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L 
ogic has been around for a 
very long time [23]. It was 
already an old subject 23 
centuries ago, in Aristotle's 
day (384-322 BC). While 
Aristotle was not its origina- 

tor, despite a widespread impres- 
sion to the contrary, he was cer- 
tainly its first important figure. He 
placed logic on sound systematic 
foundations, and it was a major 
course of  study in his own univer- 
sity in Athens. His lecture notes on 
logic can still be read today. No 
doubt he taught logic to the future 
Alexander the Great when he 
served for a time as the young 
prince's personal tutor. In Alexan- 
dria a generation later (about 300 
B.C.), Euclid played a similar role 
in systematizing and teaching the 
geometry and number  theory of  
that era. Both Aristotle's logic and 
Euclid's geometry have endured 
and prospered. In some high 
schools and colleges, both are still 
taught in a form similar to their 
original one. The old logic, how- 
ever, like the old geometry, has by 
now evolved into a much more gen- 
eral and powerful form. 

Modern ('symbolic' or 'mathe- 
matical') logic dates back to 1879, 
when Frege published the first ver- 
sion of  what today is known as the 
predicate calculus [14]. This system 
provides a rich and comprehensive 
notation, which Frege intended to 
be adequate for the expression of  

all mathematical concepts and for 
the formulation of  exact deductive 
reasoning about them. It seems to 
be so. The  principal feature of  the 
predicate calculus is that it offers a 
precise characterization of  the con- 
cept of proof. Its proofs, as well as its 
sentences and its other formal ex- 
pressions, are mathematically de- 
fined objects which are intended 
not only to express ideas meaning- 
ful ly--that  is, to be used as one uses 
a language--but  also to be the sub- 
ject matter of  mathematical analy- 
sis. They are also capable of  being 
manipulated as the data objects of  
construction and recognition algo- 
rithms. 

At the end of  the nineteenth cen- 
tury, mathematics had reached a 
stage in which it was more than 
ready to exploit Frege's powerful 
new instrument. Mathematicians 
were opening up new areas of  re- 
search that demanded much 
deeper logical understanding and 
far more careful handling of  
proofs, than had previously been 
required. Some of  these were David 
Hiibert's abstract axiomatic recast- 
ing of  geometry and Giuseppe 
Peano's of  arithmetic, as well as 
Georg Cantor's intuitive explora- 
tions of  general set theory, espe- 
cially his elaboration of  the dazzling 
theory o f  transfinite ordinal and 
cardinal numbers. Others were 
Ernst Zermelo's axiomatic analysis 
of  set theory following the discov- 

ery of  the logical and set-theoretic 
paradoxes (such as Bertrand Rus- 
sell's set of  all sets which are not 
members of  themselves, which 
therefore by definition both is, and 
also is not, a member of  itself); and 
the huge reductionist work Prin- 
cipia Mathematica by Bertrand Rus- 
sell and Alfred North Whitehead. 
All of  these developments had ei- 
ther shown what could be done, or 
had revealed what needed to be 
done, with the help of  this new 
logic. But it was necessary first for 
mathematicians to master its tech- 
niques and to explore its scope and 
its limits. 

Significant early steps toward 
this end were taken by Leopold 
Lowenheim (1915), [29] and 
Thoralf  Skolem [45], who studied 
the symbolic "satisfiability" of  for- 
mal expressions. They showed that 
sets of  abstract logical conditions 
could be proved consistent by being 
given specific interpretations con- 
structed from the very symbolic 
expressions in which they are for- 
mulated. Their  work opened the 
way for Kurt G6del (1930, [17]) and 
Jacques Herbrand (1930, [19]) to 
prove, in their doctoral disserta- 
tions, the first versions of  what is 
now called the completeness of  the 
predicate calculus. G6del and 
Herbrand both demonstrated that 
the proof  machinery of  the predi- 
cate calculus can provide a formal 
proof  for every logically true prop- 
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osition, and indeed they each gave 
a constructive method for f inding 
the proof,  given the proposition. 
G6del's more famous achievement, 
his discovery in 1931 of  the amaz- 
ing ' incompleteness theorems'  
about formalizations of  arithmetic, 
has tended to overshadow this im- 
por tant  earl ier  work of  his, which is 
a result about  pure  logic, whereas 
his incompleteness results are about 
certain appl ied logics (formal axio- 
matic theories of  e lementary num- 
ber  theory, and similar systems) 
and do not directly concern us 
here. 

The  completeness of  the predi-  
cate calculus links the syntactic 
p roper ty  of  formal provability with 
the conceptually quite di f ferent  
semantic p roper ty  of  logical truth. 
I t  assures us that each proper ty  be- 
longs to exactly the same sentences. 
Formal  syntax and formal  seman- 
tics are both needed,  but  for a time 
the spotlight was on formal syntax, 
and formal  semantics had to wait 
until Alfred Tarski (1934, [46]) in- 
t roduced the first r igorous semanti- 
cal theory for the predicate calcu- 
lus, by precisely def ining satisfi- 
ability, truth (in a given 
interpretation), logical consequence, 
and o ther  related notions. Once it 
was filled out  by the concepts of  
Tarski's semantics, the theory of  the 
predicate calculus was no longer 
unbalanced.  Shortly af terward Ger- 
hard  Gentzen (1936, [15]) fur ther  
sharpened  the syntactical results on 
provability by showing that if a sen- 
tence can be proved at all, then it 
can be proved in a 'direct '  way, 
without the need to introduce any 
extraneous 'clever' concepts; those 
occurr ing already in the sentence 
itself are always sufficient. 

All of  these positive discoveries 
of  the 1920s and 1930s laid the 
foundat ions on which today's pred-  
icate calculus theorem-proving  pro- 
grams, and thus logic program-  
ming have been built. 

Not all the great  logical discover- 
ies of  this per iod were positive. In 
1936 Alonzo Church and Alan 
Tur ing  (see [6, 47]) independent ly  
discovered a fundamenta l  negative 

proper ty  of  the predicate calculus. 
There  had until then been an in- 
tense search for a positive solution 
to what Hilbert  called the decision 
problem--the problem to devise an 
algori thm for the predicate calculus 
which would correctly determine,  
for any formal sentence B and any 
set A of  formal sentences, whether  
or  not B is a logical consequence of  
A. Church and Tur ing  found that 
despite the existence of  the p roof  
procedure ,  which correctly recog- 
nizes (by constructing a p roof  of  B 
from A) all cases where B is in fact a 
logical consequence of  A, there is 
not and cannot  be an algori thm 
which can similarly correctly recog- 
nize all cases in which B is not a logi- 
cal consequence of  A. The i r  discov- 
ery bears directly on all at tempts to 
write theorem-proving  software. It 
means that it is pointless to try to 
p rogram a computer  to answer 'yes' 
or  'no'  correctly to every question of  
the form 'is this a logically true sen- 
tence?' The  most that can be done is 
to identify useful subclasses of  sen- 
tences for which a decision proce- 
dure  can be found. Many such sub- 
classes are known. They  are called 
'solvable subcases of  the decision 
problem' ,  but  as far as I know none 
of  them have tu rned  out  to be of  
much practical interest. 

When  World War II  began in 
1939 all the basic theoretical foun- 
dations of  today's computat ional  
logic were in place. What  was still 
lacking was any practical way of  ac- 
tually carrying out  the vast symbolic 
computat ions called for by the 
p roof  procedure.  Only the very 
simplest of  examples could be done 
by hand.  Already there were those, 
h o w e v e r - - T u r i n g  himself  for o n e - -  
who were making plans which 
would eventually fill this gap. Tur-  
ing's method in negatively solving 
the decision problem had been to 
design a highly theoretical,  abstract 
version of  the modern  stored- 
program,  genera l -purpose  univer- 
sal digital computer  (the 'universal 
Tur ing  machine'),  and then to 
prove that no p rogram for it could 
realize the decision procedure .  His 
subsequent leading role in the war- 

t ime British code-breaking project 
included his part icipation in the 
actual design, construction and 
operat ion of  several electronic ma- 
chines of  this kind, and thus he 
must surely be reckoned as one of  
the major  pioneers in their  early 
development .  

Logic on the Computer 
Apar t  from this enormously impor-  
tant cryptographic  intelligence 
work and its crucial role in ballistic 
computat ions and nuclear  physics 
simulations, the war-time develop- 
ment  of  electronic digital comput-  
ing technology had relatively little 
impact on the outcome of  the war 
itself. After  the war, however, its 
rap id  commercial  and scientific 
exploitat ion quickly launched the 
current  computer  era. By 1950, 
much- improved  versions of  some 
of  the war-time genera l -purpose  
electronic digital computers  be- 
came available to industry,  univer- 
sities and research centers. By the 
mid-1950s it had become apparen t  
to many logicians that, at last, suffi- 
cient comput ing power was now at 
hand to suppor t  computat ional  
exper iments  with the predicate cal- 
culus p roo f  procedure .  I t  was jus t  a 
mat ter  of  p rog ramming  it and try- 
ing it on some real examples.  Sev- 
eral papers  describing projects for 
doing this were given at a Summer  
School in Logic held at Cornell  
University in 1957. One of  these 
[37, pp. 74-76]  was by Abraham 
Robinson, the logician who later 
surpr ised the mathematical  estab- 
l ishment by applying logical 'non- 
s tandard '  model  theory to legiti- 
mize infinitesimals in the 
foundat ions of  the integral  and dif- 
ferential  calculus. Other  published 
accounts of  results in the first wave 
of  such exper iments  were [12, 16, 
35, 49]. The re  had also been, in 
1956, a s trange exper iment  by [33] 
which at tracted a lot of  attention at 
the time. It has since been cited as a 
milestone of  the early stages o f  arti- 
ficial intelligence research. The  
authors  designed their  'Logic The-  
ory Machine'  p rogram to prove 
sentences of  the proposi t ional  cal- 
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culus (not the full predicate calcu- 
lus), a very simple system of logic 
for which there had long existed 
well-known decision procedures. 
They nevertheless explicitly re- 
jected the idea of  using any algo- 
rithmic proof  procedure, aiming, 
instead, at making their program 
behave 'heuristically' as it cast about 
for a proof. This experiment was 
intended to model human 
problem-solving behavior, taking 
propositional calculus theorem- 
proving in particular as the 
problem-solving task, rather than 
to program the computer to prove 
propositional calculus theorems 
efficiently. 

No sooner were the first compu- 
tational proof  experiments carried 
out than the severe combinatorial 
complexity of  the full predicate cal- 
culus proof  procedure come vividly 
into view. The  procedure is, after 
all, essentially no more than a sys- 
tematic exhaustive search through 
an exponentially expanding space 
of  possible proofs. The early re- 
searchers were brought  face-to-face 
with the inexorable 'combinatorial 
explosion' caused by conducting 
the search on nontrivial examples. 
These first predicate calculus 
proof-seeking programs may have 
inspired, and perhaps even de- 
served, the disparaging label 'Brit- 
ish Museum method'  (see [33]), 
which was destined to be pinned on 
any merely-generate-and-test pro- 
cedure which blindly and undis- 
criminatingly tries all possible com- 
binations in the hope that a winning 
one, or even an acceptable one, may 
eventually turn up. 

The intrinsic exponential com- 
plexity of  the predicate calculus 
proof  procedure is to be expected, 
because of  the nature of  the search 
space. There  is evidently little one 
can do to avoid its consequences. 
The only reasonable course is to 
look for ways to strengthen the 
proof  procedure as much as possi- 
ble, by simplifying the forms of  
expressions in the predicate calcu- 
lus and by packing more power into 
its inference rules. This might at 
least make the search process more 

efficient, and permit it to find 
proofs of  more interesting exam- 
ples before it runs into the expo- 
nential barrier. 

Some limited progress has been 
made in this direction by reorganiz- 
ing the predicate calculus in various 
'machine-oriented' versions. 

