
A Modeling Study of the TPC-c Benchmark

Scott T. Leutenegger * Daniel Dias

ICASE: Institute for Computer Applications IBM Research Division

in Science and Engineering

Mail Stop 132c

NASA Langley Research Center

Hampton, VA 23681-0001

leut@icase.edu

Abstract

The TPC-C benchmark is a new benchmark approved by the

TPC council intended for comparing database platforms running

a medium complexity transaction processing workload. Some key

aspects in which this new benchmark differs from the TP C-A

benchmark are in having several transaction types, some of which

are more complex than that in TPC-A, and in having data access

skew. In this paper we present results from a modelling study

of the TPC-C benchmark for both single node and distributed

database management systems. We simulate the TPC-C workload

to determine expected buffer miss rates assuming an LRU buffer

management policy. These miss rates are then used as inputs to a

throughput model. From these models we show the following: (i)

We quantify the data access skew as specified in the benchmark

and show what fraction of the accesses go to what fraction of

the data. (ii) We quantify the resulting buffer hit ratios for each

relation as a function of bufTer size. (iii) We show that close

to linear scale-up (about 370 from the ideal) can be achieved

in a distributed system, assuming replication of a read-only

table. (iv) We examine the effect of packing hot tuples into

pages and show that significant price/performance benefit can be

thus achieved. (v) Finally, by coupting the buf7er simulations
with the throughput model, we examine typical disk/memory

configurations that maximize the overall price /performance.

1 Introduction

The TPC Benchmark C (TPC-C) [7, 11] is intended to model

a medium complexity online transaction processing (OLTP)

workload. It is patterned after an order-entry workload, with

multiple transaction types ranging from simple transactions that

are comparable to the simple debit-credit workload in the TPC-

A/B benchmarks [6], to medium complexity transactions that

have two to fifty times the number of calls of the simple

transactions.

An important aspect of the workload is that is specifies skewed
(i.e. non-uniform) access within individual data types/relations.

*A significant portion of this work was done while Leut enegger

was a Post-Doctoral Researcher at IBM T. J. Watson Research

Center. Support for Leutenegger was also provided by the
National Aeronautics and Space Administration under NASA

Conract Nos. NAS1-18605 and NAS1-19480.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
and/or spacific permission.
SIGMOD 15193/Washington, DC, USA
01993 ACM 0-89791 -592-51931000510022 ...$1 .50

T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

dias@watson.ibm. com

By contrast, the TPC-A benchmark assumes uniform access

within each relation/data type. The skewed access, which is

typical for many OLTP workloads [4] allows better use of the

main memory database bufler by allowing it to capture the hot

data items.

The benchmark specifies a non-uniform random number gener-

ation function to be used for generation of tuple-ids. We provide

insight into the distribution of this skew by simulating this func-

tion as specified by the benchmark. The output of this simulation

specifies the skew at the tuple level, yet most typical DBMS’s ac-

cess and store data in pages. Therefore, to estimate the skew at

the page level we also simulate the function assuming tuples are

packed sequentially into pages. These results provide insight into

the workload and help explain the miss rate results obtained in our

buiTer simulations. In addition we use the distribution obtained

from this simulation to guide us in packing tuples into pages so

that all tuples of similar “hotness” will be in the same page,

We assume the use of the LRU buffer replacement policy for

the database btier and simulate the buffer pool to determine

the expected miss rates for each relation. We use the miss rates

obtained from our buffer simulations as inputs to a throughput

model. Using this model, we explore optimal buffer sizes to

minimize hardware costs. Finally, we consider the impact

of running the benchmark on a clust eredfdistributed database

system, examining the impact of replicating one of the read-only

relations.

We focus only on the access pattezms and processing require-

ments of the benchmark. We do not consider terminal emulation,

ACID properties, or pricing. When we present price/performance

curves we will only consider hypothetical costs of hardware and

do not include considerations such as terminal emulation or soft-

ware maintenance costs as outlined in the TPC-C specification

[11]. We describe the benchmark transactions only in the level of

detail required to model the workload, primarily in terms of the

access patterns and the number of database calls per transaction.

Readers interested in details such as which fields are retrieved and
updated are referred to the benclunark sp ecificat ion.

The rest of the paper is organized as follows. In Section 2

we provide a synopsis of the TPC-C workload, so that the paper

is reasonably self cent ained. In Section 3 we present simulation

results for the non-uniform random number generation routines to

determine the degree of access skew. A description of our buffer

model simulation including model results is contained in Section

4. A throughput model and price/performance results for both a

single and a distributed system are given in Section 5. Concluding

remarks appear in Section 6.

2 TPC-C Workload Synopsis

This section gives a summ ary of the TPC-C workload. For a more

thorough treatment see [8, 9], the TPC-C specification [11], and

22

Table 1: Summary of Logical Database

Relation Tuple Tuples Per 1

item lOOK 82 bytes 49

order I I 24 bvtes I 170

1
.......... I I Q 1.... -- I K1o I
,Lc w-”. UG’ “ “y tic. V,&

order-line 54 bytes 75

history 46 bytes 89

TPC-C overview [7]. In this paper, we focus only on the access

patterns and processing requirements of the benchmark. For

concreteness, we will assume a relational database model, though

most of the development is applicable to other data models. We

first give an overview of all five transaction types in the benchmark

and then give a more detailed account of each of the transactions

in the following section.

2.1 TPC-C Overview

The TPC-C benchmark is intended to represent a generic

wholesale supplier workload. The workload is primarily a

transaction processing workload with multiple SQL calls per

transaction, but also has two aggregates, one non-unique select,

and a join. The workload specifies skew (i.e. non-uniform access)

at the tuple level for three of the relations.

Figure 1 shows the Business Enviromnent Hierarchy of the

TPC-C workload. This figure is a reproduction of that found

in the TPC-C benchmark specification [1 I]. The overall database

consists of a number of warehouses. Each warehouse is composed

of ten districts where each district has 3,ooO (3K) customers.

