Complexity of Answering Queries
Using Materialized Views

Serge Abiteboul Oliver M. Duschka

INRIA Rocquencourt Stanford University
78153 Le Chesnay Cedex, France Stanford, CA 94305

PROPOSED RUNNING HEAD:
Complexity of Answering Queries Using Views

CONTACT:

Oliver M. Duschka, Ph.D.
2269 Williams Street
Palo Alto, CA 94306

(650) 858-1228 (phone/fax)

duschka@cs.stanford.edu

Abstract

We study the complexity of the problem of answering queries using material-
ized views. This problem has attracted a lot of attention recently because of its
relevance in data integration. Previous work considered only conjunctive view
definitions. We examine the consequences of allowing more expressive view defi-
nition languages. The languages we consider for view definitions and user queries
are: conjunctive queries with inequality, positive queries, datalog, and first-order
logic. We show that the complexity of the problem depends on whether views
are assumed to store all the tuples that satisfy the view definition, or only a
subset of it. Finally, we apply the results to the view consistency and view
self-maintainability problems which arise in data warehousing.

1 Introduction

The notion of materialized view is essential in databases [34] and is attracting more and
more attention with the popularity of data warehouses [24]. The problem of answering
queries using materialized views [25, 7, 12, 5, 43, 30, 27, 36, 15, 11, 13, 26] has been studied
intensively. We propose a systematic study of its complexity. We also briefly consider
the related problems of view consistency and view self-maintainability [19]. Our results
exhibit strong connections with two among the most studied problems in database theory,
namely query containment [6, 31, 23, 32, 8, 21, 10, 28] and incomplete information querying,
e.g. [20, 2]. Indeed, the works most closely related to our complexity results are perhaps
those of van der Meyden [37, 38, 39] and Vardi [41] on (indefinite) database queries. Our
results highlight the basic roles played by negation (and in its weak form inequality) and
recursion, and a crucial difference between open and closed world assumption in the view
definition.

The main focus of the paper is the study of the data complexity of the problem of an-
swering queries using materialized views. More precisely, the problem is for a fixed view
definition and a fixed query, given a view instance I and a tuple %, is t a certain answer,
i.e. is t in the answer to the query on the database no matter which is the database yielding
the view instance I. This articulation of the problem highlights the main parameters: (i)
What are the database and the view models? (ii) What are the query and the view definition
languages? (iii) Is yielding assuming an open or a closed world?

In the present paper, we use the relational model for the database and the view model.
However, our work strongly suggests moving towards an incomplete information model,
e.g. conditional tables [20]. Indeed, we will briefly show how these tables can be used for
solving the problem in most solvable cases. For the query and view definition languages, we
consider the most popular formal query languages, namely conjunctive queries, conjunctive
queries with inequality, positive queries, datalog, and first-order logic. We focus on certain
answers, i.e. tuples that are in the answer for any database yielding this particular view
instance.

Not surprisingly, our results indicate that recursion and negation in the view definition
lead to undecidability. Somewhat also expectedly, we show that the closed world assump-
tion sharply complicates the problem. For instance, under the open world assumption the
certain answers in the conjunctive view definitions/datalog queries case can be computed in
polynomial time. On the other hand, already the conjunctive view definitions/conjunctive
queries case is co-NP-complete under the closed world assumption. This is an a-posteriori
argument for a number of recent works that postulate an open world interpretation of views.
Perhaps more unexpectedly, we prove that inequalities (a very weak form of negation) lead
to intractability. Even under the open world assumption, adding inequalities to the queries,
or disjunction to the view definitions makes the problem co-NP-hard.

2 The problem

In this section, we present the problem. We assume some familiarity with database theory
[34, 1]. We start with a database instance D, a view definition V, and a view instance I.

The database consists of a set of relations and so does the view. Now, given a query Q, we
would like to compute Q(D). However, we assume that we ignore D and only have access
to I, so we will try to get the best possible estimate of Q(D) given I.

Let us be more precise. Under the closed world assumption (CWA), the view instance I
stores all the tuples that satisfy the view definitions in V, i.e. I = V(D). Under the open
world assumption (OWA), on the other hand, instance I is possibly incomplete and might
only store some of the tuples that satisfy the view definitions in V, i.e. I C V(D). As we
can see from the following example, in reasoning about the underlying database, it makes a
difference whether we are working under the open or closed world assumption.

Example 2.1 Consider the following view definition where the view consists of two rela-
tions:

v1(X) 1= p(X,Y)
(YY) :— p(X,Y)

and assume that the view instance consists of {vi(a), ve(b)}. Under OWA, we only know
that some p tuple has value @ as its first component, and some (possibly different) p tuple
has value b as its second component. Under CWA, however, we can conclude that all p tuples
have value a as their first component and value b as their second component, i.e. p contains
exactly the tuple (a, b). O

Given some view definition and a view instance, observe that there may be a number
of possible databases, i.e. database instances that yield this view instance for this view
definition. So, we can think of the database as the incomplete database [20] consisting of
this set of possible databases. To answer a query, we focus on certain answers, i.e. on tuples
that are in the answer for each possible database. As seen in Example 2.1, this depends on
whether we are assuming an open or a closed world. Indeed, an answer that is certain under
OWA is also certain under CWA, but the converse does not hold in general. For instance, in
the previous example, the query “is {a, b) certainly in p?” is answered positively under CWA
and negatively under OWA. In fact, we will show that computing certain answers under
CWA is harder than under OWA. The following definition formalizes the concept of certain
answer under both assumptions:

Definition 2.1 (certain answer) Let V be a view definition, I be an instance of the view,
and Q a query. A tuple ¢ is a certain answer under OWA if t is an element of Q(D) for each
database D with I C V(D). A tuple ¢ is a certain answer under CWA if t is an element of
Q(D) for each database D with I = V(D). O

We briefly recall the query languages we consider and the standard notion of complexity
we use.

2.1 Query and view languages

A datalog rule is an expression of the form:

p(X) 1= p(X1), ..., pu(X)

where p, and py,. .., p, are predicate names, and X, X1, ..., X, are tuples of variables and
constants. Each variable in the head of a rule must also occur in the body of the rule. A
datalog query is a finite set of datalog rules. The notion of recursive datalog query/rule is
defined in the standard way. A conjunctive query (CQ) is a single non-recursive datalog rule.
If the body of a conjunctive query is allowed to contain the inequality predicate (#), then
the query is called a conjunctive query with inequality (CQ7). Every variable in a query
with inequality must occur at least once in a relational predicate. A positive query (PQ) is
a non-recursive datalog query together with one particular predicate defined by the query.
The query language PQ7 is obtained by also allowing #. Finally, first-order queries (FO)
are defined in the standard way.

A materialized view, also called view instance, is the stored result of previously executed
queries. A wview definition V therefore consists of a set of queries defining a finite set of
predicates. So, for a query language L, we write ¥ C L to denote the fact that each
predicate in the view is defined using a query in L.

2.2 Data complexity

We will be interested in the data complexity of the problem of computing certain answers
under the open and closed world assumption. The data complexity is the complexity of the
problem as a function of the size of the view instance. We will also refer to the query and
combined complexity of the problem. The query complexity is the complexity of the problem
as a function of the size of the view definition V and the query Q. The combined complexity
is the complexity of the problem as a function of these two arguments plus the size of the
view instance. (These three notions are due to [40].) In the remaining of the paper, when
we discuss complexity, we always mean data complexity unless specified otherwise.

In Section 5, we prove that the problem is in co-NP for a wide range of cases. We also
highlight some connections with conditional table querying. In Section 3, we examine the
complexity of the problem of computing certain answers under OWA and in Section 4 under
CWA. In Section 6, we consider view self-maintainability and view consistency.

2.3 Upper bounds

In this section, we briefly sketch a solution to the problem for the open and closed world
assumption, when the view definition is in PQ7 and the query is in datalog?.

First we see next that, for PQ# views and datalog” queries, the problem is in co-NP. So
within these limits, it will suffice in the following of the paper to prove co-NP-hardness to
establish co-NP-completeness.

Theorem 2.1 For V C PQ7, Q € datalog”, the problem of determining, given a view
instance, whether a tuple is a certain answer under OWA or CWA, is in co-NP.

Proof. We prove the claim first for OWA. Assume that ¢ is not a certain answer. Then
there is a database D with I C V(D) and ¢ is not in Q(D). Let n be the total number of
tuples in I and let £ be the maximal length of conjuncts in the view definitions. Each tuple
in I can be generated by at most k£ tuples in D. Therefore, there is a database D' C D with

— query —
views cQ CQ* PQ datalog FO
cqQ PTIME co-NP PTIME PTIME undec.
cQ* PTIME co-NP PTIME PTIME undec.
PQ cO-NP CO-NP co-NP co-NP undec.
datalog | co-NP undec. co-NP undec. undec.
FO undec. undec. undec. undec. undec.

