
Answering Queries Using Views

(Extended Abstract)

Alon Y. Levy Alberto O. Mendelzon* Yehoshua Sagivt

AT&T Bell Laboratories University of Toronto Hebrew University, Jerusalem

levy@research.att .com mendel@db.t oront o.edu sagiv@cs.huji.ac.il

Divesh Srivast ava

AT&T Bell Laboratories

divesh@research. att .com

Abstract

We consider the problem of computing answers to queries

by using materialized views. Aside from its potential in

optimizing query evaluation, the problem also arises in

applications such as Global Information Systems, Mobile
Computing and maintaining physical data independence.

We consider the problem of finding a rewriting of a query

that uses the materialized views, the problem of finding
minimal rewritings, and finding complete rewritings (i.e.,

rewritings that use only the views). We show that all

the possible rewritings can be obtained by considering

cent ainment mappings from the views to the query, and that

the problems we consider are NP-complete when both the

query and the views are conjunctive and don’t involve built-

in comparison predicates. We show that the problem has two

independent sources of complexity (the number of possible

containment mappings, and the complexity of deciding

which literals from the original query can be deleted). We

describe a polynomial time algorithm for finding rewritings,

and show that under certain conditions, it will find the

minimal rewriting. Finally, we analyze the complexity of the

problems when the queries and views may be disjunctive and

involve built-in comparison predicates.

1 Introduction

We consider the problem of using materialized views

to answer queries. Aside from its potential of im-

proving performance of query evaluation [LY85, YL87,

KB94, CKPS95], the ability to use views is important in

other applications. For example, in applications such as

Global Information Systems [LSK95], Mobile Comput-

ing [B194, HSW94], view adaptation [G MR95], main-

taining physical data independence [TS194], the rela-

tions mentioned in the query may either not actually

“Work performed while visiting AT&T Bell Laboratories.
Supported by NSERC and ITRC.

tW.rk supported in part by BSF grant #92-00360.

Permission to copy without fee all or part of ttis material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
PODS ’95 San Jose CA USA
(C) 1995 ACM 0-89791 -730 -8/95/0005 ..$3.50

be physically stored (e.g., they may be only conceptual

relations), or be impossible to consult (e.g. they are

stored in a remote server that is temporarily unavail-

able to a mobile computing device), or be very costly to

access.

We consider the complexity of this problem and its

variants and describe algorithms for solving them for

conjunctive queries involving built-in comparison pred-

icates and for unions of conjunctive queries. Specifi-

cally, we consider the problem of finding a rewriting of

a query that uses a set of views, the problem of finding a

minimal such rewriting, and the problem of completely

solving a query using views, that is, finding rewritings

that use nothing but the views and built-in predicates.

The observation underlying our solution of the prob-

lem is a general characterization of the usability of views

in terms of the problem of query containment. As a

consequence, we show that all possible rewritings of a

query can be obtained by considering containment map-

pings [CM77] from the bodies of the views to the body of

the query. Given this characterization, we show that the

problem of finding rewritings that mention as few of the

database relations as possible is NP-complete for con-

junctive queries with no built-in predicates. In fact, we

show that these problems have two independent sources

of complexity. The first comes from the number of pos-

sible mappings from the views to the query, and the

second source of complexity is determining which liter-

als of th= ~~cry- caz be removed when the view literals

are added to the query. We describe a polynomial time

algorithm for finding literals of the query that can be

removed. This algorithm is guaranteed to remove only

literals that are necessarily redundant in the rewriting,

and we show that under certain conditions (which are

likely to cover many practical cases), it is guaranteed

to remove the unique maximal set of redundant liter-

als. This algorithm, together with an algorithm for enu-

merating containment mappings from the views to the

query, provides a practical method for finding rewrit-

ings of a query. Finally, we show how the presence of

built-in predicates in the queries and in the views affect

the algorithms and the complexity of the problems.

95

2 Preliminaries

In our discussion we refer to the relations used in the

query as the database relations. We consider mostly

conjunct ive queries, which may in addition contain

built-in comparison predicates (=,#, < and ~). We

briefly describe how our results can be extended to

queries that involve unions of conjunctive queries (i.e.,

Datalog without recursion). We use V, Vi,..., Vm to

denote views that are defined on the database relations.

Views are also defined by conjunctive queries.

2.1 Rewritings

Given a query Q, our goal is to find an equivalent

rewriting Q) of the query that uses one or more of the

views:

Definition 2.1: A conjunctive query Q’ is a rewriting

of Q that uses the views V = VI, ... , Vm if

. Q and Q’ are equivalent (i. e., produce the same
answer foT any given database), and

a Q’ contains one or more occurrences of literals of V.

Note that we consider the case in which the rewriting

is also a conjunctive query. When queries involve built-

in predicates we will see that it may be worthwhile to

consider rewritings involving unions.

We say that a rewriting Q’ is locally minimal if we

cannot remove any literals from Q’ and still retain

equivalence to Q. A rewriting is globally minimal if

there is no other rewriting with fewer literals.1

Example 2.2: Consider the following query Q and

view V:

Q : q(X, U) :- P(x) Y)! PO(Y! -OP1(X, ~)} P2(w, u).

V : v(A, B) :– p(A, C), po(c, B), pl(A, ~).

The query can be rewritten using V as follows:

Q’: q(X, U) :– U(X, z), pl(x, w), pz(w, u).

