
Information Integration Using Logical Views*

Jeffrey D. Ullman

Stanford University

Abstract. A number of ideas concerning information-integration tools
can be thought of as constructing answers to queries using views that
represent the capabilities of information sources. We review the formal
basis of these techniques, which are closely related to containment algo-
rithms for conjunctive queries and/or Datalog programs. Then we com-
pare the approaches taken by AT&T Labs' "Information Manifold" and
the Stanford "Tsimmis" project in these terms.

1 Theoretical Background

Before addressing information-integration issues, let us review some of the basic
ideas concerning conjunctive queries, Datalog programs, and their containment.
To begin, we use the logical rule notation from [Ull88].

Example 1. The following:

p(X,Z) : - a(X,Y) ~ a(Y,Z) .

is a rule that talks about a, an EDB predicate ("Extensional DataBase," or
stored relation), and p, an IDB predicate ("Intensional DataBase," or predicate
whose relation is constructed by rules). In this and several other examples, it is
useful to think of a as an "arc" predicate defining a graph, while other predicates
define certain structures that might exist in the graph. That is, a(X, Y) means
there is an arc from node X to node Y. In this case, the rule says "p(X, Z) is
true if there is an arc from node X to node Y and also an arc from Y to Z."
That is, p represents paths of length 2.

In general, there is one atom, the head, on the left of the "if" sign, : - and
zero of more atoms, called subgoals, on the right side (the body). The head always
has an IDB predicate; the subgoals can have IDB or EDB predicates. Thus, here
p(X, Z) is the head, while a(X, Y) and a(Y, Z) are subgoals.

We assume that each variable appearing in the head also appears somewhere
in the body. This "safety" requirement assures that when we use a rule, we are
not left with undefined variables in the head when we try to infer a fact about
the head's predicate.

We also assume that atoms consist of a predicate and zero or more arguments.
An argument can be either a variable or a constant. However, we exclude function
symbols from arguments.

* This work was supported by NSF grant IRI-96-31952, ARO grant DAAH04-95-1-
0192, and Air Force contract F33615-93-1-1339.

20

1.1 Conjunctive Queries

A conjunctive query (CQ) is a rule with subgoals that are assumed to have EDB
predicates. A CQ is applied to the EDB relations by considering all possible
substitutions of values for the variables in the body. If a substitution makes all
the subgoals true, then the same substitution, applied to the head, is an inferred
fact about the head's predicate.

Example 2. Consider Example 1, whose rule is a CQ. If a(X, Y) is true exactly
when there is an arc X --+ Y in a graph G, then a substitution for X, Y, and Z
will make both subgoals true when there are arcs X --+ Y --+ Z. Thus, p(X, Z)
will be inferred exactly when there is a path of length 2 from X to Z in G.

A crucial question about CQ's is whether one is contained in another. If
Q1 and Q2 are CQ's, we say Q1 ___ Q~ if for all databases (truth assignments
to the EDB predicates) D, the result of applying Q1 to D [written QI(D)] is
a subset of Q2(D). Two CQ's are equivalent if and only if each is contained
in the other. It turns out that in almost all cases, the only approach known
for testing equivalence is by testing containment in both directions. Moreover,
in information-integration applications, containment appears to be more funda-
mental than equivalence, so from here we shall concentrate on the containment

test.
Conjunctive queries and their containment were first studied by Chandra

and Merlin ([CM77]). Here, we shall give another test, following the approach
of [R'89], because this test extends more naturally to the generalizations of the
CQ-containment problem that we shall discuss. To test whether Q1 _c Q2:
1. freeze the body of Q1 by turning each of its subgoals into facts in the

database. That is, replace each variable in the body by a distinct constant,
and treat the resulting subgoals as the only tuples in the database.

2. Apply Q2 to this canonical database.
3. If the frozen head of Q1 is derived by Q2, then Q1 C Qu. Otherwise, not; in

fact the canonical database is a counterexample to the containment, since
surely Q1 derives its own frozen head from this database.

Example 3. Consider the following two CQ's:

QI :P (X ,Z) : - a(X,V) g a (Y,Z) .
Q2:P(X,Z) : - a (x , u) ~ a (v , z) .

Informally, Q1 looks for paths of length 2, while Q2 looks only for nodes X and Z
such that X has an arc out to somewhere, and Z has an arc in from somewhere.
Intuitively, we expect, Q1 c Q2, and that is indeed the case.

In this and other examples, we shall use integers starting at 0 as the constants
that "freeze" the CQ, although obviously the choice of constants is irrelevant.
Thus, the canonical database D constructed from Q1 consists of the two tuples
a(0, 1) and a(1,2) and nothing else. The frozen head of Q1 is p(0, 2).

If we apply Q2 to D, the substitution X --+ 0, U --+ 1, V --+ 1, and Z -+ 2
yields p(0, 2) in the head of Q2. Since this fact is the frozen head of Q1, we have

verified Q1 c Q2.

21

Incidentally, for this containment test and the more general tests of following
subsections, the argument that it works is, in brief:

- If the test is negative, then the constructed database is a counterexample to
the containment.

- If the test is positive, then there is an implied homomorphism # from the
variables of Q2 to the variables of Q1. We obtain # by seeing what constant
each variable X of Q~ was mapped to in the successful application of Q2
to the canonical database. #(X) is the variable of Q1 that corresponds to
this constant. If we now apply Qz to any database D and yield a particular
fact for the head, let the homomorphism from the variables of Q1 to the
database symbols that we use in this application be v. Then # followed by y
is a homomorphism from the variables of Q2 to the database symbols that
shows how Q2 will yield the same head fact. This argument proves Q1 c Q2-

Containment of CQ's is NP-complete ([CM77]), although [Sar91] shows that
in the common case where no predicate appears more than twice in the body,
then there is a linear-time algorithm for containment.

1 .2 C Q ' s W i t h N e g a t i o n

An important extension of CQ's is to allow negated subgoals in the body. The
effect of applying a CQ to a database is as before, but now when we make a
substitution of constants for variables the atoms in the negated subgoals must
be false, rather than true (i.e., the negated subgoat itself must be true).