There are lOOK items that are stocked by each warehouse. The

stock level for each item at each warehouse is maintained in the

Stock relation. Customers place orders that are maintained in

three relations: in the Order relation a permanent record of each

order is maintained; in the New-Order relation, pending orders

are maintained and later deleted by a Delivery transaction; in the

Order-Line relation, an entry is made for each item ordered. A

history of the payment transaction is appended to the History

relation.

The logical database design is composed of 9 relations as listed

in Table 1 and shown in Figure 2. In the table, W represents

the nnmber of warehouses. We make the assumption that only

integral units of tuples fit per page. The cardinalit y of the

Warehouse, District, Customer, and Stock relations scale with the

number of warehouses. This is similar to the TPC-A benchmark

where the cardinality of the Branch, Teller, and Account relations

scale with the number of branches. The Item relation does not

scale with the number of warehouses. The Order, Order-Line, and

History relations grow indefinitely as orders are processed.

There are five transaction tvDes in TPC-C as listed in table 2.. .
The New Order transaction places an order for on average 10 items

from a warehouse, inserts the order, and for each item updates the

corresponding stock level. The Payment transaction processes a

payment for a customer and updates balances and other data in

the Warehouse, District and Customer relations. The customer
can be specified either by a unique c.uatome~id, or by a name.

In the latter case, on the average three customers qualify from

which one is selected. The Order Status transaction returns the

status of a customer’s last order. As in the Payment transaction,

the customer may be specified by the customer-id or by name.

Each item in the last customer order is examined. The Delivery

transaction processes orders corresponding to 10 pending orders,

one for each district, with 10 items per order. The corresponding

entry in the New-Order relation is deleted. Finally, the Stock

Level transaction examines the quantity of stock for the items

ordered by each of the last 20 orders in a district.

Table 2 summarizes the transactions based on the percent

of the workload each transaction comprises, and the number of

selects, updates, inserts, deletes, non-unique selects, and joins for

a relational model. There is a column for minimum percent of

workload and a column for assumed percent of workload. The

benchmark specifies a minimum percent for all the transaction

types except the New Order transaction. The benchmark metric

is the number of New Order transactions processed per minute,

hence, it is desirable to set the percent New Order as high as

possible (45~o) taking into account that the size of the New-

Order relation will grow without bound unless the relative rate of

Delivery transactions is sufficient to delete the entries in the New-

Order relation at the same rate that the New-Order transaction

inserts them. The third CO1- in the table is the percent of the

workload mix that we have assumed for all studies in this paper.

Note, the percent New-Order versus Delivery is a key parameter

of this benchmark and should be tuned carefully to achieve the

maximum New- Order transactions per second. The join is an

equi-join, where the two relations involved each have on average

just under 200 tuples that meet the selection predicate.

2.2 Transaction Access Patterns

In this section we summarize the access patterns of each

transaction. For each transaction we list the database operations

made by that transaction in a simplified pseudocode. Although

our pseudocode is not SQL, it succinctly conveys the function of

each transaction. A more detailed description is found in [8, 9]

and the TPC-C specification [11] includes sample code for each

transaction.

New Order Transaction

1.

2.

3.

4.

5.

6.

7.

Select (whouse-id) from Warehouse

Select (dist-id, whouse-id) from District

Update(dist-id, whouse-id) in District

Select (customer-id, dist-id, whouse-id) from Customer

Insert into Order

Insert into New-Order

For each item (10 items):

(a) Select(item-id) from Item

(b) Select(item-id,whous&id) from Stock

(c) Update(item-id, whowse-id) in Stock

(d) Insert into Order-Line

8. Commit

Payment Transaction

There are two cases. In the first case, which occurs 40% of

the time, the customer is selected by customer-id. In the second

case, which occurs 60~0 of the time, the customer is selected by

last name. On average three customers will have the same last

name, the actual customer chosen is determined by selecting all

customers with that name, sorting on first name, and taking the

middle one.

1. Select (whouse-id) from Warehouse

2. Select (dist-id,whous~id) from District

3.(a) Case 1: Select (customer-id, dist-id,whouse-id) from Cus-

tomer

(b) Case 2: Non-Unique-Select (customer-name, dist-id,whouse-

id) from Customer

4. Update(whouse-id) in Warehouse

5. Update (dist-id, whouse-id) in District

23

Table 2: Summary of Transactions

Transaction Minimum % Assumed % Selects Updates Inserts Deletes Non-Unique Select Join

New Order * 43 23 11 12 0 0 0
Payment 43 44 4.2 3 1 0 0.6 0
Order Status 4 4 11.4 0 0 0 0.6 0
Delivery 4 5 130 120 0 10 0 0

Stock Level 4 4 0 0 0 0 0 1

Table3: Summary of Relation Accesses

Rel*ti.a. New Payme.t O,de, Dehve,y Stock

O,de.

Ave,we
stat”, Level

W.rehouse u(1) u(1) 0.87

district u(1) u(1) P(1) 0.93

customer Nu(l) NU(2.2) NU(2.2) P(10) 1.524

stock Nu(IO) P(200) 124

item NU(10) 44

order A(1) P(1) P(10) 0,S3

.ew-o,de, A(1) P(10) 0.49

o,de,-l, ne A(10) P(10) P(1OO)

history

P(200) 13 3

A(1) o 43

6. Update(customer-id, dist-id,whouseid) in Customer

7. Insert into History

8. Commit

Order Status Transaction

l.(a) Case 1: Select(customer-id, dist-id,whouse-id) from Cus-

tomer

(b) Case 2: Non-Unique- Select (customer-name, dist-id,whouse-

id) from Customer

2. Select (Max (order-id) ,customer-id) from Order

3. for each item in the order:

(a) Select (order-id) from Order-Line

4. commit

The database call “ Select (Max(order-id) ,customer-id) from

Order” selects the tuple in the Order relation that is the most

recent order placed by the customer. This could be implemented

as a max aggregate. Since the Order relation keeps on growing

without bound this approach would be expensive. This could be

implemented using an ordered multi-keyed index so that correct

tuple can be fetched in just one index look up. Hence, in our

studies we assume this requires the overhead of a single select.

