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Abstract.  A number of ideas concerning information-integration tools 
can be thought of as constructing answers to queries using views that 
represent the capabilities of information sources. We review the formal 
basis of these techniques, which are closely related to containment algo- 
rithms for conjunctive queries and/or Datalog programs. Then we com- 
pare the approaches taken by AT&T Labs' "Information Manifold" and 
the Stanford "Tsimmis" project in these terms. 

1 Theoretical Background 

Before addressing information-integration issues, let us review some of the basic 
ideas concerning conjunctive queries, Datalog programs, and their containment. 
To begin, we use the logical rule notation from [Ull88]. 

Example 1. The following: 

p(X,Z) : -  a(X,Y) ~ a(Y,Z) .  

is a rule that talks about a, an EDB predicate ("Extensional DataBase," or 
stored relation), and p, an IDB predicate ("Intensional DataBase," or predicate 
whose relation is constructed by rules). In this and several other examples, it is 
useful to think of a as an "arc" predicate defining a graph, while other predicates 
define certain structures that might exist in the graph. That  is, a(X, Y) means 
there is an arc from node X to node Y. In this case, the rule says "p(X, Z) is 
true if there is an arc from node X to node Y and also an arc from Y to Z." 
That  is, p represents paths of length 2. 

In general, there is one atom, the head, on the left of the "if" sign, : -  and 
zero of more atoms, called subgoals, on the right side (the body). The head always 
has an IDB predicate; the subgoals can have IDB or EDB predicates. Thus, here 
p(X, Z) is the head, while a(X, Y) and a(Y, Z) are subgoals. 

We assume that each variable appearing in the head also appears somewhere 
in the body. This "safety" requirement assures that when we use a rule, we are 
not left with undefined variables in the head when we try to infer a fact about 
the head's predicate. 

We also assume that atoms consist of a predicate and zero or more arguments. 
An argument can be either a variable or a constant. However, we exclude function 
symbols from arguments. 

* This work was supported by NSF grant IRI-96-31952, ARO grant DAAH04-95-1- 
0192, and Air Force contract F33615-93-1-1339. 
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1.1 Conjunctive Queries 

A conjunctive query (CQ) is a rule with subgoals that  are assumed to have EDB 
predicates. A CQ is applied to the EDB relations by considering all possible 
substitutions of values for the variables in the body. If a substitution makes all 
the subgoals true, then the same substitution, applied to the head, is an inferred 
fact about the head's predicate. 

Example 2. Consider Example 1, whose rule is a CQ. If a(X, Y) is true exactly 
when there is an arc X --+ Y in a graph G, then a substitution for X,  Y, and Z 
will make both subgoals true when there are arcs X --+ Y --+ Z. Thus, p(X, Z) 
will be inferred exactly when there is a path of length 2 from X to Z in G. 

A crucial question about CQ's is whether one is contained in another. If 
Q1 and Q2 are CQ's, we say Q1 ___ Q~ if for all databases ( truth assignments 
to the EDB predicates) D, the result of applying Q1 to D [written QI(D)] is 
a subset of Q2(D). Two CQ's are equivalent if and only if each is contained 
in the other. It turns out that  in almost all cases, the only approach known 
for testing equivalence is by testing containment in both directions. Moreover, 
in information-integration applications, containment appears to be more funda- 
mental  than equivalence, so from here we shall concentrate on the containment 

test. 
Conjunctive queries and their containment were first studied by Chandra 

and Merlin ([CM77]). Here, we shall give another test, following the approach 
of [R'89], because this test extends more naturally to the generalizations of the 
CQ-containment problem that  we shall discuss. To test whether Q1 _c Q2: 
1. freeze the body of Q1 by turning each of its subgoals into facts in the 

database. That  is, replace each variable in the body by a distinct constant, 
and treat the resulting subgoals as the only tuples in the database. 

2. Apply Q2 to this canonical database. 
3. If the frozen head of Q1 is derived by Q2, then Q1 C Qu. Otherwise, not; in 

fact the canonical database is a counterexample to the containment,  since 
surely Q1 derives its own frozen head from this database. 

Example 3. Consider the following two CQ's: 

QI :P (X ,Z)  : -  a(X,V) g a (Y,Z) .  
Q2:P(X,Z)  : -  a ( x , u )  ~ a ( v , z ) .  

Informally, Q1 looks for paths of length 2, while Q2 looks only for nodes X and Z 
such that  X has an arc out to somewhere, and Z has an arc in from somewhere. 
Intuitively, we expect, Q1 c Q2, and that  is indeed the case. 

In this and other examples, we shall use integers starting at 0 as the constants 
that  "freeze" the CQ, although obviously the choice of constants is irrelevant. 
Thus, the canonical database D constructed from Q1 consists of the two tuples 
a(0, 1) and a(1,2) and nothing else. The frozen head of Q1 is p(0, 2). 

If we apply Q2 to D, the substitution X --+ 0, U --+ 1, V --+ 1, and Z -+ 2 
yields p(0, 2) in the head of Q2. Since this fact is the frozen head of Q1, we have 

verified Q1 c Q2. 
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Incidentally, for this containment test and the more general tests of following 
subsections, the argument that  it works is, in brief: 

- If the test is negative, then the constructed database is a counterexample to 
the containment.  

- If the test is positive, then there is an implied homomorphism # from the 
variables of Q2 to the variables of Q1. We obtain # by seeing what constant 
each variable X of Q~ was mapped to in the successful application of Q2 
to the canonical database. #(X)  is the variable of Q1 that  corresponds to 
this constant. If we now apply Qz to any database D and yield a particular 
fact for the head, let the homomorphism from the variables of Q1 to the 
database symbols that  we use in this application be v. Then # followed by y 
is a homomorphism from the variables of Q2 to the database symbols that  
shows how Q2 will yield the same head fact. This argument proves Q1 c Q2- 

Containment of CQ's is NP-complete ([CM77]), although [Sar91] shows that  
in the common case where no predicate appears more than twice in the body, 
then there is a linear-time algorithm for containment. 

