prove next thaT contains a leaf satisfying the properties required in (ii). L&tbe
the instance guaranteed to exist by (i). SinEeis a solution, it must be the case that
there exists a homomorphispn: J — J*. Applying either Lemma 5.8 or 3.4 at each
level in the chase tree, we must findTra pathJ, J1, ..., J,, with J,, # L, such that
there exists a homomorphisgy, : J,, — J* and such that either (a), is a leaf or (b)

Im LiLe 1, for someein X; U E and homomorphisr. Suppose towards a contradiction
that (b) is true. We note tha&must be a (disjunctive) egd for the chase steg,pto fail.
Assumingeis ¢(x) — ((x} = x2) v ---v (x} = x?)), we have thah is a homomorphism
from ¢(x) to J,,. Then, for everyj € {1,...,I}, we have thah(x}) andh(sz.) are two
distinct constants af,,, (otherwise the chase step would not prodlLILc)eWe also have that
gm o h is a homomorphism frongp(x) to J*. Moreover, since homomorphisms preserve
constants, it follows thagm(h(x})) and g, (h(sz.)) are two distinct constants of*, for
every j € {1,...,1}. This contradicts the fact that* satisfiese. Thus, we proved that
T contains a leaf/,, (J,, # L) such that there exists a homomorphigm: J,, — J*.
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The existence of,, ensures thaf,,, cannot satisfy any of the conjunctive querieinor
otherwiseJ* would satisfy some conjunctive query 6f Hence,J,, can play the role of
J* required by (ii).

Finally, we prove that (ii) implies (i). We show that the le&f guaranteed to exist, by
(ii), satisfies the requirements of (i). In particulat, satisfies the dependencieipandE
because itis aleafin the chase tree. Itis also easy to see that the disjunctive chasewith
does not affect the satisfaction of the source-to-target dependencieg{intinues to
satisfy X, as the universal solutiahdoes). [J

Proof of Theorem 5.2. Based on Proposition 5.7 and Lemma 5.3, we can check that
certain(g, 1) = falseby checking that there exists a universal solutidor I, there exists a

finite disjunctive chas€of Jwith X; UE and there exists aledf* # | of Tsuchthat/* does

not satisfy any of the conjunctive queriesdnAll this can be verified, non-deterministically,

in polynomial time. More precisely, suppose tbattain(g, /) = false Then we produce,

in polynomial time (by Theorem 3.9), a universal solutibiext we guess the sequence of
dependencies and homomorphisms to be applied during the disjunctiveashast aghe
branch that we pick at each step. We therefore non-deterministically find a finite disjunctive
chaseT andpath withinT leading to the “right” leaf/*. The sequence of guesses is of
polynomial length, by Proposition 5.6. Verifying that is a leaf (i.e., that no dependenty

in 2; U E and no homomorphisimexist such thadl can be applied td* with h) can be done

in polynomial time. In addition, verifying that* does not satisfy any of the conjunctive
gueries inC can be done in polynomial time. Conversely, supposecdain(g, ) = true.

Then either no universal solution exists (and no solution exists) or a universal solution exists
but no sequence of guesses as above exists that could lead to acceptance. Hence, deciding
whethercertain(g, I) = falseis in NP. Therefore, computing the certain answers, under
the conditions of Theorem 5.2, is in coNP[]

5.1.2. Lower bounds

Theorem 5.2 yields an upper bound in a fairly general data exchange setting for the com-
plexity of computing the certain answers of unions of conjunctive queries with inequalities.
Itturns out, as we discuss next, that this upper bound is tight, even in fairly restricted data ex-
change settings. Specifically, computing certain answers for such queries is coONP-complete.
Therefore no polynomial algorithm exists for computing the certain answers when the input
is a universal solution, unless=P NP.