Substituting the view enabled us to remove the first two

literals of the query. Note, however, that although the

third literal in the query is guaranteed to be satisfied by

the view, we could not remove it from the query. This

is because the variable D is projected out in the head of

V, and therefore, if the literal of pl were removed from

the query, the join condition between pl and p2 would

not be enforced. ❑

Clearly, we would like to find rewritings that are

cheaper to evaluate than the original query. The cost

of evaluation depends on many factors that differ from

1Note that in counting the number of]iterah in the cluerY, we

ignore the literals of the built-in predicates.

one application to another. In this paper we consider

rewritings that reduce the number of literals in the

query, and in particular, reduce the number of database

relation literals in the rewritten query. In fact, we show

that any rewriting of Q that contains a minimal number

of literals is isomorphic to a query that contains a subset

of the literals of Q and a set of view literals. Although

we focus on reducing the number of literals, it should

be noted that rewritings can yield optimizations even if

we do not remove literals from the query, as illustrated

by the following example.

Example 2.3: Using the same query as in Exam-

ple 2.2, suppose we have the following view:

vi(A) :– P(A, c), P1(A, ~).

We can add the view literal to the query to obtain the

following rewritten query.

q(x, u) :– Vi(x), p(x, Y), PO(Y, Z), P1(X1 w),

P2(W, u).

The view literal acts as a filter on the values of X that

are considered in the query. It restricts the set of values

of X to those that appear in the join of p and pl. ❑

In some applications we may not have access to any

of the database relations. For example, in Global

Information Systems [LSK95], the relations used in a

query are only viTtual, and the actual data is all stored

in views defined over these relations. Therefore, it is

important to consider the problem of whether the query

can be rewritten using only the views. We call such

rewritings complete rewritings:

Definition 2.4: A rewriting Q’ of Q, using V =

VI,..., V~ is a complete rewriting if Q’ contains only
literals of V and built-in predicates.

Example 2.5: Suppose that in addition to the query

and the view of Example 2.2 we also have the following

view:

V2 : V2(A, 1?) :– P1(A, C), P2(C, ~), Po(D, ~).

The following is a complete rewriting of Q that uses V

and V2:

Q“ : q(X, u) :- V(X7 z), V2(X, u).

It is important to note that this rewriting cannot be

achieved in a stepwise fashion by first rewriting Q using

V and then trying to incorporate V2 (or the other

way around). This is because the relation po, which

appears in V2 does not even appear in Q’ which is

the intermediate result of using V in Q. Finding the

complete rewriting requires that we consider the usages

of both views in parallel, ❑

96

2.2 Containment Mappings

In the next section we show that the problem of finding

a rewriting is closely related to the query containment

problem. Containment mappings [CM77] have been

used to show containment among conjunctive queries.

In this paper we show that they also provide the core

of the solution to the problem of finding the possible

usages of a view. Formally, a containment mapping

from a query Q1 to a query Q2 is a mapping from

the variables of Q1 into the variables of Q2, such that

every literal in the body of Q1 is mapped to a literal

in Qz. (Note that to show that Q1 contains Qz, the

containment mapping must also map the head of Q1 to

the head of Q2; however, in this paper we use the term

containment mapping to refer only to mappings on the

bodies of the queries). In Example 2.2, the correctness

of the rewriting can be established by considering the

containment mapping {A + X, B + Z, C + Y, D +

w}.
When neither Q1 nor Qa contain built-in predicates,

finding a containment mapping is a necessary and suffi-

cient condition for deciding that QI contains Qz, and

is an NP-complete problem [CM77]. This remains

true also when Q2 contains built-in predicates. How-

ever, when Q1 contains built-in predicates, finding a

containment mapping provides only a sufficient condi-

tion, and the containment problem in this case is 11~-

complete [vdM92]. In order to generalize our results

to queries containing built-in predicates it is useful to

note how containment mappings are also used to show

containment of such queries. In particular, it follows

from [LS93] that if Q1 contains Q2, then there exist

queries Q~, Q: such that:

•Qi~...! Q; differ only in their built-in literals, and

w Q? is equivalent to the union of Q!j, .,,, Q%, and

. For every i, 1 ~ i ~ n, there is a containment

mapping q$ from Q1 to ~2, such that bi(Q~) entails

#i(bi(Ql)), where hi(Q) is the conjunction of built-in

atoms in the query Q.

For example, consider the following queries, where Q1

contains Q2:

Q,: II(Y) :- e(Y), r(Ul, VI), U1 < V1.

Q2 : q(x) :– e(X), T(U, V), r(V, U).

The query Q2 can be represented by the union:

Q;: q(X) :- e(X), r(U, V), T(V, U), U < V.

Q;: dx) :– e(X), T(U, V), r(V, U), U > V.

The containment mappings would be

41:{ Y+ X, UI+U, V-+ V}.

42:{Y+X, U1+V, VI+ U].

In the next section we consider the complexity of

finding rewritings, minimal rewritings and complete

rewritings.

3 Complexity of Finding Rewritings

Previous solutions to the problem of using views to

answer queries were based on either finding syntactic

or 1-1 mappings from the view to the query. The first

observation underlying our solution is that the problem

of using views is closely related to the problem of query

containment. In fact, the proposition below gives a

necessary and sufficient condition for the existence of

a rewriting of Q that includes a view V.

Proposition 3.1: Let Q and V be conjunctive queries

with built-in predicates. There is a rewriting of Q u$ing

V if and only if TO(Q) ~ TO(V), i.e., the projection of
Q onto the empty set of columns is contained in the

projection of V onto the empty set of columns.