Evolution of Machine- 
Oriented Logic 
The earliest versions of  the predi- 
cate calculus proof  procedure were 
all based on human-oriented reason- 
ing pa t te rns- -on  types of  inference 
which reflected formally the kind 
of  'small' reasoning steps which 
humans find comfortable. A well- 
known example of  this is the modus 
ponens inference-scheme. In using 
modus ponens, one infers a conclu- 
sion B from two premisses of  the 
form A and (if A then B). Such 
human-oriented inference-schemes 
are adapted to the limitations--and 
also to the s t rengths- -of  the 
human information-processing sys- 
tem. They therefore tend to involve 
simple, local, small and perceptually 
immediate features of  the state of  the 
reasoning. In particular, they do 
not demand the handling of  more 
than one such bundle of  features at 
a t ime-- they are designed for serial 
processing on a single processor. 
The  massive parallelism in human 
brain processes is well below the 
level of  conscious awareness, and it 
is of  the essence of  deductive rea- 
soning that the human reasoner be 
fully conscious of  the 'epistemologi- 
cal flow' of  the proof  and of  its step- 
wise assembling of  his or her assent 
and understanding. In logics based 
on such fine-grained serial infer- 
ence patterns, proofs of  interesting 
propositions will tend to be large 
assemblies of  small steps. The 
search space for the corresponding 
proof  procedures will accordingly 
tend to be dense and overcrowded 
with redundant  alternatives at too 
low a level of  detail. 

By about 1960 it had become 
clear that it might be necessary to 
abandon this natural predilection 
for human-oriented inference pat- 
terns, and to look for new logics 

based on larger-scale, more com- 
plex, less local, and perhaps even 
highly parallel, machine-oriented 
types of  reasoning. In contemplat- 
ing these possible new logics it was 
hoped their proofs would be 
shorter and (at the top level) sim- 
pler than those in the human- 
oriented logics. Of  course, in the 
interior of  any individual inference, 
there would presumably be a large 
amount  of  hidden structural detail. 
The global search space would be 
sparser, since it would need to con- 
tain only the top-level structure of  
proofs. The proof  procedure itself 
would not need to be concerned 
with the copious details of  the con- 
ceptual microstructure packaged 
within the inference steps. 

This was the motivation behind 
the introduction, in the early 1960s, 
of  a new logic, based on two highly 
machine-oriented reasoning pat- 
terns: unification, and the various 
kinds of  resolution which incorpo- 
rate it. 

clausal Logic 
The 1960 paper [12] had already 
drawn attention to the simplified 
clausal predicate calculus in which 
every sentence is a clause. (A clause 
is a sentence with a very simple 
form: it is just a--possibly emp ty - -  
disjunction of  literals. A literal, in 
turn, is just the application of  an 
unnegated or negated predicate to 
a suitable list of  terms as argu- 
ments). In the same year, Dag 
Prawitz [34] had also forcefully 
advocated the use of  the process 
which we now call unification. Along 
with Stig Kanger (see [34, 
footnote 11], p. 170) he apparently 
had independently rediscovered 
unification in the late 1950s. He 
apparently did not realize that it 
had already been introduced by 
Herbrand in his thesis of  1930 (al- 
beit only in a brief and rather ob- 
scure passage). These were major 
steps in the right direction. Neither 
the Davis-Putnam nor the Prawitz 
improved proof  procedures, how- 
ever, went quite far enough in dis- 
carding human-oriented inference 
patterns, and their algorithms still 
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became bogged down too early in 
their  searches, to be useful. 

This was the situation when I 
first became interested in mechani- 
cal theorem-proving  in late 1960. 
From 1961 to 1964 I worked each 
summer  as a visiting researcher  at 
the Argonne  National Laboratory 's  
Appl ied  Mathematics Division, 
which was then directed by William 
F. Miller. It was Bill Miller who in 
early 1961 first in t roduced me to 
the engineer ing side of  predicate 
calculus theorem-proving  by point- 
ing out  to me the Davis and Putnam 
paper.  He invited me to spend the 
summer  of  1961 at Argonne  as a 
visiting researcher  in his division, 
with the suggested assignment of  
p rogramming  the Davis-Putnam 
proof  procedure  on the IBM 704 
and more generally of  pursuing 
mechanical theorem-proving  re- 
search. 

Reading the Davis-Putnam paper  
[12] in early 1961 really changed 
my life. Al though Hilary Putnam 
had been one of  my advisers when I 
was working on my doctoral  thesis 
in philosophy at Princeton (1953-  
1956), my research had dealt  with 
David Hume's  theory of  causation 
and had little or nothing to do with 
modern  logic, to which I paid scant 
attention at that time. I did not find 
out about  Putnam's interest in the 
predicate calculus p roof  procedure  
until I read this paper ,  four  years 
after I had left Princeton. It is a 
very impor tant  paper .  They  
showed how, by relatively simple 
but  ingenious algorithmic reorgani-  
zation, the original naive predicate 
calculus p roof  procedure  of  
He rb rand  could be vastly improved.  

In a 1963 paper  I wrote about 
my 'combinatorial  explosion'  expe- 
rience with p rogramming  and run- 
ning the Davis-Putnam procedure  
in For t ran  for the IBM 704 at Ar-  
gonne [38, pp. 372-383].  Mean- 
while, dur ing  my second research 
summer  there (1962) an Argonne  
physicist who was interested in and 
very knowledgable about logic, Wil- 
liam Davidon, had drawn my atten- 
tion to the impor tant  1960 paper  by 
Dag Prawitz [34], in which I first 

encountered  the idea of  unifica- 
tion. After  struggling with the woe- 
ful combinatorial  inefficiency of  the 
instantiation-based procedure  used 
by Davis and Putnam (and by 
everybody else at that time; it goes 
back to Herbrand ' s  so-called 'Prop- 
erty B Method'  developed in [19]). I 
was immediately very impressed by 
the significance of  this idea. It is 
essentially the idea under lying 
Herbrand ' s  'Proper ty  A Method '  
developed in the same thesis. Here  
again was still another  paper  show- 
ing that even vaster improvements  
than those flowing from the Davis 
and Putnam paper  were possible 
over the 'naive' predicate calculus 
p roof  procedure .  Instead of  gener-  
at ing-and-test ing successive instan- 
tiations (substitutions) hoping  even- 
tually to hit upon the r i g h t  ones, 
Prawitz was describing a way of  di- 
rectly computing them. This was a 
breakthrough.  It offered an elegant 
and powerful  alternative to the 
blind, hopeless, enumerat ive 'Brit- 
ish Museum'  methodology,  and 
pointed the way to a new methodol-  
ogy featur ing deliberate,  goal- 
directed constructions. 

The  entire academic year of  
1962-1963 was consumed in trying 
to figure out  the best way to exploit  
this Herbrand-Kanger-Prawi tz  pro- 
cess effectively, so as to eliminate 
the generat ion of  irrelevant in- 
stances in the p roof  search. Finally, 
in the early summer  of  1963, I 
managed  to devise a clausal logic 
with a single inference scheme, 
which was a combination of  the 
Herbrand-Kanger-Prawi tz  process 
(for which I proposed  the name 
unification) with Gentzen's 'cut' rule. 
This combination produced  a 
ra ther  inhuman but  very effective 
new inference pattern,  for which I 
p roposed  the name resolution. Reso- 
lution permits  the taking of  arbi- 
trarily large inference steps which 
in general  require  very consider- 
able computat ional  effort  to carry 
out  (and in some cases even to un- 
ders tand and to verify). Most of  the 
effort  is concentrated on the unifi- 
cation involved. Preliminary inves- 
tigations indicated that resolution- 

based theorem-provers  would be 
significantly bet ter  than any which 
had been built previously. 

I wrote about these ideas at Ar-  
gonne at the end of  the summer  of  
1963, and sent the paper  to the 

Journal of the A.C.M. (JACM). It  
then apparent ly  remained  unread  
on some referee 's  desk for more 
than a year. It required some urg- 
ing by the then edi tor  of  the Jour-  
nal, Richard H a mming  o f  Bell Lab- 
oratories,  before  the referee finally 
responded.  The  outcome was that 
the paper ,  [39], was published only 
in January  1965. Meanwhile the 
manuscr ipt  had been circulating. In  
1964 at Argonne ,  Larry Wos, 
George Robinson and Dan Carson 
p rog ra mme d  a resolution-based 
theorem prover  for the clausal 
predicate calculus, adding  to the 
basic process search strategies 
(called unit preference and set of sup- 
port) of their  own devising, which 
fur ther  speeded the resolution 
p roof  process. Because of  the refer-  
eeing delay, their  paper ,  reached 
pr int  before mine [52]) and could 
only cite it as 'to be published' .  

T h r o u g h o u t  the winter of  1963-  
64, while waiting for news of  the 
paper 's  acceptance or  rejection by 
JACM, I concentrated on trying to 
push the ideas further ,  and looked 
for ways of  ex tending  the resolu- 
tion principle to accommodate  even 
larger  inference steps than those 
sanctioned by the original binary 
resolution pattern.  One of  these 
tu rned  out  to be particularly attrac- 
tive. I gave it the name hyper-resolu- 
tion, meaning to suggest that it was 
an inference principle on a level 
above resolution. One hyperresolu-  
tion was essentially a new inte- 
grated whole, a condensat ion of  a 
deduction consisting of  several reso- 
lutions. The  paper  describing hy- 
perresolut ion was published at 
about the same time as the main 
resolution paper ,  and was later re- 
pr in ted  in [40, pp. 416-423].  

It had been my guiding idea in 
this research that bigger  and (com- 
putationally) better  inference pat- 
terns might  be obtained by some- 
how packaging entire deductions at 
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one level into single inferences at the 
next higher  level. As I cast about 
for such patterns I came across a 
quite restricted form of  r eso lu t ion- -  
I called it 'P l - reso lu t ion ' - -which  I 
found I could prove was just  as 
powerful  as the original unrestricted 
binary resolution. The  restriction in 
Pl-resolut ion is that one of  the two 
premises must be an unconditional 
clause, that is, a clause in which 
there are no negative literals (or 
what amounts  to the same thing, a 
sentence of  the form: ' if  antecedent 
then consequent' whose antecedent 
part  is empty). From this restric- 
tion, it follows that every P l -deduc-  
tion (that is, a deduct ion in which 
every inference is a Pl-resolut ion) 
can always be decomposed into a 
combination of  what I called 'P2- 
deductions' .  A P2-deduction is a 
P 1-deduction which satisfies the 
extra restriction that its conclusion, 
and all of  its premises except one, 
are uncondit ional  clauses. Thus,  ex- 
actly one conditional clause is in- 
volved as an 'external '  clause in a 
P2-deduction. By ignoring the in- 
ternal inferences of  a P2-deduction 
tree and deeming its conclusion to 
have been directly obtained from its 
premises, we obtain a single large 
i n f e r ence - - a  hyper reso lu t ion - -  
which is really a multi inference 
deduct ion whose interior  details are 
hidden from view inside a sort of  
logical black box. 

Computational Logic: The 
Resolution Boom 
After  the publication of  the paper  
in 1965, there  began a sustained 
drive to program resolution-based 
proof  procedures  as efficiently as 
possible and to see what they could 
do. In Edinburgh,  Bernard  Melt- 
zer's Computational Logic group and 
Donald Michie's Machine Intelligence 
group had by 1967 attracted many 
young researchers who have since 
become well known and who at that 
time worked on various theoretical 
and practical resolution issues: 
Robert  Kowalski, Patrick Hayes, the 
late Donald Kuehner ,  Gordon  Plot- 
kin, Robert  Boyer and J Moore, 
David H.D. Warren,  Maarten van 

Emden,  Robert  Hill. Bernard  Meit- 
zer had visited Rice University for 
two months in early 1965 in o rde r  
to study resolution intensively, and 
on his re turn  to Edinburgh he set 
up one of  two seminal research 
groups which were to foster the 
birth of  logic p rogramming  (the 
other  being Alain Colmerauer 's  
group in Marseille). Thus  began my 
long and fruitful association with 
Edinburgh.  By 1970 the resolution 
boom was in full swing. I recall that 
in that year Keith Clark and Jack 
Minker were among those attend- 
ing a N A T O  Summer  School orga- 
nized by Bernard  Meltzer and Nic- 
olas Findler  at Menaggio on Lake 
Como. The re  we preached the new 
'resolution movement '  for two 
weeks, and Clark and Minker de- 
cided to jo in  it, soon becoming two 
notable contributors.  

Meanwhile, however, in the U.S., 
the reaction was mostly muted,  ex- 
cept for isolated pockets of  enthusi- 
asm at Argonne,  Stanford,  Rice and 
a few other  places. Bill Miller had 
left Argonne  to go to Stanford at 
the end of  1964, and I accepted his 
invitation to spend the summers  of  
1965 and 1966 as a visiting re- 
searcher in his computat ion group 
at the Stanford Linear  Accelerator 
Center.  It was at Stanford in the 
summer  of  1965 that I met John  
McCarthy for the first time. I was 
astonished to learn that after he 
had recently read the resolution 
paper  he had written and tested a 
complete resolution theorem- 
proving p rogram in Lisp in a few 
hours. I was still p rogramming  in 
Fortran,  and I was used to taking 
days and even weeks for such a 
task. In 1965, however, one could 
use Lisp easily in only a very few 
places, and nei ther  Rice University 
nor Argonne  National Laboratory 
were then among them. 