Now, the containment test is slightly more complex; it is complete for the class
/ / I , problems that can be expressed as {w[(Vz)(3y)r x, y)}, where strings x
and y are of length bounded by a polynomial function of the length of w, and r
is a function that can be computed in polynomial time. This test, due to Levy
and Sagiv ([LS93]), involves exploring an exponential number of "canonical"
databases, any one of which can provide a counterexample to the containment.
Suppose we wish to test Q1 _ Q2. We do the following:

1. Consider each substitution of constants for variables in the body of QI,
allowing the same constant to be substituted for two or more variables.
More precisely, consider all partitions of the variables of Qz and assign for
each block of the parti t ion a unique constant. Thus, we obtain a number
of canonical databases D1, D2,. . . , Dk, where k is the number of partitions
of integer n, and n is the number of variables in the body of Q1. Each Di
consists of the frozen positive subgoals of Q1 only, not the negated subgoals.

2. For each Di consider whether Di makes all the subgoals of Q1 true. Note
that because the atom in a negated subgoal may happen to be in Di, it is
possible that Di makes the body of Q1 false.

3. For those Di that make the body of Qz true, test whether any Q2(D~)
includes the frozen head of Q1, where D~ is any database that is a superset
of Di formed byadding other tuples that use the same set of symbols as D~.
However, D~ may not include any tuple that is a frozen negative subgoal of
Q1. When determining what the frozen head of Qz is, we make the same
substitution of constants for variables that yielded Di.

22

4. If every Di either makes the body of Q1 false or yields the frozen head of
Q1 when Q2 is applied, then Q1 C Q2" Otherwise, not.

Example/,. Let us consider the following two conjunctive queries:

Q t : p (x , z) : - a(X,Y) 8, a(Y,Z) ~ NOT a(X,Z) .
Q2: p(A,C) : - a(A,B) �9 a(B,C) a NOT a(A,D).

Intuitively, Q1 looks for paths of length 2 that are not "short-circuited" by a
single arc from beginning to end. Q2 looks for paths of length 2 that start from
a node A that is not a "universal source"; i .e. , there is at least one node D not
reachable from A by an arc.

To show Q1 _ Q2 we need to consider,all partitions of {X, Y, Z}. There are
five of them: one that keeps all three variables separate, one that groups them
all, and three that group one pair of variables. The table in Fig. 1 shows the five
cases and their outcomes.

1)
2)
3)
4)
5)

Partition
{x}{Y}{Z}
{X, Y}{Z}
{x}{y, z}
{x, z}{y}
{x, Y, z}

Canonical Database

{a(0,1),a0,2)}
{a(0,0),a(0,1)}
{a(0,1),a(1,1)}
{a(0,1),a(1,0)}
{~(o,o)}

Outcome
both yield head p(O, 2)
Q1 body false
Qt body false
both yield head p(0, 0)
Q1 body false

Fig. 1. The five canonical databases and their outcomes

For instance, in case (1), where all three variables are distinct, and we have
arbitrarily chosen the constants 0, 1, and 2 for X, Y, and Z, respectively, the
canonical database D1 is the two positive subgoals, frozen to be a(0, 1) and
a(1, 2). The frozen negative subgoal NOT a(0, 2) is true in this case, since a(O, 2)
is not in D1. Thus, Q1 yields its own head, p(0, 2), and we must test that Q2
does likewise on any database consisting of symbols 0, 1, and 2, that includes
the two tuples of Dt and does not include the tuple a(O, 2), the frozen negative
subgoal of QI. If we use the substitution A --+ 0, B ~ 1, C --+ 2, and D -+ 2,
then the positive subgoals become true for any such superset of D1. The negative
subgoal becomes NOT a(0, 2), and we have explicitly excluded a(0, 2) from any of
these databases. We conclude that the Levy-Sagiv test holds for case (1).

Now consider case (2), where X and Y are equated and Z is different. We
have chosen to use 0 for X and Y; 1 for Z. Then the canonical database for this
case is D2, consisting of the frozen positive subgoals a(0, 0) and a(0, 1). For this
substitution, the negative subgoal of Qt becomes NOT a(0, 1). Since a(0, 1) is in
D2, this subgoal is false. Thus, for this substitution of constants for variables in
Q1, we do not even derive the head of Q1. We need check no further in this case;

the test is satisfied.

23

The three remaining cases must be checked as well. However, as indicated in
Fig. 1, in each case either both CQ's yield the frozen head of Q1 or Q1 does not
yield its own frozen head. Thus, the test is completely satisfied, and we conclude

Q1 c Q2.

1.3 CQ~s W i t h A r i t h m e t i c C o m p a r i s o n s

Another important extension of CQ-containment theory is the inclusion of arith-
metic comparisons as subgoals. In this regard we must consider the set of values
in the database as belonging to a totally ordered set, e.g., the integers or re-
als. When we consider possible assignments of integer constants to the variables
of conjunctive query Q1, we may use consecutive integers, starting at 0, but
now we must consider not only partitions of variables into sets of equal value,
but among the blocks of the partition, we must consider the relative order of
their values. The canonical database is constructed from those subgoals that
have nonnegated, uninterpreted predicates only, not those with a negation or a
comparison operator.

If there are negated subgoals, then we must also consider certain supersets
of the canonical databases, as we did in Section 1.2. But if there are no negated
subgoals, then the canonical databases alone suffice.

Example 5. Now consider the following two conjunctive queries, each of which
refers to a graph in which nodes are assumed to be integers.

QI:p(X,Z) :- a(X,Y) ~ a(Y,Z) ~ X<Y.

Q2:p(A,C) :- a(A,B) a a(B,C) ~ A<C.

Both ask for paths of length 2. But Q1 requires that the first node be numerically
less than the second, while Q2 requires that the first node be numerically less
than the third.

The number of different canonical databases is 13. We must consider the five
different partitions of {X, Y, Z}, as we did in Fig. 1. However, we also have to
order the blocks of each partition. For parti t ion (1) of Fig. 1, where each variable
is separate, we have 6 possible orders of the blocks. For partitions (2) through
(4), where there are only two blocks, we have 2 different orders. Finally, for
parti t ion (5), with only one block, there is one order.