Note that the containment no(Q) ~ Z.(V) is equivalent

to the following statement: If V is empty for a given

database, then so is Q.

The importance of this proposition is in the fact that

it provides a complete characterization of the problem of

using views, thereby enabling us to explore the different

aspects of the problem.

Proposition 3.1 and earlier results on the complexity

of containment [CM77, vdM92] entail the following

complexity results on the problem of finding a rewriting

of Q that uses a set of views V:

Proposition 3.2: Let Q be a que~y and V be a set of

views.

1.

2.

If Q is a conjunctive query with built-in predicates

and V are conjunctive views without built-in predi-

cates, then the problem of determining whether there

exists a rewriting of Q that uses V is NP- complete.

If both Q and V are conjunctive and have built-

in predicates, then the problem of deciding whether

there exists a rewriting of Q that uses V is 11~-

complete.

Remark: Proposition 3.1 holds for a broader class of

queries and rewritings. In particular, suppose q(~)

is any relational calculus query, (or, equivalently, in

nonrecursive datalog with negation) as is the view

v(~), and suppose we are considering conjunctive

rewritings, which are formulas of the form

q(x) A (qz)v(~)

such that the following equivalence holds:

q(~) E q(~) A (3 Z)V(~)

97

Note that X, ~ and Z are tuples of variables, such

that 2 includes exactly those variables of ~ that do not

appear in X, Then such a rewriting exists if and only

if 7r0(Q) ~ nO(V). ❑

The proof of Proposition 3.1 constructs a rewriting

of Q using V in which the literal of V contains new

variables that did not occur originally in Q. The

following lemma shows that we can always find a

rewriting that does not introduce new variables, The

lemma also shows that we do not need to consider

rewritings that include database-relation literals that do

not appear in the original query, i.e., that it is enough

to consider rewritings that include view Iiterals and a

subset of the original literals in the query. These results

enable us to significantly prune the search for a minimal

rewriting of Q.

Lemma 3.3: Let Q be a conjunctive quepy without

built-in predicates

q(x) :– PI(G),.. .,pn(un).

and V be a set of views without built-in predicates,

1.

2.

3.

If Q’ is a locally minimal rewriting of Q using V,

then the set of database-relation literals in Q’ is

isomorphic to a subset of the literals of Q.

If

q(x) ‘– Pl(@, . . .,h(~n),@ l), . . .,vk(~k).

is a rewriting of the query using the views, then there

exists a rewriting of the form

q(x) :– pl(ul), . . .,p@),@;), . . .,7Jk(Fj).

where {~{ U . . . U r~} G {Ul U . . . U tin}, i.e., a
rewriting that does not introduce new variables.

If Q and V include built-in predicates, then a

rewriting as specified in Part 2 esists, with the

only difference that the rewriting may be a union of

conjunctive queries.

Note that even though in part 2 of the lemma the

rewriting includes all the literals of the query, the set

of variables will not increase as a result of removing

redundant literals. Therefore, the lemma implies that

we can find a minimal rewriting that does not introduce

new variables,

Proof: To prove the first part of the lemma, let

Q’ be a locally minimal rewriting of Q using a set of

views V. Let Q“ be the expansion of Q’ obtained by

replacing every occurrence of a view V 6 V by the

body of V, with suitable variable renamings. For any

conjunctive query R, let L(R) denote the set of literals

database-relation literals in the body of R. Since Q“

and Q are equivalent, there are containment mappings

4 from Q to Q“ and IC from Q“ to Q. Let C be a core

of Q, that is, a minimal subset of L(Q) such that there

exists a containment mapping from L(Q) to C. Let

S = 4(C), the image of C in the body of Q“ under

~. Note that C“ = K(S) is also a core of Q, since

the composition of ~ and K, is a containment mapping

from L(Q) to C“. It follows from uniqueness of the

core up to isomorphism ([CM77]) that C and C’ are

isomorphic. We claim that # is an isomorphism from

C to S. By definition of S, every literal in S is in the

image of 4, hence every variable in S is in the image

of +. Now suppose # mapped two variables of C to the

same variable in S. Since containment mappings cannot

increase the number of variables, Cl would have fewer

variables than C, a contradiction. So 4 is a bijection on

the variables of C and S. By minimality of C and the

existence of K,, S cannot have fewer literals than C, and

by definition of S, S has no more literals than C. Hence

S and C are isomorphic. To finish the proof we need

to show that every database-relation literal in the body

of Q) is in S. Suppose there is some database-relation

literal in the body of Q’ that is not in S; this literal

can be removed from Q’ while retaining equivalence to

Q, contradicting the minimality of the rewriting. So S

contains every database-relation literal in the body of

Q’, and since S is isomorphic to C, the database-relation

literals in S are isomorphic to a subset of C.

To prove the second part, suppose that

Q’ ‘ d~) :– Pl(”l),.. $,pn(om), vl(rl),..., vk(yk).

is a rewriting of Q. By Proposition 3.1, TO(q) ~ TO(W)

(i = 1,..., k). Therefore, there is a containment

mapping hi from the body of the rule defining vi into

the body of the original rule for q. Let hi (~i) = ~~

(i=l,.. ., k). Consider the query

Q“ ‘ q(~) :– pl(~l), $.., p?l(UTl), v@),..., ~@).

It is easy to see that Q’ contains Q“ (by using the

mappings hi), and clearly Q“ cent ains Q. Therefore,

Q“ is equivalent to Q, and so it is a rewriting of Q

using V. Furthermore, Q“ does not introduce any new

variables than those that appeared originally in Q.