Ber t ram Raphael,  Nils Nilsson, 
and Cordell  Green, at Stanford 
Research Institute, were building 
deductive databases for the 
'STRIPS'  p lanning software for 
their robot, and they were adopt ing 
resolution for this (see [36]). At 
New York University, Martin Davis 

and Donald Loveland were devel- 
oping Davis's very closely related 
unification-based ' l inked conjunct '  
method [10, pp. 315-330]  in ways 
which eventually led Loveland in- 
dependent ly  to his Model Elimina- 
tion system [28], a linear reasoning 
method entirely similar to the lin- 
ear  resolution systems developed by 
the Edinburgh group,  and by David 
Luckham at Stanford [30]. Back at 
Argonne,  Larry Wos and George 
Robinson had formed a very strong 
'automated deduct ion '  group. They 
broadened  the applicability of  uni- 
fication by augment ing  resolution 
with fur ther  inference rules spe- 
cialized for equality reasoning (mod- 
ulation, paramodulation) which fur- 
ther improved the efficiency of  
p roof  searches [43]. Today,  the 
Argonne  group  is still f lourishing 
and remains a major center  of  ex- 
cellence in automated deduction.  

In  1969 there began a series of  
noisy but  interesting (and, it later 
turned  out, fruitful) academic skir- 
mishes between the then somewhat 
meagerly funded  resolution com- 
munity and MIT's  Artificial Intelli- 
gence Laboratory led by Marvin 
Minsky and Seymour Papert.  The  
MIT  AI Laboratory  at that time was 
(it seemed to us) comfortably, if not 
lavishly, suppor ted  by the Penta- 
gon's Advanced Research Projects 
Agency (then ARPA, now DARPA). 
The  issue was whether  it was better  
to represent  knowledge computa-  
tionally, for AI purposes,  in a de- 
clarative or in a procedural form. I f  it 
was the former  (as had been origi- 
nally proposed  in 1959 by John  
McCarthy) [31] then it would be the 
predicate calculus, and efficient 
p roof  procedures  for it, that would 
play a central role in AI research. I f  
it was the latter (e.g., see [51]), then 
a computat ional  realization of  
knowledge would have to be a sys- 
tem of  procedures  'heterarchically'  
organized so that each could be in- 
voked by any of  the others, and 
indeed by itself. These  procedures  
would be 'agents '  that would both 
cooperate and compete in collec- 
tively accomplishing the various 
tasks compris ing intelligent behav- 
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ior and thought. 

Minsky's book, The Society of the 
Mind [32], elegantly summed up 
the MIT side of  this debate in es- 
chewing polemics to outline a 
grand unified theory of  the struc- 
ture and function of  the mind in 
the tradition of  Freud and Piaget. 
The  logic side of  the debate has 
been definitively treated in [25], 
which eloquently sets forth the role 
of  logic in the computational orga- 
nization of  knowledge and banishes 
the procedural-declarative dichot- 
omy by insight that Horn  clauses 
(that is, clauses containing at most 
one unnegated literal) can be inter- 
preted as procedures, and thus can 
be activated and executed by a suit- 
ably designed processor. It is this 
insight that underlies what we now 
call logic programming. 

The never-to-be-implemented 
but influential 'Planner'  system by 
Carl Hewitt--his  first paper on 
Planner, in [20]--epitomized the 
MIT procedural approach, while 
the QA ('Question-Answering') se- 
ries of  programs by [31] carried out 
McCarthy's logical 'Advice Taker'  
approach to AI and convinced 
many skeptics that it would really 
work. The  work by [18] should now 
be seen and appreciated as the ear- 
liest demonstration of  a logic pro- 
gramming system. That  paper illus- 
trated how to adapt a 
resolution-based proof  procedure 
to provide an assertion-and-query 
facility in all essential respects like 
that provided by the later Prolog 
systems. Unfortunately, the system 
was built on the rapidly ramifying 
full resolution scheme, using unre- 
stricted (rather than Horn-) clauses, 
so that the program suffered from 
premature combinatorial explo- 
siveness. Nevertheless, it was 
largely Green's pioneering work of  
[18] that encouraged Kowalski and 
the Edinburgh group to fight off  
the MIT 'procedural-is-best' attack 
by developing the highly efficient 
(LUSH, later called SLD), slowly 
ramifying linear resolution systems 
for the restricted case o f  Horn- 
clauses [27, pp. 542-577]. 

The procedural-logical fight was 
really ended, in a delightfully unex- 
pected way, by Kowalski's inspired 
procedural interpretation of  the be- 
havior of  a Horn-clause linear reso- 
lution proof  finder, [24]. He 
pointed out that in view of  the be- 
havior of  Horn  clause linear-reso- 
lution proof-seeking processes, a 
collection of  Horn  clauses could be 
regarded as knowledge organized 
both declaratively and procedurally. 
It suddenly was hard to see what all 
the fuss had been about. Kowalski 
was led to this reconciliatory princi- 
ple by superb implementation of  a 
'structure-sharing' resolution theo- 
rem prover at Edinburgh [5, pp. 
101-116], which suddenly com- 
pleted the transformation .of the- 
orem-proving from generate-and-test 
searching to goal-directed stack-based 
computation. When restricted to 
Horn  clauses, the Boyer-Moore 
approach becomes the obvious pre- 
cursor of  the first implementations 
of  Prolog. David H.D. Warren's 
enormously influential later soft- 
ware and hardware refinements 
and advances clearly descend di- 
rectly from the Boyer-Moore meth- 
odology [50]. 

Only the interaction of  the Edin- 
burgh group's  ideas with the work 
of  Colmerauer's Montreal [7] and 
Marseilles [8] groups was required 
to open up logic programming and 
launch it on its meteoric career. 
The interesting story o f  this inter- 
action was published by [26]. Logic 
programming is today in excellent 
health. The logic programming 
community has settled down to 
enjoy, after two decades of  very 
rapid growth, a steady mature 
round of  professional conferences 
and workshops, a plentiful flow of  
research and expository publication 
in books and in its own and other 
journals, an exciting marketplace of  
new software and hardware enter- 
prises, and such majestic long- 
range national and international 
undertakings as Japan's  Fifth Gen- 
eration Project and those spon- 
sored by the European Commu- 
nity. 

A Closer Look at Unification 
and Resolution 
What then, is the resolution-based 
clausal predicate calculus, and what 
is unification and how does it work? 

Clauses 
Davis's and Putnam's clauses are 
quite expressive, despite their ap- 
parently restricted form. This is 
reflected in the many different but 
equivalent ways in which one can 
write them. In dealing with clauses 
computationally, however, it is best 
to keep them simple and to work 
with them abstractly. 

A clause can in general be taken 
to be a sentence o f  the form 'if P 
then Q', which we will usually write 
as P ~  Q or sometimes the other 
way round, as Q ~ P. The  anteced- 
ent P is a set of  conditions and the 
consequent Q is a set of  conclusions. 
These conditions and the conclu- 
sions are atomic sentences. The order  
in which the atomic sentences per- 
force are presented in written ver- 
sions of  clauses and has no logical 
significance. There  is usually no 
visible indication of  the fact that the 
antecedent P is a conjunction of  its 
conditions, while the consequent Q 
is a disjunction of  its conclusions. 
Those two facts are assumed to 
hold by convention. In discussing 
inferences and manipulations in- 
volving clauses, the abstract view of  
P and Q as sets is both natural and 
convenient. 

We can then classify a clause 
along three different dimensions, 
depending on whether its atomic 
sentences contain any variables or 
not, whether or not it has any con- 
ditions, and whether or  not it has 
any conclusions. A clause with no 
variables is said to be a ground 
clause, while if it has one or more 
variables, it is called a general clause. 
A general clause is understood to 
be a universally quantified sentence, 
each of  its variables being tacitly 
universally quantified with the 
whole sentence as scope. A clause 
with one or more conclusions is said 
to be a positive clause; while one 
with no conclusions is said to be a 
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negative clause. Finally, a clause with 
one  o r  m o r e  condi t ions  is said to be 
a conditional clause; while one  with 
no condi t ions  is said to be an uncon- 
ditional clause. ( T h e r e  is only one  
clause that  is both uncondi t iona l  and 
negat ive:  it is known as the empty 
clause.) 

Various Ways of Reading a Clause 
Suppose  the variables which occur  
in the atomic sentences o f  a clause 
are  V[ . . . Vk, and that  its condi-  
tions are  Pl • • - Pm and  its conclu- 
sions are  Ql  . . .  Qn. T h e  var ious 
ways to read  and  write the clause 
will then  d e p e n d  on  the values o f  k, 
m, and  n, as follows: 

E(x) D(x z ) ~  A(F(x z)) and  E(u) 
D(y u) ---> A(F(u y)) a re  no t  variants.  
T h e y  are, however ,  separated.  

In  unif icat ion computa t ions  and  
in the resolut ion  in fe rence  and 
p r o o f  const ruct ions  based on them,  
we rout ine ly  replace  a clause by a 
suitably chosen one  o f  its v a r i a n t s - -  
for  example ,  when  we need  to en- 
sure  that  all clauses in a set a re  sep- 
arated.  As we shall soon see, how- 
ever,  the re  are  ways o f  r ep re sen t ing  
express ions  (as two-dimens ional  
s t ructures  o f  a cer ta in  kind) in 
which this becomes  i r re levant  and 
unnecessary  because variables are  
nameless.  T h e  famil iar  one -d imen-  
sional notat ion,  however ,  is the 

wi thout  any significant  in ternal  
syntax o f  the i r  own. In  this discus- 
sion we will write t hem as uppe r -  
case identif iers .  T h e  a r g u m e n t s  are  
terms. Noncompos i t e  te rms  are  vari- 
ables: x, y, z, ul ,  and so on. In  this 
discussion we will write variables as 
lower-case identif iers ,  possibly sub- 
scripted.  

Compos i te  te rms  are  like com- 
posite a toms in having  two parts:  an 
operator and list o f  a r g u m e n t s )  In- 
deed  the c o m m o n  conven t ion  for  
wri t ing a composi te  t e r m  is similar 
to that  for  wri t ing composi te  atoms: 
to write the o p e r a t o r  immedia te ly  
be fo re  the  list o f  a rguments ,  as for  
example :  

1 for  a l l V 1  . . . V k : i f P ~  a n d . . . a n d P m t h e n Q l  o r  . . o r  Qn ( k > O , m ~  l , n >  ~) 
2 for  all  Vl  . . .  Vk: Q1 o r . . .  o r  Qn ik ~ O, m = O, n > l i  
3 i f  Pl a n d  . . , a n d  Pm t h e n  Ql  o r  ~ . . o r  Qn (k ~ O, m -> 1, n > 1) 

7 i f  PI a n d .  , . a n d  Pm t h e n  Qt  

10 no t  (P~ a n d . . ,  a n d  Pro) 
11 n o t  true  (or: fa l se )  

Horn-clauses are  cases 5 onward  
(where  n = 1 or  n = 0). T h e  clauses 
in cases 5 to 8 are  positive Horn -  
clauses (n = 1); those f rom 9 on-  
wards are  negative Horn-c lauses  
(n = 0). Cases 2, 4, 6, 8 and  11 are  
unconditional clauses (m = 0). T h e  
o the r  cases (m > 1) are  conditional 
clauses. 

Variants. Separation of Clauses 
As we shall soon see, the choice o f  
variables in a genera l  clause is 
somewhat  arbi t rary,  and ne i the r  
the essential syntactic s t ruc ture  no r  
the m e a n i n g  o f  a clause are  af fec ted  
if we replace  some or  all o f  its vari- 
ables by o the r  variables. T h e  only 
proviso is that  the c o r r e s p o n d e n c e  
be tween  old and new variables must  
be one- to-one .  Two  clauses which 
d i f fe r  f rom each o the r  only in this 
way are  called variants of  each 
other .  I f  two clauses have no vari- 
ables in c o m m o n ,  they are  said to be 
separated or  standardized apart. T h u s  
E(x) D(x y ) ~  A(F(x y)) and  E(u) 
D(u y)--> A(F(u y)) are  variants;  

most  conven ien t  one  for  wri t ing 
expressions,  and  it is in this repre -  
sentat ion that  we have to be careful  
to avoid 'name-clashes '  when  choos- 
ing names  for  variables. 

