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ABSTRACT

Data integration is the problem of combining data residing
at different sources, and providing the user with a unified
view of these data. The problem of designing data integra-
tion systems is important in current real world applications,
and is characterized by a number of issues that are interest-
ing from a theoretical point of view. This document presents
on overview of the material to be presented in a tutorial on
data integration. The tutorial is focused on some of the the-
oretical issues that are relevant for data integration. Special
attention will be devoted to the following aspects: modeling
a data integration application, processing queries in data
integration, dealing with inconsistent data sources, and rea-
soning on queries.

1. INTRODUCTION

Data integration is the problem of combining data residing
at different sources, and providing the user with a unified
view of these data [60, 61, 89]. The problem of designing
data integration systems is important in current real world
applications, and is characterized by a number of issues that
are interesting from a theoretical point of view. This tutorial
is focused on some of these theoretical issues, with special
emphasis on the following topics.

The data integration systems we are interested in this work
are characterized by an architecture based on a global
schema and a set of sources. The sources contain the real
data, while the global schema provides a reconciled, inte-
grated, and virtual view of the underlying sources. Model-
ing the relation between the sources and the global schema
is therefore a crucial aspect. Two basic approaches have
been proposed to this purpose. The first approach, called
global-as-view, requires that the global schema is expressed
in terms of the data sources. The second approach, called
local-as-view, requires the global schema to be specified in-
dependently from the sources, and the relationships between

.

the global schema and the sources are established by defin-
ing every source as a view over the global schema. Our goal
is to discuss the characteristics of the two modeling mecha-
nisms, and to mention other possible approaches.

Irrespectively of the method used for the specification of
the mapping between the global schema and the sources,
one basic service provided by the data integration system
is to answer queries posed in terms of the global schema.
Given the architecture of the system, query processing in
data integration requires a reformulation step: the query
over the global schema has to be reformulated in terms of
a set of queries over the sources. In this tutorial, such a
reformulation problem will be analyzed for both the case of
local-as-view, and the case of global-as-view mappings. A
main theme will be the strong relationship between query
processing in data integration and the problem of query an-
swering with incomplete information.

Since sources are in general autonomous, in many real-world
applications the problem arises of mutually inconsistent data
sources. In practice, this problem is generally dealt with by
means of suitable transformation and cleaning procedures
applied to data retrieved from the sources. In this tutorial,
we address this issue from a more theoretical perspective.

Finally, there are several tasks in the operation of a data in-
tegration system where the problem of reasoning on queries
(e.g., checking whether two queries are equivalent) is rele-
vant. Indeed, query containment is one of the basic prob-
lems in database theory, and we will discuss several notions
generalizing this problem to a data integration setting.

The paper is organized as follows. Section 2 presents our
formalization of a data integration system. In Section 3 we
discuss the various approaches to modeling. Sections 4 and 5
present an overview of the methods for processing queries
in the local-as-view and in the global-as-view approach, re-
spectively. Section 6 discusses the problem of dealing with
inconsistent sources. Section 7 provides an overview on the
problem of reasoning on queries. Finally, Section 8 con-
cludes the paper by mentioning some open problems, and
several research issues related to data integration that are
not addressed in the tutorial.

2. DATA INTEGRATION FRAMEWORK

In this section we set up a logical framework for data integra-
tion. We restrict our attention to data integration systems
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based on a so-called global schema (or, mediated schema).
In other words, we refer to data integration systems whose
aim is combining the data residing at different sources, and
providing the user with a unified view of these data. Such a
unified view is represented by the global schema, and pro-
vides a reconciled view of all data, which can be queried by
the user. Obviously, one of the main task in the design of
a data integration system is to establish the mapping be-
tween the sources and the global schema, and such a map-
ping should be suitably taken into account in formalizing a
data integration system.

It follows that the main components of a data integration
system are the global schema, the sources, and the mapping.
Thus, we formalize a data integration system I in terms of
a triple 〈G,S,M〉, where

• G is the global schema, expressed in a language LG over
an alphabet AG . The alphabet comprises a symbol for
each element of G (i.e., relation if G is relational, class
if G is object-oriented, etc.).

• S is the source schema, expressed in a language LS
over an alphabet AS . The alphabet AS includes a
symbol for each element of the sources.

• M is the mapping between G and S, constituted by a
set of assertions of the forms

qS ; qG ,
qG ; qS

where qS and qG are two queries of the same arity,
respectively over the source schema S, and over the
global schema G. Queries qS are expressed in a query
language LM,S over the alphabet AS , and queries qG
are expressed in a query language LM,G over the al-
phabet AG . Intuitively, an assertion qS ; qG speci-
fies that the concept represented by the query qS over
the sources corresponds to the concept in the global
schema represented by the query qG (similarly for an
assertion of type qG ; qS). We will discuss several
ways to make this intuition precise in the following
sections.

Intuitively, the source schema describes the structure of the
sources, where the real data are, while the global schema
provides a reconciled, integrated, and virtual view of the
underlying sources. The assertions in the mapping establish
the connection between the elements of the global schema
and those of the source schema.

Queries to I are posed in terms of the global schema G, and
are expressed in a query language LQ over the alphabet AG .
A query is intended to provide the specification of which
data to extract from the virtual database represented by
the integration system.

The above definition of data integration system is general
enough to capture virtually all approaches in the literature.
Obviously, the nature of a specific approach depends on the
characteristics of the mapping, and on the expressive power
of the various schema and query languages. For example, the

language LG may be very simple (basically allowing the defi-
nition of a set of relations), or may allow for various forms of
integrity constraints to be expressed over the symbols of AG .
Analogously, the type (e.g., relational, semistructured, etc.)
and the expressive power of LS varies from one approach to
another.