1 .2  C Q ' s  W i t h  N e g a t i o n  

An important  extension of CQ's is to allow negated subgoals in the body. The 
effect of applying a CQ to a database is as before, but now when we make a 
substitution of constants for variables the atoms in the negated subgoals must 
be false, rather than true (i.e., the negated subgoat itself must be true). 

Now, the containment test is slightly more complex; it is complete for the class 
/ / I ,  problems that  can be expressed as {w[(Vz)(3y)r x, y)}, where strings x 
and y are of length bounded by a polynomial function of the length of w, and r 
is a function that  can be computed in polynomial time. This test, due to Levy 
and Sagiv ([LS93]), involves exploring an exponential number of "canonical" 
databases, any one of which can provide a counterexample to the containment.  
Suppose we wish to test Q1 _ Q2. We do the following: 

1. Consider each substitution of constants for variables in the body of QI, 
allowing the same constant to be substituted for two or more variables. 
More precisely, consider all partitions of the variables of Qz and assign for 
each block of the parti t ion a unique constant. Thus, we obtain a number 
of canonical databases D1, D2,. . . ,  Dk, where k is the number of partitions 
of integer n, and n is the number of variables in the body of Q1. Each Di 
consists of the frozen positive subgoals of Q1 only, not the negated subgoals. 

2. For each Di consider whether Di makes all the subgoals of Q1 true. Note 
that  because the atom in a negated subgoal may happen to be in Di, it is 
possible that  Di makes the body of Q1 false. 

3. For those Di that  make the body of Qz true, test whether any Q2(D~) 
includes the frozen head of Q1, where D~ is any database that is a superset 
of Di formed byadding  other tuples that  use the same set of symbols as D~. 
However, D~ may not include any tuple that is a frozen negative subgoal of 
Q1. When determining what the frozen head of Qz is, we make the same 
substitution of constants for variables that  yielded Di. 



22 

4. If every Di either makes the body of Q1 false or yields the frozen head of 
Q1 when Q2 is applied, then Q1 C Q2" Otherwise, not. 

Example/,. Let us consider the following two conjunctive queries: 

Q t : p ( x , z )  : -  a(X,Y) 8, a(Y,Z) ~ NOT a(X,Z) .  
Q2: p(A,C) : -  a(A,B) �9 a(B,C) a NOT a(A,D).  

Intuitively, Q1 looks for paths of length 2 that  are not "short-circuited" by a 
single arc from beginning to end. Q2 looks for paths of length 2 that  start from 
a node A that  is not a "universal source"; i .e. , there is at least one node D not 
reachable from A by an arc. 

To show Q1 _ Q2 we need to consider,all partitions of {X, Y, Z}. There are 
five of them: one that  keeps all three variables separate, one that  groups them 
all, and three that  group one pair of variables. The table in Fig. 1 shows the five 
cases and their outcomes. 

1) 
2) 
3) 
4) 
5) 

Partition 
{x}{Y}{Z} 
{X, Y}{Z} 
{x}{y, z} 
{x, z}{y} 
{x, Y, z} 

Canonical Database 

{a(0,1),a0,2)} 
{a(0,0),a(0,1)} 
{a(0,1),a(1,1)} 
{a(0,1),a(1,0)} 
{~(o,o)} 

Outcome 
both yield head p(O, 2) 
Q1 body false 
Qt body false 
both yield head p(0, 0) 
Q1 body false 

Fig. 1. The five canonical databases and their outcomes 

For instance, in case (1), where all three variables are distinct, and we have 
arbitrarily chosen the constants 0, 1, and 2 for X, Y, and Z, respectively, the 
canonical database D1 is the two positive subgoals, frozen to be a(0, 1) and 
a(1, 2). The frozen negative subgoal NOT a(0, 2) is true in this case, since a(O, 2) 
is not in D1. Thus, Q1 yields its own head, p(0, 2), and we must test that  Q2 
does likewise on any database consisting of symbols 0, 1, and 2, that  includes 
the two tuples of Dt and does not include the tuple a(O, 2), the frozen negative 
subgoal of QI. If we use the substitution A --+ 0, B ~ 1, C --+ 2, and D -+ 2, 
then the positive subgoals become true for any such superset of D1. The negative 
subgoal becomes NOT a(0, 2), and we have explicitly excluded a(0, 2) from any of 
these databases. We conclude that  the Levy-Sagiv test holds for case (1). 

Now consider case (2), where X and Y are equated and Z is different. We 
have chosen to use 0 for X and Y; 1 for Z. Then the canonical database for this 
case is D2, consisting of the frozen positive subgoals a(0, 0) and a(0, 1). For this 
substitution, the negative subgoal of Qt becomes NOT a(0, 1). Since a(0, 1) is in 
D2, this subgoal is false. Thus, for this substitution of constants for variables in 
Q1, we do not even derive the head of Q1. We need check no further in this case; 

the test is satisfied. 
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The three remaining cases must be checked as well. However, as indicated in 
Fig. 1, in each case either both CQ's yield the frozen head of Q1 or Q1 does not 
yield its own frozen head. Thus, the test is completely satisfied, and we conclude 

Q1 c Q2. 

1.3 CQ~s W i t h  A r i t h m e t i c  C o m p a r i s o n s  

Another important  extension of CQ-containment theory is the inclusion of arith- 
metic comparisons as subgoals. In this regard we must consider the set of values 
in the database as belonging to a totally ordered set, e.g., the integers or re- 
als. When we consider possible assignments of integer constants to the variables 
of conjunctive query Q1, we may use consecutive integers, starting at 0, but  
now we must consider not only partitions of variables into sets of equal value, 
but  among the blocks of the partition, we must consider the relative order of 
their values. The canonical database is constructed from those subgoals that  
have nonnegated, uninterpreted predicates only, not those with a negation or a 
comparison operator. 