The third part is proved in a similar fashion to

the second except for one difference, Proposition 3.1

guarantees that for every vi, there is a union of

conjunctive queries Q:, . . . , Q~ that is equivalent to Q,

and there is a containment mapping h% from vi to every

Q:. The rewriting will be a disjunction of conjunctive

queries. In every conjunct we choose one of the h:’s for

ever y vi, and construct the conjunct as in the previous

case. ❑

The following example shows that the second part of

the above lemma does not hold when the view contains

built-in predicates.

98

Example 3.4: Consider the query:

Q ‘ dx, y,U,W) :- p(x, Y), r(u, w), ?’(W, u).

and the view

V : v(A, B, C,D) :– P(A, l?), r(C, D), C < D.

There exists no conjunctive query rewriting of Q that

uses V and does not introduce new variables. However,

the following is a rewriting of Q:

Q’: q(x, Y, U, W) :- v(X, Y, C, D), T(U, TV), r(FV, U).

Furthermore, the disjunctive rewriting that does not

introduce new variables is:

Q’: q(X, Y, U, W) :– V(x, Y, u, w), T(T’V,u).

Q’ : q(X, Y,U, W) :– V(x, Y, w, u), T(u, w).

❑

3.1 Finding Minimal Rewritings

In general, we are interested in using views to answer

queries in order to reduce the cost of evaluating the

query. In this section we consider the complexity of

the problems of reducing the total number of literals

in the rewriting, reducing the number of database-

relations in the rewriting, and finding rewritings that

use only the views. Finally, we show that the problem of

finding minimal rewritings has two independent sources

of complexity.

The following lemma is the basis for several results.

It shows that a minimal rewriting of a query Q, using a

set of views V, does not increase the number of literals

in the query.

Lemma 3.5: Let Q be a conjunctive query and V be a

set of views, both Q and V without built-in predicates. If

the body of Q has p t?iterals and Q’ is a locally minimal

and complete rewriting of Q using V, then Q’ has at

most p literals.

Note that we can always assume that there are views

in V that are identical to the database-relations, and

therefore this lemma entails that any locally minimal

rewriting of Q will have at most p Iiterals.

Proof: As before, let Q“ be the expansion of a

rewriting Q’ of Q, in which the view literals in Q’ are

replaced by their definitions. Consider the containment

mapping @ from Q to Q“. Each literal 11,...,1P in the

body of Q is mapped to the expansion of at most one

view literal in the body of Q“. If there are more than

p view literals in Q’, the expansion of some view literal

in the body of Q“ must be disjoint with the image of

#; but then this view literal can be removed from Q’

while preserving equivalence wit h Q. Hence there is a

rewriting with at most p view literals. ❑

In the full paper we show that the size of the rewriting

is bounded even if the database relations may have

functional dependencies, or if the query and views have

built-in predicates. The following example shows that

the bound of Proposition 3.5 does not hold when the

database relations have functional dependencies.

Example 3.6: Consider the query

~(x, Y, Z) :– e(X, Y, Z).

and the views

V1(X, Y) :– e(X, Y, Z).

V2 (x, z) :– e(X, Y, Z).

and suppose that in the relation e, the first argument

functionally determines the other two. The following is

the only complete rewriting of Q using VI and V2:

q(x, Y, z) :– VI(X, y), V2(X, z). Q

In the presence of functional dependencies, the size

of a minimal rewriting is at most p + d literals, where

d is the sum of the arities of the literals in Q. In the

presence of built-in predicates, the size of the rewritten

query may be at most exponential in the size of Q.

Using Lemma 3.5, we obtain the following complexity

results on finding minimal rewritings.

Theorem 3.7: Let Q be a conjunctive query without

built-in predicates and V be conjunctive views without

built-in predicates.

1.

2.

3.

4

The problem of whether there exists a rewriting Q’

of Q using V such that Q’ contains no more than k

literals, where k. is less than or equal to the number

of literals in the body of Q, is NP-complete.

The problem of whether there exists a rewriting Q’

of Q using V such that Q’ contains no more than k

literals of database relations, where k is less than or

equal to the number of literals in the body of Q, is

NP- complete.

The problem of whether there exists a complete

rew?iting of Q using V is NP-complete.

If the que?y Q and views V have built-in predicates,

then Problem 1 is in Z:.

Proof: The proof of the first part is as follows. The

problem is in NP because, by the Lemmas 3.5 and 3.3,

we need only consider rewritings that have no more

literals than the query, have a subset of the literals of

the query, and do not introduce new variables . We can

guess such a rewritten query, verify that it contains less

than k literals, and guess containment mappings from

the original query to the rewritten one and vice-versa.

99

For the NP-hardness, reduce the problem of existence

of a usage to it as follows. Given a query Q and a view

V, let V’ be the rule whose head is the same as the head

of V and whose body is the conjunction of the bodies of

Q and V. Now there is a usage of V’ in Q with 1 literal

in it if and only if there is a usage of V in Q. The other

parts of the theorem are proved in a similar fashion. ❑

Corollary 3.8: The problem of jinding a globally

minimal rewriting of a conjunctive query without built-

in predicates, using conjunctive views with no built-in

predicates is in 2;.

Using the results of [SY81] for unions of conjunctive

queries and of [LS93] for unions of conjunctive queries

with built-in predicates, we can generalize the above

theorem as follows:

Theorem 3.9: Let Q and V be disjunctions of

conjunctive queries. When neither Q nor V have built-

in predicates, the problem of whether there exists a

complete rewriting of Q using V is NP-complete.