Abiteboul and Duschka [1] showed that in the LAV setting, computing certain answers of
conjunctive queries with inequalities is cONP-complete. They also sketched a proof which,
if correct, would establish that this problem is coNP-complete even for conjunctive queries
with a single inequality. Unfortunately, the reduction is erroneous. A correct reduction
cannot be produced without increasing the number of inequalities, since here we show that
in the LAV setting, there is a polynomial-time algorithm for computing the certain answers
of unions of conjunctive queries with at most one inequality per disjunct. Still, the result
of Abiteboul and Duschka [1] is correct; in fact, the unpublished full version [2] of that
paper contains a proof to the effect that in the LAV setting, computing certain answers of
Boolean conjunctive queries with six inequalities is coNP-complete. A different proof of
the same result can be extracted by slightly modifying the proof of Theorem 3.2 in van der
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Meyden[31]. Thus, the next result provides a matching lower bound for the complexity of
computing the certain answers of conjunctive queries with inequalities.

Theorem 5.9(Abiteboul and Duschkfl]). IntheLAV setting computing the certain an-
swers of Boolean conjunctive queries with six or more inequalitiesP-complete

It is an interesting technical problem to determine the minimum number of inequalities
needed to give rise to a coNP-complete problem in this setting.

Conjecture 5.10. In the LAV setting computing the certain answers of Boolean conjunc-
tive queries with two inequalities @NP-complete

We have not been able to settle this conjecture, but have succeeded in pinpointing the
complexity of computing the certain answersiofonsof Boolean conjunctive queries with
at most two inequalities per disjunct.

Theorem 5.11. In the LAV setting computing the certain answers of unions of Boolean
conjunctive queries with at most two inequalities per disjunaoslP<omplete. In fact

this problem iscoNPcomplete even for the union of two queries the first of which is
a conjunctive query and the second of which is a conjunctive query with two
inequalities

Proof. As mentioned earlier in this section, membership in coNP was first established by
Abiteboul and Duschkl]. This membership also follows from Theorem 5.2 proved in
Section 5.1.1 for the more general data exchange setting. The coNP-hardness is established
by a reduction from the complement 0b8TIVE-NOT-ALL-EQUAL-3SAT, which is the
following decision problem: given a 3CNF-formuteconsisting entirely of positive clauses

(x v y Vv 7), is there a truth assignment to the variablespaduch that for every clause

of ¢ at least one variable is assigned value “true” and at least one variable is assigned
value “false™? This problem is known to be NP-complete (for instance, this can be derived
easily from Schaefer’'s [28] results on the complexity (INGRALIZED SATISFIABILITY
problems).

Before embarking on the description of the reduction, we give some intuition for one
of the key constructs in the reduction. Suppose that a database schema contains a binary
relation symbolL’ and consider an instance in whiéh(x, 0) and L’ (v, 1) hold, where
u andv are two distinct elements. Suppose also that in this instance there is an element
such that.’(u, 1) andL’(v, t) hold. Consequently or v is guaranteed to have two distinct
L’-neighbors (it is possible that bothand v have two distinctZ’-neighbors). This will
make it possible to simulate disjunction and then extract a truth assignment. It should be
noted that variants of this construct were first used by van der Meyden [31].

Let S be the source schema consisting of a ternary relation symkmternary relation
symbolA, and a binary relation symbabl Intuitively, P will consist of all triples of variables
occurring in clauses of a given 3CNF-formula, whiiendL will be used to assign truth
values to the variables of the formula. LEtbe the target schema consisting of a ternary
relation symbolP’, a ternary relation symbal’, and a binary relation symbdl'. Let X,
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be the set of the following four source-to-target dependencies:

P(x,y,2) = P'(x,y,2),
Alx,u,v) = A'(x,u, v),
Lu,v)— L' (u,v),
A(x,u,v)— Jt(L'(u,t) AL (v, 1)).