In this example, the containment test fails. We have only to find one of the
13 cases to show failure. For instance, consider X = Z = 0 and Y = 1. The
canonical database D for this case is {a(0, 1), a(1, 0)}, and since X < Y, the
body of Q1 is true. Thus, Q2(D) must include the frozen head of Q1, p(0, 0).
However, no assignment of values to A, B, and C makes all three subgoals of Q~
true, when D is the database. That is, in order to make subgoals a(A, B) and
a(B, C) both true for D, we surely must use 0 or 1 for all of A, B, and C. Then
to make A < C true, we must have A = 0 and C = 1. But then, whether B is
0 or 1 we shall have in Q2 a subgoal a(0, 0) or a(], 1), neither of which is in D.
Thus, D is a counterexample to Q1 c Q2.

24

The containment test for CQ's with ari thmetic is from [Klug88], and [vdM92]
shows that the problem of testing containment for CQ's with ar i thmetic compar-
isons is complete for H~, at least in the case of a dense domain such as the reals.
[LS93] actually includes ari thmetic comparisons in their work on negation, and
we should note tha t the above technique works even if there are negated subgoals
as well as ari thmetic comparisons. There is a more general approach tha t works
for any interpreted predicates, not just a predicate like < or < that forms a total
order; it appears in [ZO93]. However, this technique does not include CQ's with
negated subgoals.

1.4 D a t a l o g P r o g r a m s

Let us now return to the original model of rules, excluding negated subgoals
and ari thmetic comparisons. However, we shall now consider collections of rules,
which we call a Datalog program. Such collections of rules have a natural , least-
fixedpoint interpretation, where we start by assuming the IDB predicates have
empty relations. We then use the rules to infer new IDB facts, until no more facts
can be inferred. More on the semantics of Datalog, including efficient algori thms
for evaluating the IDB predicates, can be found in [Ul188], [Ull89]. While we
shall not discuss Datalog with negated subgoals here, because the meaning is
debatable in some cases, the principal ideas are surveyed in lUll94]. Here is an
example of a Datalog program and its semantics.

Example 6. Consider the three rules:

i) p(X,Z) :- q(X,Y) ~ b(Y,Z).
2) q(X,Y) :- a(X,Y).
3) q(X,Z) :- a(X,Y) ~ p(Y,Z).

Intuitively, think of a graph with two kinds of arcs: "a-arcs" and "b-arcs." Then
p and q represent certain kinds of paths. Rule (1) says that a q-path followed by
a b-arc is a p-path. Rule (2) says that a single a-arc is a q-path, while rule (3)
says that a-arcs followed by p-paths are also q-paths. It may not be obvious what
is going on, but one can prove by an easy induction that the p-paths consist of
some number n > 1 of a-arcs followed by an equal number of b-arcs. A q-path is

the same, except it has one fewer b-arc.
To get a feel for why this claim holds, consider a particular graph G described

by the a and b EDB predicates. Then rule (2) says all the paths a are in the
relation for q. We can therefore use rule (1) to infer that any pa th of the form
ab is in the relation for p; more precisely, if there is a pa th from node X to node
Z tha t follows an a-arc and then a b-arc, p(X, Z) is true. Next, rule (3) tells us
tha t any pa th of the form aab is a q-path; rule (1) says paths of the form aabb
are p-paths, and so on.

Containment questions involving Datalog programs are often harder than
for CQ's. [Shm87] shows that containment of Datalog programs is undecidable,
while [CV92] shows that containment of a Datalog program in a CQ is doubly

25

exponential. However, the important case for purposes of information integration
is the containment of a CQ in a Datalog program, and this question turns out
to be no more complex than containment of CQ's ([R'89]).

To test whether CQ Q is contained in Datalog program P, we "freeze" the
body of Q, just as we did in Section 1.1, to make a canonical database D. We
then see if P(D) contains the frozen head of Q. The only significant difference
between containment in a CQ and containment in a Datalog program is that in
the latter case we must keep applying the rules until either the head is derived,
on no more IDB facts can be inferred.

Example Z Consider the Datalog program f fomExample 6, which we shall call
P, and the C Q Q :

p(A,C) :- a(A,B) & b(B,C).

Freezing the body of Q, we obtain the canonical database

D -- {a(0, l),b(1,2)}.

Now, we apply P to D. Rule (2) lets us infer q(0, 1) from a(0, 1). Then,
rule (1) lets us infer p(0, 2) from q(0, 1) and b(1, 2). Since p(0, 2) is the frozen
head of Q, our test has concluded positively; Q c P.

2 S y n t h e s i z i n g Q u e r i e s F r o m V i e w s

Query containment algorithms connect to information integration via a concept
called "synthesizing queries from views." The idea, originally studied by [YL87]
and [C'95], is suggested in Fig. 2. There are a number of "EDB" predicates, for
which we use p's in Fig. 2. These predicates, which are not truly EDB predicates
since they usually don't exist as physically stored relations, can be thought of
as representing the basic concepts used in queries. There are also views, denoted
by v's in Fig. 2, that represent resources that the integrator uses internally to
help answer queries. Each view has a definition in terms of the EDB predicates,
and we suppose here that these definitions are conjunctive queries.

2.1 Solving Queries by Views

A query Q is expressed in terms of the EDB predicates, the p's. Our problem
is to find a "solution" S for the query Q. A solution is an expression (also a
CQ in the figure) in terms of the views. In order to be a valid solution, when
we replace the views in S by their definitions, we get an expansion query E,
which must be equivalent to the original query Q. An alternative formulation of
the query-synthesis problem is to ask for all solutions S whose expansion E is
contained in Q (perhaps properly contained). "The solution" for Q is then the
union of all these partial solutions.

26

/
c

a n s w e r () : - p~11 �9 �9 . P j ' l k l

a n s w e r () : - V , l () a . . a V , ~ (

a . s w e r () : - , ~ () ~ . . . ~ , j ~ ()

Query Q

Solution S

pj, .1 �9 �9 �9 P.irk,. Expansion E

Fig. 2. Constructing a query from views

E x a m p l e 8. We shall consider an example that illustrates some technical points,
but suffers in realism for the sake of these points. Let us suppose that there is a
single EDB predicate p (X , Y) which we interpret to mean that Y is a parent of
X. Let there be two views, defined as follows:

vI(Y,Z) :- p(X,Y) ~ p(Y,Z).
v2(X,Z) :- p(X,Y) ~ p(Y,Z).