Figure 1: Data complexity of the problem of computing certain answers under the open world
assumption.

at most nk tuples such that still I C V(D'). Because ¢ is not in Q(D) and Q is monotone, t is
also not in Q(D’). It follows that there is a database D’ whose size is polynomially bounded
in the size of I and V such that I C V(D'), and t is not in Q(D'). Moreover, checking that
I CVY(D') and that t is not in Q(D’) can be done in polynomial time.

For CWA, the proof is essentially the same with I = V(D) in place of I C V(D). O

The proof of Theorem 2.1 gives a construction of how to compute certain answers under
OWA or CWA in co-NP time. However, this construction is not very useful in practice
because it requires the enumeration of a large number of possible databases. In Section 5
we will describe a more practical way to compute the certain answers.

3 Open world assumption

Figure 1 gives an overview of the complexity of computing certain answers under OWA.
Under OWA, the problem of computing certain answers is closely related to the query con-
tainment problem. Therefore, decidability and undecidability results carry over in both
directions. As shown in Theorem 3.1, if the problems are decidable, then their query com-
plexity is the same.

Theorem 3.1 Let L1, L, € {CQ,CQ7, PQ,datalog, FO} be a view definition language and
query language respectively. Then the problem of computing certain answers under OWA
of a query Q € Lo given a view definition V C L1 and a view instance is decidable if and
only if the containment problem of a query in L1 in a query in Lo is decidable. Moreover, if
the problems are decidable then the combined complexity of the view problem and the query
complexity of the containment problem are identical, so the data complexity of the problem
of computing certain answers under OWA is at most the query complexity of the query
containment problem.

Proof. The claim is established by giving reductions between the two problems in both
directions. We first consider the reduction from the problem of computing certain answers
under OWA to the query containment problem. Let V = {vi,...,vx} C L be a view

definition, Q € L, a query, I a view instance, and ¢ a tuple of the same arity as the head of
Q. Let Q' be a query consisting of the rules of definition) together with the rule!

ql(t) . 'Ul(tll), R vl(t1n1)7"'7vk(tk1)’ R Uk(tknk)

where [is the instance with I(vy) = {t11,.. ., tin, }, -5 L(vg) = {tk1, -, ten, t- I L1 18 CQ
or CQ7, then the view definitions in V can be substituted in for the view literals in this new
rule. This yields just one conjunctive query. In all cases, Q' is in £;. We show that tuple ¢
is a certain answer of Q given V and I if and only if @' is contained in Q.

“=": Assume that ¢ is a certain answer under OWA. Let D be a database. If I Z V(D),
then Q'(D) = {}, and therefore Q'(D) is trivially contained in Q(D). If I C V(D), then
Q'(D) ={t} and t € Q(D). Again, Q'(D) is contained in Q(D).

“<”: Assume that Q' is contained in Q. Let D be a database with I C V(D). Then
Q'(D) = {t}, and therefore ¢t € Q(D). Hence, t is a certain answer.

The remaining of the proof consists of a reduction from the query containment problem
to the problem of computing certain answers under OWA. Let Q; € £; and Qs € L, be two
queries. Let p be a new predicate, and let ¢; and g9 be the answer predicates of Q; and 9,
respectively. Consider as view definition the rules of Q; together with the additional rule

v(e) : = q(X), p(X)

and the instance I = {v(c)}. Let the query Q be defined by all the rules of Q, together with
the following rule:

q(c) :— ¢(X), p(X).

Again, if £; or £y are CQ or CQ7, then the definition of V and query Q respectively can
be transformed into a conjunctive query. Therefore, V C L; and Q € L£,. We show that O,
is contained in Q, if and only if (¢) is a certain answer of Q given V and I.

“=”: Suppose that (c) is not a certain answer. Then there exists a database D with
I C V(D) and Q(D) does not contain {c). It follows that Q;(D) contains a tuple that Qy(D)
does not contain. Therefore, Q; is not contained in Q.

“<”. Assume that Q; is not contained in Q,. Then there exists a database D such that
Q1(D) contains a tuple ¢ that is not contained in Qy(D). Database D can be assumed to
have p(D) = {t}. Then V(D) =1 and Q(D) = {}. Therefore, (c) is not a certain answer. O

The previous theorem involves query complexity. However, we are primarily concerned
by data complexity, and query complexity results can be misleading. For example, the query
complexity of the containment problem of a conjunctive query in a datalog query is EXPTIME-
complete, whereas the containment problem of a conjunctive query in a conjunctive query
with inequality is considerably easier, namely IT5-complete [39]. In comparison, the data
complexity of computing certain answers under OWA for conjunctive view definitions and
datalog queries is polynomial, whereas it is presumably harder, namely co-NP-complete, for
conjunctive view definitions and conjunctive queries with inequality.

'In the case of FO, we use the first-order formula corresponding to this rule.

3.1 Conjunctive view definitions

In this section we consider the complexity of the problem of computing certain answers
under OWA in the case of conjunctive view definitions. We will consider queries of different
expressive power.

3.1.1 Polynomial cases

The main tool for proving polynomial time bounds is the notion of maximally-contained
query plans. We recall the relevant definitions here.

The input of a datalog query Q consists of a database D storing instances of all EDB
predicates in Q. Given such a database D, the output of Q, denoted Q(D), is an instance
of the answer predicate ¢ as determined by, for example, naive evaluation [35]. A datalog
query Q' is contained in a datalog query Q if, for all databases D, Q'(D) is contained in
Q(D).

A datalog query P is a query plan if all EDB predicates in P are view literals. The
expansion PP of a datalog query plan P is obtained from P by replacing all view literals
with their definitions. Existentially quantified variables in view definitions are replaced by
new variables in the expansion. A query plan P is maximally-contained in a datalog query
Q w.r.t. a view definition V if P¢*? C Q, and for each query plan P’ with (P")**? C Q, it is
the case that P’ is also contained in P. Intuitively, a maximally-contained query plan is the
best of all datalog query plans in using the information available from the view instances.
As shown in [12], it is easy to construct these maximally-contained query plans in the case
of conjunctive view definitions.

Theorem 3.2 shows that maximally-contained query plans compute exactly the certain
answers under OWA.

Theorem 3.2 For V C PQ, Q € datalog, and query plan P that is maximally-contained
in Q with respect to V, P computes exactly the certain answers of Q under OWA for each
view instance 1.

Proof. Assume for the sake of contradiction that there is an instance I of the view such
that P fails to compute a certain answer ¢ of @ under OWA. Let P’ be the query plan that
consists of all the rules of P, together with two additional rules r; and 7s:

ri: ¢(X) 1= q(X)
ror () — vi(tin), .-, vilting), - -5 Vk(tk1), -, Vk(tkny)

where ¢ is the answer predicate of P, and I is the instance with I(v1) = {t11,---,tin, }s - - -,
I(vg) = {tk1,- .., tkn,}. We are going to show that (P')¢*? is contained in Q. Since P’ is
not contained in P, this contradicts the maximal containment of P in Q. Therefore, there
cannot be a certain answer ¢t under OWA that P fails to compute.

In order to see that (P’)**? is contained in Q, we have to show that P'(V(D)) is contained
in Q(D) for each database D. Let D be an arbitrary database. Because P°*P is known to be
contained in Q, it suffices to show that r(V(D)) is contained in Q(D). If I is not contained
in V(D), then 7(V(D)) is the empty set, which is trivially contained in Q(D). So let us

assume that I is contained in V(D). Then ro(V(D)) = {t}. Because t is a certain answer
under OWA, it follows by definition that ¢ is an element of Q(D). Therefore, 72(V(D)) is
contained in Q(D). O

Remark The previous theorem has been generalized in [14]. It is shown that for V and Q
formulated in arbitrary languages and for query plans formulated in a language L, if there
exists a query plan P € L that is maximally-contained in Q@ with respect to V, then P
computes all certain answers of @ under OWA for each view instance I. Moreover, if the
language £ is monotone, then P computes exactly the certain answers. O

As shown in [12] for all V¥ C CQ and Q € datalog, corresponding maximally-contained
datalog query plans can be constructed. In the following, we will give an example of the
construction of maximally-contained query plans used in [12].