A t o m s  
Call ing a tomic sentences 'a toms'  
may r u n  some risk o f  confus ion  
with Lisp's usage o f  that  word,  but  
it is well established. T h e r e  are  two 
noncompos i t e  a t o m s - - t h e  t ru th  
values t rue ,  f a l s e - - b u t  in genera l  
a toms are  composi te  expressions,  
with two componen t s :  a predicate 
and  a list o f  arguments. T h e  usual 
conven t ion  for  wri t ing a composi te  
a tom is to write its predica te  imme-  
diately before  its a r g u m e n t  list, as 
for  example :  

M O T H E R ( M A R Y ,  T H O M A S )  
G R E A T E R - T H A N ( S U M - O F  
( T H R E E ,  SIX), SEVEN) 

T h e  predicates  are  relational con- 
stants M O T H E R ,  G R E A T E R -  
T H A N ,  and so on: jus t  identif iers ,  

PLUS ( T H R E E ,  SIX) 
S U C C E S S O R ( S U C C E S S O R  
(SUCCESSOR(ZERO))) .  

T h e  opera to r s  are  functional con- 
stants. PLUS,  S U C C E S S O R ,  and  so 
on. W h e n  the a r g u m e n t  list o f  a 
t e r m  is empty ,  we usually skip ex- 
plicitly wri t ing the emp ty  list, and  
write the  t e rm as if  it consis ted o f  its 
constant  alone, as MARY, 
T H O M A S ,  instead o f  M A R Y ( ) ,  
T H O M A S ( ) .  Every  relat ional  and 
funct ional  constant  comes with an 
arity, which is a nonnega t ive  inte- 
ger,  and  which is cons idered  to be 
par t  o f  the constant 's  identity. A 
constant  having  arity n is said to be 
n-ary. T h u s  M A R Y  is 0-ary, SUC- 
C E S S O R  is 1-ary, G R E A T E R -  
T H A N  is 2-ary, and  so on. T h e  
basic fo rma t ion  rule  for  composi te  
express ions  (atoms or  terms) is that  
an n-ary constant  must  always be 

q n  wri t ing  a list, we may  place a c o m m a  af ter  
each  i t em (other  t han  the  last) to e n h a n c e  the  
readabili ty.  Th is  is, however ,  optional ,  and  is 
not  pa r t  o f  the  defini t ion o f  a list. 
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followed immedia te ly  by a list o f  n 
a r gumen t s  (except, as no ted  above, 
when  n = 0, when  the list can be by 
conven t ion  omitted).  T h e  c o m m o n  
u n d e r l y i n g  semantic  idea is that of  
an applicative expression which repre-  
sents the result  o f  applying a func-  
t ion or  relat ion to a suitable tuple of  
a rguments .  

In  the clausal predicate  calculus, 
clauses are the only k ind of  sen- 
tence available in which to express 
the premises and  des i red conclu- 
sion of  a p roo f  problem.  This  is no t  
as l imit ing as it sounds.  I t  is in fact 
possible to t ranslate  (automatically) 
a p roo f  p rob lem from the full 
predicate  calculus into the clausal 
predicate  calculus. Detailed discus- 
sions of  how to do this can be 
found ,  in [ 12]. 

Substitution 
Making  the clausal predicate  calcu- 
lus more  mach ine -o r i en ted  calls for 
a m u c h  closer analysis of  the idea of  
instantiation. W h e n  an  expression B 
can be ob ta ined  f rom ano the r  ex- 
pression A by subst i tu t ing terms for 
some or  all o f  the variables in A, B 
is said to be an  instance of  A. 

For example ,  F( H(y z) G( H(y z ) 
A(y)) A(y)) is an  instance of  F(x G(x 
y) y). Inspec t ion  conf i rms that  F( 
H(y z) G(H(y z ) A(y)) A(y)) can be 
ob ta ined  f rom F(x G(x y) y) by si- 
multaneously replac ing each occur- 
rence  of  x and  y by an  occurrence  
of  H(y z) and  an  occurrence  of  A(y) 
respectively. It  is very in teres t ing  
that  this basic logical opera t ion  of  
substitution is essentially a parallel  
one.  

We can represen t  specific substi- 
tut ions by sets o f  equat ions.  For  
example ,  the p reced ing  substi tu- 
t ion can be represen ted  by the set 
{x = H(y z), y = A(y) }. Unspecif ied 
subst i tut ions are usually deno ted  by 
lower-case Greek  letters: 0, A, g,  ~, 
and  the result  of  apply ing  a substi- 
tu t ion  to an  expression E is indi-  
cated by wri t ing E0, EA. There fo re ,  
if E is F(x G)(x y) y) and  0 is {x = 
H(y z), y = A(y)}, E0 is F( H(y z) G( 
H(y z ) A(y)) A(y)). 

Unification 
Let S be a set o f  expressions.  W h e n  
a subst i tu t ion 0 t ransforms  every 
expression in S into the same ex- 
pression, 0 is said to unify S (or to be 
a unifier of  S) and  the set S is said to 
be unifiable. 

For example ,  let 0 be {x -- H(P 
Q), y = D, u = P, v = Q, z = G(H(P 
Q),D)}. W h e n  we apply 0 to the two 
expressions F(x G(x y)) and  F(H(u 
v) z) both  of  them become the same 
expression,  namely  F( H(P Q) 
G(H(P Q) D)). T h u s  0 unifies the set 
{F(x G(x y)), F(H(u v) z)}. 

This  set, however,  is also un i f ied  
by the subst i tu t ion tr = {x = H(u  v), 
z = G( H(u v) y)}, which t rans forms  
both  its mem ber s  into the same 
expression:  F(H(u  v) G(H(u  v) y)). 
This  express ion is no t  only a more 
genera l  c o m m o n  instance of  F(x 
G(x y)) a n d  F(H(u v) z), bu t  is actu- 
ally a most genera l  c o m m o n  in- 
stance, a n d  so cr represents  the most  
genera l  way in which the set {F(x 
G(x y)), F(H(u v) z)} can be unif ied.  
We therefore  say it is a most general 
unifier ( 'mgu')  o f  {F(x G(x y)), F(H(u  
v) z)}. All o ther  c o m m o n  instances 
of  F(x G(x y)) and  F(H(u  v) z) are 
instances of  the above most  genera l  
one.  In  this par t icular  case we have: 
F(H(u  v) z)0 = F(x G(x y))0 = F(H(P 
Q) G(H(P Q) D)) = (F(x G(x y))cr)g 
= F(H(u  v) G(H(u v) y)/x where /x  = 
{u = P, v = Q, y = D}. This  suggests 
that 0 is some kind of  ' p roduc t '  o f  
the m g u  ~ and  the subst i tu t ion g. 
We can write 0 explicitly as 0 = cr./~ 
an d  we f ind that, indeed ,  this no-  
t ion of  the p roduc t  o f  two substi tu- 
tions can be na tura l ly  de f ined  and  
is ext remely  useful.  

T h e  product a'/3 of  two substi tu- 
tions a and /3  is the overall  substi tu- 
t ion which results f rom first per- 
fo rming  a and  then  pe r fo rming /3 .  
T h u s  we have E(a'/3) = (Ea)/3 for all 
expressions E. This  p roduc t  opera-  
t ion is associative, and  has an  iden-  
tity, namely  the ' empty '  subst i tu t ion 
E which leaves every variable un-  
changed.  However,  it is no t  in gen-  
eral  commutat ive .  

It  is no  accident  that  in ou r  ex- 
ample  we can express the un i f ie r  0 
as the p roduc t  o f  the m g u  ~r and  the 

'specialization'  subst i tut ion g = 
{ u = P , v = Q y = D } . T h i s i s a d e -  
f in ing  characteristic o f  mgus.  

In  fact, to say that  ~r is an  m gu  of  
a set S is to make  the following two 
statements:  (1) that  ~ unif ies  S and  
(2) that  any  un i f i e r  A of  S whatso- 
ever satisfies the condi t ion:  A = 
~'/~, for some /~. 

A unif iable  set always has an  
mgu.  Moreover ,  there  are  simple 
a lgor i thms (unification algori thms;  
abou t  which we shall say more  later) 
which compute an  m gu  for any finite 
uni f iable  set, and  detect the non -  
unifiabil i ty of  a set which is not  uni -  
fiable. These  a lgor i thms are best 
stated for the more  genera l  case in 
which we seek a subst i tu t ion that  
unif ies  several disjoint  finite sets o f  
expressions s imul taneous ly  (or, as 
we shall say, which unif ies  a partition 
of  a set o f  expressions).  It  is the uni -  
fication of  part i t ions that  we shall 
be conce rned  with in the r e m a i n d e r  
of  the discussion. T h e  idea is virtu- 
ally the same as that o f  un i fy ing  a 
single set: a subst i tu t ion 0 unif ies  a 
par t i t ion  T = {Sl . . . . .  Sk} of  a set S 
of  expressions if each of  the sets 
$10 . . . . .  Sk0 is a singleton.  A sub- 
st i tution ~r most  general ly  unif ies  T 
if (1) cr unif ies  T and  (2) for every 
un i f ie r  A of  T we have A = cr-g for 
some g. 

We need  to be able to compu te  a 
most  genera l  un i f i e r  efficiently, for 
any  par t i t ion as input .  T h e r e  is now 
a ra ther  large specialized l i terature 
on  this topic, bu t  for ou r  p resen t  
purposes  we need  not  be conce rned  
with m a n y  of  the details. 

unification AlgOrithms 
T h e  compu ta t i on  o f  a most  genera l  
unif ier ,  when  expressed in its most  
s imple and  na tu ra l  form,  is a highly 
parallel  one.  It  was no t  at first seen 
to be so. T h e  na tura l ,  i n h e r e n t  par- 
allelism is most  clearly seen if  we 
th ink of  expressions as be ing  really 
directed labelled graphs,  as follows: 

• a variable is a g raph  with only  one  
node,  its root, which is unla-  
belled. 

• a cons tan t  K is a g raph  with only 
one  node,  its root, which is la- 
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belled by the symbol K. 
• an applicative expression K(EI, 

. . . .  E,) is a graph whose root is 
unlabelled and has n + 1 out-arcs 
which are labelled respectively by 
the integers 0 to n. The  out-arc 
labelled by 0 points to the node 
which is the constant K. For i = 1, 
. . . .  n, the out-arc labelled i 
points to (the root of  the graph 
which is) the term El. 

I f  an out-arc goes from N to M and 
is labelled by j ,  we say that M is aj th  
immediate successor of  N. The  arity of  
a node is the largest integer which 
labels any of  its out-arcs. So, for 
example,  the expressions R(P G(x 
y) x y) and R(y z H(u K) u) are the 
two roots (nodes 1 and 2) of  the 
graph in Figure 1, node 12 is a 2d 
immediate successor of  node 10, 
and the arity of  node 5 is 2. In all 
there are 13 expressions in the 
graph,  one for each node. The  
graph itself can be thought  of  as 
represent ing the set of  these expres- 
sions. 
Note that in the graphical  form of  
expressions we need no names for 
variables. Distinct variables are sim- 
ply distinct unlabelled leaves (here, 
they are nodes 6, 7, 9 and 13, whose 
names in the linearly written ex- 
pressions are respectively z, x, y and 
u). The  use of  the graphical  form of  
expressions thus avoids the well- 
known complication of  needing to 
rename variables in o rde r  to pre- 
vent unwanted identifications of  
two distinct variables which happen  
to have been given the same name. 

Once we are given a set S of  
atoms and terms as a graph,  we can 
represent  a partition P of  S by insert- 
ing one or  more links (undirected 
arcs) between roots of  distinct ex- 
pressions which are in the same 
part  of  P. For  example,  by inserting 
a link between nodes 1 and 2 of  the 
graph in Figure 1 we represent  the 
12-part part i t ion 

P = {{R(P G(x y) x y), R(y z H(u K) 
u)}, {O(x, y)}, {H(u, K)}, {R}, 
{P}, {O}, {H}, {K}, {x}, {y}, {z}, 
{u}} 

by the graph in Figure 2. 
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I f  a part o f  a partition has more 
than two members, we do not need 
to put links between every two nodes 
in it. A part is represented by a clus- 
ter of nodes - -a  maximal set of  
nodes any two of  which are con- 
nected by a path of  such links. 

For example, the six-part parti- 
tion {{A, B, C, D}, {E, F, G}, {H, J, K, 
L, M}, {X}, {Y}, {Z}} of  the set {A, B, 
C, D, E, F, G, H,J ,  K, L, M, X, Y, Z} 
is represented by the graph in Fig- 
ure 3. 