Delivery Transaction

1. For each district within the warehouse (i.e. ten times):

(a) Select (Min(order-id) ,whouse-id,dist-id) from New-Order

(b) Delete(order-id) from New-Order

(c) Select (order-id) from Order

(d) Update(order-id) Order

(e) For each item in the order (i.e. ten times):

i. Select (order-id) from Order-Line
ii. Update (order-id) Order-Line

(f) Select (customer-id) from Customer

(g) Update(customer-id) Customer

2. commit

Similar to the “Max” operation in the Order-Status transac-

tion, we assume the “ Min” select is fetched in just one call.

Stock Level Transaction

Below we quote the sample SQL code directly from the

TPC-C document [1 I] so that we do not confuse the query by

oversimplification.

SELECT d-nextm-id INTO :oid

FROM District

WHERE d-w-id = :w-id AND d-id = :did ;

SELECT COUNT(DISTINCT (s-iid)) INTO :stock-count

FROM Order-Line, Stock

WHERE

oLw-id = :w-id AND

old-id = :did AND ol-o-id < :o-id AND
oLoid > (:oid - 20) s.wid = :w-id AND

s-iid = oLiid AND s-quantity < :threshold ;

Assuming an index on the order-id field of the Order-Lhe

relation and a two keyed index on the whouse-id and item-id of the

stock relation, the query results in an average of 200 Order-Line

and Stock tuples each being fetched.

To summarize the access patterns of the five transaction we list

the number of accesses to each relation for each transaction type

and the average number of accesses per transaction in Table 3;

the latter assumes the percentages for each transaction listed in

Table 2. Within the table, the notation U(Z) signifies that z

tuples are chosen Uniformly from the relation, NU(Z) denotes

NonUniform random selection of z tuples using the NU function,

A(z) denotes z tuples are Appended to the relation, and P(z)

denotes x tuples are chosen where the tuples chosen were recently

accesses by Past behavior (in other words there is a form of

temporal locality). Note that the tuples accessed by the Order-

Status, Delivery, and Stock-Level transactions are more likely to

be btierpool hits since they are for tuples that have been recently

put in the buffer pool by the New-Order transaction. Many of the

tuple-ids are generated from the NU () function. We define and

simulate this function in the next section.

3 Analysis of TPC-C Data Access

Skew

The TPC-C benchmark assumes access to the tuples are skewed,

i.e. within a relation some tuples are referenced more frequently

than others, In this section we define and simulate the non

uniform random number function, as specified by the TPC-C

documents, used for the generation of tuple id’s, The non-uniform

random number generating function, NU(), which we paraphrase

from the benchmark specification [II], is defined as follows:

NU(A, z,y) = (((nmd(O,A)] md(z, y))+c)%(y–z))+x (1)

where:

●

●

●

●

●

rand(x,y) denotes a uniformly distributed integer random

number in the closed interval [x.. Y],

C is a constant within [0.. A],

A is a constant chosen according to the size of the range [x..y],

(N % M) stands for N modulo M,

and (N [M) stands for the bitwise logical OR of N and M.

24

For the remainder of this paper we assume C equals zero (the

TPC-C standard document allows an arbitrary choice of C withk

[0..A]). We choose A and y according to the specifications for the

tuple id being generated.

First we consider accesses to the stock and item relations.

All tuple id’s for accessing these relations are drawn from

the NU (8191,1,100000) distribution. In Figure 3 we plot the

probability mass function (PMF) for this distribution as obtained

from simulating one billion samples. The plot shows the non-

uniformity in access and the periodicity of the access probability

in the first parameter (8191) of the NU function above. The

number of cycles equals the (floor of the) third parameter divided

by the first parameter of the NU function, or 12 cycles for this

case. In [8, 9] we derive a closed form expression for the resulting

PMF assuming the third parameter is a power of two for which

the cycles are exact. Figure 3 is hard to interpret because of

the large number (100,000) of points; hence, we plot the same

distribution for tuples 1 to 10,000 in Figure 4. In this figure, the

non-nniformit y within a cycle (8191 points) is clear.

While the non-uniformity of access is apparent in Figure 4, the

degree of skew is not clear. Let al be the probability of accessing

tuple i. Let ~~ be the fraction of the relation represented by that

tuple. Note pi = ~j Vi, j for stock tuples. In Figure 5 we order

the tuples by increasing order of a (increasing order of hotness)

and plot ~ ai versus ~ ~:, i.e. the cumulative probability y of

access versus the cumulative fraction of the relation. If a relation

has no skew the curve would be linear; hence the more convex

the curve is, the more skew there is. For the moment ignore the

top two curves, and focus on the lower curve which represents

the access skew at the tuple level. The graph shows that 16%

of the accesses go to about 80~0 of the tuples, or alternatively,

84~o of the accesses go to about 2070 of the tuples. There is even

more skew in the tail of the distribution, so that about 71 Yo of

the accesses go to about 10~o of the (hottest) tuples and about

39% of the accesses go to about 270 of the (hottest) tuples.

Inmost typical databases data is stored in pages; hence we need

to determine the skew at the page level. We first assume tuples are

packed into pages in sequential order with the maximum number

of whole tuples that fit per page. We assume the remainder of

the page is wasted. For the stock relation 13 (26) tuples fit in

each 4K (sK) page. Again, we order the pages by frequency of

access and plot the cunndati ve probability y of access versus the

cumulative fraction of the database in Figure 5 (top two curves).

The top (bottom) curve is for an 8KByte (4K) page size. For a

4KByte page size, we see that 25% of the access go to 80% of the

data, or viewed the other way 75% of the accesses go to 20% of

the data. This is similar to the so called “80-20” rule where 80~0

of the accesses go to 2070 of the data. Again, there is a more skew

in the tail of the distribution and about 59% of the accesses go to

about 10~o of the hottest pages, and about 28~0 of the accesses go

to about 270 of the pages. The smaller page size results in more

skew than the larger page size since there is less of a chance to

spread out the hot tuples among the pages.