The results described up to now suggest a two step

algorithm for finding rewritings of a query Q. In the

first step, we find some containment mapping from the

views to the query and add to the query the appropriate

view atoms, resulting in a query Q’. In the second

step, we minimize Q’ by removing literals from Q that

are redundant. These two steps also emphasize the

two sources of complexity involved in the problem.

The first source is the exponential number of possible

containment mappings from the views to the query. The

second source is determining which literals of Q’ are

redundant given the mappings from the views to the

query. The following theorem shows that these are

two independent sources of complexity, i.e., that the

problem is NP-complete even if there is a single mapping

from each view to the query. In the next section we

describe a polynomial time algorithm for determining

which literals can be removed from the query, and we

show that under certain conditions, it is guaranteed to

find the unique maximal set of such Iiterals,

Theorem 3.10: The complete rewriting problem is

NP-complete for conjunctive queries and views without
built-in predicates even when both the query and the
views are defined by rules that do not contain repeated

predicates in their body.

Note that when the query and the views are defined

by such rules, then each rule is already non-redundant

and, moreover, there is at most one mapping from each

view into the query and finding those mappings is easy.

Proof: We use a reduction from the problem of exact

cover by 3-sets. Given an instance of this problem, we

create a predicate pi for each element i and use a special

variable Sj for each set j. For each pi, we create an atom

as follows. If element i is in set j, then the jth argument

position of pi has the variable Sj; if element i is not in

set j, then the jth argument position of pi has a distinct

nondistinguished variable. The query is a conjunction

of these atoms (i.e., one atom for each Pi). We may

assume that the head of the query has no variables, i.e.,

it is of the form

qo :– PI(G),.. ., P?JZ).

We also create views as follows. For each set j, we

create a view Vj. The three subgoals of vj are the

atoms created for the elements that appear in set j.

The variables in the head of vj are all the sk variables

that appear in the body of vj, except for Sj.

There is exactly one containment mapping from the

body of each view into the body of the query. Hence, a

minimal rewriting that uses the views will have a subset

of the literals in the following query:

d) :– Pl(ol),pn(on) .vl(rl),...,vm(rm).

We have to show that there is a containment mapping

that eliminates all the pi (~i) if and only if there is an

exact cover. So, suppose that there is an exact cover.

We will map each pi(~i) to the set that covers it. We

have to show that the variables S1, Sn are mapped

consistently, So, suppose that two atoms pi(~i) and

pj (~j) share the variable sk. There are two cases to be

considered. First, suppose that in the exact cover, the

elements i and j are covered by the same set 1. In this

case, both of these atoms are mapped to the same view

vi, and clearly, the two occurrences of sk in these atoms

are mapped to the same variable in VI. The second case

is that elements i and j are covered by different sets,

say h and i, respectively. Therefore, set k cannot be

in the exact cover and, so, k # h and k # i. It thus

follows that sk is a distinguished variable of both vh

and V1, ~nd hence, the two occurrences of sk in pi (~i)

and pj (Uj) are mapped to sk.

Now consider the other direction; that is, suppose

that there is a containment mapping that eliminates

all the pi (~i). Hence each pi (~i) is mapped to a view

vj, such that set j contains i. Since the variable _Sj is

not distinguished in vj, it follows that if one pi (Ui) is

mapped to Vj ~ then so are the other two atoms for the

elements of set j. Therefore, this mapping provides an

exact cover, ❑

4 Finding Redundant Literals in the

Rewritten Query

In the previous section we have shown that finding

rewritings for a query using views can be done in two

steps. In the first, we consider containment mappings

from the bodies of the views to the body of the query,

100

and add the appropriate view literals to the query. In

the second step, we remove literals of the original query

that are redundant. We have also shown that in general,

both steps provide independent sources of exponential

complexity.

In this section we describe a polynomial time algo-

rithm for the second step. In particular, given a set of

mappings from the views to the query, the algorithm

determines which set of literals from the query can be

removed. We show that under certain conditions there

is a unique maximal set of such literals and that the

algorithm is guaranteed to find them. In other cases,

the algorithm may find only a subset of the redundant

literals, but all the literals it removes are guaranteed to

be redundant, and therefore the algorithm is always ap-

plicable. Note that in such cases, the rest of the query

can still be minimized using known, more computation-

ally expensive techniques. Together with an algorithm

for enumerating mappings from the views to the query,

our algorithm provides a practical method for finding

rewritings. For simplicity, we describe the algorithm

for the case of rewritings using a single occurrence of a

view, and we begin with the case that does not include

built-in predicates.

Formally, suppose our query is of the form

Q : dx) :– PI(fiI), .. .,pr@n). (1)

and we have the following view:

v : v(z) :– Tl(ml), . . .,t’m(wm). (2)

Let h be a containment mapping from the body of v

into the body of q, and let the following be the result of

adding the view literal to the query:

q(x) :– pl(tll), . . .,pn(on),v(r). (3)

where ~ = h(Z). Note that we can restrict ourselves to

mappings where the variables of ~ already appear in the

pi (~i) (by Lemma 3.3). To obtain a minimal rewriting,

our goal is to remove as many of the redundant pi literals

as possible.