Example 3.1 Consider the view definition V with

n(X,Y):— p(X,Y), m(X),
U2(X1 Y) . p(X,Z), p(Z,Y), f(X),

and the query Q with

q(X,Y) B p(X,Y),
Q(Xﬂ Y) B p(X, Z)a Q(Za Y)'

v; and vy can be seen as storing the mother of and grandfather of relation respectively, and
query @ asks for the ancestor relation. Certainly, the complete ancestor relation cannot be
computed given just the data provided by the views.

The maximally-contained datalog query plan can be constructed as follows. First, inverse
rules are generated that encode how to construct tuples of the database predicates from the
view. The inverse rules in our example are the following:

m(X) — 0 (X,Y)
f(X) — 1a(X,Y)
p

(X,)Y) — 0 (X,Y)
p(X,g(X, Y)) . UQ(X: Y)
p(g(X, Y)’Y) T UQ(Xa Y)

g is a new function symbol. To understand the role of the function term assume that I(vs)
contains a tuple (a, b). Then (a, ¢), (¢, b) € p(D) for some constant c¢. This unknown constant
c is automatically named g(a, b) in the inverse rules.

Function symbols can be eliminated from the query plan formed by the relevant inverse
rules and query Q. The resulting datalog query plan is the following:

q(X,Y) 1= p(X,Y),

Q(XaY) B p(X, Z)a Q(Zay)

q(X,Y) = oi(X, Z1,7Zy), go(Z1,75,Y)
@(X,Y,Z) —p(X,Y,2),

10

QQ(Xth,) —pz(Xl,Xz,); Q(Zay)
p(X,Y) - n(X,Y)
n(X,X,Y) —unX)Y)
pQ(X,}/’Y) L= UQ(X, Y)

It has been shown in [12] that the datalog query plans constructed in this fashion are
guaranteed to be maximally-contained in Q with respect to V.
O

The data complexity of evaluating datalog queries is polynomial [40]. The existence of
maximally-contained query plans for all V¥ C CQ and Q € datalog shown in [12] therefore
implies that the problem of computing certain answers under OWA can be answered in
polynomial time.

Corollary 3.1 For V C CQ and Q € datalog, the problem of computing certain answers
under OWA can be answered in polynomial time.

3.1.2 Inequalities in the view definition

We next show (Theorem 3.3) that adding inequalities just to the view definition doesn’t add
any expressive power. The certain answers are exactly the same as if the inequalities in
the view definition were omitted. This means that the maximally-contained datalog query
constructed from the query and the view definition but disregarding the inequality constraints
computes exactly the certain answers. Therefore, the problem remains polynomial.

Theorem 3.3 LetV C CQ7 and Q € datalog. Define V™ to be the same view definition as
V but with the inequality constraints deleted. Then a tuple t is a certain answer under the

open world assumption given V, Q and a view instance I if and only if t is a certain answer
under OWA given V~, Q and I.

Proof. “=". Assume that ¢ is a certain answer under OWA given V, Q and I. Let D
be a database with I C V(D). If also I C V(D), then it follows immediately that ¢ is in
Q(D). Otherwise, there is a view definition v in V and a tuple s € I such that s € v=(D),
but s € v(D). Let C # C' be an inequality constraint in v that disabled the derivation of
s in v(D). Because we can assume that s is in v(D’) for some database D', at least one of
C or C" must be an existentially quantified variable X. Add tuples to D that correspond to
the tuples that generate s in v~ (D), but with the constant that X binds to replaced by a
new constant. These new tuples then satisfy the inequality constraint C' # C’. By repeating
this process for each such inequality constraint C' # C' and each such tuple s, we arrive at
a database D" with I C V(D"). Because ¢ is a certain answer given V), it follows that ¢ is in
Q(D"). Therefore, there are tuples t1, ..., 1 € D" that derive ¢. If any ¢; contains one of the
new constants, replace it by the tuple ¢; € D that it was originally derived from. Because ¢
doesn’t contain any new constants, and because Q cannot test for inequality, it follows that
t is also derived from ¢{,...,¢,. Hence t is in Q(D).

“«”: Assume that t is a certain answer under OWA given V~, Q and I. Let D be a
database with I C V(D). Because V is contained in V™, it follows that I C V~(D), and
therefore ¢ is in Q(D). O

11

3.1.3 Inequalities in the query

On the other hand, we see next (Theorem 3.4) that adding inequalities to queries does add
expressive power. A single inequality in a conjunctive query, even combined with purely
conjunctive view definitions, suffices to make the problem co-NP-hard. Van der Meyden
proved a similar result [37], namely co-NP hardness for the case V C CQ< and Q € CQ<.
Our theorem strengthens this result to V C CQ and Q € CQ7.

Theorem 3.4 ForV C CQ, Q € CQ7, the problem of determining whether, given a view
instance, a tuple is a certain answer under OWA is co-NP-hard.

Proof. Let ¢ be a 3CNF formula with clauses c¢i,...,¢,, and variables xi,..., Z;,.
Consider the following view definition V, query Q, and view instance [:

V: n(X,Y):—p(X,Y)
UQ(Xaz) :—p(X,Y), p(KZ)

Q: q(c) — p(X, V), p(X,Y5), p(X,Ys), p(X,Yy), Vi # Y, fori#j

I: I(v1) = {(ci,p;) | if clause ¢; contains z;}
{(ci,n;) | if clause ¢; contains —z;}
{<pja nj>7 <pJ7QJ>7 <nj7pj>7 <nj7 QJ>7 <QJ7pj>7 <QJ7 nj)7 <QJ7 Q]) | .7 = 17 s 7m}
I(vy) ::[(qj,O) | j = 1,...,m}JU:{(cZ~,1) [i=1,...,n}
® @

U
U

We will show that ¢ is satisfiable if and only if {(¢) is not certain for V, Q, and I. Because
the problem of testing a 3CNF formula for satisfiability is NP-complete [9], this implies the
claim.

“=": Suppose ¢ is satisfied by some valuation v. Choose D such that

p(D) = I(v1) U {(pj; 1), (n3,0) | if v(z;) = true}
U {{pj, 0), (n, 1) [if v(z;) = false}

Because for j = 1,...,m either (g;,p;),(p;,0) € p(D) or (g;,n;),{n;,0) € p(D), (1) is
contained in vy(D). For ¢ = 1,...,n, because v(¢;) = true there is a variable x; that
appears positively in ¢; with v(x) = true or a variable zj that appears negatively in ¢; with
v(xp) = false. Therefore, (2) is contained in v(D). Hence, I is contained in V(D). No node
has more than three outgoing edges. Hence, (c) is not in ¢(D). It follows that (c) is not
certain for V, Q, and I.

“«<”: Suppose there is a database D with I contained in V(D), but ¢(D) is the empty
set. Consider the following valuation v:

N _) true : if (p;,1) € p(D)
v(w;) = { false : otherwise

Consider clause ¢;. Because (2) is contained in vy(D), there is a node z with (¢;, 2), (2,1) €
p(D). Because ¢(D) = 0, z is either p; or n; for some j in {1,...,m}. If z is p;, then z;

12

occurs in ¢; positively, and therefore v(c;) = true. If z is n;, then z; occurs in ¢; negatively.
Because ¢(D) = 0, (n;,0) can not be in p(D). Because (1) is contained in v,(D), (p;,0) must
therefore be in p(D). Again because of ¢(D) = () this implies that (p;, 1) is not in p(D).
Therefore, v(z;) = false, and v(c;) = true. This proves that v satisfies . O

By Theorem 3.2, we know that maximally-contained queries compute exactly the certain
answers under OWA. Because evaluating datalog queries has polynomial data complexity
[40], it follows that in general there are no datalog queries that are maximally-contained in
a conjunctive query with inequality.

3.1.4 First-order queries

We saw that even adding recursion to positive queries leaves the data complexity of the
problem of computing certain answers under OWA still polynomial. On the other hand,
adding negation makes the problem undecidable for both OWA and CWA, as the following
theorem shows.

Theorem 3.5 ForV C CQ, Q € FO, the problem of determining, given a view definition
together with a view instance, whether a tuple is a certain answer under the open or closed
world assumption is undecidable.

Proof. Let ¢ be a first-order formula. Consider the query

q(c) : = ~e.

Clearly, {(c) is a certain answer if and only if ¢ is not satisfiable. Testing whether a first-order
formula admits a finite model is undecidable (see [16]). This implies the claim. O

3.2 Positive view definitions

In the previous section, we proved that adding inequalities to the query results in co-NP-
completeness of the problem of computing certain answers under OWA. The following the-
orem shows that allowing disjunction in the view definition has the same effect on the data
complexity. The same result was proved by van der Meyden in [38] while studying indefinite
databases. We include the theorem for the sake of completeness.

Theorem 3.6 [38] For V C PQ, Q € CQ, the problem of determining, given a view in-
stance, whether a tuple is a certain answer under OWA is co-NP-hard.