Finally, letg = g1 Vv g2 be the union of the following two queries over the target schéma

ql L= (axa u,v, [15 t27 t)(A,(-xa u, v) A Ll(u’ tl) A L/(vv t2)
AL (u,t) AL'(v, 1) At £ 1) A (t #12)),
g2: — (3x1, x2, x3, U1, V1, U2, V2, U3, v3, 1)(P'(x1, X2, x3) A
3
(A" (xi, ui, vi) AL (i, 1) A L'(vi, 1))).
=1

1

Given a positive 3CNF-formula, let 7, be the source instance defined as follows:

e The elements of, are: 0, 1, all variables ap, and for each variabbeof ¢, two distinct
elements:, andv, (different such elements are used for different variables).

e The relations off, are:

I,(P)={(x,y,2) : (x VyVz)is aclause of},
Io(A) ={(x, uy, vy) : Xis a variable ofp},
Iy(L) = {(uy, 0), (vy, 1) : xis a variable ofp}.

We now claim thatp is NOT-ALL-EQUAL satisfiable if and only itertain(q, 1,) = false
This means that we have to show that the following two statements are equivalent:

(1) There is a truth assignment such that, for every clause af least one variable is
assigned value “true” and at least one variable is assigned value “false”.

(2) There is a target instandehat is a solution to the data exchange probleny§oand
is such that;(J) = false

Of the two directions in the claimed equivalence ab@2e = (1) is the more interesting
one. Suppose thdtis a solution such thaf(J) = false which means thaj;(J) = false
andg2(J) = false SinceJ satisfies the source-to-target dependencies;inbut fails to
satisfy g1, it follows that for every variable, we have that.’(u,, 0) and L’ (u,, 1) hold
or thatL'(v,, 0) and L' (vy, 1) hold (it is conceivable that botl, andv, have 0 and 1 as
L’-neighbors). We now assign value trteea variablex if L'(uy, 0) and L’ (u,, 1) hold.
Using the fact thag2(J) = false it is not hard to verify that, for each clause@fat least
one variable is assigned value trared at least one variable is assigned value falsel

5.1.3. A polynomial-time case

For unions of conjunctive queries with inequalities, Theofei delineates the boundary
of intractability, because the next theorem asserts that computing certain answers of unions
of conjunctive queries with at most one inequality per disjunct can be solved in polynomial
time by an algorithm that runs on universal solutions.

Theorem 5.12. Assume a data exchange setting in whighis a set of tgdsand 2, is the
union of a weakly acyclic set of tgds with a set of egds. Let q be a union of conjunctive
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queries with at most one inequality per disjunct. Let | be a source instance and let J be an
arbitrary universal solution for I. Then there is a polynomial-time algorithm with input J
that computes certaig, 7).

Proof. As in the proof of Theorerb.2, we can assume without loss of generality thiata
Boolean query. We know thatis equivalent to a query of the form Vv g2, whereg is the
disjunction of a se€ of conjunctive queries with no inequalities, aqudis the disjunction

of conjunctive queries with exactly one inequality. As in the proof of Theorem 5.2, we
note that the negation @b is equivalent to the conjunction of a $ebf disjunctive egds.
However, differently from that proof, we use next the fact hahas exactly one inequality
per disjunct. Hence, it is easy to see that for each edtltime number of equalities that
participate in the disjunction is one. Therefokeis a set of egds in the traditional sense
(i.e., no disjunction).

We now describe the algorithm, and then show that it runs in polynomial time and is
correct. The algorithm is based on the chase, as in the proof of Theorem 5.2. However, since
there is no disjunction ik, the chase used is the traditional one (as defined in Section 3)
and not the disjunctive chase used in the proof of Theorem 5.2.

The algorithm begins by chasing the universal solufievith X, U E.

