
Logic P r o g r a m m i n g

Logic and
Logic Programming

J.A. Robinson

L
ogic has been around for a
very long time [23]. It was
already an old subject 23
centuries ago, in Aristotle's
day (384-322 BC). While
Aristotle was not its origina-

tor, despite a widespread impres-
sion to the contrary, he was cer-
tainly its first important figure. He
placed logic on sound systematic
foundations, and it was a major
course of study in his own univer-
sity in Athens. His lecture notes on
logic can still be read today. No
doubt he taught logic to the future
Alexander the Great when he
served for a time as the young
prince's personal tutor. In Alexan-
dria a generation later (about 300
B.C.), Euclid played a similar role
in systematizing and teaching the
geometry and number theory of
that era. Both Aristotle's logic and
Euclid's geometry have endured
and prospered. In some high
schools and colleges, both are still
taught in a form similar to their
original one. The old logic, how-
ever, like the old geometry, has by
now evolved into a much more gen-
eral and powerful form.

Modern ('symbolic' or 'mathe-
matical') logic dates back to 1879,
when Frege published the first ver-
sion of what today is known as the
predicate calculus [14]. This system
provides a rich and comprehensive
notation, which Frege intended to
be adequate for the expression of

all mathematical concepts and for
the formulation of exact deductive
reasoning about them. It seems to
be so. The principal feature of the
predicate calculus is that it offers a
precise characterization of the con-
cept of proof. Its proofs, as well as its
sentences and its other formal ex-
pressions, are mathematically de-
fined objects which are intended
not only to express ideas meaning-
ful ly--that is, to be used as one uses
a language--but also to be the sub-
ject matter of mathematical analy-
sis. They are also capable of being
manipulated as the data objects of
construction and recognition algo-
rithms.

At the end of the nineteenth cen-
tury, mathematics had reached a
stage in which it was more than
ready to exploit Frege's powerful
new instrument. Mathematicians
were opening up new areas of re-
search that demanded much
deeper logical understanding and
far more careful handling of
proofs, than had previously been
required. Some of these were David
Hiibert's abstract axiomatic recast-
ing of geometry and Giuseppe
Peano's of arithmetic, as well as
Georg Cantor's intuitive explora-
tions of general set theory, espe-
cially his elaboration of the dazzling
theory o f transfinite ordinal and
cardinal numbers. Others were
Ernst Zermelo's axiomatic analysis
of set theory following the discov-

ery of the logical and set-theoretic
paradoxes (such as Bertrand Rus-
sell's set of all sets which are not
members of themselves, which
therefore by definition both is, and
also is not, a member of itself); and
the huge reductionist work Prin-
cipia Mathematica by Bertrand Rus-
sell and Alfred North Whitehead.
All of these developments had ei-
ther shown what could be done, or
had revealed what needed to be
done, with the help of this new
logic. But it was necessary first for
mathematicians to master its tech-
niques and to explore its scope and
its limits.

Significant early steps toward
this end were taken by Leopold
Lowenheim (1915), [29] and
Thoralf Skolem [45], who studied
the symbolic "satisfiability" of for-
mal expressions. They showed that
sets of abstract logical conditions
could be proved consistent by being
given specific interpretations con-
structed from the very symbolic
expressions in which they are for-
mulated. Their work opened the
way for Kurt G6del (1930, [17]) and
Jacques Herbrand (1930, [19]) to
prove, in their doctoral disserta-
tions, the first versions of what is
now called the completeness of the
predicate calculus. G6del and
Herbrand both demonstrated that
the proof machinery of the predi-
cate calculus can provide a formal
proof for every logically true prop-

COMMUNICATIONS OF THE ACM/March 1992/Vol.35, No.3 41

Logic P r o g r a m m i n g

osition, and indeed they each gave
a constructive method for f inding
the proof, given the proposition.
G6del's more famous achievement,
his discovery in 1931 of the amaz-
ing ' incompleteness theorems'
about formalizations of arithmetic,
has tended to overshadow this im-
por tant earl ier work of his, which is
a result about pure logic, whereas
his incompleteness results are about
certain appl ied logics (formal axio-
matic theories of e lementary num-
ber theory, and similar systems)
and do not directly concern us
here.