If there are negated subgoals, then we must also consider certain supersets 
of the canonical databases, as we did in Section 1.2. But if there are no negated 
subgoals, then the canonical databases alone suffice. 

Example 5. Now consider the following two conjunctive queries, each of which 
refers to a graph in which nodes are assumed to be integers. 

QI:p(X,Z) :- a(X,Y) ~ a(Y,Z) ~ X<Y. 

Q2:p(A,C) :- a(A,B) a a(B,C) ~ A<C. 

Both ask for paths of length 2. But Q1 requires that  the first node be numerically 
less than the second, while Q2 requires that  the first node be numerically less 
than the third. 

The number of different canonical databases is 13. We must consider the five 
different partitions of {X, Y, Z}, as we did in Fig. 1. However, we also have to 
order the blocks of each partition. For parti t ion (1) of Fig. 1, where each variable 
is separate, we have 6 possible orders of the blocks. For partitions (2) through 
(4), where there are only two blocks, we have 2 different orders. Finally, for 
parti t ion (5), with only one block, there is one order. 

In this example, the containment test fails. We have only to find one of the 
13 cases to show failure. For instance, consider X = Z = 0 and Y = 1. The 
canonical database D for this case is {a(0, 1), a(1, 0)}, and since X < Y, the 
body of Q1 is true. Thus, Q2(D) must include the frozen head of Q1, p(0, 0). 
However, no assignment of values to A, B, and C makes all three subgoals of Q~ 
true, when D is the database. That  is, in order to make subgoals a(A, B) and 
a(B, C) both true for D, we surely must use 0 or 1 for all of A, B, and C. Then 
to make A < C true, we must have A = 0 and C = 1. But then, whether B is 
0 or 1 we shall have in Q2 a subgoal a(0, 0) or a(], 1), neither of which is in D. 
Thus, D is a counterexample to Q1 c Q2. 
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The containment  test for CQ's  with ari thmetic is from [Klug88], and [vdM92] 
shows that  the problem of testing containment for CQ's  with ar i thmetic  compar-  
isons is complete for H~, at least in the case of a dense domain such as the reals. 
[LS93] actually includes ari thmetic comparisons in their work on negation, and 
we should note tha t  the above technique works even if there are negated subgoals 
as well as ari thmetic comparisons. There is a more general approach tha t  works 
for any interpreted predicates, not just  a predicate like < or < that  forms a total  
order; it appears  in [ZO93]. However, this technique does not include CQ's  with 
negated subgoals. 

1.4 D a t a l o g  P r o g r a m s  

Let us now return to the original model of rules, excluding negated subgoals 
and ari thmetic comparisons. However, we shall now consider collections of rules, 
which we call a Datalog program. Such collections of rules have a natural ,  least- 
fixedpoint interpretation, where we start  by assuming the IDB predicates have 
empty  relations. We then use the rules to infer new IDB facts, until no more facts 
can be inferred. More on the semantics of Datalog, including efficient algori thms 
for evaluating the IDB predicates, can be found in [Ul188], [Ull89]. While we 
shall not discuss Datalog with negated subgoals here, because the meaning is 
debatable in some cases, the principal ideas are surveyed in lUll94]. Here is an 
example of a Datalog program and its semantics. 

Example 6. Consider the three rules: 

i) p(X,Z) :- q(X,Y) ~ b(Y,Z). 
2) q(X,Y) :- a(X,Y). 
3) q(X,Z) :- a(X,Y) ~ p(Y,Z). 

Intuitively, think of a graph with two kinds of arcs: "a-arcs" and "b-arcs." Then 
p and q represent certain kinds of paths. Rule (1) says that  a q-path followed by 
a b-arc is a p-path.  Rule (2) says that  a single a-arc is a q-path, while rule (3) 
says that  a-arcs followed by p-paths are also q-paths. It  may  not be obvious what  
is going on, but  one can prove by an easy induction that  the p-paths  consist of 
some number  n > 1 of a-arcs followed by an equal number  of b-arcs. A q-path is 

the same, except it has one fewer b-arc. 
To get a feel for why this claim holds, consider a particular graph G described 

by the a and b EDB predicates. Then rule (2) says all the paths a are in the 
relation for q. We can therefore use rule (1) to infer that  any pa th  of the form 
ab is in the relation for p; more precisely, if there is a pa th  from node X to node 
Z tha t  follows an a-arc and then a b-arc, p(X, Z) is true. Next, rule (3) tells us 
tha t  any pa th  of the form aab is a q-path; rule (1) says paths of the form aabb 
are p-paths,  and so on. 

Containment  questions involving Datalog programs are often harder than  
for CQ's.  [Shm87] shows that  containment of Datalog programs is undecidable, 
while [CV92] shows that  containment of a Datalog program in a CQ is doubly 
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exponential. However, the important case for purposes of information integration 
is the containment of a CQ in a Datalog program, and this question turns out 
to be no more complex than containment of CQ's ([R'89]). 

To test whether CQ Q is contained in Datalog program P, we "freeze" the 
body of Q, just as we did in Section 1.1, to make a canonical database D. We 
then see if P(D) contains the frozen head of Q. The only significant difference 
between containment in a CQ and containment in a Datalog program is that  in 
the latter case we must keep applying the rules until either the head is derived, 
on no more IDB facts can be inferred. 

Example Z Consider the Datalog program f fomExample  6, which we shall call 
P,  and the C Q Q :  

p(A,C) :- a(A,B) & b(B,C). 

Freezing the body of Q, we obtain the canonical database 

D -- {a(0, l),b(1,2)}. 