The milder skew at the page level leads to the question of

whether the tuple level skew can be obtained at the page level.

Packing tuples into pages in sequential order spreads out hot

tuples among all the pages of the relation. A simple optimization

is to first sort the tuples from hottest to coldest and then pack

them into pages in that order. Since the distribution parameters

for TPC-C are know a priori and are static in time, this can be

done. (In this context we note that the TPC-C standard (Clause

1.4.1) allows clustering of tuples within pages.) This technique

would also work for any workload where we know the distribution

of accessing tuples within the relations of the database, and where

the distribution does not vary with time. (We note, however, that

in many real workloads, while there is considerable skew in data

access, the access distribution is often not static in time.) The

bottom curve in Figure 5 is the resultant skew when this optimized

packing of tuples is used, and is virtually indistinguishable from

the tuple level skew. Hence, the optimized packing results in more

skew at the page level which should result in lower miss rates in

the buffer pool. As a further note, this optimized tuple to page

packing approach was insensitive to page size.

Accesses to the item relation exhibits a similar skew except

there is less skew for the non-optimized packing approach since

49 (99) tuples fit per 4K (sK) page.

Access to the customer relation is less skewed than the stock

and item relations since tuples are accessed by both tuple-id and

customer-name. Hence. there are two different access Datterns

which are superimposed upon the relation. If the customer-

id is used as the selection key, one tuple is selected from the

NU(1023,1 ,3000) distribution. If the customer-name is used,

we make the simplifying assumption that the customer name is

selected from one of the NU(255,1 ,1000), NU(255,1OO1 ,2000) and

NU(255,2001 ,3000) distributions with equal probability. Hence,

as can be derived from the transaction access pattexms as specified

in Section 2.2, 41 .86~0 of the accesses to the customer relation use

the NU(1023,1 ,3000) distribution and 58.14~o are divided equally

among NU(255,1 ,1000), NU(255,1OO1 ,2000), and NU(2001 ,3000)

distributions. In Figure 6 we plot the PMF for the customer

relation and in Figure 7 we plot the ~ a: versus ~ ~:. We note

that there is considerably less skew for the customer relation than

for the Stock relation.

4 LRU Buffer Simulation

In this section we outline our buffer simulation model and present

miss rates obtained from our model. We simulated the buffer

pool for the TPC-C benchmark assuming an LRU replacement

policy. We hypothesize that more sophisticated replacement

policies could result in an even larger difference between optimized

packing of tuples and non-optimized packing of tuples since they

should be able to capitalize more on the access skew. In our

simulations we collected confidence intervals using batch means

with 30 batches per simulation and a batchsize of 100,000 samples.

All results (i.e. the miss rates of each relation) have confidence

intervals of 5yo of less at a 90~o confidence level.

In the buiTer model, we simulate transactions entering the

system sequentially, and do not consider the case where multiple

transactions may be in the system at the same time. The

presence of concurrent transactions does not change the buffer

hit ratio significantly because the fraction of pages accessed by

any transaction is small compared to the buffer size. We include
concurrent transactions in the throughput model in Section 5.1.

When a transaction enters it is chosen as one of the five types

according to the distribution for each type. Each transaction

generates tuple requests and inserts as specified in Section 2.2.

The simulation keeps track of the last order placed by each

customer, the last 20 orders for each district, and which tuples are

in the New-Order relation. This information is used by the the

Order-Status, Delivery, and Stock-Level transactions. The output

from the simulation is the miss rates for each relation summed

over all transaction types, and also the miss rates for the accesses

by the Order-Status, Delivery, and Stock-Level transactions in

isolation to be used as inputs for the throughput model.

In Figure 8 we plot the miss rates versus the buffer size for

the Stock, Customer, and Item relations. The other relations all

have significantly lower miss rates. We include curves for both the
sequential packing of tuples into pages and the optixni.ed packing

of tuples. The curves are, from top to bottom, the Customer

relation, Stock relation, and Item relation. For each of the

relations, the optimized packing of tuples results in significantly

lower miss rates. There are two reasons why the Customer relation

25

Table 4: Throughput Model Summary : Single Node

resource parameter n overhead NewOrder Payment Status Delivery Stock
VI v~ v~ v~ v~

CPU select 1 10K 23 4.2 13.2 130 1
CPU update 2 10K 11 3 0 120 0
CPU insert 3 10K 12 1 0 0 0
CPU delete 4 10K o 0 0 10 0

CPU commit 5 20K 1 1 1 1 1 1
CPU irritIO 6 SK l+mc 1+2 2(mc) 2.2(mc) 1+1 O(mc+mO+mn) 200(ms+ml)

+Io(mi + m.) +mO+lO(ml)
CPU

+130(ml)
applicat Ion 7 O.lK 47 8 13 261 3

CPU send/receive 8 1SK o 0 0 0 0
CPU prepCOmmlt 9 10K o 0 0 0 0
CPU lnlt’IYansactiOn 10 20K 1 1 1 1 1
CPU releaseLocks 11 35K 1 1 1 1 1
CPU non-unique-select 12 25K o 0.6 0.6 0 0
CPU join 13 820K o 0 0 0 1

disk IO 14 25ms mc+lo(mi+ms) 2.2(mc) 2.2(mc) 10(mc+mO+mn) 200(ms+ml)
+mO+lO(ml) +130(ml)

exhibits a larger miss rate than the Stock relation even though

the Customer relation is the smaller of the two. The first is that

the customer relation has less skew as shown in Section 3. The

second is that the stock relation is accessed more frequently as

show in table 3. The item relation has a much lower miss rate

since the relation is much smaller than the stock and customer

relations due to the fact that the item relation does not scale

with the number of warehouses.

The optimal packing approach results in significantly lower

miss rates than the sequential packing approach. For example, the

miss rate for the stock relation for a buffer size of 52M is 30yo lower

in absolute terms for the optimized packing approach than for the

sequential approach. The miss rate for the stock relation averaged

over all buifer sizes considered is 13~o lower in absolute terms for

the optimized packing approach than for the sequential approach.