Proof. Let G =(V,E) be an arbitrary graph. Consider the view definition:

vi(X) = color(X,red) V color(X,green) V color(X,blue)
v9(X,Y) : — edge(X,Y)

and the instance I with vy =V and vy = E. We will show that the query

q(c) :— edge(X,Y), color(X,Z), color(Y, Z)

13

has the tuple {c) as a certain answer if and only if graph G is not 3-colorable. Because
testing a graph’s 3-colorability is NP-complete [22], this implies the claim. For each database
D with I C V(D), relation edge contains at least the edges from F, and relation color relates
at least the vertices in V' to either red, green, or blue. This means, that the databases D
with I C V(D) are all the assignments of supersets of the vertex set V' to colors such that
the vertices in V' are assigned to red, green, or blue.

“=": Assume that {c) is a certain answer of the query. It follows that for each assignment
of the vertices to red, green, and blue, there is an edge (e1,e;) in E such that e; and e,
are assigned to the same color. Therefore, there is not a single assignment of vertices to
the three colors red, green, and blue such that all adjacent vertices are assigned to different
colors. Hence G is not 3-colorable.

“«”: Assume G is not 3-colorable. Then for each assignment of supersets of the vertex
set V to red, green, and blue there is at least one edge (e, es) such that e; and ey are
assigned to the same color. It follows that the query will produce (c) for each database D
with I C V(D), i.e. the query has (c) as a certain answer. O

Theorem 3.2 tells us that a maximally-contained datalog query P computes exactly the
certain answers under OWA, even if the view definition uses positive queries. On the other
hand, the data complexity of datalog is polynomial [40], while the data complexity of the
problem of computing certain answers under OWA for positive view definitions is co-NP-
complete, as we have just seen. Therefore, maximally-contained datalog queries cannot exist
for all ¥V C PQ@ and Q € CQ. In the following example we are going to give an intuitive
reason why maximally-contained datalog queries do not exist for certain choices of V and Q.

Example 3.2 Consider the following view definition and query:

v1(X) = color(X,red) V color(X, green) V color(X, blue)
v9(X,Y) : — edge(X,Y)
q(c) :— edge(X,Y), color(X,Z), color(Y,Z).

In the proof of Theorem 3.6 we showed that if the view instance [is such that v; =V and
vy = E for some graph G = (V, E), then {(c) is a certain answer if and only if G is not
3-colorable. This implies that each query that makes certain that the input graph is not

G G

Figure 2: Fxamples of graphs that are not 3-colorable.

14

3-colorable is contained in Q. Figure 2 shows some graphs that are not 3-colorable. For
example, queries Q; and Q, that correspond to graphs G; and G5 in Figure 2 respectively
are contained in Q:

Qi(c) : — edge(Xi, X»), edge(Xs, X3), edge(X3, X1),
€dg€(X1,Y), 6dg€(X27Y)7 6dg€(X3,Y)

QQ(C) ‘T €dg€(X1,X2), €dg€(X27X3), 6dge(*Xr37‘Xv4)7 €dg€(X4,X5), €dg€(X5,X1),
€dge(X1,Y)- €dge(X2,Y), edQE(Xg,Y), edge(X4,Y), edge(X5,Y)

The union of all queries that correspond to non-3-colorable graphs is maximally-contained
in @. But this infinite union of conjunctive queries is not representable by a datalog query.
O

Whereas maximally-contained datalog programs might not exists in the case of positive
views, maximally-contained disjunctive datalog query plans are guaranteed to exist as shown
in [14].

3.3 Datalog view definitions

Theorem 2.1 established that the problem can be solved in co-NP for ¥V C PQ7 and Q €
datalog”. Here we examine the effect on the complexity of the problem of computing certain
answers if we allow datalog as view definition language. For positive queries, the problem
stays in co-NP as was shown by van der Meyden in [38|. However, Theorem 3.7 and Corollary
3.2 respectively establish that the problem becomes undecidable for conjunctive queries with
inequality and datalog queries.

3.3.1 Inequalities

In the case of conjunctive view definitions, adding inequalities to the query increased the
complexity of the problem of computing certain answers under OWA from polynomial to
co-NP. With datalog view definitions, adding inequalities to the query raises the problem
from co-NP complexity to undecidability. In [37], van der Meyden showed undecidability for
the case of V C datalog and Q € PQ*. The following theorem proves that the problem is
already undecidable for conjunctive queries with inequality.

Theorem 3.7 For V C datalog, @ € CQ7, the problem of determining, given a view
instance, whether a tuple is a certain answer under OWA s undecidable.

Proof. The proof is by reduction of the Post Correspondence Problem [29] to the problem
in the claim.

Let wy, ..., wy,w),. .., w!, be words over alphabet {a,b}. In the following, p is a ternary
base relation. Consider the following datalog query that defines view v:

v(0,0) :— s(e,e,e)

v(X,Y) :— v(Xo, Vo),

15

s(Xo, X1, 1), -+, 8(Xk 1, X, ag),

s(Yo, Y1, 1), -, 8(Yi1, Y, 1)

where w; = oy ... and w} = B ...0;
one rule for each 7 € {1,...,n}.

S(X’Y’Z) B p(XaXaY)a p(XaYa Z)
and query Q defined by:
q(c) :— p(X,Y, 2), p(X,Y, 2"), Z # Z'

Let the view instance I be defined by I(v) = {{e,e)} and I(s) = {}. We will show
that there exists a solution to the instance of the Post Correspondence Problem given by
Wiy .oy Wy, WY, ..., w, if and only if (c) is not a certain answer under OWA. The result then
follows from the undecidability of the Post Correspondence Problem [29].

o) 8b@b8a@b&@b@b@38
e
S(D) Ob b a@b:4 a@b b a8

Figure 3: The instance of the Post Correspondence Problem given by the words w,; = ba,
wy = b, wsy = bba, w] = ab, w)y = bb, and wi = ba has solution “2113” because wow Wy w3 =
bbababba = whyw|wiwy. The figure shows a database D with (e,e) € v(D), but Q(D) = {}.
In the rows labeled p(D) and s(D) in the figure, an arrow from c; to ¢y labeled c3 means that
(c1,c9,¢3) is in p(D) and s(D) respectively. The row labeled v(D) illustrates the derivation
of tuple (e, e) in view v.

“=": Assume that the instance of the Post Correspondence Problem given by the words
Wi, -« ., Wy, WY, - - -, wy, has a solution 4y, ..., 4. Then w;, ... wy, =w ...w; =7 ...7%, for
some characters v, ...,vm € {a,b}. Consider the database D with

p(D) = {<O)17’71>a"'7<m_27m_ 177m71>7<m_]-aea’Ym)a
(0,0,1),....,{m—=2,m—2,m—1),(m—1,m —1,e),{e,e,e)}.

Clearly, Q(D) = {}. Moreover, it is easy to verify that s(D) and v(D) are as follows:

16

05 1:71)5 ey <m - Qam - 1a7m71>’ <m - 1,65 ,Ym>: <€,6, 6)}

|71]i1 | + ‘71}i2 ‘7 |71J£1 | + ‘71}£2 ‘) AR
lwiy | + -+ |wiy | Jwg, |+ wg, [

(
(
HHH1L|Ué1D,
{
< ip—1
(e,€)}

Since I C v(D) and Q(D) = {}, it follows that (c) is not a certain answer.

“«<”: Assume that (c) is not a certain answer under OWA. Then there is a database
D with I C v(D) such that Q(D) = {}. Because tuple {e,e) is in v(D), there must be

constants cg, ¢1, .. ., ¢y, With ¢g = 0 and ¢,, = e and characters 71, ..., v, € {a,b} such that

<60701771): <61502772>7'"’<Cm—lacm77’m> € S(D) (*)
Let do,dy, .. .,d, be constants with dy = 0 and 6y, ..., 6, € {a,b} be characters such that
<dOa dla 61): <d1a d27 62>a R <dm’—la dm’a 6m’> € S(D)

We are going to show by induction on m' that for m’ < m, d; = ¢; and §; = ~; for i =
0,...,m'. The claim is trivially true for v’ = 0. For the induction case, let m' > 0. We
know that (c;_1, c;,v) € s(D) and (d;_1,d;,6;) € s(D), and that ¢;_; = d;_;. By definition
of S, this 1mphes that tuples <CZ'_1, Ci—1, C.L'), <Ci_1, Ci—ladi>a <Ci—1> CZ',’}/Z'>, and <Ci—11 dz,61> are
all in p(D). Because Q(D) = {}, it follows that d; = ¢; and &; = ;.