Now, we apply P to D. Rule (2) lets us infer q(0, 1) from a(0, 1). Then, 
rule (1) lets us infer p(0, 2) from q(0, 1) and b(1, 2). Since p(0, 2) is the frozen 
head of Q, our test has concluded positively; Q c P. 

2 S y n t h e s i z i n g  Q u e r i e s  F r o m  V i e w s  

Query containment algorithms connect to information integration via a concept 
called "synthesizing queries from views." The idea, originally studied by [YL87] 
and [C'95], is suggested in Fig. 2. There are a number of "EDB" predicates, for 
which we use p's in Fig. 2. These predicates, which are not truly EDB predicates 
since they usually don't  exist as physically stored relations, can be thought of 
as representing the basic concepts used in queries. There are also views, denoted 
by v's in Fig. 2, that  represent resources that  the integrator uses internally to 
help answer queries. Each view has a definition in terms of the EDB predicates, 
and we suppose here that  these definitions are conjunctive queries. 

2.1 Solving Queries by Views 

A query Q is expressed in terms of the EDB predicates, the p's. Our problem 
is to find a "solution" S for the query Q. A solution is an expression (also a 
CQ in the figure) in terms of the views. In order to be a valid solution, when 
we replace the views in S by their definitions, we get an expansion query E, 
which must be equivalent to the original query Q. An alternative formulation of 
the query-synthesis problem is to ask for all solutions S whose expansion E is 
contained in Q (perhaps properly contained). "The solution" for Q is then the 
union of all these partial solutions. 
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a n s w e r (  ) : -  V , l (  ) a . . a V , ~ (  

a . s w e r (  ) : -  , ~ (  ) ~ . . . ~ , j ~ (  ) 

Query Q 

Solution S 

pj, .1 �9 �9 �9 P.irk,. Expansion E 

Fig. 2. Constructing a query from views 

E x a m p l e  8.  We shall consider an example that  illustrates some technical points, 
but  suffers in realism for the sake of these points. Let us suppose that  there is a 
single EDB predicate p ( X ,  Y )  which we interpret to mean that  Y is a parent of 
X. Let there be two views, defined as follows: 

vI(Y,Z) :- p(X,Y) ~ p(Y,Z). 
v2(X,Z) :- p(X,Y) ~ p(Y,Z). 

Note that  the views have the same body but different heads. The first view, v l ,  

actually produces a subset of the relation for p: those child-parent pairs (Y, Z) 
such that  the child is also a parent of some individual X. The second view, v2, 
produces a straightforward grandparent relation from the parent relation. 

Suppose that  we want to query this information system for the great grand- 
parents of a particular individual, whom we denote by the constant 0. This query 
is expressed in terms of the EDB predicate p by 

q(C) :- p(O,A) ~ p(A,B) ~ p(B,C). 

Our problem is to find a CQ whose subgoals use only the predicates vl and v2 
and whose expansion is equivalent to the query above. A bit of thought tells us 

that  

sl(C) :- v2(O,D) ~ vl(D,C). 

is a solution. Tha t  is, if we replace each of the subgoals of sl by the definition 
of the views (being careful to use unique variables in place of those variables 
that  appear in the bodies of the view definitions but not in the heads of those 

definitions), we get the expansion: 

el(C) :- p(O,E) ~ p(E,D) ~ p(F,D) ~ p(D,C). 
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We can use the CQ containment test in both  directions to prove tha t  el ~ q. 
Intuitively, the subgoal p(F, D) in el is superfluous, since every t ime there is 
binding for E and D that  makes p(E, D) true, we can bind F to the same value 
as E and make p(F,  D) true. 

There are other solutions that ,  when expanded, are contained within q, but 
are not equivalent to it. Some examples are: 

s2(C) :- vl(O,D) a v2(D,C). 
s3(C) :- vl(O,D) & vI(D,E) & vI(E,C). 
s4(C) :- v2(O,D) & vI(D,C) ~ v2(C,E). 

Solution s2 is equivalent to q if individual 0 has a child in the database.  Other- 
wise, 0 cannot appear  as a first component  in the relation for vl, and the result of 
s2 is empty.  Thus, s2 _C q, but not conversely. Solution s3 is actually equivalent 
to s2, while s4 gives those great grandparents of individual 0 who are themselves 
grandchildren. 

2.2 M i n i m a l - S o l u t i o n  T h e o r e m s  

It  might  appear  from Example  8 tha t  one can only guess potential  solutions for 
a query and test them via CQ-containment  tests. However, there are theorems 
tha t  l imit the search and show that  the problem of expressing a query in terms 
of views, while NP-complete,  is no worse than that.  As discussed in Section 1.1, 
we expect tha t  queries will be short, so NP-complete  problems are unlikely to 
be a major  bottleneck in practice. 

The principal idea is that  any view used in a solution must  serve some func- 
tion in the query; a view without a function may be deleted from the solution. 
For example,  every subgoal of the query must  be covered by some view. The 
question of when a view covers a query subgoal is a bit subtle, because two 
or more views may  cover the same subgoal. For instance, consider Example  8, 
where both p(E, D) and p(F, D) from expansion el "cover" p(A, B) from the 
query. More precisely, A, E, and F may  each represent a parent of individual 0, 
while B and D represent a parent of that  parent. Note that  p(E, D) and p(F, D) 
come from the expansion of v2 (0, D) and vl (D, C), respectively, in solution sl ,  so 
these two subgoals from different views each play the same role in the expansion. 

Let us define a solution S: for a query Q to be minimal if 
1. SC_Q. 
2. There is no solution T for Q such that  

(a) S C T C _ Q ,  and 
(b) T has fewer subgoals than S. 