Given a partition in the form of a 
graph, the problem to find an mgu 
of  the partition (or to detect its 
nonunifiability) is solved by the fol- 
lowing unification algorithm: 

while there are clusters in the 
graph but no clashes 

do shrink the graph. 

Shrinking a graph requires two 
steps: 

Step 1. Each cluster C in the 
graph is "collapsed" into 
a single new node, which 
inherits all of  the in-arcs, 
out-arcs, and labels of  
every node in C. 

Step 2. New links are inserted 
between nodes which are 
equated by step 1. 

Two nodes are equated if they are 
both j th successors, for some j, of  
the same node. A clash is a cluster in 
which there are nonvariable nodes 
which either (1) are labelled by dis- 
tinct constants, or (2) are unla- 
belled, but have different arities. 

Each iteration of  the loop trans- 
forms a graph into another graph, 
which also in general contains links. 
For example, the first iteration 
transforms the graph in Figure 2 
into the graph in Figure 4. The 
second iteration then trans- 
forms this into the graph in Figure 
5 which is terminal, since there are 
now no links. 

The process in general continues 
until an iteration either creates no 
new links, or else creates a clash; 
whereupon it terminates. This must 
eventually happen, since each itera- 
tion produces a new graph with 

F I G U R E  4.  

G H K 

F I G U R E  S. 

fewer nodes than the previous 
graph. If, after termination, the 
graph contains no clashes and is 
acyclic, the original partition is uni- 
fiable. Otherwise, not. 

On termination, an mgu for a 
unifiable partition can be found by 
comparing the terminal graph with 
the initial graph. For each node 
representing a variable in the origi- 
nal graph, we find the node in the 
terminal graph which contains it. 
The mgu is represented by equat- 

ing each such variable with the ex- 
pression represented by the corre- 
sponding node in the terminal 
graph. 

Note that the nonterminal 
graphs generated during the pro- 
cess do not represent sets of  expres- 
sions, since some of  their nodes 
have more than one j th successor, 
for one or more j. 

The  graph-shrinking parallel 
unification algorithm is presented 
here in essentially the version that 
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was recently developed,  analyzed 
and efficiently implemented  in [2]. 
The  elegant data-paral lel  SIMD 
implementat ion for the Connection 
Machine exoloits all the inherent  
parallelism in the process very ef- 
fectively. 

The  sequential version of  this 
"fast unification" algori thm was hit 
upon  independent ly  by [4, 22, 42], 
improving an earl ier  formulat ion 
by [3]. As far as I know, the first 
version of  a unification algori thm 
to be explicitly stated and accompa- 
nied by correctness and termina- 
tion proofs was in [39]. 

Later, in [41], I formulated a 
more efficient version of  the algo- 
ri thm, using a tabular  representa-  
tion of  the graph-representa t ion to 
gain some of  the same computa-  
tional advantages which were bril- 
liantly orchestrated on a much 
larger scale by [5] in their  impor-  
tant structure-sharing resolution the- 
orem-prover .  This tabular  repre-  
sentation [41] is also the point  of  
depar tu re  for [2]. 

Herbrand ' s  original (1930) ver- 
sion of  the unification process is 
stated briefly, informally,  and with- 
out  p roof  (see [19]). 

In  1984 [13] pointed out  that in 
certain cases there is no oppor tu-  
nity for the parallel  graph-shrink-  
ing algori thm to achieve any signifi- 
cant speed-up.  Thus,  for example,  
in f inding the mgu {x = A} of  the 
set 

{F(F(F(F(F(F(F(F(x)))))))), 
F(F(F(F(F(F(F(F(A))))))))} 

we can merge only one pair  of  
nodes, and generate only one new 
link, at each iteration o f  the loop. 
These  successive minimal modifica- 
tions of  the graph therefore  com- 
prise essentially a sequential pro- 
cess. However,  such 'worst cases' 
are more  pathological than typical, 
and experience suggests that they 
are rarely met in real applications. 

Resolution 
Once we can compute  an mgu for 
any unifiable part i t ion of  a set of  
expressions (or show the part i t ion 
not to be unifiable, if that is the 

case), we are ready to make infer- 
ences by resolution. 

The  fundamenta l  resolution in- 
ference pat tern  is closely related to 
what logicians call the 'cut' infer- 
ence. (In Prolog p rogramming  par- 
lance, unfortunately,  the word 'cut' 
has come to have another ,  quite dif- 
ferent,  meaning).  Cut inferences 
have the form: 

from A ~ ( B + { L } ) a n d  
({L} + C) ~ D 

infer (A U C)--~ (B tO D). 

We can make a cut inference from 
two clauses if any only if there  is 
some atom L which is in the ante- 
cedent  of  one clause and the conse- 
quent  of  the other. To form the 
conclusion of  the inference, we first 
'cut' out  L from both places, and 
then merge the two antecedents 
into one and two consequents into 
one. The  'disjoint union'  notation 
X + Y  denotes the union X U Y ,  
but  also carries the fur ther  infor- 
mation that X n Y = O. 

Example  1. From the clauses A 
B ~ C  D and D E ~ F  G we can 
infer  the clause A B E ~ C F G by a 
cut, el iminating the atom D. 

The  resolution inference pat tern  
generalizes the cut inference pat- 
tern by br inging in unification. The  
resolution inference pat tern has the 
form: 

from A ~ (B + M) and 
(N + C) ~ D 

infer (A U C)¢r---> (B U D)cr 
where ~r is an mgu of  the one- 

par t  part i t ion {M U N}. 

In making a resolution inference, 
we must first use unification to de- 
duce a pair  of  instances of  the two 
premises suitable for a cut to be 
applied.  In  the special case that 
M = N = {L}, the mgu of  the parti-  
tion {M U N} is the identity substi- 
tution. So in this case, a resolution is 
the same as a cut. 

Example  2. From -->P(G(r s) r s) 
and P(x y u)P(y z v)P(x v w) --> P(u z 
w) we infer P(r z r)--> P(s z s) by a 
resolution in which M = {P(G(r s) r 

s)} and N = {P(x y u),P(x v w)}, since 
{M tO N} is unifiable with mgu {x = 
G ( r s ) , y = v = r , u = w = s } .  

Example  3. From P(x y u)P(y z 
v)P(x v w ) ~  P(u z w) and P(a b 
c)P(b d e)P(c d f ) ~ P ( a  e f) we 
infer  P(x y a)P(y b v)P(x v c)P(b d 
e)P(c d f) ~ P(a e f) by a resolution 
in which M = {P(u z w)} and N = 
{P(a b c)}, since {M U N} is unifiable 
with m g u { u = a , z = b , w = c } .  

From two given clauses, only a fi- 
nite number  of  clauses can be in- 
fer red  by re so lu t ion - -one  for each 
choice of  the 'cut' sets M and N for 
which the part i t ion {M U N} is uni- 
fiable. I f  there  are no such choices 
of  M and N, then nothing can be 
inferred from the two clauses by 
resolution. 

ReSolution Deductions and Proofs 
A resolution deduction is a finite tree 
whose nodes are labeled by clauses, 
each nonleaf  node being labeled by 
a clause which is inferred by a reso- 
lution inference from the clauses 
labeling its immediate  successors. 
The  conclusion of  the deduct ion is 
the clause labeling its root, and the 
premises of  the deduct ion are the 
clauses labeling its leaves. A resolu- 
tion proof is a resolution deduct ion 
whose conclusion is false (= the 
empty clause). Such a p roof  estab- 
lishes that the premises are contra- 
dictory (unsatisfiable). I f  S is any 
unsatisfiable set of  clauses there is 
always a resolution p roof  whose 
premises are all in S. This fact is the 
completeness of  resolution (see 
[39]. 

A resolution p roof  with n + 1 
premises can be taken in n + 1 dif- 
ferent  ways as a p roo f  of  the nega- 
tion of one of  its premises from the 
other  n premises. For example,  a 
resolution p roof  with premises A, 
B, C can be taken as (1) a p roof  of  
not-A from the premises B and C, 
(2) a p roof  of  not-B from the prem- 
ises A and C, and (3) a p roof  of  
not-C from the premises A and B. 

P1-ReSOlution 
A resolution one of whose two premises 
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is unconditional is called a Pl-resolu- 
tion. Example 2 is a P l - r e soh t ion ,  
but Example 3 is not. It turns out  
that whenever a set of  clauses is 
unsatisfiable, then there is a PI-  
resolution p roo f  from those prem- 
ises (see [40]). In  other  words, P1- 
resolution is also complete:  despite 
its restricted form, P l - r e s o h t i o n  is 
jus t  as s trong as resolution, but  its 
proof-space is sparser  than that of  
unrestr icted resolution. 

Hyper-Resolution 
We get an even sparser  proof-space 
when we take as the only inference 
rule, instead of  the two-premise P1- 
resolution, the (p + 1)-premise 
hyper-resolution rule in which exactly 
one of  the premises is a conditional 
clause and all of  the other  p prem-  
ises, together with the conclusion, are 
uncondit ional  clauses. The  hyper-  
resolution rule is: 

Hvperresolution Deductions 
A hyperresolut ion deduction is a fi- 
nite tree each of  whose nodes has a 
label and each of  whose nonleaf  
nodes also has a justification. The  
labels are unconditional clauses, and 
the justifications are conditional 
clauses. The  clause labeling a non- 
leaf node N is inferred by a hyper-  
resolution whose uncondit ional  
premises are the clauses labeling 
the immediate  successors of  N, and 
whose conditional premise is the 
justification of  N. The  conclusion of  
the deduct ion is the clause labeling 
its root. The  premises of  the deduc- 
tion are the labels o f  its leaf nodes 
and the justifications of  its nonleaf  
nodes. 

H y p e r r e s o h t i o n  deductions can 
yield only uncondit ional  clauses. 
Moreover,  they can yield only posi- 
tive uncondit ional  clauses, unless the 
justification of the root node is a nega- 

from --~(Cx + M1) . . . . .  
(Cp + Mp), and  Nl + "'" + Np--~ D 

infer "-*(C1 U'" U Cp LI D)o, 
where o, is an mgu  o f  the p-par t  

part i t ion {Mt U N1 . . . . .  Mp U Np}. 

The  unifiable p-par t  part i t ion that 
is the essential ingredient  of  a hy- 
pe r r e soh t i on  is called its kernel. 
The  p + 1 premises and the kernel 
together  uniquely de termine  the 
conclusion. 

A hyperresolut ion inference is 
really a compacted reorganizat ion 
of  a P l - r e s o h t i o n  deduction whose 
conclusion is unconditional.  After  
the reorganizat ion the deduct ion 
has had all of  its interior  nodes sup- 
pressed and has become a single 
integrated transaction instead of  a 
l inked system of  many transactions. 
By reorganizing the reasoning as a 
single inference,  we are  simply re- 
gard ing  its conclusion as having 
been obtained directly (or, to use a 
tradit ional logic expression, immedi- 
a te ly-wi thout  any 'mediation')  
f rom its premises in one step, 
ra ther  than 'mediately '  as the even- 
tual outcome of  several l inked P1- 
resolution steps. 

tive conditional clause and in that 
case, but  only in that case, the con- 
clusion is a negative uncondit ional  
clause; indeed,  it is the empty 
clause. Thus  a hype r r e soh t ion  
deduct ion of  the empty  clause (a 
hype r r e soh t ion  proof) always has 
exactly one negative conditional clause 
among its justifications. As we shall 
see, it is this feature which adum- 
brates logic programming.  

Completeness and Local 
Finiteness of the Resolution 
Clausal Predicate Calculi 
The  resolution and h y p e r r e s o h -  
tion versions o f  the clausal predi-  
cate calculus are all complete.  Also, 
both systems are locally finite. This 
means that, in each system, there  
are only finitely many deductions 
of  a given size (number  o f  nodes) 
having a given set of  premises (and 
this number  is much smaller for 
hyperresolut ion than for resolu- 
tion). By contrast, t radit ional  predi-  
cate calculi are not even locally fi- 

nite. This is one reason it is so 
difficult to make an efficient p roof  
p rocedure  for tradit ional  predicate 
calculi. For  example,  most tradi- 
tional predicate calculi contain the 
rule of  specialization: 

from VA infer V(A0), 
where 0 is any substitution. 