This significantly lower miss rate translates directly to a lower 1/0

rate, and hence better performance. Similar improvements are

seen for the Customer relation miss rates and to a lesser extent

for the Item relation.

We assume 20 Warehouses at a node. The reason for choos-

ing the case of 20 Warehouses relates to the throughput model

in Section 6, where it is estimated that about 20 Warehouses

could be supported by a 10 MIPS processor. Beyond a suiTi-

ciently large number of warehouses, the btier hit characteristics

approximately scale with the number of Warehouses. The reason
the scaling is not exact is that the item relation does not scale

with the number of Warehouses, but it’s effect diminishes with

an increase in the number of Warehouses. The Warehouse and

District relations are sufficiently small that they fit in the buffer

(miss rate O%) for all simulations considered.

5 System Model and Performance

Estimates

5.1 Throughput Model Description

In this section we describe our throughput model. The parameter

values used in the model are similar to those in [3, 5]; they do not

reflect any particular system, but are intended to be somewhat

representative. The objective is to identify trends rather than

providing specific throughput or price-performance estimates.

Our model incorporates both the CPU and the data disks. We

assume that the system is configured with a suilicient number of

disk arms to ensure disk arm utilization remains below 50% and

hence the CPU is the bottleneck. To calculate CPU utilization

the model sums the average CPU demand per transaction, divides

by the MIPS rating of the processor, and then multiplies by

the throughput. Our primary metric is maximum throughput

which we obtain by fixing the CPU utilization and calculating the

throughput. To calculate the disk utilization we sum the average

disk demand per transaction in milliseconds, divide by the number

of disk arms, and then multiply by the system throughput. We

assume that there is a separate log disk.

In table 4 we summarize the assumed parameter values and

visit counts for each transaction type for a single node system.

The column label n is the subscript of the parameter. In the

equations below we will use on to denote the overhead for a

parameter n call. We define visit count as the number of times

a transaction requires a certain operation per transaction type.

The visit counts are in the columns heading VI . . . V5. We deftue

V, ,j to be the visit count for transaction i to operation j.

Most of the parameters in the table are self evident from the

names with the following possible exceptions. The parameter

app kcati on is for application code between SQL calls, the

parameter send/receive is kor the CPU overhead at one node to

send and receive a message across the network, the parameter

releaseLocks is for the release lock portion of the commit phase,

prep Commit is for the prepare to commit portion of a 2 phase

commit, and initIO is the CPU overhead for initiating an 1/0. The

overhead for releasing locks is obtained by summi ng the overhead

to release read-locks and write-locks times the number of locks

held by each transaction type weighted by the percent of the

workload comprised by each transaction type. We assume an

overhead of 1K instructions for releasing each lock.

The parameters mc, mz, ms, mo, and ml found in Vt,5 and

V,,14, i c 1,...5, are the miss rates for the Customer, Item, Stock,

Order, and OrderLine relations respectively. These miss rates are

obtained from the butfer model. Note that for completeness we

could have also included the miss rates for the Warehouse, District
and New-Order relations in the performance estimates, but these
miss rates are always negligibly small and hence are omitted from

the table.

The overhead for the non-unique select is based on the fact

that on average three vslues are returned and need to be sorted.

The overhead for the join is estimated as follows. On average

there are 200 items ordered by the last 20 order transactions and

hence a range scan returning an average of 200 items is invoked to

create a temporary table for the outer relation. Each one of these

tuples will join with exactly one tuple from the inner relation.

Assuming that appropriate indexes exists on the inner relation,

each outer relation tuple requires an indexed select on the inner

relation. Finally, the result must be sorted to eliminate duplicate

26

Table 5: Definition of Notation

I symbol meaning 1
Rc..to,+ expected number of calls for

obtaining and updating stock tuples

RCcust expected number of calls for

obtaining and updating customer tuples

RC,tem expected number of calls for

obtaining and updating item tuples

U~~O~k expected number of unique remote

sites that supply stock tuples

Ucu.t expected number of unique remet e

sit es that SUDDIV customer ttmles

I Ustem expected number of unique remote

sites that SUDDIV item tudes I
I Ui~~m+*~e=~ expected number of unique remote I

sites that supply item or stock tuples

L~tock probability that all stock tuples

are supplied from the local warehouse

Table 6: Throughput Model Summary : Multi Node

with Replication

I rese. rce I r.~.amet.r I II I overhead I NewOrder I P.mlent I

II CPU
commit I 5 I 30K I 1+u8t00k I ‘ + ““sf I

CPU init10 6 SK l+m. 1 + 2.2 m.
+Io(m, + m.) +Ucv. t

+Ustock +Uc.w,t

CPU .end/r.ceive s 10K 4 u**ock 2 Rcous:
+2 ltc~$o=k +4 uou=~

I CPU

I

p.epCommit 9 I 15K

I
‘stock + 1

I

Uclc s t
‘Lstock I

items. We assume the overhead for the range scan is 5K per tuple,

the overhead for the indexed select is 5K instructions per tuple,

and the overhead for the final sort is 40K resulting in a total CPU

overhead of 2040K instructions.

In table 6 we summarize the visit counts which differ from the

single node case for a distributed environment when the Item

relation is replicated across all nodes, i.e. we include remet e

calls and distributed commits. In table 7 we s— arize the

visit counts assumhm the Item relation is not redcated. The

visit counts for the Payment transaction are the same for both

replication and no replication since the Payment transaction does

not access the Item relation. Note that only the New-Order and

Payment transactions differ from the single node caae since the
other transaction only access locrd warehouses as specified by the

benchmark. The notation found in tables 6 and 7 is defined in

table 5. For brevity reasons we omit the derivation of these terms

and detailed explanation of tables 6 and 7. The details can be

found in [8, 9].

Let V,,n equal the visit count of a type i transaction to the CPU

as a type n request. The values of V! ,n are obtained from tables 4,

6, or 7 depending on whether the system being modeled is a single
node system, distributed system with the Item relation replicated,

or a distributed system without replication of the Item relation.