T h e o r e m  1. ([L'95]) If queries are CQ's without negation, arithmetic compar- 
isons, or constants in the body, then every minimal conjunctive-query solution 
for a query Q has no more subgoals (uses of views) than Q has subgoals. 
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T h e o r e m  2. ([RSU95]) If queries are CQ's without negation or arithmetic com- 
parisons (but with constants in the body permitted, as in Example 8), then every 
minimal CQ-solution for a query Q has no more subgoals than the sum of the 
number of subgoals and number of variables in Q. 

Both Theorems [L'95] and [RSU95] offer nondeterministic polynomial- t ime 
algori thms to find either 

1. A single solution equivalent to the query Q, or 
2. A set of solutions whose union is contained in Q and that  contains any other 

solution tha t  is contained in Q. 

In each case, one searches "only" an exponential number  (as a function of the 
length of Q) of minimal  queries. If we are looking for one solution equivalent to 
Q, then we may  stop if we find one, and we conclude there is none if we have 
searched all solutions of length up to the bound and found none. If  we want 
all solutions contained in the query, then we search all up to the bound, taking 
those that  are contained in Q. 

3 Information-Integration S y s t e m s  

Informat ion integration has long been recognized as a central problem of modern  
database systems. While early databases were self-contained, it is now generally 
realized that  there is great value in taking information from various sources and 
making them work together as a whole. Yet there are several difficult problems 

to be faced: 
"Legacy" databases cannot be altered just  because we wish to support  a 
new, integrating application above them. 

- Databases that  ostensibly deal with the same concepts may  have different 
shades of meaning for the same term, or use different terms for the same 

concept. 
- Information sources, such as those on the "web," may have no fixed schema 

or a t ime-varying schema. 
A common integration architecture is shown in Fig. 3. Several sources are 

wrapped by software that  translates between the source's local language, model, 
and concepts and the global concepts shared by some or all of the sources. 
System components,  here called mediators ([Wie92]), obtain information f rom 
one or more components  below them, which may  be wrapped sources or other 
mediators.  Mediators also provide information to components  above them and 

to external users of the system. 
In a sense, a mediator  is a view of the da ta  found in one or more sources. 

Da ta  does not exist at the mediator,  but one may query the media tor  as if it 
were stored data;  it is the job of the mediator  to go to its sources and find the 

answer to the query. 
Today, the components labeled "mediator" in Fig. 3 are unlikely to be true 

mediators,  but  rather data warehouses. If a mediator  is like a view, then a ware- 
house is like a materialized view. Tha t  is, the warehouse holds da ta  tha t  is con- 
structed f rom the da ta  at the sources. The warehouse is queried directly, with 
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Query 

IWra  erl 

Fig. 3. Common integration architecture 

no involvement by the sources. There are numerous problems associated with 
the design and implementation of warehouses (see [Wid95], e.g.), not the least of 
which is that  it is difficult and/or  expensive to keep the warehouse up-to-date, 
as the underlying data  changes. 

There are, however, several research projects developing true mediator capa- 
bilities, and in this section we shall introduce two of them: 

1. Information Manifold ([K'95], [L*96a], [L*96b]), a project of AT&T Labo- 
ratories. 

2. Tsimmis ([T96], [P96], [P*95a], [GM*95], [P*95b]), a project at Stanford 
University. 

Both systems use logic-based technology, and while neither is based on Datalog 
per se, the operation of each can be translated into Datalog. 

3.1 I n f o r m a t i o n  M a n i f o l d  

Information Manifold (IM) is based on a dialect of description logic called 
CARIN ([LR96]). Description logic is a fragment of first-order logic that  can 
almost be thought of as nonrecursive Datalog with IDB predicates restricted to 
be unary, although there are certain capabilities of description logic that  are 
beyond what Datalog provides ([Bor96]). Here, we shall use Datalog in examples 
of the architecture of IM. 
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The architecture of IM is essentially that  described in Section 2. The following 
points characterize IM in these terms: 

- An IM application has a collection of "global" predicates in terms of which 
all queries are expressed. 

- Each information source is associated with one or more views. Views are also 
defined in terms of the global predicates. 

- However, the definition of a view should not be given the usual interpretat ion 
of "this source provides all facts derivable from its definition and the global 
predicates." Rather,  the intension is tha t  the view provides some of those 
facts. 

- The solution to a query is the union of all minimal  CQ's  (over the views) 
contained in the query. Note tha t  there could be other solutions to the query 
in sources not available to this IM application, but the minimal  solutions 
provide all the query answers that  are accessible to IM. 

- Also associated with a source are zero or more constraints. A constraint is a 
guarantee that  certain facts that  might be present in the view will in t ruth  
not appear  there. For example, a source might  supply a parent-child predicate 
as its view, and a constraint might state that  the only pairs supplied will 
have female children born after 1970. 

Example 9. Let us consider an integrated information system about  employees 
of a company. This example too is somewhat  contrived for the sake of some 
technical points. In this system, the global predicates are: 

1. ernp(E), meaning E is an employee. 
2. phone(E, P), meaning P is E ' s  phone. 
3. office(E, 0), meaning O is E ' s  office. 
4. mgr(E, M), meaning M is E ' s  manager.  
5. deN(E, D), meaning D is E ' s  depar tment .  

There are three sources, each of which provides one view. The definitions of t he  

views are: 

vI(E,P,M) :- emp(E) ~ phone(E,P) ~ mgr(E,M). 
v2(E,O,D) :- emp(E) ~ office(E,O) ~ dept(E,D). 
v3(E,P) :- emp(E) ~ phone(E,P) ~ dept(E,toy). 