Note that the views have the same body but different heads. The first view, v l ,

actually produces a subset of the relation for p: those child-parent pairs (Y, Z)
such that the child is also a parent of some individual X. The second view, v2,
produces a straightforward grandparent relation from the parent relation.

Suppose that we want to query this information system for the great grand-
parents of a particular individual, whom we denote by the constant 0. This query
is expressed in terms of the EDB predicate p by

q(C) :- p(O,A) ~ p(A,B) ~ p(B,C).

Our problem is to find a CQ whose subgoals use only the predicates vl and v2
and whose expansion is equivalent to the query above. A bit of thought tells us

that

sl(C) :- v2(O,D) ~ vl(D,C).

is a solution. Tha t is, if we replace each of the subgoals of sl by the definition
of the views (being careful to use unique variables in place of those variables
that appear in the bodies of the view definitions but not in the heads of those

definitions), we get the expansion:

el(C) :- p(O,E) ~ p(E,D) ~ p(F,D) ~ p(D,C).

27

We can use the CQ containment test in both directions to prove tha t el ~ q.
Intuitively, the subgoal p(F, D) in el is superfluous, since every t ime there is
binding for E and D that makes p(E, D) true, we can bind F to the same value
as E and make p(F, D) true.

There are other solutions that , when expanded, are contained within q, but
are not equivalent to it. Some examples are:

s2(C) :- vl(O,D) a v2(D,C).
s3(C) :- vl(O,D) & vI(D,E) & vI(E,C).
s4(C) :- v2(O,D) & vI(D,C) ~ v2(C,E).

Solution s2 is equivalent to q if individual 0 has a child in the database. Other-
wise, 0 cannot appear as a first component in the relation for vl, and the result of
s2 is empty. Thus, s2 _C q, but not conversely. Solution s3 is actually equivalent
to s2, while s4 gives those great grandparents of individual 0 who are themselves
grandchildren.

2.2 M i n i m a l - S o l u t i o n T h e o r e m s

It might appear from Example 8 tha t one can only guess potential solutions for
a query and test them via CQ-containment tests. However, there are theorems
tha t l imit the search and show that the problem of expressing a query in terms
of views, while NP-complete, is no worse than that. As discussed in Section 1.1,
we expect tha t queries will be short, so NP-complete problems are unlikely to
be a major bottleneck in practice.

The principal idea is that any view used in a solution must serve some func-
tion in the query; a view without a function may be deleted from the solution.
For example, every subgoal of the query must be covered by some view. The
question of when a view covers a query subgoal is a bit subtle, because two
or more views may cover the same subgoal. For instance, consider Example 8,
where both p(E, D) and p(F, D) from expansion el "cover" p(A, B) from the
query. More precisely, A, E, and F may each represent a parent of individual 0,
while B and D represent a parent of that parent. Note that p(E, D) and p(F, D)
come from the expansion of v2 (0, D) and vl (D, C), respectively, in solution sl , so
these two subgoals from different views each play the same role in the expansion.

Let us define a solution S: for a query Q to be minimal if
1. SC_Q.
2. There is no solution T for Q such that

(a) S C T C _ Q , and
(b) T has fewer subgoals than S.

T h e o r e m 1. ([L'95]) If queries are CQ's without negation, arithmetic compar-
isons, or constants in the body, then every minimal conjunctive-query solution
for a query Q has no more subgoals (uses of views) than Q has subgoals.

28

T h e o r e m 2. ([RSU95]) If queries are CQ's without negation or arithmetic com-
parisons (but with constants in the body permitted, as in Example 8), then every
minimal CQ-solution for a query Q has no more subgoals than the sum of the
number of subgoals and number of variables in Q.

Both Theorems [L'95] and [RSU95] offer nondeterministic polynomial- t ime
algori thms to find either

1. A single solution equivalent to the query Q, or
2. A set of solutions whose union is contained in Q and that contains any other

solution tha t is contained in Q.

In each case, one searches "only" an exponential number (as a function of the
length of Q) of minimal queries. If we are looking for one solution equivalent to
Q, then we may stop if we find one, and we conclude there is none if we have
searched all solutions of length up to the bound and found none. If we want
all solutions contained in the query, then we search all up to the bound, taking
those that are contained in Q.

3 Information-Integration S y s t e m s

Informat ion integration has long been recognized as a central problem of modern
database systems. While early databases were self-contained, it is now generally
realized that there is great value in taking information from various sources and
making them work together as a whole. Yet there are several difficult problems

to be faced:
"Legacy" databases cannot be altered just because we wish to support a
new, integrating application above them.

- Databases that ostensibly deal with the same concepts may have different
shades of meaning for the same term, or use different terms for the same

concept.
- Information sources, such as those on the "web," may have no fixed schema

or a t ime-varying schema.
A common integration architecture is shown in Fig. 3. Several sources are

wrapped by software that translates between the source's local language, model,
and concepts and the global concepts shared by some or all of the sources.
System components, here called mediators ([Wie92]), obtain information f rom
one or more components below them, which may be wrapped sources or other
mediators. Mediators also provide information to components above them and

to external users of the system.
In a sense, a mediator is a view of the da ta found in one or more sources.

Da ta does not exist at the mediator, but one may query the media tor as if it
were stored data; it is the job of the mediator to go to its sources and find the

answer to the query.
Today, the components labeled "mediator" in Fig. 3 are unlikely to be true

mediators, but rather data warehouses. If a mediator is like a view, then a ware-
house is like a materialized view. Tha t is, the warehouse holds da ta tha t is con-
structed f rom the da ta at the sources. The warehouse is queried directly, with

29

Query

IWra erl

Fig. 3. Common integration architecture

no involvement by the sources. There are numerous problems associated with
the design and implementation of warehouses (see [Wid95], e.g.), not the least of
which is that it is difficult and/or expensive to keep the warehouse up-to-date,
as the underlying data changes.