We now specify the semantics of a data integration system.
In what follows, a database (DB) for a schema T is simply a
set of collection of sets, one for each symbol in the alphabet
of T (e.g., one relation for every relation schema of T , if
T is relational, or one set of objects for each class of T ,
if T is object-oriented, etc.). We also make a simplifying
assumption on the domain for the various sets. In particular,
we assume that the structures constituting the databases
involved in our framework (both the global database and
the source databases) are defined over a fixed domain Γ.

In order to assign semantics to a data integration system
I = 〈G,S,M〉, we start by considering a source database
for I, i.e., a database D that conforms to the source schema
S and satisfies all constraints in S. Based on D, we now
specify which is the information content of the global schema
G. We call global database for I any database for G. A global
database B for I is said to be legal with respect to D, if:

• B is legal with respect to G, i.e., B satisfies all the
constraints of G;

• B satisfies the mapping M with respect to D.

The notion of B satisfying the mappingM with respect to D
depends on how to interpret the assertions in the mapping.
We will see in the next section that several approaches are
conceivable. Here, we simply note that, no matter which is
the interpretation of the mapping, in general, several global
databases exist that are legal for I with respect to D. This
observation motivates the relationship between data integra-
tion and databases with incomplete information [91], which
will be discussed in several ways later on in the paper.

Finally, we specify the semantics of queries posed to a data
integration system. As we said before, such queries are ex-
pressed in terms of the symbols in the global schema of I.
In general, if q is a query of arity n and DB is a database,
we denote with qDB the set of tuples (of arity n) in DB that
satisfy q.

Given a source database D for I, the answer qI,D to a query
q in I with respect to D, is the set of tuples t of objects in
Γ such that t ∈ qB for every global database B that is legal
for I with respect to D. The set qI,D is called the set of
certain answers to q in I with respect to D.

Note that, from the point of view of logic, finding certain
answers is a logical implication problem: check whether it
logically follows from the information on the sources that t
satisfies the query. The dual problem is also of interest: find-
ing the so-called possible answers to q, i.e., checking whether
t ∈ qB for some global database B that is legal for I with
respect to D. Finding possible answers is a consistency prob-
lem: check whether assuming that t is in the answer set of
q does not contradict the information on the sources.
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3. MODELING

One of the most important aspects in the design of a data in-
tegration system is the specification of the correspondence
between the data at the sources and those in the global
schema. Such a correspondence is modeled through the no-
tion of mapping as introduced in the previous section. It
is exactly this correspondence that will determine how the
queries posed to the system are answered.

In this section we discuss mappings which can be expressed
in terms of first order logic assertions. Mappings going be-
yond first order logic are briefly discussed in Section 6.

Two basic approaches for specifying the mapping in a data
integration system have been proposed in the literature,
called local-as-view (LAV), and global-as-view (GAV), re-
spectively [89, 60]. We discuss these approaches separately.
We then end the section with a comparison of the two kinds
of mapping.

3.1 Local as view
In a data integration system I = 〈G,S,M〉 based on the
LAV approach, the mapping M associates to each element
s of the source schema S a query qG over G. In other words,
the query language LM,S allows only expressions consti-
tuted by one symbol of the alphabet AS . Therefore, a LAV
mapping is a set of assertions, one for each element s of S,
of the form

s ; qG

From the modeling point of view, the LAV approach is based
on the idea that the content of each source s should be
characterized in terms of a view qG over the global schema.
A notable case of this type is when the data integration
system is based on an enterprise model, or an ontology [58].
This idea is effective whenever the data integration system is
based on a global schema that is stable and well-established
in the organization. Note that the LAV approach favors
the extensibility of the system: adding a new source simply
means enriching the mapping with a new assertion, without
other changes.

To better characterize each source with respect to the global
schema, several authors have proposed more sophisticated
assertions in the LAV mapping, in particular with the goal
of establishing the assumption holding for the various source
extensions [1, 53, 65, 24]. Formally, this means that in the
LAV mapping, a new specification, denoted as(s), is associ-
ated to each source element s. The specification as(s) deter-
mines how accurate is the knowledge on the data satisfying
the sources, i.e., how accurate is the source with respect to
the associated view qG . Three possibilities have been con-
sidered1:

• Sound views. When a source s is sound (denoted with
as(s) = sound), its extension provides any subset of
the tuples satisfying the corresponding view qG . In

1In some papers, for example [24], different assumptions on
the domain of the database (open vs. closed) are also taken
into account.

other words, given a source database D, from the fact
that a tuple is in sD one can conclude that it satisfies
the associated view over the global schema, while from
the fact that a tuple is not in sD one cannot conclude
that it does not satisfy the corresponding view. For-
mally, when as(s) = sound , a database B satisfies the
assertion s ; qG with respect to D if

sD ⊆ qBG

Note that, from a logical point of view, a sound source
s with arity n is modeled through the first order as-
sertion

∀x s(x) → qG(x)

where x denotes variables x1, . . . , xn.

• Complete views. When a source s is complete (de-
noted with as(s) = complete), its extension provides
any superset of the tuples satisfying the corresponding
view. In other words, from the fact that a tuple is
in sD one cannot conclude that such a tuple satisfies
the corresponding view. On the other hand, from the
fact that a tuple is not in sD one can conclude that
such a tuple does not satisfy the view. Formally, when
as(s) = complete, a database B satisfies the assertion
s ; qG with respect to D if

sD ⊇ qBG

From a logical point of view, a complete source s with
arity n is modeled through the first order assertion

∀x qG(x) → s(x)

• Exact Views. When a source s is exact (denoted with
as(s) = exact), its extension is exactly the set of tuples
of objects satisfying the corresponding view. Formally,
when as(s) = exact , a database B satisfies the asser-
tion s ; qG with respect to D if

sD = qBG

From a logical point of view, an exact source s with
arity n is modeled through the first order assertion

∀x s(x) ↔ qG(x)

Typically, in the literature, when the specification of as(s)
is missing, source s is considered sound. This is also the
assumption we make in this paper.