Tha t  is, the first source, which supports  view vl, gives information about  em- 
ployees, their phones and managers.  The second source supports  view v2 and 
gives information about  the offices and depar tments  of employees. The  third 
source supports  view v3 and provides the phones of employees, but only for em- 
ployees in the Toy Depar tment .  Notice that  the constraint depar tment  = "Toy" 
is enforced by the subgoal dept(E, toy) in the definition of va. This constraint 
would be impor tan t  if we asked a query about  employees known not to be in the 
Toy Depar tment ;  then we would know tha t  v3 does not appear  in any minimal  

solution. 
Also note tha t  there is no reason to believe the phone information provided 

by vl and v3 is consistent. Further, it is entirely possible that  the information is 
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incomplete; only one of these sources provides phone information, even though 
the employee is in the Toy Department.  In fact, perhaps neither source tells us 
Sally's phone, even though she has a phone. 

Suppose this system is asked a query: "what are Sally's phone and office?" 
We can express this query in terms of the global predicates as: 

ql(P,O) :- phone(sally,P) & office(sally,O). 

There are two minimal solutions to this query. Both use v2 to get Sally's office, 
while the two solutions differ on whether vl or v3 is used to get the phone. Tha t  
is, the full answer to query ql is the union of the CQ's: 

answer(P,O) :- vl(sally,P,M) ~ v2(sally,O,D). 
answer(P,O) :- v3(sally,P) �9 v2(sally,O,D). 

Note that  the expansions of these solutions: 

answer(P,O) :- emp(sally) R phone(sally,P) ~ mgr(sally,M) 
emp(sally) ~ office(sally,O) a dept(sally,D). 

answer(P,O) :- emp(sally) ~ phone(sally,P) a dept(sally,toy) 
emp(sally) ~ office(sally,O) ~ dept(sally,D). 

are not equivalent to ql; they are the CQ's that  come closest to ql while still 
being contained in ql. 

3.2 T s i m m i s  

Tsimmis, which stands for "The Stanford-IBM Manager of Multiple Informa- 
tion Sources," is a DARPA-funded, joint project of the Stanford database group 
and the IBM/Almaden database research group, although the IBM contingent 
has recently begun work on their own information integration project called 
Garlic ([G96]). Tsimmis follows the mediator architecture of Fig. 3, allowing 
us to create a hierarchy of wrappers and mediators that  talk to one another. 
Tsimmis components talk among themselves using a data  model called OEM 
(Object-Exchange Model) and a query language called MSL (Mediator Specifi- 
cation Language). MSL is also used to describe mediators and wrappers at a 
high level, and these components can be generated automatically from the MSL 
specification. 

O E M .  The OEM model ([P*95a]) is "object-oriented," and data  is assumed to 
be organized into objects. An OEM object consists of: 

1. A label, roughly the name of the object 's class. 
2. A type for the value of the object. The type is either an atomic type: integer, 

string, Java script, and so on, or it is the type "set of OEM objects." 
3. A value, either an actual value if the object is atomic, or a set of OEM 

objects. 
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I library t s e ~ f  

author I string I Cricht ~ 

I Jurassic Park 

Fig. 4. An OEM object 

4. An (optional) object-ID. 

Example 10. Figure 4 suggests an OEM object with label l i b r a r y ,  whose value 
is a set of objects representing the documents in the library. We also see one 
member object, with label book. The value of this object is a set, and we have 
shown two members of that set. Both are atomic objects, one labeled t i t l e  and 
having value J u r a s s i c  Park, and the other labeled au thor  with value Crichton.  

MSL.  MSL statements are logicaI rules, but the rules are not exactly Datalog. 
Rather, MSL uses a form of object-logic, in which 

- Labels and values are connected using triangular brackets, < . . .  >. 
- It is also possible to include an object-ID inside triangular brackets as an 

optional first component. 
- Object-ID's may be constructed using function symbols, as in HiLog ([C'89]). 
- Some (not necessarily all) members of a set of objects may be described by 

enclosing them in curly braces { . . .  }. 

Example 11. Let us reconsider Example 9, where we had three sources. Source 1 
produces employee-phone-manager information, Source 2 produces employee- 
office-department information, and Source 3 produces employee-phone informa- 
tion for members of the Toy Department. Each of these sources will be assumed 
to export appropriate OEM objects. For example, Source 1 exports objects with 
atomic subobjects labeled name, phone, and algr. We wish to describe, using 
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MSL rules, a mediator named reed that  uses these three sources and exports two 
types of objects: 

- Employee-phone-office objects with label epo. 
- Employee-department-manager objects with label edm. 

Each object of these types will have snbobjects with the appropriate labels. 
Figure 5 shows the MSL rules that  describe these objects exported by reed. 

I) <f(E) epo {<name E> <phone P>}>@med :- 
<emp {<name E> <phone P>}>@sourcel 

2) <f(E) epo {<name E> <phone P>}>@med :- 
<emp {<name E> <phone P>}>@source3 

3) <f(E) epo {<name E> <office O>}>~med :- 
<emp {<name E> <office O>}>@source2 

4) <edm {<name E> <dept D> <mgr M>}>@med :- 
<emp {<name E> <mgr M>}>@sourcel AND 
<emp {<name E> <dept D>}>@source2 

Fig. 5. An MSL mediator-description 

In this example, we have made the (unrealistic) assumption that  employee 
names are unique. Thus, as we assemble epo objects for an employee named E, 
we use the object-ID I(E), expecting that this ID is unique. Rule (1) says that  
whenever there is an emp object at Source 1 with a name subobject having value 
E and a phone subobject with value P,  we "create" at the mediator reed an 
object whose ID is f(E) and whose label is epo. This object has a subobject 
with label name and value E and a second subobject with label phone and value 
P.  Rules (2) and (3) are similar; rule (2) takes employee/phone information from 
Source 3, while rule (3) takes employee/office information from Source 2. Three 
important  points are: 

- Because the object-ID is specified in rules (1) through (3), whenever infor- 
mation about the same employee E is found in two or more sources, the 
subobjects implied by the heads of these rules will be combined into the 
value of the same object - -  the one with ID f(E). Thus, it will be typical 
that  employee objects will have three subobjects, with labels name, phone, 
and o f f i c e .  They could even have more than three subobjects. For example, 
Sources 1 and 3 could give different phones, so two subobjects labeled phone 
would appear. A single source could also have several phones or offices for 
employee E, and all of these would appear as subobjects at the mediator. 