1. Ifthe chase fails (by trying to equate two constants), then haltand sagtteit(q, 1) =
true
2. If the chase does not fail, then call the res@ltSee ifK satisfies at least one of the
conjunctive queries i.
(a) If K satisfies at least one of the conjunctive querie€jrthen halt and say that
certain(g, I) = true
(b) If K does not satisfy any of the conjunctive querieCinthen halt and say that
certain(g, I) = false
SinceX; is a fixed set of tgds anf; is the union of a weakly acyclic set of tgds with a set of
egds, there is a polynomial-time algorithm for doing the chase (TheBr@mMoreover, it
is well known that for every first-order query (and in particular for every conjunctive query
with inequalities), there is a polynomial-time algorithm (and even a logspace algorithm) for
deciding satisfaction of the query on a given database. From these facts, it follows easily that
the algorithm described above runs in polynomial time. We now show that the algorithm is
correct.

Casel: The algorithm halts in stefh. Since every solution is a homomorphic image of
J and satisfieg;, there is no solution that satisfi&s By definition of E, this tells us that
certain(gz, I) = true and henceertain(g, I) = true

Case2: The algorithm halts in step(a). Sincel is a universal solution, it is easy to see
thatK is a universal solution for targets that satiEffin addition to the requirements an,
andX,). Thus, every solution that satisfiggthat is, wherey; fails) is a homomorphic image
of K. Also, if K satisfies some conjunctive query @ then so does every homomaorphic
image ofK. Putting these facts together, we see th#t #atisfies some conjunctive query
in C, then so does every solution that satisfigshat is, every solution wheig fails. So
if K satisfies some conjunctive query@nthen every solution wheg fails satisfies some
conjunctive query irC, and so satisfieg;. Therefore, every solution satisfies eitlgeror
q1, and hence satisfi@s Hencecertain(g, I) = true
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Case3: The algorithm halts in step(b). As mentioned in Case R,is a universal solution
for targets that satisfig. In particularK is a solution for the original data exchange problem
(which does not includg). SinceK does not satisfy any of the conjunctive querie€jrit
does not satisfy1. On the other hand( satisfies all of the egds ig, and hence does not
satisfyg>. Hence K does not satisfg. SinceK is a solution, it follows thatertain(q, 1) =
false 0O

Corollary 5.13. Assume a data exchange setting in whigh is a set of tgdsand 2; is

the union of a weakly acyclic set of tgds with a set of egds. Let g be a union of conjunctive
gueries with at most one inequality per disjunct. Then there is a polynomial-time algorithm
for computing the certain answers of g

Proof. We construct a two-phase algorithm. First, a canonical universal solution is con-
structed, by the chase, in polynomial time (see Corolgafy)). Then we run, on this uni-
versal solution, the polynomial-time algorithm of Theorem 5.12, to compute the certain
answers. [

5.2. First-order inexpressibility

We just showed that, for every conjunctive query with one inequality, the certain answers
of the query can be evaluated in polynomial time. Here, we show that it is not possible
to always obtain the certain answers by evaluating some first-order query on a canonical
universal solution. Moreover, the certain answers may not be first-order definable over the
source schema. The proof of these results combines Ehrenfeucht-Fraissé games with the
chase procedure.

Theorem 5.14. There exists a LAV setting and a Boolean conjunctive query q with one in-
equality for which there is no first-order quegy over the target schema such thiatr every
source instance ,l there is some canonical universal solution J with
certain(g, I) = g*(J).

Proof. The source schema consists of a unary relation syihaind two binary relation
symbolsR and Q. The target schema consists of a unary relation syrbahd a binary
relation symboP. The set’s, of source-to-target dependencies consists of:
M(x) — N(x),
Q@(x,y) = P(x,y),
R(x,y)— 3z(P(x,2) A P(z,y) AN(2)).

The set>, of target dependencies is empty. The queiy:
AxIyAz(P(x, y) A P(y,2) AN(x) AN(2) A (x # 2)).