To determine the set of redundant literals, consider

the rule resulting from substituting the definition of

Rule (2) instead of the view literal in Rule (3). That

is, we rename the variables of Rule (2) as follows. Each

variable T that appears in 2 is renamed to h(T), and

each variable of Rule (2) that does not appear in Z is

renamed to a new variable (that is not already among

the pi (~i)). Let the following be the result of this

substitution.

q(x) :– pl(ol), . . .,pn(on),?’l(lzl), . . .,rm(vm). (4)

Note that the variables of ~ are the only ones that may

appear in both the pi(ui) and the rj (~j).

Given the mapping h, there is a natural containment

mapping from Rule (4) into the original rule for q

(i.e., Rule (l)) that is defined as follows. Each ~teral

pi (vi) is mapped to itself and each literal Tj (Vj) is

mapped to the same literal of Rule (1) as in the

containment mapping h (from Rule (2) to Rule (l)).

We denote this containment mapping as ~. Note that

the containment mapping # maps each variable of ~ to

itself.

Each literal pi(~i) of Rule (1) is t~e image (under ~)

of itself, and maybe a few oft he rj (Vj) literals. We say

that the literals rj(~i) that map to pi (~i) under ~ are

the associates of pi (Ui). For the rest of the discussion,

we choose arbitrarily one of the associates of pi (~~) and

refer to it as the associate of pi (~i). Note that if h

does not map two literals rj (~j) to the same literal

in Rule (1), then each pi (~i) will have at most one

associate.

Before we show how to find the set of redundant

literals, we need the following definition:

Definition 4.1: A literal rj (~j) covers a literal

pi (Ui) that has the same predicate if the following two

condition$ hold:

If pi (Ui) has a distinguished variable (i.e., a variable

in Z) or a constant in some argument position a,

then rj (~) also has that variable (or the constant)

in argument position a.

If argument positions al and a~ of pi(ui) are equal,

then so are the argument position~ al and az of

rj(~j).

Intuitively, if rj (~j) is the associate of pi (~i) and does

not cover pi (~i), then we cannot remove pi (fii), because

pi (~i) ~nforces quality constraints that are not enforced

by rj(v).

The set of needed literals Af of the query Q is defined

below. The set of redundant literals is the complement

of the set of needed literals.

Definition 4.2: The set ~ is the minimal subset of

literals in Q satis~ing the following four conditions.

i. Literals that have no associate.

$. Litera~8 that are not covered by their associates.

$. If all the following conditions hold, then pi (Ui) is in

N:

● Literal pi (Ui) has the variable T in argument

position al.

● The associate of pi (Ui) has the variablea H in

avgument position al.

‘Note that the associate of pi(~i) cannot have a constant in
argument position al if pi (~i) has a variable in that argument
position.

101

4.

●

●

●

The variable H is not in Y (hence, H appeam only

among the rj (~j)).

The variable T also appears in argument position

az Ofp/(ul).

The associate of pl (01) does not have H in

argument position az.

Suppose that pi (~i) is in ~ and that uaTiabie T

appiars in pj~ti~).’ If pl(~l) has variable T in

aTgument position a and its associate does not have

T in argument position a, then pl (Ui) is also in ~.

The third condition in the definition adds to ~ those

literals in Q whose associates do not enforce the same

join constraints. The fourth condition iteratively adds

to N literals that are connected to a literal in ~ via a

common variable. It is important to note that the set

of needed variables can be found in polynomial time in

the size of the query.

Example 4.3: Consider the query and the view of

Example 2.2. The result of substituting the view in the

query would be the following:

q(x, u) :– P(X, y), PO(Y -n PI(X, w), Pz(w, q,

P(X? c)! Po(c, z), PI(X, D).

The literal pz (W, U) is needed because it does not

have an associate. The literal pl(X, W) is needed

by the fourth condition of the definition, because its

associate pl (X, D) does not contain the variable W

(which appears in p2(W, U)). Consequently, these two

literals need to be retained to obtain the minimal

rewriting. ❑

Theorem 4.4:

1. The queTy

q(x) :– Af, v(r). (5)

is a rewriting of Q using V.

2. Suppose that h does not map two liteTals Tj(~)

to the same liteml in Rule (l), and Rule (1) is

minimal. Then the mazimal set of redundant pi (~i)

in Rule (~) is unique and is exactly the complement

of the set N.

Proof: We will use ~ to denote a containment

mapping from the original rule for q (i.e., Rule (l)) into

the rewritten rule (i.e., Rule (4)).

Recall that the composition @ is a containment

mapping from Rule (1) to itself. Since Rule (1) is

minimal, there is a k, such that (#@)k is the identity

mapping on Rule (l). Let ~ = @(@@)k–l. Note that r

is a containment mapping from Rule (1) into Rule (4),

and gh- is the identity mapping on Rule (1),

The containment mapping @ (restricted to the image

of r) is the inverse of T, since $T is the identity mapping

on Rule (l). Therefore, T maps a literal Pi (~i) of

Rule (1) either to the literal pi (~i) or to the associate

of pi(~i) in Rule (4).

We will now show that every pi(ui) in hf must be

mapped to itself by r and, hence, all the pi (~i) of Af

are in the image of ~. Recall that we already know that

T maps each pi (~i) either to itself or to its associate. If

pi (~i) satisfies either Condition 1 or 2 (in the definition

of N), then clearly pi (~i) must be mapped to itself.

Suppose that pi (~i) and pl (~1) satisfy Condition 3. If

pi (Oi) is mapped to its associate, then P1(0/) must also

be mapped to its associate, because variable H appears

only among the Tj (~j). But pi (~i) and pl (~1) cannot

both be mapped to their associates, because pi (Ui) and

pl (Ul) have the same variable T in argument positions al

and az, respectively, while their associates have different

variables in these argument positions. Therefore, pi (Ui)

must be mapped to itself.