(The sentence VS is the universal 
closure of  the sentence S: the result  
of  pref ixing a universal quantif ier  
to S for every free variable in S). 
With this inference available, there  
are infinitely many deductions of  
size 2 which have the same premise 
V A - - o n e  for each dif ferent  substi- 
tution 0. 

Hyperres01ution and 
Horn Clause Logic 
The  advantages of  h y p e r r e s o h t i o n  
are quite striking in the Horn  
clause predicate calculus. In  this 
subsystem of  the clausal predicate 
calculus every clause is a Horn 
clause, namely, a clause having at 
most one conclusion. H y p e r r e s o h t i o n  
then becomes much simpler.  Recall 
the general  definit ion of  hyper-  
resolution: 

where ~ is a n  mgfi 6 f t h e  p ;par t  
pa~i t i~n 

When all clauses are restricted to 
having at most one conclusion, the 
'cut' sets Mi can only be singletons 
(say, {Ai}), and  the ' remainder '  sets 
Ci must be empty.  Consequently, 
the definit ion o f  hype r re soh t ions  
for Horn clauses can be restated, in 
the following much simpler  form: 

from ; : : 
i i 

i n f e r  ~ D ~ :  
where is  

In this restatement  o f  the rule, D 
and the A's and B's are all atomic 
sentences. When we combine hy- 
pe r r e soh t i on  inferences into mul- 
t i inference deductions,  we are in 
effect t reat ing each part icular  ap- 
plication o f  this inference pat tern  
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as though it were a special infer- 
ence rule, 'the {Bl . . . . .  Bp} ~ D 
inference rule', stated as: 

This is, however, just  a pragmatic 
device to sharpen our understand- 
ing of the very special role that con- 
ditional Horn  clauses play in logic 
programming.  

Ultraresolutions: Horn Clause 
Hyperresolution Deductions as 
Single Inferences 
We again apply the idea of making 
a single inference out of an entire 
deduction. In  the case of hyper- 
resolution, instead of thinking of 
the conclusion of an entire deduc- 
tion (namely a deduction built from 
Pl-resolution steps and having an 
unconditional conclusion) as being 
arrived at stepwise by the perfor- 
mance of each of its inferences sep- 
arately, we think of the whole con- 
struction as one inference step 
involving a higher and larger-scale 
inference pattern. We will now treat 
Horn clause hyperresolution de- 
ductions in a similar way, and 
thereby arrive at a higher- and 
larger-scale inference pattern 
which we call ultraresolution. 

There is really no need, prag- 
matically, to know the conclusion of 
every individual inference in a hy- 
perresolution deduction, if all that 
we are after is the eventual conclu- 
sion of the whole deduction. We 
can instead characterize that even- 
tual conclusion more directly, by a 
relationship based only on the 
structure of the premises of the 
deduction. By omitting in this way 
all of the interior stepwise conclu- 
sions we turn  the entire hyper- 
resolution deduction into a single in- 
ference, which immediately yields its 
conclusion from the premises in 
one integrated step. 

Ultraresolution 
To every hyperresolution deduc- 
tion D there corresponds an 
ultraresolution inference U which 

has the same premise and the same 
conclusion as D, and conversely. We 
define ultraresolution inferences 

directly, however, without refer- 
ence to their corresponding hyper- 
resolution deductions. 

The ultraresolution rule is 
(where A ~ B is a Horn-clause and 
C is a set of Horn-clauses): 

is a cover of A(x0) B(x0) ~ C(x0) by 
C, in view of the assignments given 
by the table: 

atom assigned to node 

A(x0) 2 
B(x0) 3 
H(G(x2)) 4 
D(xl yl) 5 
E(xl) 6 

and has the following partition as 
its kernel: 

!~!~!~iiii!~i!i~i~!i~!~iii~!!ii!i~!!i!i!!!!ii~!!!i~i!i~i~i~!i!~i~!~!~iii!!iii~!!iiii~!~ii!!!ii~!i~ii~!!~iii~!!!iii~iiiii~!iii~!!iiii~iii!!!i~i~!ii~iiiii!~!~!!i~iii!~i!!~iiiii 

!i~ii~i!!i!iii~iiiii~!iiiiiii!iii~!i ¸ii!!Ji~!iiii!ii!!!ci!JJii~iii!!~i!!~il ¸i~i~ili!i~iiiii~ui!i!~!i!i 
The clause A --~ B is the main prem- 
/se and the clauses in C are the cov- 
ering premises. 

Covers and Their Kernels 
A cover of a clause A ~ B by a set C 
of clauses is a certain kind of finite 
tree with nodes labeled by clauses. 
The root of the tree is labeled by 
A ~  B, while the other nodes are 
labeled by variants of clauses in C. 
The extra condition that makes the 
tree a cover is that for each node N 
in the tree, every atom in the ante- 
cedent of the clause labeling N is 
assigned to a distinct immediate 
successor of N. The kernel of the 
cover is the partition: 
{{X, Y}IY is the conclusion of the 
clause labelling the node to which X 
is assigned}. 

Example 4. To illustrate the no- 
tions of a cover and its kernel, con- 
sider the clause: 

A(x0) B(x0) ~ C(x0) 

and the set C of clauses 

{E(xl) D(Xl y l ) ~  A(F(xl y])), 
H(G(x2)) ----) B(x2), 
~H(G(x3)),  ~ D(M N), ~ E(M)}. 

The labeled tree given by the table: 

{{A(x0), A(F(xl yl))}, {B(x0, B(x2)}, 
{E(x0, E(M)}, {D(xl yl), D(M N)}, 
{H(G(x2)), H(G(x3))}. 

Since this kernel is unifiable, with 
mgu 

cr = {x0 = x2 = x3 = F(M N)), 
Xl = M, yl = N}, 

we can infer the clause 

---~C(x0)~r = --*C(F(M N)) 

by an ultraresolution which has 
A(x0) B(x0)---~C(x0) as its main 
premise and C as its set of covering 
premises. 

The intuition behind the notion 
of a cover of a clause A ~ B is that 
it depicts exactly the pattern of orga- 
nization of the given clauses. If the 
kernel of the cover is unifiable with 
mgu ~r, it guarantees that we can 
easily relabel the tree so it turns into 
a hyperresolution deduction, from 
these clauses as premises, of the 
same unconditional clause ---~B~ 
that the ultraresolution inference 
obtains directly from them in one 
step. In  this relabeling, the new 
label on each leaf node of the tree is 
the same as the old label. The  old 

i~iii ~!iii~!i3i!!!!~!~!~i~!~i~!ii!~!!~i~!~!~!~i~i!~!i~!!~!~!!~ill!!~!~!i~i~i~i~ii~ii~i~i~iii!~!!i~i~i~ii~ii!~i~ii~i!i~i!~i~i!!~i~i!!~i~i~ii~i!!i~!ii~!!!!!~i!~ 
~ i~ i~ ~ill ̧ ii~ !i! ill iii i~iiiii!ill ~i~iiiiiiiiiiiiiiiiii!i~!!ili~H~i~i~i~i ' ii ̧ i~ ii ii ii~i! !i! ill! iii !!: !!i !! iill !i!~iii!i~i ! i~ iiiii~i!~ 
~!ii!~ii~iiii~!!iii~!i~iii~iii~ii~i~i!i!iii!!i~i~iii!i~i~iiii~iiii~!~i!i!!~i!~iMi~ii~ ii~ ~i~ ii~ i~ ̧~i~i!~i!i~!!,i! ~iii~ iii~ii~iii!ili! ii i!i ~ii iii ii! ii~ !i i!i~i 
ii  ii !i i, ii !iii ! !ii ii i!i ¸ ii!i  ii!  !!iii ii! ¸ ¸ !i ii! iil !ii!!! !ii! i!ii!ii!! ¸ ii! iii!!i! ii i !!!iii !!!!ii i ii!!i  ,ii i!!! !iii 
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label on each nonleaf node of the 
cover, however, is removed (it now 
becomes the justification of the hy- 
perresolution inference at that 
same node), and the node's new 
label is the unconditional clause 
which is inferred by a hyperresolu- 
tion from this justification clause 
together with the new labels on the 
immediate successors of the node. 
The following example illustrates 
the relationship between a hyper- 
resolution deduction and the corre- 
sponding ultraresolution inference. 

Example 5. Figure 6 is a hyper- 
resolution deduction of the uncon- 
ditional clause UNCLE(TED 
ANN)*- from a subset of the fol- 
lowing set of Horn clauses, which 
comprises a small 'family relation- 
ship' knowledge base. This knowl- 
edge base contains (as its 'defini- 
tions') the following conditional 
Horn clauses: 

41 (2) 

37 

40 

31 

F I G U R E  6.  

1 UNCLE(u x) 
2 UNCLE(u x) 
3 PARENT(x,y) 
4 BROTHER(b x) 
5 SISTER(s x) 
6 SIBLING(x y) 
7 HUSBAND(h w) 
8 WIFE(w h) 
9 FATHER(f x) 

10 MOTHER(m x) 

and (as its 'facts') the following un- 

*--BROTHER(u y) PARENT(y x) 
*--HUSBAND(u s) SISTER(s p) PARENT(p x) 
~--CHILD(y,x) 
*--SIBLING(b x) MALE(b) 
~--SIBLING(s x) FEMALE(s) 
~---DIFFERENT(x y) FATHER(f x) FATHER(f y) MOTHER(m x) MOTHER(m y) 
*--MARRIED(h w) MALE(h) 
~---MARRIED(h w) FEMALE (w) 
~---PARENT(f x) MALE(f) 
~---PARENT(m x) FEMALE(m) 

conditional Horn-clauses: 

11 CHILD(JIM JOE)*- 15 
12 CHILD(JOE MEG)~--- 16 
13 CHILD(JIM SUE)*- 17 
14 CHILD(ANN JOE)~--- 18 

23 MALE(JIM)~--- 29 
24 MALE(JOE)~--- 30 
25 MALE(TOM)*-- 31 
26 MALE(TED)~--- 32 
27 MALE(TOD)~--- 33 

40 DIFFERENT(a b)*-- a # b 

CHILD(JOE TOM)<-- 19 CHILD(TOD PAT)<-- 
CHILD(ANN SUE)<--- 20 CHILD(RON PAT)<-- 
CHILD(PAT MEG)<-- 21 CHILD(TOD TED)<-- 
CHILD(PAT TOM)<-- 22 CHILD(RON TED)<--- 

FEMALE(ANN)<-- 35 MARRIED(TOM MEG)<--- 
FEMALE(SUE)<-- 36 MARRIED(JOE SUE)<-- 
FEMALE(MEG)<-- 37 MARRIED(TED PAT)<-- 
FEMALE(PAT)<--- 38 MARRIED(RON SAL)<--- 
FEMALE(SAL)<-- 39 MARRIED(JIM JAN)<-- 

& a, b, E {JIM, JOE, TOM, TED, TOD, RON, ANN, SUE, MEG, PAT, SAL, JAN} 

Premise 40 is a 'virtual' definition: it 
is simply a shorthand way of sup- 
plying 132 facts (such as DIF- 
FERENT(JOE ANN)*--) whose 
predicate is DIFFERENT and 
whose two arguments are distinct 
constants in the displayed set. 
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From this knowledge base there 
are, for example,  hyperresolut ion 
deductions of  each of  the following 
uncondit ional  clauses: 

41 UNCLE(TED ANN)*-  
42 UNCLE(TED J IM)* -  
43 UNCLE(JOE TOD)*-  
44 UNCLE(JOE RON)*-  

45 PARENT(TOM PAT)*-- 49 FATHER(TOM PAT)*--- 53 HUSBAND(TED PAT) 
46 PARENT(TOM JOE)*-  50 FATHER(TOM JOE)*-  54 SISTER(PAT JOE)*-  
47 PARENT(MET PAT)*- 51 MOTHER(MEG PAT)*- 55 SIBLING(PAT JOE)*-  
48 PARENT(MEG JOE)~--- 52 MOTHER(MEG JOE)*-  56 PARENT(JOE ANN)*-  

For example,  clause 41, UNCLE 
(TED ANN)*- ,  is the conclusion of  
the hyperresolut ion deduct ion 
shown in Figure 6. The  label on 
each node is given in the d iagram 
by its number  next to the node, and 
at each nonleaf  node is followed by 
the number ,  in parentheses,  of  the 
clause which is the justification of  
the node. 

The  cover of  the ultraresolution 
inference corresponding to this 
hyperresolut ion deduct ion is shown 
in Figure 7. 