Information Manifold [62], and the system presented in [78]
are examples of LAV systems. Information Manifold ex-
presses the global schema in terms of a Description Logic [8],
and adopts the language of conjunctive queries as query lan-
guages LQ, and LM,G . The system described in [78] uses
an XML global schema, and adopts XML-based query lan-
guages for both user queries and queries in the mapping.
More powerful schema languages for expressing the global
schema are reported in [42, 59, 22, 21]. In particular, [42, 59]
discusses the case where various forms of relational integrity
constraints are expressible in the global schema, including
functional and inclusion dependencies, whereas [22, 21] con-
sider a setting where the global schema is expressed in terms
of Description Logics [11], which allow for the specification
of various types of constraints.
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3.2 Global as view
In the GAV approach, the mapping M associates to each
element g in G a query qS over S. In other words, the query
language LM,G allows only expressions constituted by one
symbol of the alphabet AG . Therefore, a GAV mapping is
a set of assertions, one for each element g of G, of the form

g ; qS

From the modeling point of view, the GAV approach is based
on the idea that the content of each element g of the global
schema should be characterized in terms of a view qS over
the sources. In some sense, the mapping explicitly tells the
system how to retrieve the data when one wants to evalu-
ate the various elements of the global schema. This idea is
effective whenever the data integration system is based on
a set of sources that is stable. Note that, in principle, the
GAV approach favors the system in carrying out query pro-
cessing, because it tells the system how to use the sources
to retrieve data. However, extending the system with a new
source is now a problem: the new source may indeed have
an impact on the definition of various elements of the global
schema, whose associated views need to be redefined.

To better characterize each element of the global schema
with respect to the sources, more sophisticated assertions in
the GAV mapping can be used, in the same spirit as we saw
for LAV. Formally, this means that in the GAV mapping, a
new specification, denoted as(g) (either sound , complete, or
exact) is associated to each element g of the global schema.
When as(g) = sound (resp., complete, exact), a database
B satisfies the assertion g ; qS with respect to a source
database D if

qDS ⊆ gB (resp., qDS ⊇ gB, qDS = gB)

The logical characterization of sound views and complete
views in GAV is therefore through the first order assertions

∀x qS(x) → g(x), ∀x g(x) → qS(x)

respectively.

It is interesting to observe that the implicit assumption in
many GAV proposals is the one of exact views. Indeed, in a
setting where all the views are exact, there are no constraints
in the global schema, and a first order query language is used
as LM,S , a GAV data integration system enjoys what we can
call the “single database property”, i.e., it is characterized
by a single database, namely the global database that is
obtained by associating to each element the set of tuples
computed by the corresponding view over the sources. This
motivates the widely shared intuition that query processing
in GAV is easier than in LAV. However, it should be pointed
out that the single database property only holds in such a
restricted setting.

In particular, the possibility of specifying constraints in G
greatly enhances the modeling power of GAV systems, espe-
cially in those situations where the global schema is intended
to be expressed in terms of a conceptual data model, or in
terms of an ontology [16]. In these cases, the language LG
is in fact sufficiently powerful to allow for specifying, either
implicitly or explicitly, various forms of integrity constraints
on the global database.

Most of current data integration systems follow the GAV
approach. Notable examples are TSIMMIS [51], Garlic [30],
COIN [52], MOMIS [10], Squirrel [92], and IBIS [17]. Anal-
ogously to the case of LAV systems, these systems usually
adopt simple languages for expressing both the global and
the source schemas. IBIS is the only system we are aware
of that takes into account integrity constraints in the global
schema.

3.3 Comparison between GAV and LAV
The LAV and the GAV approaches are compared in [89] from
the point of view of query processing. Generally speaking, it
is well known that processing queries in the LAV approach
is a difficult task. Indeed, in this approach the only knowl-
edge we have about the data in the global schema is through
the views representing the sources, and such views provide
only partial information about the data. Since the mapping
associates to each source a view over the global schema, it
is not immediate to infer how to use the sources in order
to answer queries expressed over the global schema. On
the other hand, query processing looks easier in the GAV
approach, where we can take advantage that the mapping
directly specifies which source queries corresponds to the el-
ements of the global schema. Indeed, in most GAV systems,
query answering is based on a simple unfolding strategy.

From the point of view of modeling the data integration sys-
tem, the GAV approach provides a specification mechanism
that has a more procedural flavor with respect to the LAV
approach. Indeed, while in LAV the designer may concen-
trate on declaratively specifying the content of the source in
terms of the global schema, in GAV, one is forced to spec-
ify how to get the data of the global schema by means of
queries over the sources. A throughout analysis of the dif-
ferences/similarities of the two approaches from the point of
view of modeling is still missing. A first attempt is reported
in [19, 18], where the authors address the problem of check-
ing whether a LAV system can be transformed into a GAV
one, and vice-versa. They deal with transformations that are
equivalent with respect to query answering, i.e., that enjoy
the property that queries posed to the original system have
the same answers when posed to the target system. Results
on query reducibility from LAV to GAV systems may be use-
ful, for example, to derive a procedural specification from a
declarative one. Conversely, results on query reducibility
from GAV to LAV may be useful to derive a declarative
characterization of the content of the sources starting from
a procedural specification. We briefly discuss the notions of
query-preserving transformation, and of query-reducibility
between classes of data integration systems.

Given two integration systems I = 〈G,S,M〉 and I′ =
〈G′,S,M′〉 over the same source schema S and such that
all elements of G are also elements of G′, I′ is said to be
query-preserving with respect to I, if for every query q to I
and for every source database D, we have that

qI,D = qI
′,D

In other words, I′ is query-preserving with respect to I if,
for each query over the global schema of I and each source
database, the certain answers to the query with respect to
the source database that we get from the two integration
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systems are identical. A class C1 of integration systems is
query-reducible to a class C2 of integration systems if there
exist a function f : C1 → C2 such that, for each I1 ∈ C1 we
have that f(I1) is query-preserving with respect to I1.