Now suppose that pi (~i) and pl(~l) satisfy Condi-

tion 4. Since pi (~i) is in N, we may assume inductively

that it must be mapped to itself. Therefore, variable

T is mapped to itself and, hence, pl (DI) must also be

mapped to itself. Thus, we have shown that all the

literals of N must be mapped to themselves by r.

We now define the mapping # from Rule (1) into

Rule (4) as follows. If pi (~i) is in ~, then it is mapped

to itsel~ otherwise, it is mapped to its associate. We

will show that $’ is a containment mapping.

Clearly, every pi (vi) is mapped to a literal that covers

it. So, it remains to show that if pi (Ui) and pl (01) have

the same variable T in argument positions al and az,

respectively, then their images under ~’ also have the

same symbol in these argument positions. There are

three cases to be considered in order to prove this claim.

In the first case, both pi (Ui) and pl(~l) are mapped to

themselves and the claim is clearly true.

In the second case, pi (~i) is mapped to itself (because

it is in N) while pl (01) is mapped to its associate. By

Condition 4 in the definition of Af, the associate of

pi (~t) must also have variable T in argument position

a2 (or else pl (Ul) would be in N and, hence, would be

mapped to itself). So, the claim is proved also in this

case.

In the third case, both pi (~i) and pl (/71) are mapped

to their associates. Suppose that the associates have

distinct variables, C’ and D, in argument positions al

and a2, respectively. It is impossible that both C and D

are in ~, because ~ is one-to-one on the variables of ~

(because ~ is the identity on Y). Sg, one of th~m, say C,

is not in Y. But in this case, Pi (Ui) and pl (Ul) satisfy

Condition 3 in the definition of ~ and, hence, pi (Wi)

is in N and is mapped by ~’ to itself—a contradiction.

Thus, we have shown that # is a containment mapping.

102

In conclusion, we have shown that Af is in the image of The result of substituting the view in the query would

every containment mapping # from the original rule for be:

q (i.e., Rule (l)) into the rewritten rule (i.e., Rule (4)).

We have also shown that there is a mapping ~’, such

that the pi (~i) in the image of @’ are exactly those of

Af. Therefore, the set of pi (~t) not in M is the unique

maximal set of redundant pi (Ui) in Rule (4). II

It is well known that a containment mapping can be

found in polynomial time if each literal has at most

two potential destinations; the exact algorithm is based

on a reduction to the 2-SAT problem [SY81]. In some

sense, this is the case in the minimization algorithm

presented in Theorem 4.4, since each pi (~j) can be

mapped either to itself or to its associate. However,

the contribution of Theorem 4.4 is twofold. First, it

shows that each pi (Hi) has at most two destinations.

This fact is not obvious (indeed, when ordinarily using

the reduction to 2-SAT, each literal that co~ers pi (~i)

is considered a potential destination of pi (Ui)). The

second contribution of Theorem 4.4 is in providing a

more direct (and, hence, likely to be more efficient) way

of comput ing the redundant pi (~i), as compared to the

algorithm that uses the reduction to 2-SAT.

Adding Built-in Predicates

When the views may have built-in predicates, we need

to repeat a similar process of finding needed literals

for several containment mappings, and we can remove

only literals that are not deemed needed for any of the

Q’: q(X, Y, U, W) :- p(x, Y), T’(U, w), T(w, u),

W(X, Y, c, D). (7)

The query Q can be written as the union

QI : dx, Y U W) :- P(x, n w, w wv w!

U<w.

Q2 : ~(x, Y, U, W) :- P(x, y), ~(u, w), ~(w) ~)!

U>w.

and the mappings from the expansion of (7) to QI and

Qz are the identity on X, Y, U and W, and

h:{c-+U, D+ W}.

42:{ C-+ W, D+ U}.

For the mapping +1, we will deem only the literal

r (W, U) as needed, because it does not have an

associate, and for ~z, r(U, W) will be deemed needed.

Therefore, since the only literal that is not needed for

either of the mappings is P(X, Y), it can be removed,

resulting in the following rewriting:

q(x, Y, u, w) :– T(U, W), T(W, U), v(X, Y, C, D).

❑

mappings. Formally, suppose the result of adding the
5 Related work

view literal to the cmerv is-.

Q’: q(x) :– Pl(fil), . . ., f%@n),@). (6)
Several authors have considered the problem of im-

plementing a query processor that uses the results of

As before, we can expand the definition of v in Q’,
materialized views (e.g., [YL87, Se188, SJGP90, CR94,

obtaining the conjunction Q“ (as in Rule 4). By
TS194, CKPS95]), but the formal aspects of finding the

Proposition 3.1, there are a set of queries Q1, Q~,
equivalent (and minimal) rewritings have received little

that differ only on the built-in predicates, such that:
attention.

Yarm and Larson IYL871 considered the moblem of

● Q is equivalent to the union of Ql, Qm, and fmdin~ rewritings f~r sel~ct-project-j oin q~eries and

● For every i, 1 ~ i ~ m, there is a containment
views. In their analysis they considered what amounts

mapping ~i from the body of Q“ into the body of
to one-to-one mappings from the views to query, and do

Qil such that bi(Qi) entails ~i(bi(Q’’)).
not search the entire space of rewritings (and therefore

may not always find all the possible rewritings of the

For each one of the ~i mappings we compute the set

of needed literals Ni, and we define

N = NILJ... JNmNm.