There are, however, several research projects developing true mediator capa-
bilities, and in this section we shall introduce two of them:

1. Information Manifold ([K'95], [L*96a], [L*96b]), a project of AT&T Labo-
ratories.

2. Tsimmis ([T96], [P96], [P*95a], [GM*95], [P*95b]), a project at Stanford
University.

Both systems use logic-based technology, and while neither is based on Datalog
per se, the operation of each can be translated into Datalog.

3.1 I n f o r m a t i o n M a n i f o l d

Information Manifold (IM) is based on a dialect of description logic called
CARIN ([LR96]). Description logic is a fragment of first-order logic that can
almost be thought of as nonrecursive Datalog with IDB predicates restricted to
be unary, although there are certain capabilities of description logic that are
beyond what Datalog provides ([Bor96]). Here, we shall use Datalog in examples
of the architecture of IM.

30

The architecture of IM is essentially that described in Section 2. The following
points characterize IM in these terms:

- An IM application has a collection of "global" predicates in terms of which
all queries are expressed.

- Each information source is associated with one or more views. Views are also
defined in terms of the global predicates.

- However, the definition of a view should not be given the usual interpretat ion
of "this source provides all facts derivable from its definition and the global
predicates." Rather, the intension is tha t the view provides some of those
facts.

- The solution to a query is the union of all minimal CQ's (over the views)
contained in the query. Note tha t there could be other solutions to the query
in sources not available to this IM application, but the minimal solutions
provide all the query answers that are accessible to IM.

- Also associated with a source are zero or more constraints. A constraint is a
guarantee that certain facts that might be present in the view will in t ruth
not appear there. For example, a source might supply a parent-child predicate
as its view, and a constraint might state that the only pairs supplied will
have female children born after 1970.

Example 9. Let us consider an integrated information system about employees
of a company. This example too is somewhat contrived for the sake of some
technical points. In this system, the global predicates are:

1. ernp(E), meaning E is an employee.
2. phone(E, P), meaning P is E ' s phone.
3. office(E, 0), meaning O is E ' s office.
4. mgr(E, M), meaning M is E ' s manager.
5. deN(E, D), meaning D is E ' s depar tment .

There are three sources, each of which provides one view. The definitions of t he

views are:

vI(E,P,M) :- emp(E) ~ phone(E,P) ~ mgr(E,M).
v2(E,O,D) :- emp(E) ~ office(E,O) ~ dept(E,D).
v3(E,P) :- emp(E) ~ phone(E,P) ~ dept(E,toy).

Tha t is, the first source, which supports view vl, gives information about em-
ployees, their phones and managers. The second source supports view v2 and
gives information about the offices and depar tments of employees. The third
source supports view v3 and provides the phones of employees, but only for em-
ployees in the Toy Depar tment . Notice that the constraint depar tment = "Toy"
is enforced by the subgoal dept(E, toy) in the definition of va. This constraint
would be impor tan t if we asked a query about employees known not to be in the
Toy Depar tment ; then we would know tha t v3 does not appear in any minimal

solution.
Also note tha t there is no reason to believe the phone information provided

by vl and v3 is consistent. Further, it is entirely possible that the information is

3]

incomplete; only one of these sources provides phone information, even though
the employee is in the Toy Department. In fact, perhaps neither source tells us
Sally's phone, even though she has a phone.

Suppose this system is asked a query: "what are Sally's phone and office?"
We can express this query in terms of the global predicates as:

ql(P,O) :- phone(sally,P) & office(sally,O).

There are two minimal solutions to this query. Both use v2 to get Sally's office,
while the two solutions differ on whether vl or v3 is used to get the phone. Tha t
is, the full answer to query ql is the union of the CQ's:

answer(P,O) :- vl(sally,P,M) ~ v2(sally,O,D).
answer(P,O) :- v3(sally,P) �9 v2(sally,O,D).

Note that the expansions of these solutions:

answer(P,O) :- emp(sally) R phone(sally,P) ~ mgr(sally,M)
emp(sally) ~ office(sally,O) a dept(sally,D).

answer(P,O) :- emp(sally) ~ phone(sally,P) a dept(sally,toy)
emp(sally) ~ office(sally,O) ~ dept(sally,D).

are not equivalent to ql; they are the CQ's that come closest to ql while still
being contained in ql.

3.2 T s i m m i s

Tsimmis, which stands for "The Stanford-IBM Manager of Multiple Informa-
tion Sources," is a DARPA-funded, joint project of the Stanford database group
and the IBM/Almaden database research group, although the IBM contingent
has recently begun work on their own information integration project called
Garlic ([G96]). Tsimmis follows the mediator architecture of Fig. 3, allowing
us to create a hierarchy of wrappers and mediators that talk to one another.
Tsimmis components talk among themselves using a data model called OEM
(Object-Exchange Model) and a query language called MSL (Mediator Specifi-
cation Language). MSL is also used to describe mediators and wrappers at a
high level, and these components can be generated automatically from the MSL
specification.

O E M . The OEM model ([P*95a]) is "object-oriented," and data is assumed to
be organized into objects. An OEM object consists of:

1. A label, roughly the name of the object 's class.
2. A type for the value of the object. The type is either an atomic type: integer,

string, Java script, and so on, or it is the type "set of OEM objects."
3. A value, either an actual value if the object is atomic, or a set of OEM

objects.

32

I library t s e ~ f

author I string I Cricht ~

I Jurassic Park

Fig. 4. An OEM object

4. An (optional) object-ID.

Example 10. Figure 4 suggests an OEM object with label l i b r a r y , whose value
is a set of objects representing the documents in the library. We also see one
member object, with label book. The value of this object is a set, and we have
shown two members of that set. Both are atomic objects, one labeled t i t l e and
having value J u r a s s i c Park, and the other labeled au thor with value Crichton.

MSL. MSL statements are logicaI rules, but the rules are not exactly Datalog.
Rather, MSL uses a form of object-logic, in which

- Labels and values are connected using triangular brackets, < . . . >.
- It is also possible to include an object-ID inside triangular brackets as an

optional first component.
- Object-ID's may be constructed using function symbols, as in HiLog ([C'89]).
- Some (not necessarily all) members of a set of objects may be described by

enclosing them in curly braces { . . . }.