With the two notions in place, the question of query re-
ducibility between LAV and GAV is studied in [18] within a
setting where views are considered sound, the global schema
is expressed in the relational model, and the queries used
in the integration systems (both the queries on the global
schema, and the queries in the mapping) are expressed in
the language of conjunctive queries. The results show that
in such a setting none of the two transformations is pos-
sible. On the contrary, if one extends the framework, al-
lowing for integrity constraints in the global schema, then
reducibility holds in both directions. In particular, inclu-
sion dependencies and a simple form of equality-generating
dependencies suffice for a query-preserving transformation
from a LAV system into a GAV one, whereas single head
full dependencies are sufficient for the other direction. Both
transformations result in a query-preserving system whose
size is linearly related to the size of the original one.

Although in this paper we mainly refer to the LAV and GAV
approaches to data integration, it is worth noticing that
more general types of mappings have been also discussed
in the literature. For example, [49] introduces the so-called
GLAV approach. In GLAV, the relationships between the
global schema and the sources are established by making
use of both LAV and GAV assertions. More precisely, in a
GLAV mapping as introduced in [49], every assertion has
the form qS ; qG , where qS is a conjunctive query over the
source schema, and qG is a conjunctive query over the global
schema. A database B satisfies the assertion qS ; qG with
respect to a source database D if qDS ⊆ qBG . Thus, the GLAV
approach models a situation where sources are sound. Inter-
estingly, the technique presented in [19, 18] can be extended
for transforming any GLAV system into a GAV one. The
key idea is that a GLAV assertion can be transformed into
a GAV assertion plus an inclusion dependency. Indeed, for
each assertion

qS ; qG

in the GLAV system (where the arity of both queries is n),
we introduce a new relation symbol r of arity n in the global
schema of the resulting GAV system, and we associate to r
the sound view qS by means of

r ; qS

plus the inclusion dependency

r ⊆ qG .

Now, it is immediate to verify that the above inclusion de-
pendency can be treated exactly with the same technique in-
troduced in the LAV to GAV transformation, and therefore,
from the GLAV system we can obtain a query-preserving
GAV system whose size is linearly related to the size of the
original system.

4. QUERY PROCESSING IN LAV

In this section we discuss query processing in the LAV ap-
proach. From the definition given in Section 3, it is easy

to see that answering queries in LAV systems is essentially
an extended form of reasoning in the presence of incomplete
information [91]. Indeed, when we answer a query over the
global schema on the basis of a LAV mapping, we know only
the extensions of the views associated to the sources, and
this provides us with only partial information on the global
database. As we already observed, in general, there are sev-
eral possible global databases that are legal for the data
integration system with respect to a given source database.
This observation holds even for a setting where only sound
views are allowed in the mapping. The problem is even more
complicated when sources can be modeled as complete or
exact views. In particular, dealing with exact sources essen-
tially means applying the closed world assumption on the
corresponding views [1, 85].

The following example rephrases an example given in [1].
Consider a data integration system I with global relational
schema G containing (among other relations) a binary rela-
tion couple, and two constants Ann and Bill. Consider also
two sources female and male, respectively with associated
views

female(f) ; { f, m | couple(f, m) }
male(m) ; { f, m | couple(f, m) }

and consider a source database D with femaleD = {Ann} and
maleD = {Bill}, and assume that there are no constraints
imposed by a schema. If both sources are sound, we only
know that some couple has Ann as its female component and
Bill as its male component. Therefore, the query

Q = { x, y | couple(x, y) }

asking for all couples would return an empty answer, i.e.,
QI,D

c = ∅. However, if both sources are exact, we can con-
clude that all couples have Ann as their female component
and Bill as their male component, and hence that (Ann, Bill)
is the only couple, i.e., QI,D

c = {(Ann, Bill)}.

Since in LAV, sources are modeled as views over the global
schema, the problem of processing a query is traditionally
called view-based query processing. Generally speaking, the
problem is to compute the answer to a query based on a set
of views, rather than on the raw data in the database [89,
60].

There are two approaches to view-based query processing,
called view-based query rewriting and view-based query an-
swering, respectively. In the former approach, we are given
a query q and a set of view definitions, and the goal is to
reformulate the query into an expression of a fixed language
LR that refers only to the views and provides the answer
to q. The crucial point is that the language in which we
want the rewriting is fixed, and in general coincides with
the language used for expressing the original query. In a
LAV data integration setting, query rewriting aims at re-
formulating, in a way that is independent from the current
source database, the original query in terms of a query to
the sources. Obviously, it may happen that no rewriting in
the target language LR exists that is equivalent to the orig-
inal query. In this case, we are interested in computing a
so-called maximally contained rewriting, i.e., an expression
that captures the original query in the best way.
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Sound CQ CQ 6= PQ Datalog FOL
CQ PTIME coNP PTIME PTIME undec.

CQ 6= PTIME coNP PTIME PTIME undec.
PQ coNP coNP coNP coNP undec.

Datalog coNP undec. coNP undec. undec.
FOL undec. undec. undec. undec. undec.
Exact CQ CQ 6= PQ Datalog FOL
CQ coNP coNP coNP coNP undec.

CQ 6= coNP coNP coNP coNP undec.
PQ coNP coNP coNP coNP undec.

Datalog undec. undec. undec. undec. undec.
FOL undec. undec. undec. undec. undec.

Table 1: Complexity of view-based query answering

In view-based query answering, besides the query q and the
view definitions, we are also given the extensions of the
views. The goal is to compute the set of tuples t such that
the knowledge on the view extensions logically implies that
t is an answer to q, i.e., t is in the answer to q in all the
databases that are consistent with the views. It is easy to
see that, in a LAV data integration framework, this is ex-
actly the problem of computing the certain answers to q with
respect to a source database.

Notice the difference between the two approaches. In query
rewriting, query processing is divided in two steps, where
the first one re-expresses the query in terms of a given query
language over the alphabet of the view names, and the sec-
ond one evaluates the rewriting over the view extensions.
In query answering, we do not pose any limitations on how
queries are processed, and the only goal is to exploit all
possible information, in particular the view extensions, to
compute the answer to the query.