Let A equal the system throughput and al denote the fraction of

the workload from transactions of type i. The utilization of the

CPU is calculated as:

Table 7: Throughput Model Summary: Multi Node No

Replication

resource parameter n overhead New Order
VI

CPU commit 5 30K 1 + U,took+,i=m

CPU initIO 6 5K l+rnc+lo(mi+?ns)
+U’+ook

I CPU Isend/receive 8 I 10K IzRCsio.k + 2RC,tem
+ 4u.to.k + 2tJ,tem I

CPU prepCOmmit 9 15K U,~o.~ + 1 - L,*OCk

Let DA = the number of disk -. The utilization of the disk is

calculated as:

5.2 Single Node Performance Estimates

In this section we present our results for a single node system

nmning the l’f’C-C benchmark, for the parameter values and
assumptions given above. We assume the MIPS rating of the

processor is 10 MIPS. We obtain the maximum throughput by

fixing the maximum CPU utilization at 80% and calculating the

throughput using the throughput model outlined above. We then

obtain the number of disks needed by fixing the maximum disk

utilization at 5070 and finding the minimum number of disks such

that disk utilization is less than or equal to 50%. Note that typical

configurations are designed so that the average disk utilization is

lower than the 50~o we assume, so as to take into account variance

in the disk load (for example see [10]). However, in a benchmark

environment a higher disk utilization may be permissible because

of a smaller variance in the disk load. All experiments assume a

4K page size.

In Figure 9 we plot the maximum throughput in new-order

transactions per minute versus butler size. The curves from top

to bottom are for optimized packing of tuples into pages and non-

optimized packing of tuples into pages.

The maximum percentage difference bet ween the methods

occurs at a bufTer size of 44 megabytes where the optimized

workload results in a 2.570 higher throughput relative to the

non-optimized workload. The average throughput improvement

(averaged over all 64 buffer sizes plotted in Figure 9 is 1.0%

relative to the non-optimized workload. Hence, based on

maximum throughput there is little incentive to pack all the hot

tuples into separate pages versus just loading the database in

sequential order.

In Figure 10 we plot the cost per transaction/minute versus

buffer size, where we detine cost as the cost of the memory,

disks (including sutlicient storage space for all relations), and the

processor. We emphasize that this is not the cost as specified

by the TPC-C’ benchmark since it does not include software

cost, maintenance cost, terminal cost, etc. The intent is to

estimate the optimal database memory buffer size in the trade-

off between memoTy and disks. The storage cost is computed

27

by SUmmi ng the storage needs for the Warehouse, District,

Customer, Stock, and Item relations as specified in table 1.

Assmning 20 warehouses per node (which leads to about 80%

CPU utilization), the space required is 1.1 Gbytes. In addition,

we must include sufficient storage for running the benchmark for

1808 hour days as specified by the benchmark. Each New Order

transaction inserts 1 order tuple, and 10 order-Line tuples. In

addition each Payment transaction inserts one History tuple. By

multiplying the transaction rate times the number of bytes needed

for these inserts we arrive at approximately 11 Gbytes of disk

space per node needed for storing these three relations. This

space requirement scales linearIy with the throughput. We assume

each 3 Gbyte disk costs $5000, the processor costs $10000, and

memory costs $100 per megabyte. Although these hardware costs

are debatable and will quickly be out of date, they enable us

to present a methodology which can be used for determining

the optimal price/performance point. This method is beneficial

in determining how much memory versus disk arms the system

should be configured with.

We first focus on the bottom two curves in Figure 10. These two

curves do not include the storage capacity needed for maintaining

the Order, Order-Line, and History relations. The top curve of

these two is for a workload with sequential packing of tuples

into pages, while the bottom curve is for the case of optimal

packing of tuples into pages. The jagged shape of the curves

results from the adding of memory nntil the disk utilization drops

sufficiently to confignre tlle system with one less disk and still

have a utilization of less than 50%. The lowest point on the y

axis for each curve corresponds to the optimal cost/performance

point and shows the corresponding amount of database btier

memory. (Note again that this is not the entire system cost.)

The lowest points occurs for a 154 Mbyte buffer with a value of

about $139/tpm for sequential packing, and at 84 Mbyte with a

value of about $107/tpm for the optimal packing case. Thus, the

optimized packing of tuples resdts in about a 30~o improvement

of price performance relative to sequential packing.

The top two curves in Figure 10 include the the storage capacity

needed for maintaining the Order, Order-Line, and History

relations. In this case, adding memory causes the disk utilization

to drop sufficiently to configure the system with less disks, but tlle

required storage capacity precludes removal of additional disks. A

minimum of 4 disks are required for storage capacit y requirements.

The lowest points occurs at a 52 Mbyte buffer with a value of

about $167/tpm for sequential packing, and at 26 Mbyte with a

value of about $154/tpm for the optimal packing case. Thus, the

optimized packing of tuples resnlts in about an 8~o improvement

of price performance relative to sequential packing. Put another

way, the system is disk bandwidth bound for memory sizes less

than 26 megabytes (52) for the optimized (non-optimized) case,

and storage capacity bound for larger memory sizes. Hence, there

is no benefit obtained from adding additional memory beyond

these points. Note, given the rate at which disk size is currently

increasing the system will become disk bandwidth bound in tlle

near future rather than storage capacity bound, in which case

the cost/performance difference will become closer to the 30%

p.e~.t~d when storage costs are not included. For ex_ple,
when a $5000 6 Gbyte disk is assumed the cost/performance

improvement resulting form optimal packing is 2070. If a 12 G

byte disk is assmned the entire database fits on one disk and the

cOst/performance improvement is 3070.

From this simple model, we conclude that depending on

the disk bandwidth to storage capacity ratio, the (hardware

cost)/performance ratio may be improved by up to 30% by careful

loading of the database, i.e. paeking all hot tuples into the same

set of pages. Note, this does not take into consideration the cost

of the software or software maintenance which when all lumped

together will reduce the percent difference significantly.