Assume for the sake of contradiction that m' > m. Then there is a tuple (d.,, i1, Ym+1) €
s(D), and therefore (dp,, dm, dm+i1)s (dm, dmt1; Ymi1) € p(D). Because (e,e,e) € s(D), it
follows that (e,e,e) € p(D). Since d,, = ¢, = e this implies that d,,;; = e and Y,11 = e,
which contradicts the fact that 7,,,1 € {a,b}. Hence, m' = m.

We proved that there is exactly one chain of the form in (*). Because (e, e) € v(D), there is a

sequence 7y ... 4 With41,..., 4 € {1,...,n} such that w;, ... wy, =71 ...ymand wy, ... w; =
Y1 ..-Ym- Therefore, i1,...,17; is a solution to the instance of the Post Correspondence
Problem given by wy, ..., w,, wi, ..., w,. O

Theorem 3.7 has an interesting consequence for the query containment problem of a
recursive datalog query in a nonrecursive datalog query with inequality. It shows that the
technique in [8] to prove decidability of a datalog query in a nonrecursive datalog query does
not carry to datalog with inequality. Indeed, it is an easy corollary of Theorems 3.1 and 3.7
that the problem is undecidable.

3.3.2 Datalog queries

As we saw, there is a close relationship between the problem of computing certain answers
under OWA and query containment. Not surprisingly it is therefore the case that the problem
becomes undecidable for datalog view definitions and datalog queries.

Corollary 3.2 For V C datalog, Q € datalog, the problem of determining, given a view
instance, whether a tuple is a certain answer under OWA is undecidable.

Proof. The containment problem of a datalog query in another datalog query is unde-
cidable [33]. Therefore, the claim follows directly from Theorem 3.1. a

17

3.4 First-order view definitions

Theorem 3.5 showed that adding negation in queries leads to undecidability. The following
theorem now shows that the same is true for adding negation to view definitions.

Theorem 3.8 ForV € FO, Q € CQ, the problem of determining, given a view instance,
whether a tuple is a certain answer under the open or the closed world assumption is unde-
cidable.

Proof. Let ¢ be a first-order formula, and p a new predicate. Consider the view definition

v(c) 1= @(X) V p(X)

together with the instance I = {v(c)} and the query Q defined by:

q(c) : = p(X)

We will show that {c) is a certain answer under the open or closed world assumption if and
only if formula ¢ is not satisfiable. By Trahtenbrot’s theorem, testing whether a first-order
formula admits a finite model is undecidable (see [16]). This implies the claim.

“=": Suppose that ¢ is satisfiable. Then there exists a database D such that (D)
is satisfied, and such that p(D) is empty. For this database, I = v(D) and Q(D) = {}.
Therefore, {c) is not a certain answer.

“«<”: Suppose that (c) is not certain. Then there is a database D with I C V(D) (or
with I = V(D)) such that (c) is not in Q(D). Since p(D) is empty, ©(D) must be satisfied.
Therefore, formula ¢ is satisfiable. O

4 Closed world assumption

Figure 4 gives an overview of the complexity of the problem of computing certain answers
under CWA. Computing certain answers under CWA is harder than under OWA. Whereas
the problem is polynomial for V C CQ* and Q € datalog under OWA, the problem is already
co-NP-complete for V C CQ@Q and Q € C'() under CWA. Moreover, whereas the problem is
decidable for V C datalog and Q@ € P@Q under OWA, the problem is already undecidable for
V C datalog and Q € CQ under CWA.

4.1 Conjunctive view definitions

The following theorem shows that computing certain answers under the closed world as-
sumption is already co-NP-hard in the very simplest case, namely in the case of conjunctive
view definitions and conjunctive queries.

Theorem 4.1 ForV C CQ, Q € CQ, the problem of determining, given a view instance,
whether a tuple is a certain answer under CWA 1is co-NP-hard.

Proof. Let G =(V, E) be an arbitrary graph. Consider the view definition:

18

— query —
views cQ CQ* PQ datalog FO
cqQ CO-NP CO-NP CcOo-NP co-NP undec.
cQ* CO-NP CO-NP cO-NP co-NP undec.
PQ cO-NP CO-NP co-NP co-NP undec.
datalog | undec. undec. undec. undec. undec.
FO undec. undec. undec. undec. undec.

Figure 4: Data complexity of the problem of computing certain answers under the closed
world assumption.

v (X) = color(X,Y)
ve(Y) 1= color(X,Y)
v3(X,Y) : — edge(X,Y)

and the instance I with I(vy) =V, I(vy) = {red, green, blue} and I(v3) = E. We will show
that under CWA the query

q(c) :— edge(X,Y), color(X, Z), color(Y,Z)

has the tuple (c) as a certain answer if and only if graph G is not 3-colorable. Because
testing a graph’s 3-colorability is NP-complete [22], this implies the claim.

For each database D with I = V(D), relation edge contains exactly the edges from E,
and relation color relates all vertices in V to either red, green, or blue.

“=": Assume that {c) is a certain answer of the query. It follows that for each assignment
of the vertices to red, green, and blue, there is an edge (e1,e;) in E such that e; and e,
are assigned to the same color. Therefore, there is not a single assignment of vertices to
the three colors red, green, and blue such that all adjacent vertices are assigned to different

colors. Hence G is not 3-colorable.

“«”: Assume G is not 3-colorable. Then for each assignment of vertices in V' to red,
green, and blue there exists at least one edge (eq, es) such that e; and ey are assigned to the
same color. It follows that the query will produce (c) for each database D with I = V(D),
i.e. the query has (c) as a certain answer. O

4.2 Datalog view definitions

The final theorem in this section shows that for datalog view definitions, the problem is
undecidable under CWA.

Theorem 4.2 ForV C datalog, @ € CQ the problem of determining, given a view instance,
whether a tuple is a certain answer under CWA is undecidable.

Proof. The proof is by reduction of the containment problem of datalog queries that is
undecidable by [33].

19

Let Q; and Qs be two datalog queries with answer predicate ¢; and ¢y respectively.
Consider the view definition consisting of the rules of Q; and Q,, and the rules

v1(c) :— r(X)
vi(c) :— q(X), p(X)
1)2(0) — C]z(X)a p(X)

where p and r are two relations not appearing in Q; and Qs. Consider the instance I with
I(v;) = {{c)} and I(v;) = {}, and the query Q defined by:

q(c) :— r(X)
If Q; C Q,, then for each database D with V(D) = I,
@(D) Np(D) C g2(D) Np(D) = I(vz) = {}.

Therefore,

r(D) = I(v) = {{0)},

i.e. {c) is a certain answer under CWA.

On the other hand, if @; Q,, then there is a database D such that some tuple ¢ is in
Q1(D), but not in Qy(D). By extending D such that p(D) = {t} and r(D) = {}, we have
that V(D) = I. Because ¢(D) = {}, (c) is not a certain answer under CWA.

We established that (c) is a certain answer under CWA if and only if Q; is contained in
Q5. The claim now follows from the undecidability of containment of datalog queries. O

5 Using Conditional Tables

In this section, we first recall the notion of conditional table. (For more on this topic, see
[20], where they are introduced or [1].) Then we show an effective way — based on these
tables — of computing queries using views for positive views and datalog queries.

Intuitively, a conditional table is a database instance which might have variables as entries
in its tuples. There is also a global condition [1] on the set of variables and for each tuple, a
local condition controlling the actual presence of the tuple. A possible database for a table T
is obtained by choosing a valuation satisfying the global condition, keeping only those tuples
with a true local condition and valuating the variables in those tuples. So, a conditional
table represents a set of possible databases. These tables were introduced by Imielinski and
Lipski [20] who also showed how to query conditional tables.

The technique presented in this section is based on the intuition that given a view in-
stance, one can represent the set of possible databases (or, more precisely, a sufficient set
of possible databases) by a conditional table, and then answer queries using conditional
table technology. To simplify the presentation, we consider here that both the database
instance D and the view instance I consist of a single relation. As a consequence, we may
focus on conditional tables over a single relation. The generalization to multiple relations is
straightforward.

20

T|A B D, |A B D,|A B Ds|A B D,
r#2,y#2 |
0 1 0 1
0 0

Figure 5: A conditional table and some possible databases

— O
o =

A condition is a conjunct of equality atoms of the form x = y or x = ¢, and of inequality
atoms of the form x # y or x # ¢, where x and y are variables and ¢ is a constant. Note that
true and false can be encoded as r = x and = # x respectively. A valuation v (of variables to
constants) satisfies a condition ®, denoted v = ®, if its assignment of variables to constants
makes the formula true.