- The fact that  rule (1) only mentions name and phone subobjects at Source 1 
doesn't  mean it will fail if there are more subobjects, e.g., a manager subob- 
jeet. MSL only mentions subobjects it needs, allowing any other snbobjects 
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to be present. There is even a way (the rest-variable) to refer to "whatever 
other subobjects are present." 

- There is no assumption that variables like E or P are atomic. They might 
turn out to have sets of objects as values, and in fact different objects at 
the sources may have different types for values having the same label. For 
instance, some employees may have strings for names, while others have 
objects with first- and last-name subobjects. 

Rule (4) in Fig. 5 follows a somewhat different philosophy in constructing 
the edm objects at reed. Here, an object is produced only if we are successful in 
finding, for employee E, a department at Source 2 and a manager at Source 1. 
If either is missing, then there is no object for employee E at raed. In contrast, 
rules (1) through (3) allow there to be an epo object for E if any one of the three 
sources mentions E. Note also that  the object-ID component in the constructed 
sources is optional, and in rule (4) there is no need to specify an ID. Thus, the 
head of rule (4) has only label and value components, while the other rules have 
3-component heads. 

C o n v e r t i n g  M S L  to  D a t a l o g .  There is a way to convert MSL into completely 
equivalent Datalog ([P96]). We shall not go into this process, but rather give a 
simplification that  will help us compare IM and Tsimmis. 

Example 12. The following rules capture much of the content of the MSL rules 
in Fig. 5: 

epo(g,P,0) :- vl(g,P,M) ~ v2(E,0,D). 
epo(E,P,O) : -  v3(E ,P)  ~ v2(E,O,D).  

edm(E,D,M) :- vI(E,P,M) E v2(E,0,D). 

Recall that vl, v2, and v3 are the three views that we introduced in Example 9. 

They correspond to the sources i, 2, and 3 in Example Ii. 
There is one important  way that  the rules above differ from the MSL rules 

in Fig. 5. We only get epo facts for employees such that  among the three views 
we find both a phone and office for that  employee. In contrast, as we mentioned 
in Example 11, the MSL rules can yield a phone without an office or vice-versa. 
This capability of MSL is an essential contribution to dealing with heterogeneous, 
often incomplete information sources. 

Q u e r y i n g  T s i m m i s  M e d i a t o r s .  When we query an MSL mediator,  we are 
effectively querying the objects exported by the mediator. There is no notion 
of "global" predicates as there is in IM. Rather, we must refer to the labels 
(equivalent to predicates) that  the mediator exports. Completion of our running 
example will illustrate the distinction between the Tsimmis and IM approaches. 

Example 13. Again let us ask "what are Sally's phone and office?" This time, 
however, we ask it of the mediator llled, whose exported objects we have repre- 
sented in Datalog by the rules of Example 12. The appropriate query is thus: 
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answer(P,O) :- epo(sally,P.O). 

MSL-generated mediators  answer their queries by expanding the rules by 
which the mediator  is defined, in order to get the same query in terms of infor- 
mat ion  at the sources. In our simple example,  we would replace the epo subgoal 
in the query by the bodies of the two rules that  define epo at reed, thus obtaining: 

answer(P,O) :- vl(sally,P,M) ~ v2(sally,O,D). 
answer(P,O) :- v3(sally,P) ~ v2(sally,O,D). 

Notice that  this expansion is identical to what IM obtained for the same query. 

3.3 C o m p a r i n g  t h e  I M  a n d  T s i m m i s  Q u e r y  P r o c e s s o r s  

We should not suppose from Example 13 that  the result of "equivalent" IM and 
Ts immis  queries are always the same, even after accounting for the difference in 
the underlying logics. The processes of query translation are rather different. 

- IM uses the query synthesis strategy outlined in Section 2. 
- IM queries are in terms of global predicates, which are  translated into views. 
- Ts immis  queries are in terms of predicates synthesized at a mediator.  These 

concepts, in turn, are built from views in the IM sense, exported by the 
sources. 

- Ts immis  uses a strategy of rule expansion to answer queries. Although the 
expansion can result in an exponential number of terms, the flavor of the 
search is different from IM's. In Tsimmis  we can expand each subgoal of the 
query independently, using every rule whose head unifies with the subgoal. 

Example 13. The following is an example of how the two systems can differ. In 
this example,  Tsimmis  appears to flounder, but we should emphasize tha t  it is 
an atypical example,  contrived for the sake of illustration. 

Suppose we wanted to know Sally's office and department .  Tha t  is: 

q2(0 ,D)  : -  o f f i c e ( s a l l y , 0 )  ~ d e p t ( s a l l y , D ) .  

Using the views of Example  9, IM would find that  the only minimal  solution to 
the query q2 is 

answer(O,D) :- v2(sally,O,D). 

However, using the Tsimmis  mediator  reed of Example  11, we can only express 
our query as: 

q3(O,D) :- epo(sally,P,O) & edm(sally,D,M). 

The reason for this awkwardness is that  each mediator  exports a specific collec- 
tion of objects. We do not have the freedom to penetrate,  in our query, to the 
terms used by the mediator ' s  sources. 

The media tor  reed would process query q3 by expanding each subgoal. The 
result would be the pair of rules: 
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answer(O,D) 

answer(O,D) 

:- vl(sally,Pi,Mi) ~ v2(sally,O,D) 
vl(sally,P2,M2) a v2(sally,O,D). 

:- v3(sally,P1) ~ v2(sally,O,D) 
vl(sally,P2,M) ~ v2(sally,O,D). 