Figure 9 displays the cover of  this 
ultraresolution inference in more 
detail, and shows more clearly that 
its status as an inference is concep- 
tually independen t  of  the corre- 
sponding hyperresolut ion deduc- 
tion. In Figure 9, each labeled node 
of  the cover is represented  by a box FIGURE 7. 
of  one of  the three types shown in 
Figure 8. These represent  a node 
labeled respectively by a positive 
conditional clause Q * -  P1 • . • Pn, Q . . . . . . . . . . . . . . . . . . . . . . . . .  

by a negative conditional clause Pa * * * Pn 
• - P ]  • - • Pn, and by a positive un- 
conditional clause Q*-. conditional 

positive clause 

The  thick lines in Figure 9 show the 
pairs of  the unifiable kernel  of  the FIGURE 8. 
cover. 

Tha t  this kerne l / s  unifiable is veri- 
fied by an easy computat ion.  Its 
mgu ~ is: 

P1 • • • Pn 

t ........... Q ........... 
condi t ional  uncondi t iona l  

nega t ive  clause pos i t ive  clause 

and applying cr to the conclusion of  
the root clause yields UNCLE(TED 
ANN)*- .  

31 

{ a 0 = u l  = h 2 = T E D ,  
b 0 = x l  = y 8 = A N N ,  
sl  = w 2 = s 3 = x 4 = x 5  
= y 7 = x 9 = y l l  = P A T ,  

p l  = x 3 = y 4 = x 6 = x 8  
= x l 0  = y12 = y13 = JOE, 

f 4 =  f 5 =  f 6 = x 7 = x l 3 = T O M ,  
m4 -- m9 = m l 0  
= x l l  = x12 = MEG}. 

Queries and Their Answers 
Logic Programming 
We can consider any collection K of  
positive Horn  clauses as a knowl- 
edge base. A set of  positive Horn  
clauses is necessarily consistent: one 
cannot deduce false from it by hy- 
perresolut ion (or what is the same, 
one cannot infer false from it by an 
ultraresolution) if it contains no 

negative conditional clause. By tak- 
ing a negative clause not-Q as the 
premise together  with a collection 
of  variants of  clauses from K, we 
may be able to infer  false by an 
ultraresolution. Tha t  is, the set 
{notQ} U K may well be inconsist- 
ent  and its inconsistency demon-  
strated by our  inference. We then 
can turn this inconsistency to our  
advantage, by regard ing  not-Q as 
the negation of  a query Q that we 
want answered,  and digging out  the 
answer from the details of  the 
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t HUSBANDIu'I Sl) . . . . . . . . .  ~I~EL~ is~lp~i .................... PARENT'(pl xl) 

; ................... i . . . . . . . .  i . . . .  

~ DIFFERENT (x4 y4~ FATHER (f4 x4} ..... FAT "HE'R i;]';4;" MOTHER (rn4 x4) MOTHER (m4 y 4 ) 

/ I I I 

I " 1  I " 1  ! " 1  I 
.... I . . . . . . . . . . . . . . . . . . . . . .  i I , . . . . . . . . . . . . . . . . . . . . .  , l I , . . . . . . . . . . . . . . . . . . . . .  , I I ,  . . . . . . . . . . . . . . . . . . . . . .  

~ DIFFERENT (PAT JOE) ] 

FIGURE 9. 

ul t raresolut ion.  
Suppose  that  no t -Q  is the  nega-  

tive clause *--{Gl . . . . .  Gn}. Recall  
that  we can read  ~--{G1 . . . . .  Gn} as: 

not 3 x l . . .  3Xm GI a n d . . ,  and Gn 

where  xl  • • • Xm are  all o f  the vari- 
ables occu r r ing  in the  a toms G1, 
. . . .  Gn. T h e n  Q is 

3x l  . . .  :lXm Gl and  . . .  a n d  Gn 

and  so an in fe rence  o f  fa lse  f r o m  
{not-Q} u K is an in fe rence  o f  Q 
f r o m  K. T h e  usefulness  o f  this fact 
for  logic p r o g r a m m i n g  is that  the 
m g u  cr o f  the  kerne l  o f  the infer-  
ence  can be used to supply direct ly 
the  'answer '  (x 1 . . .  Xm)= (X 1 . . .  
Xm)Cr tO the  ' query '  3Xl . . . 3Xm GI 
and . . . a n d  Gn. 

T h e r e  may  be many  d i f f e ren t  
u l t ra reso lu t ion  in fe rences  o f  fa lse  
which have  the  same negat ive  
clause as the main  p remise  and  
whose  cover ing  premises  are  taken 
f r o m  the  same knowledge  base K. I t  
is even  possible that  the  cover ing  
premises  also are  the same,  with 
only the  unde r ly ing  cover  and  ker- 
nel be ing  d i f ferent .  In  any case, 
these d i f f e r en t  in fe rences  will, in 

genera l ,  have  d i f f e r en t  covers  and  
kernels ,  and  will t h e r e f o r e  p rov ide  
d i f f e r en t  answers f r o m  K to the same 
query Q. 

To  f ind all these answers,  what  is 
n e e d e d  is a suitable way o f  f ind ing  
all the  d i f f e r en t  u l t ra reso lu t ion  in- 
fe rences  o f  false whose main  p r em-  
ise is the  negat ive  clause no t -Q  and  
whose  cover ing  premises  are  vari- 
ants o f  clauses in K. 

LUSH, AliaS SLD, ReSOlution 
T h e  or iginal  E d i n b u r g h  solut ion to 
this tricky computa t iona l  p rob l em 
was s imple  and  beaut i ful ,  and  it led 
direct ly to Prolog.  Af t e r  m u c h  ex- 
plorat ion,  [27] devised  a ' l inear '  
b inary reso lu t ion  in fe rence  pa t t e rn  
which they called SL-resolut ion  (for 
Selective L inear  resolut ion).  W h e n  
res t r ic ted to H o r n  clauses, SL reso- 
lu t ion b e c o m e s - - a s  [1] n a m e d  i t - -  
SLD-reso lu t ion  (for Selective Lin- 
ear  resolut ion  for  Def ini te  clauses). 
A def in i te  clause is (simply ano the r  
n a m e  for) a posit ive H o r n  clause. 
However ,  [21] had  already,  in 1974, 
co ined  a m o r e  whimsical  n a m e  for  
it: L U S H  resolut ion,  for  L inea r  res- 
o lut ion with Unres t r ic ted  Select ion 

funct ion,  for  H o r n  clauses. I t  is no t  
clear  to me  why [1] felt  this n a m e  
was unsui table.  W h a t e v e r  we call it, 
this h ighly  special ized and  nar rowly  
res t r ic ted reso lu t ion  in fe rence  has 
the form2: 

from A ~ B  a n d G ~ H  
infer (A U ~G)cr--~ Ho, 
i f  cr is a most  gene ra l  un i f i e r  

o f  the  1-part  par t i t ion  
{{B, I'G}}. 

T h e  clause G ~ H is the  main prem- 
ise o f  the  in fe rence ,  and  the  clause 
A ~ B is the  side premise. 

T h e  novel  f ea tu re  o f  this infer-  
ence  ru le  is its use o f  the two func-  
tions, selection (1') and  remainder ($), 
both  o f  which ope ra t e  on  the  set G 
o f  condi t ions  o f  the  main  premise .  
T h e  func t ion  1' yields the condition 
which is selected, while the  func t ion  

2Actually, in the original version and the ver- 
sion contained in the logic programming liter- 
ature, the conclusion H of the main premiss is 
omitted, and thus the main premiss is always a 
negative Horn-clause. Here, for various rea- 
sons, one of which will shortly become evi- 
dent, we permit the main premiss to have a 
conclusion. In addition to its role as the 'an- 
swer template' in logic programming compu- 
tations, the conclusion can be put to other 
good uses. 
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yields the set of  conditions which are not 
selected. Thus at most one LUSH/SLD 
inference is possible from a given 
main premise and side premise, 
and its conclusion/s unique to those 
two premises. Hence a LUSH/SLD 
deduction will necessarily have a 
linear structure, in which each suc- 
cessive LUSH/SLD resolution will 
have for its main premise the con- 
clusion of the previous one. 

The really interesting and useful, 
and at first acquaintance amazing 
property of LUSH/SLD resolution 
is that the choice of  the selection and 
remainder functions is completely unre- 
stricted (whence the 'U' in the name 
'LUSH' - -more ' s  the pity that the 
name 'SLD' lacks any acronymic 
reference to this feature). Thus,  in 
particular, the selection and re- 
mainder  functions can be chosen so 
as to make the sets of conditions in 
the successive main premises be- 
have like a stack, provided we take 
seriously the order in which the 
conditions are written, and always 
form the conclusion by adjoining 
the new conditions, if any, on the 
left of the remainder,  in their written 
order. The selection then yields the 
leftmost condition (the one at the 
'top' of the 'stack'). A LUSH/SLD 
deduction then does indeed look 
very much like the trace of a stack- 
oriented 'computation'.  

To compute all the answers to a 
given query 3xl . . .  3Xm (GI a n d  

• . . a n d  Gn), we initialize the state 
of the computation to the 'state' 

Q0 

setting it up to be the clause s 

Q0 = 
ANSWER(xl . . . Xm)*-Gl • • • Gn 

whose antecedent consists of the 
initial set of 'goals' and whose con- 
clusion is a special 'system' atom 
ANSWER(x] . . . Xm) acting as the 
formal 'answer template'. We then 
begin a series of computation steps, 
each of which is a single LUSH/SLD 
resolution inference. In general the 
( t +  1)st step transforms the t th 

3The idea of using a formal answer template 
in this way was originated by Cordell Green in 
the QA systems described earlier in this essay. 

state Qt by using it as the main 
premise, and a variant of one of the 
clauses from the knowledge base 
(or 'program') as the side premise, 
to make a LUSH/SLD inference 
whose conclusion is the (t + 1) st 
state Qt+ 1. A state is terminal if it is 
an uncondit ional  clause. 

Thus  each complete computation 
is a LUSH/SLD resolution proof 

of an unconditional clause: 
ANSWER(tl . . .  tm)<---, thereby 
providing the computation with the 
answer (tl . . . tm) as its output. The 
different possible computations are 
related as the branches of a t r ee - -  
the LUSH/SLD computation tree--  
since after any step there is in gen- 
eral more than one choice of  positive 
clause to take as the side premise for  the 
next step. Each nonterminal  state of 
the computation will in general, 
therefore, have more than one suc- 
cessor state. It is the complete tree of 
all possible computations for the 
given query which is the total 'inter- 
nal' response of the logic program- 
ming engine to that query; but its 
'external '  response is simply (some 
representation of) the set of  all an- 
swers to the query. 

Example 5 (continued)• The  family 
knowledge base of Example 5 con- 
tains enough information to pro- 
vide four different answers (a b) to 
the query 3abUNCLE(a, b), 
namely: (TED ANN), (TED JIM), 
(JOE TOD), (JOE RON). This cor- 

responds to the fact that the four 
uncondit ional  clauses UN- 
CLE(TED ANN)*--, UNCLE(TED 
JIM)*-, UNCLE(JOE TOD)*-  and 
UNCLE(JOE RON)*-- can all be 
deduced by hyperresolution, or, 
equivalently, inferred directly by an 
ultraresolution, from the knowl- 
edge base. 

What is so beautiful about this 
Edinburgh scheme is that it turns 
out that the branches of the LUSH/ 
SLD computation tree correspond, 
one-to-one, to all the different 
ultraresolution inferences whose 
main premise is the initial state of 
the computation. The entire tree of 
LUSH/SLD computations is thus a 
complete survey of all possible 
ultraresolution inferences from that 
premise and the given knowledge 
base. 

This correspondence now makes 
it obvious why the selection/remain- 
der functions are unrestricted• 
Once we see clearly that each 
LUSH/SLD proof is simply a node- 
by-node 'top down' or 'backward- 
chaining' construction of the cover 
of an ultraresolution inference, 
starting with the antecedent of its 
main premise, we can interpret  
each LUSH/SLD step as a further 
small increment  in that construc- 
tion. Since the node chosen by the 
LUSH/SLD selection function as 
the site of the next increment of 
constuction is obviously arbitrary, 

ANSWER (t) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P (K (t) t K (t)) 

P(uzw) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P(xyu) P(yzv) P(xvw) 

1 i I 

F I G U R E  10.  
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there is no restriction on what that 
selection function is taken to be. 