A large number of results have been reported for both ap-
proaches. We first focus on view-based query answering.

Query answering has been extensively investigated in the
last years [1, 53, 43, 66, 4, 21]. A comprehensive framework
for view-based query answering, as well as several interesting
results, is presented in [53]. The framework considers var-
ious assumptions for interpreting the view extensions with
respect to the corresponding definitions (closed, open, and
exact view assumptions). In [1], an analysis of the com-
plexity of the problem under the different assumptions is
carried out for the case where the views and the queries are
expressed in terms of various languages (conjunctive queries
without and with inequalitites, positive queries, Datalog,
and first-order queries). The complexity is measured with
respect to the size of the view extensions (data complexity).
Table 1 summarizes the results presented in [1]. Note that,
for the query languages considered in that paper, the exact
view assumption complicates the problem. For example, the
data complexity of query answering for the case of conjunc-
tive queries is PTIME under the sound view assumption,
and coNP-complete for exact views. This can be explained
by noticing that the exact view assumption introduces a
form of negation, and therefore it may force to reason by
cases on the objects stored in the views.

In [24], the problem is studied for a setting where the global
schema models a semistructured database, i.e., a labeled
directed graphs. It follows that both the user queries,

and the queries used in the LAV mapping should be ex-
pressed in a query language for semistructured data. The
main difficulty arising in this context is that languages
for querying semistructured data enable expressing regular-
path queries [2, 15, 45]. A regular-path query asks for all
pairs of nodes in the database connected by a path con-
forming to a regular expression, and therefore may contain a
restricted form of recursion. Note that, when the query con-
tains unrestricted recursion, both view-based query rewrit-
ing and view-based query answering become undecidable,
even when the views are not recursive [43].

Table 2 summarizes the results presented in [24]. Both data
complexity, and expression complexity (complexity with re-
spect to the size of the query and the view definitions) are
taken into account. All upper bound results have been ob-
tained by automata-theoretic techniques. In the analysis,
a further distinction is proposed for characterizing the do-
main of the database (open vs. closed domain assumption).
In the closed domain assumption we assume that the global
database contains only objects stored in the sources. The re-
sults show that none of the cases can be solved in polynomial
time (unless P = NP). This can be explained by observing
that the need for considering various forms of incompleteness
expressible in the query language (due to union and tran-
sitive closure), is a source of complexity for query answer-
ing. Obviously, under closed domain, our knowledge is more
accurate than in the case of the open domain assumption,
and this rules out the need for some combinatorial reason-
ing. This provides the intuition of why under closed domain
the problem is “only” coNP-complete in all cases, for data,
expression, and combined complexity. On the other hand,
under open domain, we cannot exclude the possibility that
the database contains more objects than those known to
be in the views. For combined complexity, this means that
we are forced to reason about the definition of the query
and the views. Indeed, the problem cannot be less complex
than comparing two regular path queries, and this explains
the PSPACE lower bound. Interestingly, the table shows
that the problem does not exceed the PSPACE complexity.
Moreover, the data complexity remains in coNP, and there-
fore, although we are using a query language that is powerful
enough to express a (limited) form of recursion, the prob-
lem is no more complex than in the case of disjunctions of
conjunctive queries [1].

While regular-path queries represent the core of any query
language for semistructured data, their expressive power is
limited. Several authors point out that extensions are re-
quired for making them useful in real settings (see for ex-
ample [14, 15, 80]). Indeed, the results in [24] have been
extended to query language with the inverse operator [26],
and to the class of union of conjunctive regular-path queries
in [28].

Turning our attention to view-based query rewriting, several
recent papers investigate the rewriting question for different
classes of queries. The problem is investigated for the case
of conjunctive queries (with or without arithmetic compar-
isons) in [66, 84], for disjunctive views in [4], for queries with
aggregates in [87, 37, 56], for recursive queries and nonre-
cursive views in [43], for queries expressed in Description
Logics in [9], for regular-path queries and their extensions
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domain views Complexity
data expression combined

all sound coNP coNP coNP
closed all exact coNP coNP coNP

arbitrary coNP coNP coNP
all sound coNP PSPACE PSPACE

open all exact coNP PSPACE PSPACE
arbitrary coNP PSPACE PSPACE

Table 2: Complexity of view-based query answering
for regular-path queries

in [23, 26, 27], and in the presence of integrity constraints
in [59, 44]. Rewriting techniques for query optimization are
described, for example, in [34, 3, 88], and in [46, 80, 82] for
the case of path queries in semistructured data.

We already noted that view-based query rewriting and view-
based query answering are different problems. Unfortu-
nately, their similarity sometimes gives raise to a sort of
confusion between the two notions. Part of the problem
comes from the fact that when the query and the views are
conjunctive queries, the best possible rewriting is express-
ible as union of conjunctive queries, which is basically the
same language as the one of the original query and views.
However, for other query languages this is not the case. Ab-
stracting from the language used to express the rewriting,
we can define a rewriting of a query with respect to a set of
views as a function that, given the extensions of the views,
returns a set of tuples that is contained in the answer set of
the query in every database consistent with the views. We
call the rewriting that returns precisely such set the perfect
rewriting of the query with respect to the views. Observe
that, by evaluating the perfect rewriting over given view
extensions, one obtains the same set of tuples provided by
view-based query answering. i.e., in data integration termi-
nology, the set of certain answers to the query with respect
to the view extension. Hence, the perfect rewriting is the
best rewriting one can obtain, given the available informa-
tion on both the definitions and the extensions of the views.