Example 11. Let us reconsider Example 9, where we had three sources. Source 1
produces employee-phone-manager information, Source 2 produces employee-
office-department information, and Source 3 produces employee-phone informa-
tion for members of the Toy Department. Each of these sources will be assumed
to export appropriate OEM objects. For example, Source 1 exports objects with
atomic subobjects labeled name, phone, and algr. We wish to describe, using

33

MSL rules, a mediator named reed that uses these three sources and exports two
types of objects:

- Employee-phone-office objects with label epo.
- Employee-department-manager objects with label edm.

Each object of these types will have snbobjects with the appropriate labels.
Figure 5 shows the MSL rules that describe these objects exported by reed.

I) <f(E) epo {<name E> <phone P>}>@med :-
<emp {<name E> <phone P>}>@sourcel

2) <f(E) epo {<name E> <phone P>}>@med :-
<emp {<name E> <phone P>}>@source3

3) <f(E) epo {<name E> <office O>}>~med :-
<emp {<name E> <office O>}>@source2

4) <edm {<name E> <dept D> <mgr M>}>@med :-
<emp {<name E> <mgr M>}>@sourcel AND
<emp {<name E> <dept D>}>@source2

Fig. 5. An MSL mediator-description

In this example, we have made the (unrealistic) assumption that employee
names are unique. Thus, as we assemble epo objects for an employee named E,
we use the object-ID I(E), expecting that this ID is unique. Rule (1) says that
whenever there is an emp object at Source 1 with a name subobject having value
E and a phone subobject with value P, we "create" at the mediator reed an
object whose ID is f(E) and whose label is epo. This object has a subobject
with label name and value E and a second subobject with label phone and value
P. Rules (2) and (3) are similar; rule (2) takes employee/phone information from
Source 3, while rule (3) takes employee/office information from Source 2. Three
important points are:

- Because the object-ID is specified in rules (1) through (3), whenever infor-
mation about the same employee E is found in two or more sources, the
subobjects implied by the heads of these rules will be combined into the
value of the same object - - the one with ID f(E). Thus, it will be typical
that employee objects will have three subobjects, with labels name, phone,
and o f f i c e . They could even have more than three subobjects. For example,
Sources 1 and 3 could give different phones, so two subobjects labeled phone
would appear. A single source could also have several phones or offices for
employee E, and all of these would appear as subobjects at the mediator.

- The fact that rule (1) only mentions name and phone subobjects at Source 1
doesn't mean it will fail if there are more subobjects, e.g., a manager subob-
jeet. MSL only mentions subobjects it needs, allowing any other snbobjects

34

to be present. There is even a way (the rest-variable) to refer to "whatever
other subobjects are present."

- There is no assumption that variables like E or P are atomic. They might
turn out to have sets of objects as values, and in fact different objects at
the sources may have different types for values having the same label. For
instance, some employees may have strings for names, while others have
objects with first- and last-name subobjects.

Rule (4) in Fig. 5 follows a somewhat different philosophy in constructing
the edm objects at reed. Here, an object is produced only if we are successful in
finding, for employee E, a department at Source 2 and a manager at Source 1.
If either is missing, then there is no object for employee E at raed. In contrast,
rules (1) through (3) allow there to be an epo object for E if any one of the three
sources mentions E. Note also that the object-ID component in the constructed
sources is optional, and in rule (4) there is no need to specify an ID. Thus, the
head of rule (4) has only label and value components, while the other rules have
3-component heads.

C o n v e r t i n g M S L to D a t a l o g . There is a way to convert MSL into completely
equivalent Datalog ([P96]). We shall not go into this process, but rather give a
simplification that will help us compare IM and Tsimmis.

Example 12. The following rules capture much of the content of the MSL rules
in Fig. 5:

epo(g,P,0) :- vl(g,P,M) ~ v2(E,0,D).
epo(E,P,O) : - v3(E ,P) ~ v2(E,O,D).

edm(E,D,M) :- vI(E,P,M) E v2(E,0,D).

Recall that vl, v2, and v3 are the three views that we introduced in Example 9.

They correspond to the sources i, 2, and 3 in Example Ii.
There is one important way that the rules above differ from the MSL rules

in Fig. 5. We only get epo facts for employees such that among the three views
we find both a phone and office for that employee. In contrast, as we mentioned
in Example 11, the MSL rules can yield a phone without an office or vice-versa.
This capability of MSL is an essential contribution to dealing with heterogeneous,
often incomplete information sources.

Q u e r y i n g T s i m m i s M e d i a t o r s . When we query an MSL mediator, we are
effectively querying the objects exported by the mediator. There is no notion
of "global" predicates as there is in IM. Rather, we must refer to the labels
(equivalent to predicates) that the mediator exports. Completion of our running
example will illustrate the distinction between the Tsimmis and IM approaches.

Example 13. Again let us ask "what are Sally's phone and office?" This time,
however, we ask it of the mediator llled, whose exported objects we have repre-
sented in Datalog by the rules of Example 12. The appropriate query is thus:

35

answer(P,O) :- epo(sally,P.O).

MSL-generated mediators answer their queries by expanding the rules by
which the mediator is defined, in order to get the same query in terms of infor-
mat ion at the sources. In our simple example, we would replace the epo subgoal
in the query by the bodies of the two rules that define epo at reed, thus obtaining:

answer(P,O) :- vl(sally,P,M) ~ v2(sally,O,D).
answer(P,O) :- v3(sally,P) ~ v2(sally,O,D).

Notice that this expansion is identical to what IM obtained for the same query.

3.3 C o m p a r i n g t h e I M a n d T s i m m i s Q u e r y P r o c e s s o r s

We should not suppose from Example 13 that the result of "equivalent" IM and
Ts immis queries are always the same, even after accounting for the difference in
the underlying logics. The processes of query translation are rather different.

- IM uses the query synthesis strategy outlined in Section 2.
- IM queries are in terms of global predicates, which are translated into views.
- Ts immis queries are in terms of predicates synthesized at a mediator. These

concepts, in turn, are built from views in the IM sense, exported by the
sources.

- Ts immis uses a strategy of rule expansion to answer queries. Although the
expansion can result in an exponential number of terms, the flavor of the
search is different from IM's. In Tsimmis we can expand each subgoal of the
query independently, using every rule whose head unifies with the subgoal.