A table is a relation where the entries may be either constants or variables. Conditions
may be associated with a table 7" in two ways: (1) a global condition ® is associated with the
entire table T'; (2) a local condition ¢; is associated with tuple ¢ of table T. A conditional
table (c-table in short) is a triple (T, ®, ¢) where

e T is a table,
e & is a global condition,
e ¢ is a mapping over T that associates a local condition ; to each tuple t of T

A c-table is shown in Figure 5. If we omit listing a condition, then it is by default the atom
true. Note also that conditions ® and ¢, for ¢ in 7" may contain variables not appearing in
T or t respectively. For brevity, we usually refer to a c-table (T, ®, ¢) simply as T, when ®
and ¢ are understood.

Given a valuation v and a c-table T', the valuation of T by v is defined by:

v(T)={v®) |tinT, v =@}

Then a c-table T' (with ® and ¢ understood) represents a set of possible databases as follows:

rep(T) = {v(T) | v = @}

We will say that a tuple ¢ is a certain answer for query Q given a table 7', if for each D
in rep(T), t is in Q(D). Imielinski and Lipski also consider an open-world interpretation
for tables. But we will mostly ignore this aspect here in order not to confuse with our
CWA/OWA for views.

Consider the table T' in Figure 5. Then D, D,, D3, and D, are obtained by valuating
z,y to (0,0), (0,1), (1,0), and (3, 0) respectively.

We are interested in querying incomplete information. The answer to a query Q on an
infinite set of possible databases {D;, D,, ...} can be defined as {Q(D;), Q(D»),...}. Tt
turns out that if we start with a c-table, we are able to represent the answers by a c-table
as well if the query is in relational algebra [20]. Using similar techniques, one can show:

21

Theorem 5.1 [18] For each c-table T over U and a datalog” query Q over U, one can
construct a c-table Tg such that rep(Tg) = Q(rep(T)).

We next see (Theorem 5.2) how the problem of querying materialized views can be
reduced to the problem of querying conditional tables, thereby highlighting the strong con-
nection between materialized views and incomplete databases. The construction used in the
proof is illustrated first by an example.

Example 5.1 Suppose the view is specified by:

U(O: Y) - p(Oa Y)
U(Xv Y) ‘T p(X7 Z)a p(Z7 Y)
and the view instance I consists of {v(0,1),v(1,1)}. Then there are two different ways to

obtain the first tuple and only one for the second. This yields the following conditional table
for p (the global condition is true):

01 w=1
0 z w#1
z 1 w#1l
1 u true
u 1 true

This is the table needed for OWA. For instance, let w = z = v = 2. Then the corresponding
database D is {p(0,2),p(2,1),p(1,2)}. Observe that, because of the second rule, v(2,2) is
in V(D). So, some tuples may be in the view that are not in I.

For CWA, we have to introduce the constraint that only tuples in I may be in the view.
So, consider the last two tuples of the table. They may join in the second rule to yield (u, u).
This tuple must be in I, so v has to be 1. Indeed, one can find that under CWA the result
is the following (complete) table for p:

0 1 true
1 1 true
Note that this table is a “regular” relation because no incompleteness is expressed. O

The following construction will be needed towards Theorem 5.2. Let V C PQ7 be a
view definition and let I be a view instance. We assume here that the view is consistent
under OWA i.e. that there exists a database D such that I C V(D). We now describe the
construction of a table T, such that the certain answers to any query Q € datalog” using
the view are the same as the certain answers to Q using 7,,,.- S0, in particular, we could
use this table to compute certain answers to queries. For the construction, we first consider
conjunctive queries, and then treat disjunctions.

22

Conjunctive view definition (with inequality): We can assume without loss of gen-
erality that the view is defined by a rule r of the form:?

(X1, .y Xp) = (Y, Y0 (Y, YY) Ay A,

where the A;’s are equalities and inequalities, and X1,..., X, Y, ...,V ... YT ... V%
are all distinct variables. Let u = (a1, ...,a,) be a tuple in I. Consider the substitution 6,
such for each i, 0,(X;) = a;, and for each 4, k, 0,(V*) = Y, where for each k, 1, u, Y;’“u is a

2,u)

distinct new variable. Now let, for each v € I and for k=1,...,¢,:
tlzca,r = <Yl]fu’) Ynk,u>a

Yr(th) = Ou (A1) AL AL (Ay).
The resulting c-table consists of (Typyq, true, 1,) with
Towa ={th,luel, k=1,...,¢}.

Of course, a lot of simplifications can be performed on this table, notably replacing each
variable Z by constant ¢ if Z = ¢ is a condition.

Positive view definition (with inequality): We can assume without loss of generality
that the view definition is given in the form of a set of conjunctive queries {r1,...,r,}. Now
a difficulty is that a tuple w in I may be obtainable with several conjunctive queries. It
would be wrong to force the table to have machineries to derive the tuple v m times. We
generalize the technique used in the example. For each tuple u in view I, let Z, be a new
variable. The resulting c-table consists of (T, true, ¢) with

Towa Z{tﬁ,”\uef,i=1,...,m,k=1,...,qT},
o(th) =t VNZy=i fori=1,...,m—1,

U,Tg

oth . Y= (5 VAZy#E TN AN ZyFm— 1.

We next turn to the theorem.

Theorem 5.2 Let V C PQ7 and let I be a view instance. Then one can construct a
conditional table Ty, such that for each query Q € datalog”, a tuple u is a certain answer
to Q given V and I under OWA if and only if it is a certain answer to query Q using Tyyq-

Proof. Let ¥V C PQ¥ and let I be a view instance and 7T},,, defined as above. We first
prove that:

For each D in rep(Towa), I C V(D). (3)

Let D be in rep(Tpy,) for some valuation v. Consider some v in I. If v(Z,) isin {1,...,m—1},
let i be v(Z,). Otherwise, let 7 be m. It is easy to see that {v(tf)| k=1,...,¢} (asubset
of D) allows to derive u. The assumption that I is consistent is crucial here. With an
inconsistent I, a local condition false may prevent from obtaining all I. So, u is in V(D).
Hence I C V(D).

Thus, using view I under the OWA, each database in rep(Tyy,,) is a possible database.
We now show that each possible database contains a database in rep(Tyyq):

2Recall that we assume for the sake of a clear presentation that the database consists of a single relation.

23

For each D such that I C V(D), there exists D' € rep(Tpy,) such that D' C D. (4)

Let D be such that I C V(D). Let u be a tuple in /. This tuple must be derivable using
some rule, say r;, and some tuples in D. We choose v(Z,) to be j and fix for the variables
of t’g,” appropriate values for v in the obvious way. For the variables in t’z,” for 1 # 7, we
can choose arbitrary values for v since they have no effect. We do this for each u. Consider
the valuation v that is obtained and D' = v(T,y,)- Then D' is a subset of D.

Now we are in a position to prove the claim:

“=": Assume that u is a certain answer under OWA to Q given V and I. Then for all
D such that I C V(D), u is in Q(D). Let D be in rep(Towa)- By (3), I € V(D). Thus, u is
in Q(D). Hence, u is a certain answer to Q using Tpyq-

“«”: Assume that u is not a certain answer under OWA to Q given V and I. This
means that for some D such that I C V(D), u ¢ Q(D). Then by (4) there is D' in 7ep(Tpupa)
such that D' C D. By monotonicity, u ¢ Q(D'). Thus u is not a certain answer to Q using
Towa- O

The previous theorem provides an algorithm for evaluating datalog” queries on a database
given some materialized view defined using PQ7:

(i) compute the c-table 7,,, representing the database (preprocessing);
(ii) for each query Q, compute the c-table representing Q(7},,); and
(iii) compute the certain tuples in the c-table for Q(Tuq)-

The first two steps are in PTIME although the simplification of the result table (finding a
more compact (minimal) equivalent c-table is not). Of course, we cannot expect to obtain
in general a better bound than co-NP.

The following remark shows that 7,,, is not only sufficient to obtain the certain answers
to queries but that it describes in some sense perfectly the knowledge we have of the database
given V and I. Although not done here this would permit to use 7,,, for other purposes
such as verifying whether a tuple may possibly be in D given V and I.

Remark As previously mentioned, one can give an OWA of a c-table. It turns out that
the set of possible databases according to the OWA of T,,, is exactly the set of possible
databases under OWA given view instance I and view definition V. In the CWA case, we
will not be able to describe so accurately the set of possible databases given a view. But, we
will approach close enough to again be able to obtain the certain answers to datalog queries.
O

To conclude this section, we briefly consider CWA for views.