5.3 Multiple Node System Estimates

In this section we present our results for a multiple node

distributed system runni ng the TPC-C benchmark. We assume
each node contains 20 warehouses and all data pertaining to

the node (except tlle item relation in the non-replicated case)

is located on that node. We consider two cases. The first case is

wllen the item relation is replicated across all sites. Since the item

relation is read-only, replication protocols could be optimized for

this case resulting in little/no overhead for replica management.

Note that in a real database this would not be a trivial task if

the Item relation can be changed. The second case assumes that

the Item relation is not replicated, but rather partitioned equally

among the nodes. In this case, all accesses to the item relation

will incur a remote call with probability ~, where N is the

number of nodes in the system. In addition a one-phase commit

involving each node that supplies an item tuple is necessary.

In Figure 11 we plot the maximum throughput versus the

number of nodes for a buffer size of 102 Mbytes. We only plot

results for the optimized packing model; results for the non-

optimized model are similar. The top curve is for comparison

purposes only, and represents a perfectly Iinear growth ill

maximum throuzhDut with the number of nodes. The second
“.

curve is for the case where the Item relation is replicated, and the

third curve is for the case where tlle Item relation is not replicated.

The benchmark scales ahnost linearly when the Item relation

is replicated. This excellent scaleup occurs because only 10% of

the New- Order transactions and 15~o of the Payment transactions

involve a remote warehouse. When the Item relation is not

replicated the benchmark does not scale as well since each New-

Order transaction must make 10 (~) remoted calls, one for

each item ordered. The replicated case has a 10, 30, and 3970

higher throughput than the non-replicated case for 2, 10, and

30 nodes respectively. Hence, if tlle benchmark is to be run

on a distributed system, replication of the Item relation will

greatly improve system performance. We should emphasize that

this assumes the use of a concurrency protocol (CC) which only

reqnires remote access only when acquiring exclusive locks, i.e.

the concurrency control (CC) protocol is optimized for read-only

sharing so that no remote calls are made for CC for the replicated

item relation. If a protocol optimized for write sharing were used,

the performance would drop considerably. For instance if the

primary copy protocol [2] were used for replication, there would

be little performance gain over tlle non-replicated system since

locks would have to be acquired remotely for each access.

Tlle TPC-C benchmark specifies that for each item ordered

in the New-Order transaction only 1 Yo are stocked by a remote

warehouse. In addition, the benchmark specifies that 15% of

customers making payment via the Payment transaction are

making the payment through a remote warehouse. These
specifications result in a very low percentage of remote calls and

hence the good scale-ups shown for the replicated case shown
in Figure 11. We now examine the sensitivity of the rem.dts to

this assumption. In Figure 12 we plot the maximum throughput

versus the number of nodes for different probabilities of ordering

items stocked by a remote warehouse in the new order transaction.

We see that if the probability of remotely stocked items increases

to 1.0, the scale-up decreases by about 44~o. Note that even at a

probability y of remotely stocked items of 1.0, most of the accesses

are still local since only 43~o of the transactions are New-Order

transactions, and of these only the ten stock tuples selected are

remote; the warehouse, custonler, district, and 10 item tuples

selections are all local. The TPC-C benchmark favors distributed

syst ems by having a very small percentage of remet e calls.

28

6 Summary and Conclusion

In this paper we modelled the TPC-C benchmark for single

node and multiple node distributed database systems. One

key difference of the TPC-C benchmark, from the debit-credit

benchmark of TPC-A, is that it includes significant skew (i.e.,

non-uniform access) within several key relations. By contrast,

the TPC-A benchmark has uniform access within each relation,

and in particular, each account in the large account relation is

accessed with equaf probability. As a consequence, in TP C-A

each account tuple is accessed infrequently and it is not beneficial

to hold them in a memory buffer. Therefore, one focus of this

paper was to quantify the access skew in the TP C- C benchmark,

and to examine it’s impact on the optimal system configuration,

price-performance and scalability y.

To this end, we fist quantified the tuple data access skew as

specified in the benchmark. Consider the stock relation as an

example for quantifying the access skew. At the tuple level we

found that about 84% of the accesses go to about 20% of the

hottest stock tuples. There is even more skew in the tail of the

distribution, so that about 39% of the accesses go to about 2%

of the (hottest) tuples. Since the database buffer is typically

organized as pages, we next examined the skew at the page level.

If tuples are inserted sequentially by key (or randomly) then hot

tuples are scattered among the pages in the database. As a

consequence, the skew at the page level is milder than that at

the tuple level. Specifically, about 75% of the accesses go the

hottest 20% of the pages. Again, there is a more skew in the tail

of the distribution and and about 28% of the accesses go to about

2% of the pages. We then considered clustering the hot tuples

into the same pages in an optimal manner. This is possible for

the TPC-C benchmark because the access probabilities are static

in time and known a-priori. If this were done, the resulting skew

at the page level is about the same as that at the tuple level, in

terms of the fraction of accesses that go to any specific fraction

of data.

Having quantified the access skew, we examined the buffer hit

ratio versus builer size characteristic, assuming an LRU bufTer

replacement policy. We quantified this for each relation, both for

the case of sequential assignment of tuples to pages and for that

with hot tuples clustered within pages. Significant differences in

the buffer hit ratio was found for these two cases. The specific

hit ratios and the difference for the two cases differs for different

relations. In absolute terms it is largest for the customer relation,

but the higher frequency of access to the stock relation makes this

relation dominant.

The results of the buffer model were fed to a throughput model

to examine the overall throughput and optimal memory and disk

configuration. The access skew makes the results rather different

from that for the TPC-A benchmark where, as outlined above,

buffering any of the account tuples is of little value. For the

TPC-C case, ahnost all the item tuples, the hotter stock tuples,

and some of the customer tuples are bui7ered in the estimated

optimal configurations. The optimal configurations depend on the

specific costs of disks and memory, specific estimates are given in

Section 5.2.

We also found that depending on the disk bandwidth to disk

storage capacity ratio, packing hot tuples into pages may result

in significant benefits in terms of price-performance. We note,

however, that this observation appfies only to a workfoad where

the access probabilities do not vary with time, and where they

are known a-priori. In this sense, the TP C- C benchmark is not

q~te rep=~mtati= of m-y red wOrMoads, where often neither
of these conditions apply.