Of course, the MSL optimizer will eliminate redundant terms and simplify this 
solution. However, it cannot completely eliminate the subgoals using the irrele- 
vant views vl and v3. As a result, it produces an empty  answer in the case that  
we do not know a phone or manager  for Sally. 

Let us again emphasize that  the apparent  failure of Ts immis  in Example  14 
is due only to the fact that  we contrived the mediator  to export inconvenient 
objects. The motivat ion for the design of Tsimmis  is that  the mediators  it cre- 
ates may  perform some very complex processing of source da ta  to produce its 
exported objects. It  may  not be feasible to define or create objects for every 
conceivable query. In comparison, IM is limited in the way it can combine its 
sources, since it must  rely on the particular search algori thm of Section 2 to 
combine sources. 

3.4 Further Comparisons of  IM and Ts immis  

In addition to the differences in query processing discussed in Section 3.3, there 
are a number  of other ways in which IM and Tsimmis  differ. 

L e v e l s  o f  M e d i a t i o n .  IM is designed to have two levels: the sources and the 
"global mediator."  In contrast,  Ts immis  assumes tha t  there is an indefinite num- 
ber of levels, as the output  of one mediator  can be a source for a higher-level 
mediator .  Of course, it would in principle be possible for one IM application to 
be a source for another. However, then we would have to wrap the first appli- 
cation, defining for it a fixed set of views tha t  it exported. We thus might  face 
the same sort of awkwardness that  we explored in Example  14 in the context of 

Tsimmis .  

A d d i n g  S o u r c e s .  IM makes it quite convenient to add new sources. One must  
write a wrapper  for the sources and define its views and constraints in terms 
of the global concepts. However, no change to the query-processing algori thm is 
needed. The new views will be used whenever they are appropriate  for the query. 
In contrast,  new Tsimmis  sources not only must  be wrapped, but  the mediators  
tha t  use them have to be redefined and their MSL definitions recompiled. The  
adminis t ra tor  of the system must  figure out whether and how to use the new 

s o u r c e S .  

S e m i s t r u c t u r e d  D a t a .  As we have mentioned, Ts immis  supports  the notion 
tha t  da ta  does not have a fixed or uniform schema; we call such da ta  semistruc- 
tured. Objects with the same label, say employee,  may  have different sets of 
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information available, and even the same information may appear with different 
structures in different objects. For example, some employees may be retired and 
have no salary subobject. Others may have an integer salary. Others may have 
a structured salary including base, weekly commissions, and so on. The MSL 
language has been designed to allow the mediator-implementor to deal with the 
lack of schema. The reader will find more on the important  issue of handling 
semistruetured data  in [A97]. 

C o n s t r a i n t s .  Only IM has an explicit mechanism for describing special prop- 
erties of the information that  a particular source will supply and using that  
information in its query-processing algorithm. 

A u t o m a t i c  G e n e r a t i o n  o f  C o m p o n e n t s .  Tsimmis has stressed the auto- 
matic  generation of both wrappers ([P*95b]) and mediators ([P96]). In a sense, 
IM has no need for automatic generation of mediators, since each application 
has one "mediator" and the query-processing algorithm it uses is the same as 
that  of any other IM application. Tsimmis wrapper-generation technology could 
be used to wrap IM sources, although the difference in the models and languages 
(OEM/MSL versus Description Logic) makes direct adaptation impossible. 

3.5 E x t e n s i o n s  o f  t h e  Q u e r y / V i e w  M o d e l  o f  M e d i a t i o n  

Both IM and Tsimmis have concentrated on conjunctive queries as the principal 
model of both queries and views. However, there has been some exploration in 
both projects of the possibility of using more powerful languages for defining 
views. The natural  "next step" is to use recursive Datalog programs to generate 
infinite families of views. While describing a simple source by a finite set of views 
or rules is adequate, sources that  support a rich query language (e.g., an SQL 
database) are better  described by infinite families of queries. 

Example 15. Suppose the source is an on-line bibliography that  allows queries 
in which one or more properties are specified. We might describe the source by 
the recursive program of Fig. 6. 

answer(X) :- book(X) and QUALS(X). 

QUALS(X) :- QUALS(X) ~ Q(X). 
QUALS(X) :- [~(X). 

Q(X) :- property(X, $pname, $value). 

Fig. 6. A recursive program generating views 
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There are several things we must understand about the notation in Fig. 6. 
First, predicates Q U A L S  and Q are expected to be expanded in all possible 
ways, generating an infinite set of conjunctive queries, each of the form 

answer(X) : -  book(X) t~ p r o p e r t y ( )  $~ 
p r o p e r t y ( )  �9 . . .  ~ p r o p e r t y ( )  

That  is, each query asks for books X that  satisfy certain properties. 
The variables $pname and $value are parameters that  are intended to be 

filled in for each property, allowing the CQ to match queries in which particular 
properties are required to have specific values. A typical query is: 

query(X) : -  book(X) ~ p roper ty (X,  au t h o r ,  c r i c h t o n )  
property(X, subject, dinosaurs). 

The idea has been explored in the context of Tsimmis in [P*95b]. It also has 
been proposed as an extension to IM in [LRU96]. In each case the satisfactory 
incorporation of recursively generated, infinite view sets requires extending the 
previously known algorithms for containment of conjunetive queries and D atalog 
programs. 

4 Conclusions 

Both tM and Tsimmis offer interesting approaches to the difficult problems of 
information integration. Moreover, they both draw upon similar, fairly ancient 
ideas from database logic, such as conjunctive query containment, as welt as 
new ideas in database theory. They differ in a number of ways, including the 
underlying logic, the approach to semistructured data, and the query processing 
algorithm. Each represents an exciting direction for further research in database 
systems and for the creation of a new class of information-processing tools. 
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