Only the literals in N from Q remain in the rewritten

query.

Example 4.5: Consider the query from Example 3.4:

Q : dx, y} u, W :– P(x) y), ‘(W ~), “(W u).

and the view

V : v(A, 1?, C, D) :– p(A, B), r(C, D), C < D.

query).

Chaudhuri et al. [CKPS95] considered the problem

of finding rewritings for select-project-join queries and

views, such that the rewritten query preserves the bag

semantics. They show that in this case all the usages of

views are obtained by 1-1 mappings from the views to

the query, and therefore their algorithm would not find

all the usages in the case where the relations are sets.

Chaudhuri et al. [CKPS95] also considered the question

of how to extend a query processor to chose between the

different rewritings, a question that was not addressed

in this paper. Dar et al. [DJLS95] recently extended

the work in [CKPS95] to consider queries that involve

103

aggregation. Finally, Rajaraman et al. [RSU95] built

on our results and considered the problem of finding

rewritings when the views may only be queried using

specific binding patterns.

References

[B194]

[CKPS95]

[CM77]

[CR94]

[CV92]

[DJLs951

[GMR95]

[HSW94]

[KB94]

[LSK95]

[LS93]

[LY85]

Daniel Barbara and Tomasz Imielhiski. Sleepers

and workaholics: Caching strategies in mobile

environments. In proceedings of SIGMOD-9~,
pages 1-12, 1994.

Surajit Chaudhuri, Ravi Krishnamurthy, Spy-

ros Potamianos, and Kyuseok Shim. Optimizing

queries with materialized views. In Proceedings
of International Conference on Data Engineer-
ing, 1995.

A.K. Chandra and P.M. Merlin. Optimal im-

plementation of conjunctive queries in relational

databases. In proceeding.? of the Ninth An-
nual ACM Symposium on Theory of Computing,
pages 77-90, 1977.

C. M. Chen and N. Roussopoulos. The im-

plementation and performance evaluation of the

ADMS query optimizer: Integrating query re-

sult caching and matching. In proceedings of the
International Conference on Extending Databaae
Technology, 1994.

Surajit Chaudhuri and Moshe Vardi. On the

equivalence of recursive and nonrecursive data-

slog programs. In The proceedings of the PODS-
92, pages 55–66, 1992.

Shaul Dar, H.V. Jagadish, Alon Y. Levy and

Divesh Srivastava. Answering SQL queries

with aggregation using views. AT@ T Technical
Memorandum, 1995.

Ashish Gupta, Inderpal Singh Mumick, and

Kenneth A, Ross. Adapting Materialized Views

after Redefinitions. In Proceedings of SIGMOD-
95, 1995.

Yh.iu Huang, Prasad Sistla, and Ouri Wolfson.

Data replication for mobile computers. In

proceedings of SIGMOD-94, pages 13-24, 1994.

Arthur M. Keller and Julie Basu. A predicate-

based caching scheme for client-server database

architectures. In proceedings oj pDIS-94, 1994.

Alon Y. Levy, Divesh Srivastava, and Thomas

Kirk. Data model and query evaluation in global

information systems. Journal of Intelligent
ln~ormation Syatema, 1995. Special Issue on

Networked Information Discovery and Retrieval

(to appear).

Alon Y. Levy and Yehoshua Sagiv. Queries

independent of updates. In Proceedings of the
19th VLDB conference, Dublin, Ireland, pages

171-181, 1993.

P. A. Larson and H.Z. Yang. Computing queries

from derived relations. In proceedings of the 11th

[RSU95]

[SJGP90]

[SY81]

[Se188]

[Shm87]

[TS194]

~L87]

[SY81]

[vdM92]

International VLDB Conference, pages 259–269,

1985.

Anand Rajaraman, Yehoshua Sagiv, and Jef-

frey D. Unman. Answering Queries Using Tem-

plates with Binding Pat terns, In proceedings o~
the ACM Symposium on Principles of Databa8e
Syatema, San Jose, CA, May 1995.

M. Stonebraker, A. Jhingran, J. Gob, and

S. Potamianos, On rules, procedures, caching

and views in database systems. In Proceedings of
the ACM SIGMOD Conference on Management
of Data, 1990.

Y. Sagiv and M. Yarmakakis. Equivalence

among relational expressions with the union and

difference operators. In J. ACM 27:4 pp. 6.?%

655, 1981.

Tlmos Sellis. Intelligent caching and indexing

techniques for relational database systems. in-

formation Syatema, pages 175-185, 1988.

Oded Shmueli. Decidabllity and expressiveness

aspects of logic queries. In proceedings of
the Sixth Symposium on Principles of Databa8e

Syatema (PODS), pages 237–249, San Diego,

CA, March 1987.

Odysseas G. Tsatalos, Marvin H. Solomon,

and Yarmis E. Ioannidis. The GMAP: A

versatile tool for physical data independence. In

proceeding of VLD&94, pages 367-378, 1994.

H. Z. Yang and P. A. Larson. Query transforma-

tion for PSJ-queries. In proceeding of the 13th
International VLDB Conference, pages 245-254,

1987.

Y. Sagiv and M. Yarmakakis. Equivalence

among relational expressions with the union and

difference operators, In J. ACM 27:4 pp. 633-

655, 1981.

Ron van der Meyden. The complexity of

querying indefinite data about linearly ordered

domains. In The proceedings of PODS-92, pages

331-345, 1992.

104