Closed world assumption

Theorem 5.3 Let V C PQ7 and let I be a view instance. Then one can construct a
conditional table (with global condition) T ., such that for each Q € datalog”, a tuple u is
a certain answer to Q under CWA given V and I if and only if it is a certain answer to
query Q using Teyq.

24

Proof. When we considered the OWA, we made sure that the proper machinery was
in the c-table to at least derive I. However, many of the databases that we considered
possible could derive more tuples and we considered that fine. Now, under the CWA, some
of these databases are not feasible. This can be viewed as a constraint on the set of possible
databases. We know that for each D in rep(T,yu,), I C V(D). We would like also the
constraint, that V(D) C I. Let us illustrate how this constraint can be handled in Example
5.1. The second rule may be applied on the first and 4th row of the c-table. It yields the
tuple (0, u) assuming the condition w = 1 A true. (We do not perform any simplification to
make the point clearer.) Now, the CWA, forces this tuple to be in I, so we have to add as
a global condition that this tuple is in I, i.e., that it is (0, 1) or (1,1). This introduces the
following conjunct to the global condition:

w=1AtrueN(0=0Au=1)V(0=1Au=1))

By applying the same construction, we end up with a very large global condition ®. (This
condition is likely to simplify dramatically in practical cases.) Consider T, consisting of
the same table, the same local condition, but ® as the global condition. On can verify:

For each D in rep(Towa), I = V(D). (5)
For each D such that I = V(D), there exists D' € rep(Tpy,) such that D' C D. (6)

To see (5): Let D be in rep(T,y,). Clearly, D is also in rep(T,uq), so I € V(D) by (3). By
construction of ®, V(D) C I. To see (6): The construction is as in the OWA case. The fact
that the global condition is verified is guaranteed because of D.

By (5), any certain answer under CWA given V and I is also a certain answer using 7 q.
By (6) and the fact that the query is monotone, any answer that is not certain under CWA
given V and 1, is also not certain using 7.,q- O

It should be observed that we do not have to require as before that I is a consistent
view instance. If we start with an arbitrary instance I that happens to be inconsistent, the
table T,,, that will be constructed will just happen to describe an empty set of databases.
Furthermore, suppose that we also know that the database satisfies certain total dependencies
[17, 42]. Then we can chase [4, 3| the c-table as in [20, 18].

We conclude this section by a remark that states the impossibility to completely capture,
with c-tables, the possible databases given a view under CWA.

Remark In the previous remark we observed that the set of possible databases for 1,,,
under OWA coincides with the set of possible databases given V and I under OWA. The
same property does not hold for views under CWA. Indeed, one can show that there is no
c-table (neither OWA or CWA) that captures exactly the set of possible databases given a
view I under CWA. So, to capture such forms of incompleteness a more refined model of
incompleteness has to be used. We sketch a proof of that fact. This sketch may be skipped
by readers not familiar with c-tables under CWA and OWA.
Suppose the database D is over a 2-ary relation and the view is simply the selection:

v(X) :— p(0,X)

25

Consider an empty view instance I. Let D be the set of possible databases given V and
I under CWA. Suppose that D can be described by a c-table T" under CWA. Then, by
definition, D = rep(T). But suppose that 7" has n tuples for some n. This would imply that
any instance in D has at most n tuples, which is clearly in contradiction with the definition
of D. Now suppose that D can be described by a c-table T' under OWA. Then, for each D
in D and each binary relation D', D U D' is in D (by definition of OWA for c-tables). This
is clearly in contradiction with the definition of D. O

6 View consistency and view self-maintainability

In this section, we consider two other important problems on materialized views, view con-
sistency and view self-maintainability. We do it in the context of CWA since both of these
problems make more sense in that context than under OWA.

Definition 6.1 (view consistency) Let V be a view definition and I an instance of the
view. Then the view is consistent if there is a database D such that I = V(D). a

Definition 6.2 (view self-maintainability) Let D be a database. An update to D is
either a deletion d(¢) of a tuple ¢ in D, or an insertion i(t) of some tuple ¢ not in D. Let V be
a view definition and I a consistent view instance. Then the view is self-maintainable for an
update « if there exists a view instance J such that for each D with I = V(D), J = V(«a(D)).
O

views consistency self-maintainability
cQ NP CO-NP
cQ* NP CO-NP
PQ NP CO-NP
datalog undec. undec.
FO undec. undec.

Figure 6: Data complexity of the view consistency and the view self-maintainability problem.

The complexity of these problems is shown in Figure 6. The complexity table for self-
maintainability is the same as the one for the problem of computing certain answers under
CWA in Figure 4 for conjunctive queries. The complexity of the view consistency problem is
similar with NP in place of co-NP. Note that the undecidable cases for the view consistency
problem are r.e., whereas for computing certain answers and self-maintainability, they are
co-T.e.

Theorem 6.1

(i) ForV C PQ7, the view consistency problem is in NP, and the view self-maintainability
problem is in co-NP (w.r.t. the size of the view).

26

(i) ForV C CQ, the view consistency problem is NP-hard, and the view self-maintainability
problem is co-NP-hard (w.r.t. the size of the view).

(iii) For ¥V C datalog or V C FO, the view consistency problem is undecidable (r.e.), and
the view self-maintainability problem as well (co-r.e.).

Proof.

(i) (view consistency) Let V C PQ7 be a view definition and let I be a consistent view
instance. Then there is a database D with I = V(D). Let n be the total number of
tuples in I and let £ be the maximal number of conjuncts in the view definition. For
each tuple u, there exist k' tuples in D for some k' < k that suffice to generate wu.
Therefore (since V is monotone), there is a database D' with at most nk tuples such
that I = V(D'). Because checking that I = V(D’) can be done in polynomial time it
follows that the view consistency problem is in NP for ¥V C PQ7.

Let @ € CQ, V, I, and t be an instance of the problem of computing certain answers.
Let Qpogy[t] be the body of Q with head variables instantiated corresponding to ¢. Let
v be a new view literal. Consider the view definition V' that contains all of V and the
following additional definition:

v(c) 1= Qpodylt]

We will show that V' and I are consistent if and only if ¢ is not a certain answer under
CWA given V, Q, and I. It follows from Theorems 4.1, 4.2, and 3.8 that the view
consistency problem is NP-hard for ¥V C C'(), and undecidable for V C datalog and
Y C FO.

“=": Assume that V' and I are consistent. Then there is a database D with I = V(D).
Because v(c) € I, it follows that ¢ ¢ g(D). Because it is the case that I = V(D), t is
not a certain answer under CWA given V, Q, and 1.

“«<”: Assume that t is not a certain answer under CWA given V, Q, and I. Then
there is a database D with I = V(D) and ¢ ¢ ¢(D). Therefore, V' and I are consistent.

(ii) (view self-maintainability) Let V C PQ7 be a view definition and let I be a consistent
view instance that is not self-maintainable for an update «. Then there are databases
D; and D, such that I = V(D;) = V(D,), but V(a(D;)) # V(a(D;)). Without
loss of generality, let ¢ be a tuple in V(a(D;)) that is not in V(a(Dy)). Let t; €
p1(D1), ..., tm € pm(D1) be the tuples needed to generate t. As before, let D} C D,
and D) C D, be databases with at most nk tuples and I = V(Dj) = V(D)). Let
D! be the database D| U {t,...,t,,}. Because of the monotonicity of V it is the
case that I = V(DY), and that ¢ ¢ V(«(D})). Since t € V(a(DY)) it follows that
V(a(DY)) # V(«(Dj)). Because the size of DY and D, is polynomially bounded by
the size of V and I, and because checking that V(«a(DY)) # V(a(Dj})) can be done
in polynomial time, it follows that the self-maintainability problem is in co-NP for
Y C PQ*.

Let G = (V, E) be an arbitrary graph. Consider the view definition:

27

v1(X) = color(X,Y)
vo(Y) = color(X,Y)
v3(X,Y) :— edge(X,Y)
v4(c) :— edge(X,Y), color(X, Z), color(Y,Z), r(c)

and the instance I with I(v;) =V, I(vy) = {red, green, blue}, I(v3) = E, and I(vy) =
. We will show that V and I are self-maintainable for the insertion of {c) into r if and
only if G is not 3-colorable. Because testing a graph’s 3-colorability is NP-complete
[22], this proves that the self-maintainability problem for V C C'@ is co-NP-hard.

“=": Assume G is 3-colorable. Then there are databases D; and Dy with I = V(D;) =
V(D,), va(c) € V(D1 U {r(c)}), and vs(c) € V(D2 U {r(c)}). Therefore, V and I are
not self-maintainable for the insertion of (¢} into 7.