An immediate consequence of the relationship between per-
fect rewriting and query answering is that the data com-
plexity of evaluating the perfect rewriting over the view ex-
tensions is the same as the data complexity of answering
queries using views. Typically, one is interested in queries
that can be evaluated in PTIME (i.e., are PTIME functions
in data complexity), and hence we would like rewritings to
be PTIME as well. For queries and views that are conjunc-
tive queries (without union), the perfect rewriting is a union
of conjunctive queries and hence is PTIME [1]. However, al-
ready for very simple query languages containing union the
perfect rewriting is not PTIME in general. Hence, for such
languages it would be interesting to characterize which in-
stances of query rewriting admit a perfect rewriting that is
PTIME. By establishing a tight connection between view-
based query answering and constraint-satisfaction problems,
it is argued in [27] that this is a difficult task.

5. QUERY PROCESSING IN GAV

Most GAV data integration systems do not allow integrity
constraints in the global schema, and assume that views

sD1 :
12 calvin rome 21
15 alice hong kong 24

sD2 :
AF hotdog corp.
BN banana ltd .

sD3 :
12 AF
16 BN

Figure 1: Extension of sources for the example

are exact. It is easy to see that, under these assumptions,
query processing can be based on a simple unfolding strat-
egy. When we have a query q over the alphabet AG of
the global schema, every element of AG is substituted with
the corresponding query over the sources, and the resulting
query is then evaluated at the sources. As we said before,
such a strategy suffices mainly because the data integration
system enjoys the single database property. Notably, the
same strategy applies also in the case of sound views.

However, when the language LG used for expressing the
global schema allows for integrity constraints, and the views
are sound, then query processing in GAV systems becomes
more complex. Indeed, in this case, integrity constraints can
in principle be used in order to overcome incompleteness of
data at the sources. The following example shows that, by
taking into account foreign key constraints, one can obtain
answers that would be missed by simply unfolding the user
query.

Let I = 〈G,S,M〉 be a data integration system, where G is
constituted by the relations

employee(Ecode,Ename,Ecity)
company(Ccode,Cname)
employed(Ecode,Ccode)

and the constraints

key(employee) = {Ecode}
key(company) = {Ccode}

employed[Ecode] ⊆ employee[Ecode]
employed[Ccode] ⊆ company[Ccode]

The source schema S consists of three sources. Source s1,
of arity 4, contains information about employees with their
code, name, city, and date of birth. Source s2, of arity 2,
contains codes and names of companies. Finally, Source
s3, of arity 2, contains information about employment in
companies. The mapping M is defined by

employee ; { x, y, z | s1(x, y, z, w) }
company ; : { x, y | s2(x, y) }
employed ; : { x, w | s3(x, w) }

Now consider the following user query q, asking for codes of
employees:

{ x | employee(x, y, z) }

Suppose that the data stored in the source database D are
those depicted in Figure 1: by simply unfolding q we obtain
the answer {12}. However, due to the integrity constraint
employed[Ecode] ⊆ employee[Ecode], we know that 16 is the
code of a person, even if it does not appear in sD1 . The
correct answer to q is therefore {12, 16}. Observe that we
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do not know any value for the attributes of the employee
whose Ecode is 16.

Given a source database D, let us call “retrieved global
database” the global database that is obtained by popu-
lating each relation r in the global schema according to
the mapping, i.e., by populating r with the tuples obtained
by evaluating the query that the mapping associates to q.
In general, integrity constraints may be violated in the re-
trieved global database (e.g., the retrieved global database
for the above example). Regarding key constraints, let us
assume that the query that the mapping associates to each
global schema relation r is such that the data retrieved for
r do not violate the key constraint of r. In other words, the
management of key constraints is left to the designer (see
next section for a discussion on this subject). On the other
hand, the management of foreign key constraints cannot be
left to the designer, since it is strongly related to the incom-
pleteness of the sources. Moreover, since foreign keys are
interrelation constraints, they cannot be dealt with in the
GAV mapping, which, by definition, works on each global
relation in isolation.

The assumption of sound views asserts that the tuples re-
trieved for a relation r are a subset of the tuples that the
system assigns to r; therefore, we may think of completing
the retrieved global database by suitably adding tuples in or-
der to satisfy foreign key constraints, while still conforming
to the mapping. When a foreign key constraint is violated,
there are several ways of adding tuples to the retrieved global
database to satisfy such a constraint. In other words, in the
presence of foreign key constraints in the global schema, the
semantics of a data integration system must be formulated
in terms of a set of databases, instead of a single one. Since
we are interested in the certain answers qI,D to a query q,
i.e., the tuples that satisfy q in all global databases that are
legal for I with respect to D, the existence of several such
databases complicates the task of query answering.

In [17], a system called IBIS is presented, that takes into
account key and foreign key constraints over the global rela-
tional schema. The system uses the foreign key constraints
in order to retrieve data that could not be obtained in tradi-
tional data integration systems. The language for express-
ing both the user query and the queries in the mapping is
the one of union of conjunctive queries. To process a query
q, IBIS expands q by taking into account the foreign key
constraints on the global relations appearing in the atoms.
Such an expansion is performed by viewing each foreign key
constraint r1[X] ⊆ r2[Y], where X and Y are sets of h at-
tributes and Y is a key for r2, as a logic programming [77]
rule

r′2( ~X, fh+1( ~X), . . . , fn( ~X)) ← r′1( ~X, Xh+1, . . . , Xm)

where each fi is a Skolem function, ~X is a vector of h vari-
ables, and we have assumed for simplicity that the attributes
involved in the foreign key are the first h ones. Each r′i is
a predicate, corresponding to the global relation ri, defined
by the above rules for foreign key constraints, together with
the rule

r′i(X1, . . . , Xn) ← ri(X1, . . . , Xn)

Once such a logic program ΠG has been defined, it can be

used to generate the expanded query expand q associated
to the original query q. This is done by performing a par-
tial evaluation [40] with respect to ΠG of the body of q′,
which is the query obtained by substituting in q each predi-
cate ri with r′i. In the partial evaluation tree, a node is not
expanded anymore either when no atom in the node uni-
fies with a head of a rule, or when the node is subsumed
by (i.e., is more specific than) one of its predecessors. In
the latter case, the node gets an empty node as a child;
intuitively this is because such a node cannot provide any
answer that is not already provided by its more general pre-
decessor. These conditions guarantee that the construction
of the partial evaluation tree for a query always terminates.
Then, the expansion expand q of q is a union of conjunctive
queries whose body is constituted by the disjunction of all
nonempty leaves of the partial evaluation tree. It is possible
to show that, by unfolding expand q according to the map-
ping, and evaluating the resulting query over the sources,
one obtains exactly the set of certain answers of q to I with
respect to D [17].