Serial vs. Parallel Computation in 
Logic Programming 
The branches of the LUSH/SLD 
computation tree in the first logic 
programming (Prolog) systems 
were generated serially, in a depth- 
first, backtracking search. This 
tree-search method is subject to 
embarrassing 'depth-first '  infinite 
runaways when nonterminat ing 
branches are present in the tree, 
but it is otherwise a simple, natural  
and effective way to search the 
complete LUSH/SLD computation 
tree and thus find the set of all an- 
swers to a query. The  answers will 
be generated one at a time, as each 
terminal state is encountered.  If  a 
query has infinitely many answers 
(and the search tree therefore has 
infinitely many branches), then the 
set of all answers will simply (and 
correctly, in a reasonable sense) be 
generated as a nonterminat ing se- 
quence. 

It is surely clear, however, that 
the branches of the LUSH/SLD 
computation tree need not be con- 
structed one at a time in this depth- 
first back-tracking manner .  One 
can instead grow the tree breadth- 
first, with no back-tracking, by 
computing successive sets of states, 
starting with the singleton set {Q0}, 
and continuing, in general, by com- 
put ing the (t + 1) st set as the set of 
all the immediate successors of all 
the states in the t th set. The  differ- 
ent completed computations, to- 
gether with their associated an- 
swers, will be harvested, at each 
level, as their corresponding termi- 
nal states turn  up in these state sets. 
There  is, of course, no logical sig- 
nificance to the order in which these 
answers are generated: the answers 
logically form a set, not a sequence. 

It is easy to find examples of que- 
ries which have infinitely many an- 
swers. For example, if the knowl- 
edge base is the set of clauses: 

{NUMBER(0),.--, NUMBER(S(x)) 
~---NUMBER(x)} 

then the query ::Ix NUMBER(x) has 

the set of answers: 

{ x  = 0 ,  x = s ( 0 ) ,  x = s ( s ( 0 ) )  . . . . .  }. 

Each answer comes from an ultra- 
resolution inference whose main 
premise is: 

ANSWER(x)~-NUMBER(x). 

All these answers are given by cov- 
ers which exhibit the same general 
pattern. The  LUSH/SLD computa- 
tion tree is an infinite binary tree 
which has only two states at each 
nonzero depth t. One of these two 
states is the clause 

ANSWER(S(S(. . .  0.. .)))~--- 

with t occurrences of 's', and pro- 
duces the answer 

x = s ( s ( . . .  0 . . . ) ) ;  

the other is the clause 

ANSWER(S(S( . . .  S ( x ) . . . ) ) )  
~--NUMBER(x) 

with t + 1 occurrences of 's', which 
has two successors, and so on. 

General Oueries and Answers 
Queries can contain universally 
quantified variables, and so can 
their answers. Consider, for exam- 
ple, the knowledge base: 

P(u z w)~---P(x y u)P(y z v)P(x v w) 
P(x v w)*--P(x y u)P(y z v)P(u z w) 
P(G(a b) a b)*-- 
P(a H(a b) b*--. 

and the query: 3 t Vk P(k t k). The 
negation of the query is: Vt 3k not 
P(k t k), so (as explained, for exam- 
ple, in [12]) in order  to have a 
clause we must eliminate the exis- 
tential quantifier. This is done by 
introducing a 'Skolem term' K(t) in 
place of the existential variable. 
The  negated query then is: Vt not 
P(K(t) t K(t)), or in other words the 
negative clause: ~---P(K(t) t K(t)). 
Thus  the initial state for the LUSH/ 
SLD computation is the clause: 
ANSWER(t)~--P(K(t) t K(t)). 

An intuitive way to unders tand 
the clauses of this knowledge base is 
to interpret  their variables as rang- 
ing over the elements of some set 
which is closed under  a binary com- 
position opera t ion . ,  and to inter- 

pret atoms P(a b c) as saying that 
a.b = c. The first two clauses then 
together assert that • is associative. 
The third says that the equation 
x.a = b always has the solution x = 
G(a b), while the fourth says that 
the equation a.x = b always has the 
solution x = H(a b). The  query is 
then seen to be asking whether 
there is a t such that for all k, k-t = 
k, that is, whether there is a right iden- 
tity element. 

The kernel of the cover shown in 
Figure 10 is unifiable and has the 
mgu 

c r = { t = z = H ( y y ) , x =  
G ( y K ( H ( y y ) ) ) , a = b = r = v = y ,  
s = u = w = K ( H ( y y ) ) }  

and so the inference yields the un- 
conditional clause ANSWER(H(y 
y))*-- containing the universally 
quantified variable 'y'. In effect, the 
response to the query are there right 
identity elements? is the general prop- 
osition: yes--for all y, H(y y) is a right 
identity element. 

Parallelism in Ultraresolution 
Inferences 
The potential parallelism in the 
breadth-first growth of the LUSH/ 
SLD tree is the kind which has 
come to be known as or-parallelism. 
Since each state may have several 
immediate-successor states it corre- 
sponds to the fact that there may be 
alternative possible choices of a 
positive clause as side premise for 
that state as main premise. As we 
have seen, the classical LUSH/SLD 
search (in its breadth-first version) 
is a clever way to compute all possi- 
ble ultraresolution inferences 
which have a given conditional 
clause Q as main premise, with cov- 
ering premises taken from a given 
fixed knowledge base P. So the or- 
parallel version of the LUSH/SLD 
process is a way of exploiting at 
least some of the potential parallel- 
ism of the uhraresolution inference 
scheme. 

The  challenge to the software 
and hardware designers of future 
logic programming systems, how- 
ever, comes from the clear percep- 
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tion that there is more potential 
parallelism 'waiting there' than just  
the or-parallelism. The computa- 
tion of the set of  all ultraresolutions 
with main premise Q and covering 
premises in P is abstractly just  a 
matter of generating all covers of Q 
and then checking the kernel of 
each to see if it is unifiable. This, 
however, is precluded by a 'combi- 
natorial explosion' problem. There  
are simply too many covers. Even in 
the small family knowledge base we 
considered earlier, there are (as we 
noted) only four ultraresolutions 
with the main premise 

ANSWER(a b)*--UNCLE(a b) 

and covering premises in the 
knowledge base. This means that 
there are only four covers of its an- 
tecedent whose kernels are unifiable. 
There  are, however, several billion 
covers of this antecedent whose 
kernels are not unifiable. Despite 
the large size of the space to be 
searched in this simple example, a 
breadth-first (quasi-or-parallel) 
LUSH/SLD computation generates 
a tree of about 140 states, level by 
level down to a depth of about 25, 
in order to produce all four an- 
swers and to show that there are no 
more. The  power of the LUSH/ 
SLD search method rests in the fact 
that entire subtrees of these 'fail- 
ures' are constantly being elimi- 
nated from the search. Its incremen- 
tal unification process in effect 
detects a source of nonunifiability 
as soon as it appears and therefore 
never permits a partially grown 
cover containing that 'lethal gene' to 
'breed' any progeny at all. Thus  the 
LUSH/SLD pruning  of the tree is as 
drastic as it can be. Delaying any of 
this failure detection 'until later' 
will only allow these sources of fail- 
ure to propagate multiplicatively, 
so that the future computational 
cost (whether in the extent of time 
consumed or in the number  of par- 
allel resources needed) of detecting 
all of them will grow at the same 
rate. Postponing all of the unifica- 
tion analysis until  the generation of 
the set of all covers is completed 

simply lets this effect maximize it- 
self. 

Here, however, it is clear that we 
have arrived at a point where 
merely logical considerations must 
yield the center stage to highly 
technical questions of algorithm 
design, complexity analysis, and 
parallel computation, the discus- 
sion of which is outside the scope of 
this article. 

Glimpses Beyond 
In  this article I have discussed only 
the historical and conceptual back- 
ground of the logical origins of 
logic programming.  I have concen- 
trated on the resolution theorem- 
proving ideas which have been my 
main interest from 1960 until the 
present. In  describing its develop- 
ment  to the present, I have briefly 
sketched the overall framework 
within which today's specialists are 
seeking to exploit as much as possi- 
ble of the potential parallelism 
which is clearly present in the fun- 
damental  processes. The rest of 
that story is now better left for oth- 
ers, more qualified, to tell. 
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Spr inger -Ver lag  1987) and  Logic, 
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Programming and Prolog by Ulf  Nils- 
son and Jan  Maluszynski (Wiley, 
1990) provide r igorous but  reada-  
ble accounts not only of  much of  
the material  covered in the present  
article but  also of  many noteworthy 
later developments.  Among these 
are: 

• the addit ion of  imperative con- 
trol features such as the cut; 

• the elegant negation as failure 
technique by which all modern  
Prolog systems permit  negative 
conditions in both positive and 
negative conditional clauses; 

• the inclusion of  arithmetical, list- 
processing, metalinguistic and other  
appl ied predicates and operators  
among the atoms and terms; 

• alternative logic p rogramming  
paradigms,  such as concurrent 
logic programming, constraint logic 
programming, and higher-order logic 
programming. 

For the reader  who wishes to 
learn more  about applications and 
methodology of  logic programming,  
about Prolog, and about exploit ing 
the potential parallelism in logic, I 
also recommend the following re- 
cent books: 

• The Art of Prolog by L. Sterling 
and E. Shapiro (MIT Press, 
1986); 

• Prolog Programming for Artificial 
Intelligence by I. Bratko (second 
edition, Addison-Wesley, 1990); 

• The Craft of Prolog by R. O'Keefe 
(MIT Press, 1990). 

• Essentials of Logic Programming by 
C.J. Hogger  (Oxford:  Clarendon 
Press, 1990), 

• Parallelism in Logic: its potential for 
performance and program develop- 
ment by Franz Kurfess (Braun- 
schweig, Vieweg, 1991). 

• Parallel Logic Programming by 
Evan Tick (MIT Press, 1991). 

About the Author: 
J.A. ROBINSON teaches philosophy 
and computer science at the University 
of Syracuse, where he is now University 
Professor. His research interests include 
computational logic and automated 
deduction. He is currently working on a 
massively parallel logical computation 

system combining the lambda calculus 
(for functional programming) with the 
predicate calculus (for logic program- 
ming) at the University of Tokyo, where 
he is on a year's leave. Author's Present 
Address: Office of the University Pro- 
fessor, Syracuse University, Syracuse, 
NY 13244-2010 
Permission to copy without fee all or part of 
this material is granted provided that the 

copies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
date appear, and notice is given that copying 
is by permission of the Association for 
Computing Machinery. To copy otherwise, or 
to republish, requires a fee and/or specific 
permission. 

© ACM 0002-0782/92/0300-040 $1.50 

ALS Prolog realizes 
Logic Programming. 

Logic Programming provides one of the most advanced and refined 
approaches ~ f o r  solving complex programming problems. 
After all, L ~ 7  / logic itselfhas been under development by the 
human race ~ - . J ~  for well over 2,000 years. Prolog is the 
most successful ~ , ._~/  realization of the Logic Programming 
approach, providing/""--~ a very high conceptual approach to 
problem analysis and implementation, coupled with extremely 
general and fast pattern-matching.//~-~ And ALS Prolog is by 
far the most powerful collection o f \ ~ f ~ \  Prolog compilers 
available. Whether your task is ~ / ~  advanced exploratory 
research, or the development of ~ complex production systems, 
the ALS Prolog compiler is the ~ I tool of choice. 
Develop with one ALS Prolog compiler, and you re devel- 
oping with them all. ALS is committed to a uniform implementation 

all platforms, yet you get access to all ~ the facilities of on 
each platform, including each native win- ~ . ~  / dowing system. 
You can couple your Prolog programs to C ~ programs via a 
very broad C interface ~ which allows Prolog to manipulate 
C data, and allows C to \ ~ / ~ c a l l  into Prolog. Stream-based 
IPC communication, l o c a l k ~ / / a n d  remote, is available. We sup- 
port 386/486 machines under SCO Unix and DOS (virtual memory), 
soon with Windows 3.0, as well as the Apple ~ Macintosh, Sun 
SPARC and 680x0, DEC v a x  (VMS) and ~ 7  ~ ~ 
all Motorola 88000-based machines, and 
planning to add even more platforms in the 
future. ~ ~ j  ~ Z ~ ~ ]  ~ [  
Call or write today. If you're 
learning Prolog, ask about our 
student versions l l APPLIED LOGIC SYSTEMS, INC. 
for the PC and ~ P.O. BOX 90, UNIVERSITY STATION 
Macintosh. 1 1 SYRACUSE, NY, 13210 USA 

1 PHONE: 315-471-3900 FAX:315-471-2606 

Circle #79  on Reader Service Card 

COMMUNICATIONS OF THE ACM/March 1992/Vol.35, No.3 6 S  