Finally, we examined the scalability of the TPC-C workload in

terms of how the throughput can be expected to grow with the

number of nodes in a distributed database system. Like the TPC-

A benchmark, the TPC-C benchmark is largely partitionable,

and close to linear scale-up in the number of nodes can be

obtained. This assumes that the read-only item relation is

replicated across all nodes, and that no remote communication

is needed for concurrency control for access to this read-only

relation. Specifically, if the Item relation is replicated, there are

few remote calls in the workload. In the New-Order transaction

on average 0.1 stock tuples accessed and updated are from a

remote warehouse. Since the New-Order transaction selects 23

tuples these O.1 remet e calls comprise only 0.4% of the New-Order

transaction workload. In the Payment transaction 0.33 (0.15x 2.2)

customer tuples accessed are from and updated are from a remote

warehouse. Since the Payment transaction selects 4.2 tuples these

0.33 remote calls comprise only 7.9% of the Payment workload.

The Order-Status, Delivery, and Stock-Level transactions access

11.4, 130, and 401 tuples respectively. Hence, once weighted by

the percentage of the workload only 0.5470 of the accesses are

to remote data. This low fraction of remote access should be

carefully considered when using the TPC-C benchmark to assess

the performance of a distributed or clustered database system.

In a real environment, the item relations would be updated

albeit infrequently, and provision wouId have to be made for

this. If a general concurrency control protocol was used for

this, e.g. the primary copy approach, or if the item relation is

not replicated, then the scale-up as a function of the number of

nodes is significantly lower, as we have quantified. Even so, the

fraction of remote calls is rather small. While we have focussed

on examining the TPC- C benchmark, the methodology we have

used has more general applicability.

References
[1] Bernstein, P. A., and Goodman, N., “ Concurrency Control

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

in Distributed Database Syst ems ,“ Computing Surveys, Vol.

13, No. 2, pp. 185-221, June 1981.

Bernstein, P. A., and Goodman, N., “A Sophisticates Intro-

duction to Distributed Database Concurrency Control,” in

Proc. 8th VLDB Conf., Sept. 1982, pp.62-76.

Ciciani, B., Dias, D. M., and Yu, P. S., “ Analysis of Replica.

tion in Distributed Database Systems,” IEEE Trans. Knowl-

edge and Data Engrg., Vol. 2, No. 2, June 1990, pp. 247-261.

Dan, A., Yu, P.S, and Chnng, J. Y., “ Characterization

of Database Access Skew of a Transaction Processing

Environment ,“, IBM Research Report RC 17436, 1991.

Dias, D. M., Iyer, B. R., Robinson, J.T. and Yu, P. S., “ In-

tegrated Concrurrency-Coherency Controls for Multisystem

Data Sharing”, IEEE Trans. Software Engrg., Vol. 15, No.

4, April 1989.

Gray, J., (Editor), The Benchmark Handbook for Database

and Transaction Processing Systems, Morgan Kaufmam,

1991, isbn 1-55860-159-7.

Kohler, W., Shah, A., Raab, F., “ Overview of TPC Bench-

mark C: The Order-Entry Benchmark,” technical report,

Transaction Processing Performance Council, December 23,

1991.

Leutenegger, S., Dias, D., “A Modeling Study of the TPC-C

Benchmark,” ICASE Report, number 93- I 2.

Leutenneger, S., and Dias, D., “A Modeling Study of the

TPC-C Benchmark,” IBM Technical Report (in prepara-

tion).

McNutt, B., “ DASD Configuration Planning: Three Simple

Checks”, CMG Conference Proceedings, 1988.

Transaction Processing Performance Council, “ TPC Bench-

mark C, Standard Specification, Revision 1.0”, Edited by
Francois Raab, August 13, 1992.

29

\ J 1)

[

district 1

1[

dishict2 Costict10 1.,..,

Figure 1: TPC-C Business Enviornment.

Reproduced with permission from the TPC

F==l 10
1==1

[
w J J
I m

W*l(J

I

lOOK I-YE--h 3K

Figure 2: TPC-C Entity/Relationship Diagram.

Reproduced with permission from the TPC

“0 20000 40000 60000 80000
stock tuple number

k
10000

Figure 3: Stock Relation PMF

0.002

0.0015

:
al
;

%

E-! 0.001

.2

.1

~

&

0.0005

0
0 2000 4000 6000 8000 1

stock tuP1e nUM?Je3?

00

Figure 4: Stock Relation PMF: 10,000 tuples

1

0.s

0.6

0.4

0.2

0 I I

o 0.2 0.4 0.6 0.s
fraction of relation

Figure 5: Stock Relation CDF

0.012

0.011

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

J

0.002

0.001

0 J
o 60(1200 1 10 2400 3000

customer n, ber

Figure 6: Customer Relation PMF

30

1

0.0

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

fraction of relat~c,n

325

300

275

250

225

200

175

150

125

100 I
o

J
100 200 300 400

nlega Dyces

Figure 10: Price PerformanceFigure 7: Customer Relation CDF

6600

6000

5400

4800

4200

3600

3000

2400

1

customer —

o.e Opt Lnlized customer ———
stock —

opt Lm, zed stock —
1 t em -----

optun, zed item ----

0.6

I

0.4
- I

0.2

0
0 100 200 300 4t

megabytes

Perfect scaleup —
with replication -----

no repllcat=on ——

800

200

600

0
0 5 10 15 20 25

number of nodes

Figure 11: Scaleup of TPC-C

0

Figure 8: Significant Miss Rates

7000

6500

6000

5500

5000

4500

4000

3500

3000

2500

222

220

21s

216

214

212

210

208

206

204

202

2000

1500

1000

500

0
200

0 100 200 300 400
megabytes

5 10 15 20 25
number of nodes

Sensitivity to Percent RemoteFigure 12:

31

Figure 9: Maximum Throughput