Example 13. The following is an example of how the two systems can differ. In
this example, Tsimmis appears to flounder, but we should emphasize tha t it is
an atypical example, contrived for the sake of illustration.

Suppose we wanted to know Sally's office and department . Tha t is:

q2(0 ,D) : - o f f i c e (s a l l y , 0) ~ d e p t (s a l l y , D) .

Using the views of Example 9, IM would find that the only minimal solution to
the query q2 is

answer(O,D) :- v2(sally,O,D).

However, using the Tsimmis mediator reed of Example 11, we can only express
our query as:

q3(O,D) :- epo(sally,P,O) & edm(sally,D,M).

The reason for this awkwardness is that each mediator exports a specific collec-
tion of objects. We do not have the freedom to penetrate, in our query, to the
terms used by the mediator ' s sources.

The media tor reed would process query q3 by expanding each subgoal. The
result would be the pair of rules:

36

answer(O,D)

answer(O,D)

:- vl(sally,Pi,Mi) ~ v2(sally,O,D)
vl(sally,P2,M2) a v2(sally,O,D).

:- v3(sally,P1) ~ v2(sally,O,D)
vl(sally,P2,M) ~ v2(sally,O,D).

Of course, the MSL optimizer will eliminate redundant terms and simplify this
solution. However, it cannot completely eliminate the subgoals using the irrele-
vant views vl and v3. As a result, it produces an empty answer in the case that
we do not know a phone or manager for Sally.

Let us again emphasize that the apparent failure of Ts immis in Example 14
is due only to the fact that we contrived the mediator to export inconvenient
objects. The motivat ion for the design of Tsimmis is that the mediators it cre-
ates may perform some very complex processing of source da ta to produce its
exported objects. It may not be feasible to define or create objects for every
conceivable query. In comparison, IM is limited in the way it can combine its
sources, since it must rely on the particular search algori thm of Section 2 to
combine sources.

3.4 Further Comparisons of IM and Ts immis

In addition to the differences in query processing discussed in Section 3.3, there
are a number of other ways in which IM and Tsimmis differ.

L e v e l s o f M e d i a t i o n . IM is designed to have two levels: the sources and the
"global mediator." In contrast, Ts immis assumes tha t there is an indefinite num-
ber of levels, as the output of one mediator can be a source for a higher-level
mediator . Of course, it would in principle be possible for one IM application to
be a source for another. However, then we would have to wrap the first appli-
cation, defining for it a fixed set of views tha t it exported. We thus might face
the same sort of awkwardness that we explored in Example 14 in the context of

Tsimmis .

A d d i n g S o u r c e s . IM makes it quite convenient to add new sources. One must
write a wrapper for the sources and define its views and constraints in terms
of the global concepts. However, no change to the query-processing algori thm is
needed. The new views will be used whenever they are appropriate for the query.
In contrast, new Tsimmis sources not only must be wrapped, but the mediators
tha t use them have to be redefined and their MSL definitions recompiled. The
adminis t ra tor of the system must figure out whether and how to use the new

s o u r c e S .

S e m i s t r u c t u r e d D a t a . As we have mentioned, Ts immis supports the notion
tha t da ta does not have a fixed or uniform schema; we call such da ta semistruc-
tured. Objects with the same label, say employee, may have different sets of

37

information available, and even the same information may appear with different
structures in different objects. For example, some employees may be retired and
have no salary subobject. Others may have an integer salary. Others may have
a structured salary including base, weekly commissions, and so on. The MSL
language has been designed to allow the mediator-implementor to deal with the
lack of schema. The reader will find more on the important issue of handling
semistruetured data in [A97].

C o n s t r a i n t s . Only IM has an explicit mechanism for describing special prop-
erties of the information that a particular source will supply and using that
information in its query-processing algorithm.

A u t o m a t i c G e n e r a t i o n o f C o m p o n e n t s . Tsimmis has stressed the auto-
matic generation of both wrappers ([P*95b]) and mediators ([P96]). In a sense,
IM has no need for automatic generation of mediators, since each application
has one "mediator" and the query-processing algorithm it uses is the same as
that of any other IM application. Tsimmis wrapper-generation technology could
be used to wrap IM sources, although the difference in the models and languages
(OEM/MSL versus Description Logic) makes direct adaptation impossible.

3.5 E x t e n s i o n s o f t h e Q u e r y / V i e w M o d e l o f M e d i a t i o n

Both IM and Tsimmis have concentrated on conjunctive queries as the principal
model of both queries and views. However, there has been some exploration in
both projects of the possibility of using more powerful languages for defining
views. The natural "next step" is to use recursive Datalog programs to generate
infinite families of views. While describing a simple source by a finite set of views
or rules is adequate, sources that support a rich query language (e.g., an SQL
database) are better described by infinite families of queries.

Example 15. Suppose the source is an on-line bibliography that allows queries
in which one or more properties are specified. We might describe the source by
the recursive program of Fig. 6.

answer(X) :- book(X) and QUALS(X).

QUALS(X) :- QUALS(X) ~ Q(X).
QUALS(X) :- [~(X).

Q(X) :- property(X, $pname, $value).

Fig. 6. A recursive program generating views

38

There are several things we must understand about the notation in Fig. 6.
First, predicates Q U A L S and Q are expected to be expanded in all possible
ways, generating an infinite set of conjunctive queries, each of the form

answer(X) : - book(X) t~ p r o p e r t y () $~
p r o p e r t y () �9 . . . ~ p r o p e r t y ()

That is, each query asks for books X that satisfy certain properties.
The variables $pname and $value are parameters that are intended to be

filled in for each property, allowing the CQ to match queries in which particular
properties are required to have specific values. A typical query is:

query(X) : - book(X) ~ p roper ty (X, au t h o r , c r i c h t o n)
property(X, subject, dinosaurs).

The idea has been explored in the context of Tsimmis in [P*95b]. It also has
been proposed as an extension to IM in [LRU96]. In each case the satisfactory
incorporation of recursively generated, infinite view sets requires extending the
previously known algorithms for containment of conjunetive queries and D atalog
programs.