6. INCONSISTENCIES BETWEEN SOUR­
CES

The formalization of data integration presented in the pre-
vious sections is based on a first order logic interpretation
of the assertions in the mapping, and, therefore, is not able
to cope with inconsistencies between sources. Indeed, if in
a data integration system I = 〈G,S,M〉, the data retrieved
from the sources do not satisfy the integrity constraints of
G, then no global database exists for I, and query answering
becomes meaningless. This is the situation occurring when
data in the sources are mutually inconsistent. In practice,
this situation is generally dealt with by means of suitable
transformation and cleaning procedures to be applied to
data retrieved by the sources (see [12, 50]). In this section,
we address the problem from a more theoretical perspective.

Several recent papers aim at formally dealing with inconsis-
tencies in databases, in particular for providing informative
answers even in the case of a database that does not sat-
isfy its integrity constraints (see, for example, [13, 6, 7, 54]).
Although interesting, such results are not specifically tai-
lored to the case of different consistent data sources that
are mutually inconsistent, that is the case of interest in
data integration. This case is addressed in [76], where the
authors propose an operator for merging databases under
constraints. Such operator allows one to obtain maximal
amount of information from each database by means of a
majority criterion used in case of conflict. However, also
the approach described in [76] does not take explicitly into
account the notion of mapping as introduced in our data
integration setting.

In data integration, according to the definition of mapping
satisfaction as given in Section 3, it may be the case that
the data retrieved from the sources cannot be reconciled in
the global schema in such a way that both the constraints
of the global schema, and the mapping are satisfied. For
example, this happens when a key constraint specified for
the relation r in the global schema is violated by the tuples
retrieved by the view associated to r, since the assumption
of sound views does not allow us to disregard tuples from
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r with duplicate keys. If we do not want to conclude in
this case that no global database exists that is legal for I
with respect to D, we need a different characterization of
the mapping. In particular, we need a characterization that
allows us support query processing even when the data at
the sources are incoherent with respect to the integrity con-
straints on the global schema.

A possible solution is to characterize the data integration
system I = 〈G,S,M〉 (with M = {r1 ; V1, . . . , rn ;
Vn}), in terms of those global databases that

1. satisfy the integrity constraints of G, and

2. approximate at best the satisfaction of the assertions
in the mapping M, i.e., that are as sound as possible.

In other, the integrity constraints of G are considered strong,
whereas the mapping is considered soft. Given a source
database D for I, we can now define an ordering between
the global databases for I as follows. If B1 and B2 are two
databases that are legal with respect to G, we say that B1

is better than B2 with respect to D, denoted as B1 �D B2,
if there exists an assertion ri ; Vi in M such that

- (rB1
i ∩ V D

i ) ⊃ (rB2
i ∩ V D

i ), and

- (rB1
j ∩ V D

j ) ⊇ (rB2
j ∩ V D

j ), for all rj ; Vj in M with
j 6= i;

Intuitively, this means that there is at least one assertion for
which B1 satisfies the sound mapping better than B2, while
for no other assertion B2 is better than B1. In other words,
B1 approximates the sound mapping better than B2.

It is easy to verify that the relation �D is a partial order.
With this notion in place, we can now define the notion of B
satisfying the mapping M with respect to D in our setting:
a database B that is legal with respect to G satisfies the
mapping M with respect to D if B is maximal with respect
to�D, i.e., for no other global database B′ that is legal with
respect to G, we have that B′ �D B.

The notion of legal database for I with respect to D, and
the notion of certain answer remain the same, given the
new definition of satisfaction of mapping. It is immediate
to verify that, if there exists a legal database for I with
respect to D under the first order logic interpretation of the
mapping, then the new semantics and the old one coincide,
in the sense that, for each query q, the set qI,D of certain
answers computed under the first order semantics coincides
with the set of certain answers computed under the new
semantics presented here.

The problem of inconsistent sources in data integration is
addressed in [64], in particular for the case where:

• the global schema is a relational schema with key and
foreign key constraints,

• the mapping is of type GAV,

• the query language LM,S is the language of union of
conjunctive queries,

• the views in the mapping are intended to be sound.

In such a setting, an algorithm is proposed for computing the
certain answers of a query in the new semantical framework
presented above. The algorithm checks whether a given tu-
ple t is a certain answer to a query q with respect to a given
source database D in coNP data complexity (i.e., with re-
spect to the size of D). Based on this result, the problem of
computing the certain answers in the presented framework
can be shown to be coNP-complete in data complexity.

7. REASONING ON QUERIES

Recent work addresses the problem of reasoning on queries
in data integration systems. The basic form of reasoning on
queries is checking containment, i.e., verifying whether one
query returns a subset of the result computed by the other
query in all databases. Most of the results on query con-
tainment concern conjunctive queries and their extensions.
In [33], NP-completeness has been established for conjunc-
tive queries, in [63, 90], Πp

2-completeness of containment of
conjunctive queries with inequalities is proved, and in [86]
the case of queries with the union and difference operators is
studied. For various classes of Datalog queries with inequal-
ities, decidability and undecidability results are presented
in [35] and [90], respectively. Other papers consider the
case of query containment in the presence of various types
of constraints [5, 39, 32, 69, 71, 70, 20], and for regular-path
queries and their extensions [47, 25, 28, 41].