We now define two source instanchsand I, both based on a positive integer parameter
k that will be taken to be “sufficiently large” (explained later). Bdthand > have the
same domain, which consists of the 4 2 distinct points (values, d, e1, ..., e, f1,
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..., f2x. Inboth I; and I, the unary relation correspondingltbcontains the two points
c andd. In both 7; and I, the binary relation corresponding Bis the disjoint union of
two cycles, each of sizek2where the first cycle contains the edges (tuples)e;+1) for
1<i < 2k, along with the edgéey, e1), and the second cycle contains the edgesf; 1)
for 1<i < 2k, along with the edg€éf2¢, f1). The only difference betweeh and/; is that

in 11, the binary relation corresponding @ contains the two tupleée, ¢) and (e, d),
whereas inl, the binary relation corresponding @contains the two tupleé;, ¢) and
(f1, d). Thus, inl1, the points connecting toandd are in the same cycle (but “far apart”),
while in I, the points connecting toandd are in different cycles. Thus, if we ignore the
directions of the edges, therandd are connected by a path I, but not in/5.

It is easy to see that up to isomorphism, there is a unique canonical universal s@jution
for Iy and a unique canonical universal solutignfor I>. That is, the order in which we
apply the chase steps does not matter. Furthermore, it is easy to see that in the canonical
universal solution/1 of 71, in addition to the constants d, es1, ..., e, f1, --., f2,
there are nullg}, ..., ey, f1, ..., fz. such that the relation correspondingRdas the
following tuples:

o (¢, e)for1<i <2k,

° (e;,ei_;_l) for 1<i < 2k,
o (e, e1),

o (fi, f) for 1<i <2k,

° (fi/, fiv1) for 1<i < 2k,
° (f2/k7 fl)l

e (e1,0),

o (er,d).

Intuitively, this relation consists of two cycles, each of size d@ong with two dangling
edges that point to andd, respectively, and that each hang off the first cycle and are far
apart.

The relation corresponding din the canonical universal solutioh contains the points

c,d ey, ....ey, fii.... [y Thus, this relation contairsandd, along with the nulls.
Similarly, in the canonical universal solutiafp of I, in addition to the constants
c,d,e1, ..., ex, f1...., fa, there are nullef, ..., 5, fi', ..., fy, such that the

relation corresponding t® has the following tuples:

o (e, e) for 1<i <2k,

o (¢, eiy1) for 1<i < 2k,
o (e, e1),

o (fi, f) for 1<i <2k,

° (fi//, fiv1) for 1<i < 2k,
o (far> f1),

e (e1,0),

o (f1,d).

Intuitively, this relation consists of two cycles, each of size d@ong with two dangling
edges that point toandd, respectively, where the two dangling edges hang off of different
cycles.

The relation corresponding din the canonical universal solutiok contains the points
c.def,....eh, fi' ..., fa- Thus, this relation contairsandd, along with the nulls.
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Let ¢* be an arbitrary first-order query over the target schema. We now show that if
is sufficiently large, theg*(J1) = ¢*(J2). We shall also show thatertain(q, /1) = true
andcertain(g, I2) = false This shows thag* does not play the role demanded of it in the
statement of the theorem (namely, thattain(g, I) = ¢*(J)). The theorem then follows.

We begin by showing that ik is sufficiently large, ther*(J1) = ¢*(J2). This fol-
lows easily by making use of Ehrenfeucht-Fraissé games, and in particular utilizing Hanf’s
techniqug14].

We now show thatertain(g, I1) = true Note that—q is equivalent to the egd

Px,y) AP(y,2) ANX)AN() — (x =2z).

To show thatcertain(g, I1) = true it is sufficient to show that if we chasg with —g¢,
the chase fails. This is because, as it is easy to see, the failure of the chase implies that no
homomorphic image af;, and hence no solution, can satisfy.

Inthe chase, we first apptyg to J1 with the homomorphisthwhereh (x) = e, , h(y) =
e1,andh(z) = ¢, and thereby replaag, by c. We then apply-¢ with the homomorphisrh
wheren(x) = ¢ (whiche), has been replaced by)(y) = e1, andh(z) = ¢}, and therefore
replacee) by c. We then apply-g with the homomorphisrhwhereh (x) = ¢ (whichej has
been replaced byh(y) = ez, andh(z) = 5, and therefore replaceg by c. Continuing in
this manner, we replaeg, ey, . . . , ¢, _, by c. Finally, we apply-g with the homomorphism
hwhereh(x) = ¢ (whiche,_, has been replaced by)(y) = ¢, andh(z) = d, and try to
replaced by ¢, which leads to failure, as desired.