4 Conclusions

Both tM and Tsimmis offer interesting approaches to the difficult problems of
information integration. Moreover, they both draw upon similar, fairly ancient
ideas from database logic, such as conjunctive query containment, as welt as
new ideas in database theory. They differ in a number of ways, including the
underlying logic, the approach to semistructured data, and the query processing
algorithm. Each represents an exciting direction for further research in database
systems and for the creation of a new class of information-processing tools.

Acknowledgements

Comments by Pierre Huyn, Phokion Kolaitis, Alon Levy, Yannis Papakonstanti-
nou, Anand Rajaraman, and Shuky Sagiv are greatly appreciated.

References

[A97]
[Bor96]

[CM77]

[e.95]

Abiteboul, S. Querying selnistructured data. These proceedings.
Borgida, A. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence 82, pp. 353-367, 1996.
Chandra, A. K. and P. M. Merlin. Optimal implementation of conjunctive
queries in relational databases. Proc. Ninth Annum ACM Symposium on the
Theory of Compu~ing, pp. 77-90, 1977.
Chaudhuri, S., R. Krishnamurthy, S. Potalnianos, and K. Shim. Optimizing
queries with materialized views. Intl. Cony. on Data Engineering, 1995.

39

[CV92]

[c'89]

[GM*95]

[G96]
[K'95]

[KlugS8]

[L'95]

[L*96a]

[L*96b]

[LRU96]

[LR96]

[LS93]

[P96]

[P*95a]

[P*95b]

[RSU95]

[R'89]

[S ar91]

[Shm87]

Chaudhuri, S. and M. Y. Vardi. On the equivalence of datalog programs.
Proc. Eleventh ACM Symposium on Principles of Database Systems, pp.
55-66, 1992.
Chen, W., M. Kifer, and D. S. Warren. HiLog: a first order semantics for
higher order programming constructs, in Second Intl. Workshop on Database
Programming Languages, Morgan-Kaufmann, San Francisco, 1989.
Garcia-Molina, H., Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-
giv, J. Ullman, and J. Widom. The TSIMMIS approach to mediation: data
models and languages. Second Workshop on Next-Generation Information
Technologies and Systems, Naharia, Israel, June, 1995.
http ://www-i. almaden, ibm. com/cs/showtell/garlic/Initpage, html
Kirk, T., A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold.
A A A I Spring Syrup. on Information Gathering, 1995.
Klug, A. On conjunctive queries containing inequalities. J. ACM 35:1, pp.
146-160, 1988.
Levy, A., A. Mendehon, Y. Sagiv, and D. Srivastava. Answering queries
using views. Proc. Fourteenth ACM Symposium on Principles of Database
Systems, pp. 113-124, 1995.
Levy, A. Y., A. Rajaraman, and J. J. Ordille. Querying heterogeneous
information sources using source descriptions. Intl. Conf. on Very Large
Databases, Sept., 1996.
Levy, A. Y., A. Rajaraman, and J. J. Ordille. Query answering algorithms
for information agents. 13th Natl. Conf. on AI, Aug., 1996.
Levy, A. Y., A. Rajaraman, and J. D. Ullman. Answering queries using
limited external processors. Proc. Fifteenth A CM Symposium on Principles
of Database Systems, pp. 227-237, 1996.
Levy, A. Y. and M.-C. Rousset. CARIN: A representation language combin-
ing Horn rules and description logics. 13th European Conf. on AI, Budapest,
Aug., 1996.
Levy, A. Y. and Y. Sagiv. Queries independent of update. Proc. InternationM
Conference on Very Large Data Bases, pp. 171-181, 1993.
Papakonstantinou, Y. Query processing in heterogeneous information
sources. PhD thesis, Dept. of CS, Stanford University, 1996.
Papakonstantinou Y., H. Garcia-Molina, and J. Widom. Object exchange
across heterogeneous information sources. Intl. Conf. on Data Engineering,
March, 1995.
Papakonstantinou, Y., A. Gupta, H. Garcia-Molina, and J. D. Unman. A
query translation scheme for rapid implementation of wrappers. Fourth
DOOD, Singapore, Dec., 1995.
Rajaraman, A., Y. Sagiv, and J. D. Ullman. Answering queries using tem-
plates with binding patterns. Proc. Fourteenth ACM Symposium on Princi-
ples of Database Systems, pp. 105-112, 1995..
Ramakrishnan, R., Y. Sagiv, J. D. Ullman, and M. Y. Vardi. Proof tree trans-
formation theorems and their applications. Proc. Eighth ACM Symposium
on Principles of Database Systems, pp. 172-181, 1989.
Saraiya, Y. Subtree elimination algorithms in deductive databases. Doctoral
Thesis, Dept. of CS, Stanford Univ., Jan., 1991.
Shmueli, O. Decidability and expressiveness aspects of logic queries. Proc.
Sixth ACM Symposium on Principles of Database Systems, pp. 237-249,
1987.

40

[T96]
[UnS8]

[Ul189]

[Ul194]

[vdM92]

[Wid95]

[Wie92]

[YL87]

[zo93]

http ://db. stanford, edu/t s immis

Unman, J. n. Principles of Database and Knowledge-Base Systems, Vol. L
Computer Science Press, New York.
Ullman, J. D. Principles of Database and Knowledge-Base Systems, Vol. II.
Computer Science Press, New York.
Ullman, J . D . Assigning an appropriate meaning to database logic with
negation, in Computers as Our Better Partners (H. Yamada, Y. Kambayashi,
and S. Ohta, eds.), pp. 216-225, World Scientific Press.
van der Meyden, R. The complexity of querying indefmite data about linearly
ordered domains. Proc. Eleventh A CM Symposium on Principles of Database
Systems, pp. 331-345, 1992.
Widom, J. Research problems in data warehousing. Fourth Intl. Conf. on
Information and Knowledge Management, pp. 25-30, 1995.
Wiederhold, G. Mediators in the architecture of future information systems.
IEEE Computer 25:3, pp. 38-49, 1992.
Yang, H. Z. and P. A. Larson. Query transformation for PSJ queries. Proc.
International Conference on Very Large Data Bases, pp. 245-254, 1987.
Zhang, X. and M. Z. Ozsoyoglu. On efficient reasoning with implication
constraints. Proc. Third DOOD Conference, pp. 236-'252.