Besides the usual notion of containment, several other no-
tions have been introduced related to the idea of comparing
queries in a data integration setting, especially in the con-
text of the LAV approach.

In [79], a query is said to be contained in another query
relative to a set of sources modeled as views, if, for each ex-
tension of the views, the certain answers to the former query
are a subset of the certain answers to the latter. Note that
this reasoning problem is different from the usual contain-
ment checking: here we are comparing the two queries with
respect to the certain answers computable on the basis of
the views available. The difference becomes evident if one
considers a counterexample to relative containment: Q1 is
not contained in Q2 relative to views V if there is a tuple
t and an extension E of V, such that for each database DB
consistent with E (i.e., a database DB such that, the result
VDB of evaluating the views over DB is exactly E), t is an
answer of Q1 to DB, but there is a database DB′ consistent
with E such that t is not an answer of Q2 to DB′. In other
words, Q1 is not contained in Q2 relative to views V if there
are two databases DB and DB′ such that VDB = VDB

′
and

QDB1 = QDB
′

2 .

In [79], it is shown that the problem of checking relative con-
tainment is ΠP

2 complete in the case of conjunctive queries
and views. In [74], such results are extended to the case
where views have limited access patterns.

In [72], the authors introduce the notion of “p-containment”
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(where “p” stands for power): a view set V is said to be p-
contained in another view set W, i.e., W has at least the
answering power of V, if W can answer all queries that can
be answered using V.

The notion of “information content” of materialized views
is studied in [57] for a restricted class of aggregate queries,
with the goal of devising techniques for checking whether
a set of views is sufficient for completely answering a given
query based on the views.

One of the ideas underlying the above mentioned papers is
the one of losslessness: a set of views is lossless with respect
to a query, if, no matter what the database is, we can answer
the query by solely relying on the content of the views. This
question is relevant for example in mobile computing, where
we may be interested in checking whether a set of cached
data allows us to derive the requested information without
accessing the network, or in data warehouse design, in par-
ticular for the view selection problem [36], where we have to
measure the quality of the choice of the views to materialize
in the data warehouse. In data integration, losslessness may
help in the design of the data integration system, in par-
ticular, by selecting a minimal subset of sources to access
without losing query-answering power.

The definition of losslessness relies on that of certain an-
swers: a set of views is lossless with respect to a query,
if for every database, we can answer the query over that
database by computing the certain answers based on the
view extensions. It follows that there are at least two ver-
sions of losslessness, namely, losslessness under the sound
view assumption, and losslessness under the exact view as-
sumption.

The first version is obviously weaker than the second one.
If views V are lossless with respect to a query Q under the
sound view assumption, then we know that, from the in-
tensional point of views, V contain enough information to
completely answer Q, even though the possible incomplete-
ness of the view extensions may prevent us form obtaining
all the answers that Q would get from the database. On the
other hand, if V are lossless with respect to a query Q under
the exact view assumption, then we know that they contain
enough information to completely answer Q, both from the
intensional and from the extensional point of view.

In [29], the problem of losslessness is addressed in a context
where both the query and the views are expressed as regular
path queries. It is shown that, in the case of the sound view
assumption, the problem is solvable by a technique that is
based on searching for a counterexample to losslessness, i.e.,
two databases that are both coherent with the view exten-
sions, and that differ in the answers to the query. Different
from traditional query containment, the search for a coun-
terexample is complicated by the presence of a quantification
over all possible view extensions. The key observation in [29]
is that, under the sound view assumption, we can restrict
our attention to counterexamples that are linear databases,
and this allows devising a method that uses, via automata-
theoretic techniques, the known connection between view-
based query answering and constraint satisfaction [27]. As
far as the computational complexity is concerned, the prob-

lem is PSPACE-complete with respect to the view defini-
tions, and EXPSPACE-complete with respect to the query.

It is interesting to observe that, for the case of exact views,
the search for a counterexample cannot be restricted to lin-
ear databases. Actually, the question of losslessness under
the exact view assumption is largely unexplored. To the
best of our knowledge, the problem is open even for a set-
ting where both the query and the views are conjunctive
queries.

8. CONCLUSIONS

The aim of this tutorial was to provide an overview of some
of the theoretical issues underlying data integration. Sev-
eral interesting problems remain open in each of the topics
that we have discussed. For example, more investigation
is needed for a deep understanding of the relationship be-
tween the LAV and the GAV approaches. Open problems
remain on algorithms and complexity for view-based query
processing, in particular for the case of rich languages for
semistructured data, for the case of exact views, and for the
case of integrity constraints in the global schema. Query
processing in GAV with constraints has been investigated
only recently, and interesting classes of constraints have not
been considered yet. The treatment of mutually inconsis-
tent sources, and the issue of reasoning on queries present
many open research questions.

Moreover, data integration is such a rich field that several
important related aspects not addressed here can be identi-
fied, including the following.

• How to build an appropriate global schema, and how
to discover inter-schema [31] and mapping assertions
(LAV or GAV) in the design of a data integration sys-
tem (see, for instance, [83]).

• How to (automatically) synthesize wrappers that
present the data at the sources in a form [] that is
suitable for their use in the mapping.

• How to deal with possible limitations in accessing the
sources, both in LAV [84, 67, 68] and in GAV [75, 48,
73, 74].

• How to incorporate the notions of quality (data qual-
ity, quality of answers, etc.) [81], and data cleaning [12]
into a formal framework for data integration.

• How to learn rules that allow for automatically map-
ping data items in different sources (for example, for
inferring that two key values in different sources actu-
ally refer to the same real-world object [38]).

• How to go beyond the architecture based on a global
schema, so as, for instance, to model data exchange,
transformation, and cooperation rather than data in-
tegration (see, e.g., [55]), or to devise information in-
tegration facilities for the Semantic Web.

• How to optimize the evaluation of queries posed to a
data integration system [3].

We believe that each of the above issues is characterized by
interesting research problems still to investigate.
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