We close by showing thatertain(q, I2) = false It is sufficient to show that if we chase
Jo with —¢, the chase does not fail. Indeed, the regislbf such a chase continues to satisfy
2, and hence it is a solution. Furthermo#g, satisfies—q, that is,q (K2) = false

Itis straightforward to verify that the chase Bfwith —¢ does not fail and its resulk,,
is as follows. The relation correspondingRdas the following tuples:

o (¢;,c)for1<i <2k,

o (c,e) for 1<i <2k,

o (fi.d) for 1<i <2k,

o (d, f;) for 1<i <2k,

e (e1,0),

e (f1,d).

The relation corresponding % contains onlyc andd. This concludes the proof. [J

It follows from the above proof that the result holds even if we allow the first-order
formulag* to contain the predicate cortsiat distinguishes between constants and nulls.

The next result, of particular interest to query answering in the data integration context,
shows (by a slight modification of the proof of Theorém4) that for conjunctive queries
with just one inequality we cannot in general find any first-order query ovesdhece
schema that, when evaluated on simeirceinstance, computes the certain answers.

Theorem 5.15. There is a LAV setting and a Boolean conjunctive query g with one in-
equality, for which there is no first-order query™ over the source schema such that
certain(g, 1) = ¢g*(I) for every source instance |
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Proof. Take the LAV setting, Boolean conjunctive queyyand source instancés and />
exactly as in the proof of Theorem14. It is shown in that proof thaertain(g, I1) = true
andcertain(g, I2) = false Letg* be an arbitrary first-order query over the source schema. If
kis sufficiently large, thep* cannot distinguish betwedhnand/y, thatisg*(I1) = g*(12).

This follows for the same reason that any given first-order query over the target schema
cannot distinguish betweeh andJ; in the proof of Theorem 5.14 Kis sufficiently large.

In both cases, this indistinguishability follows easily by making use of Ehrenfeucht-Fraissé
games, and in particular utilizing Hanf’s technique [14]. This showsghatoes not play

the role demanded of itin the statement of the theorem (namelgeghain(q, 1) = g*(1)).

The theorem then follows. [J

6. Concluding remarks

Given a source instance, there may be many universal solutions. This naturally brings
up the question of whether there is a “best” universal solution, and hence a best solution
for data exchange. In a follow-up paper [16], we address this question and answer it by
considering the well-known notion of ttoere of a structure, a notion that was first studied
in graph theory (see, for instance, [19]), but has also played a role in conjunctive-query
processing [8].

In Theorem 5.14, we show that there is a conjunctive qgemth one inequality whose
certain answers cannot be computed by rewritintp a first-order query™* and then
evaluatingg® on a canonical universal solution. But this leads to the question of whether
some other solution other than a canonical universal solution would have done the job.
That is, is there a transformatich that maps each source instadato a solution# (1)
and a first-order rewriting* such that the certain answers are giveryby#(7))? This
guestion is investigated in [4], where it is shown that as long as “locally consistent”
(which means intuitively that points with similar neighborhoods in the source have similar
neighborhoods in the target), then there are first-order querigth no such rewriting;*.

It is also shown in [4] that in appropriate data exchange settings, the maspitigg map

onto the canonical universal solution or onto the core are locally consistent. Therefore, the
results in [4] provide an extension of our Theorem 5.14. We feel that there is a need for
further investigation of how universal solutions can be used for query answering in the data
exchange setting.

Finally, we wish to go back to our original motivation from Clio, an XML-based schema
mapping tool. The results we presented here are about data exchange between relational
schemas. We would like to study data exchange between XML schemas and, in partic-
ular, investigate how the notion of universal solution can be extended to cover XML
schemas.
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