“<”: Assume @ is not 3-colorable. Then for every database D with I = V(D) it is

the case that vy(c) € V(D U {r(c)}). Therefore, ¥ and I are self-maintainable for the
insertion of (c) into 7.

Let @ € CQ, V C datalog, I, and t be an instance of the problem of computing certain
answers. Let Qpoqy[t] be the body of Q with head variables instantiated corresponding
to t. Let r; and 79 be new database predicates, and let v be a new view literal. Let)V’
be all of V plus the following definition:

v(c) 1 — Qbody [t]
v(c) :— ri(c)
v(c) :— ro(c)

Let I' be T U {v(c)}. We will show that ¢ is certain under CWA given V, Q, and [if
and only if V' and I’ is self-maintainable for the deletion of {c) from r;. It follows from
Theorem 4.2 that the view maintainability problem is undecidable for V C datalog.
The proof for ¥V C FO is similar.

“=": Assume that ¢ is certain under CWA given V, Q, and I. Then for every database
D with I' = V'(D), it is the case that I’ = V'(D — {r1(c)}). Therefore, V' and I' are
self-maintainable for the deletion of (c) from 7.

“<”: Assume that V' and I' are self-maintainable for the deletion of (c) from 7.
Because there is a database D with I’ = V(D) and (c) € r3(D), it is the case that
v(c) € V(D — {ri(c)}). Because for every database D with I = V(D) there is a
database D' with I' = V'(D’) and {(c) & ra(D), it follows that ¢ is a certain tuple under
CWA given V, Q, and 1.

O

7 Conclusion

We presented some complexity results with respect to materialized views. A main con-
tribution is (i) the exhibition of deep connections with incomplete databases and (as a

28

consequence) (ii) the point of view that a materialized view should be seen as an incom-
plete database. This indeed suggests using some model of incomplete information as the
view model. We will illustrate briefly this direction with an example. Consider the self-
maintainability problem of materialized views. Suppose we have such a view, the database
is unavailable and we receive some updates to the database. A known technique is to verify
whether the view is self-maintainable. If it is not, we raise our hands and in principle the
view becomes unavailable. However, one could consider updating the incomplete database
corresponding to the view. We could continue answering queries, and indeed, with such a
model, it is possible to have more semantics in our answers, e.g. provide besides certain an-
swers, possible answers, or indicate whether our answer is surely complete or not. We intend
to continue the present work in that direction.

Acknowledgments

We would like to thank Moshe Y. Vardi and Alon Y. Levy for pointing us to the work
of Ron van der Meyden on the complexity of querying indefinite databases, and Michael
R. Genesereth, Pierre Huyn, Werner Nutt, Anand Rajaraman, and Yehoshua Sagiv for
discussions on the topic. Special thanks to Marc Friedman, Alon Y. Levy, and Todd D.
Millstein for pointing out a flaw in a proof in a previous version of this paper.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of sets
of possible worlds. Theoretical Computer Science, 78(1):159-187, 1991.

[3] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient optimiziation of a class of relational
expressions. ACM Transactions on Database Systems, 4(4):435-454, 1979.

[4] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions.
SIAM Journal on Computing, 8(3):218-246, 1979.

[5] C. Beeri, A. Y. Levy, and M.-C. Rousset. Rewriting queries using views in description
logics. In Proceedings of the Sizteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS 97, p. 99-108, Tucson, AZ, 1997.

6] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proceedings of the Ninth Annual ACM Symposium on the
Theory of Computing, p. 77-90, 1977.

[7] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with
materialized views. In Proceedings of the Eleventh International Conference on Data
Engineering, IEEE Comput. Soc. Press, p. 190-200, Los Alamitos, CA, 1995.

29

8]

S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive and nonrecursive datalog
programs. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium
on the Principles of Database Systems, p. 55-66, San Diego, CA, 1992.

S. A. Cook. The complexity of theorem proving procedures. In Proceedings of the Third
Annual ACM Sympoisum on Theory of Computing, p. 151-158, Shaker Heights, OH,
1971.

G. Dong and J. Su. Conjunctive query containment with respect to views and con-
straints. Information Processing Letters, 57(2):95-102, 1996.

O. M. Duschka. Query optimization using local completeness. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence, AAAI-97, p. 249-255, Prov-
idence, RI, 1997.

O. M. Duschka and M. R. Genesereth. Answering recursive queries using views. In Pro-
ceedings of the Sizteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS °97, p. 109 — 116, Tucson, AZ, 1997.

O. M. Duschka and M. R. Genesereth. Query planning in Infomaster. In Proceedings
of the 1997 ACM Symposium on Applied Computing, San Jose, CA, 1997.

O. M. Duschka and M. R. Genesereth. Query planning with disjunctive sources. In
Proceedings of the AAAI Workshop on Al and Information Integration, Madison, WI,
1998.

O. M. Duschka and A. Y. Levy. Recursive plans for information gathering. In Proceed-
ings of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI,
Nagoya, Japan, 1997.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

R. Fagin and M. Y. Vardi. The theory of data dependencies: A survey. In M. Anshel and
W. Gewirtz, editors, Mathematics of Information Processing: Proceedings of Symposia

wn Applied Mathematics, Vol. 34, p. 19-71. American Mathematical Society, Providence,
RI, 1986.

G. Grahne. Problem of incomplete information in relational databases. Springer-Verlag,
1991.

N. Huyn. Maintaining data warehouses under limited source access. Ph.D. Thesis
STAN-CS-TR-97-1595, Stanford University, 1997.

T. Imielinski and W. L. Jr. Incomplete information in relational databases. J. ACM,
31(4):761-791, 1984.

D. S. Johnson and A. Klug. Testing containment of conjunctive queries under functional
and inclusion dependencies. Journal of Computer and System Sciences, 28:167-189,
1984.

30

22]

[23]

[24]

R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, p. 85—104, 1972.

A. Klug. On conjunctive queries containing inequalities. Journal of the Association for
Computing Machinery, 35(1):146-160, 1988.

W. J. Labio, Y. Zhuge, J. L. Wiener, H. Gupta, H. Garcia-Molina, and J. Widom. The
WHIPS prototype for data warehouse creation and maintenance. In Proceedings ACM
SIGMOD International Conference on Management of Data, p. 557-559, Tucson, AZ,
1997.

A. Y. Levy, A. O. Mendelzon, D. Srivastava, and Y. Sagiv. Answering queries using
views. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, San Jose, CA, 1995.

A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proceedings of the 22nd International Conference
on Very Large Databases, p. 251-262, Bombay, India, 1996.

A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries using limited external
processors. In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, Montreal, Canada, 1996.

A.Y. Levy and D. Suciu. Deciding containment for queries with complex objects. In
Proceedings of the Sizteenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, PODS 97, p. 32-43, Tucson, AZ, 1997.

E. Post. A variant of a recursively unsolvable problem. Bulletin American Mathematical
Society, 52:264-268, 1946.

A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using templates with
binding patterns. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, 1995.

Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the union
and difference operators. J. ACM, 27(4):633-655, 1980.

O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proceedings of
the Sizth ACM Symposium on Principles of Database Systems, p. 237-249, 1987.

O. Shmueli. Equivalence of datalog queries is undecidable. Journal of Logic Program-
ming, 15:231-241, 1993.

J. D. Ullman. Principles of Database and Knowledgebase Systems, Vol. 1. Computer
Science Press, 1988.

J. D. Ullman. Principles of Database and Knowledgebase Systems, Vol. 2. Computer
Science Press, 1989.

31

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. D. Ullman. Information integration using logical views. In Proceedings of the Sizth
International Conference on Database Theory, 1997.

R. van der Meyden. The complexity of querying indefinite information: Defined rela-
tions, recursion and linear order. Technical report, Rutgers University, 1992.

R. van der Meyden. Recursively indefinite databases. Theoretical Computer Science,
116(1):151-194, 1993.

R. van der Meyden. The complexity of querying indefinite data about linearly ordered
domains. Journal of Computer and System Sciences, 54(1):113 — 135, 1997.

M. Y. Vardi. The complexity of relational query languages. In Proceedings of the Four-
teenth Annual ACM Symposium on Theory of Computing, p. 137-146, San Francisco,
CA, 1982.

M. Y. Vardi. Querying logical databases. Journal of Computer and System Sciences,
33(2):142-160, 1986.

M. Y. Vardi. Fundamentals of dependency theory. In E. Borger, editor, Trends in
Theoretical Computer Science, p. 171-224. Computer Science Press, Rockville, MD,
1987.

H. Z. Yang and P.-A. Larson. Query transformation for PSJ-queries. In Proceedings
of the Thirteenth International Conference on Very Large Data Bases, p. 245-254, Los
Altos, CA, 1987.

32