The completeness of the predi-
cate calculus links the syntactic
p roper ty of formal provability with
the conceptually quite di f ferent
semantic p roper ty of logical truth.
I t assures us that each proper ty be-
longs to exactly the same sentences.
Formal syntax and formal seman-
tics are both needed, but for a time
the spotlight was on formal syntax,
and formal semantics had to wait
until Alfred Tarski (1934, [46]) in-
t roduced the first r igorous semanti-
cal theory for the predicate calcu-
lus, by precisely def ining satisfi-
ability, truth (in a given
interpretation), logical consequence,
and o ther related notions. Once it
was filled out by the concepts of
Tarski's semantics, the theory of the
predicate calculus was no longer
unbalanced. Shortly af terward Ger-
hard Gentzen (1936, [15]) fur ther
sharpened the syntactical results on
provability by showing that if a sen-
tence can be proved at all, then it
can be proved in a 'direct ' way,
without the need to introduce any
extraneous 'clever' concepts; those
occurr ing already in the sentence
itself are always sufficient.

All of these positive discoveries
of the 1920s and 1930s laid the
foundat ions on which today's pred-
icate calculus theorem-proving pro-
grams, and thus logic program-
ming have been built.

Not all the great logical discover-
ies of this per iod were positive. In
1936 Alonzo Church and Alan
Tur ing (see [6, 47]) independent ly
discovered a fundamenta l negative

proper ty of the predicate calculus.
There had until then been an in-
tense search for a positive solution
to what Hilbert called the decision
problem--the problem to devise an
algori thm for the predicate calculus
which would correctly determine,
for any formal sentence B and any
set A of formal sentences, whether
or not B is a logical consequence of
A. Church and Tur ing found that
despite the existence of the p roof
procedure , which correctly recog-
nizes (by constructing a p roof of B
from A) all cases where B is in fact a
logical consequence of A, there is
not and cannot be an algori thm
which can similarly correctly recog-
nize all cases in which B is not a logi-
cal consequence of A. The i r discov-
ery bears directly on all at tempts to
write theorem-proving software. It
means that it is pointless to try to
p rogram a computer to answer 'yes'
or 'no' correctly to every question of
the form 'is this a logically true sen-
tence?' The most that can be done is
to identify useful subclasses of sen-
tences for which a decision proce-
dure can be found. Many such sub-
classes are known. They are called
'solvable subcases of the decision
problem' , but as far as I know none
of them have tu rned out to be of
much practical interest.

When World War II began in
1939 all the basic theoretical foun-
dations of today's computat ional
logic were in place. What was still
lacking was any practical way of ac-
tually carrying out the vast symbolic
computat ions called for by the
p roof procedure. Only the very
simplest of examples could be done
by hand. Already there were those,
h o w e v e r - - T u r i n g himself for o n e - -
who were making plans which
would eventually fill this gap. Tur-
ing's method in negatively solving
the decision problem had been to
design a highly theoretical, abstract
version of the modern stored-
program, genera l -purpose univer-
sal digital computer (the 'universal
Tur ing machine'), and then to
prove that no p rogram for it could
realize the decision procedure . His
subsequent leading role in the war-

t ime British code-breaking project
included his part icipation in the
actual design, construction and
operat ion of several electronic ma-
chines of this kind, and thus he
must surely be reckoned as one of
the major pioneers in their early
development .

Logic on the Computer
Apar t from this enormously impor-
tant cryptographic intelligence
work and its crucial role in ballistic
computat ions and nuclear physics
simulations, the war-time develop-
ment of electronic digital comput-
ing technology had relatively little
impact on the outcome of the war
itself. After the war, however, its
rap id commercial and scientific
exploitat ion quickly launched the
current computer era. By 1950,
much- improved versions of some
of the war-time genera l -purpose
electronic digital computers be-
came available to industry, univer-
sities and research centers. By the
mid-1950s it had become apparen t
to many logicians that, at last, suffi-
cient comput ing power was now at
hand to suppor t computat ional
exper iments with the predicate cal-
culus p roo f procedure . I t was jus t a
mat ter of p rog ramming it and try-
ing it on some real examples. Sev-
eral papers describing projects for
doing this were given at a Summer
School in Logic held at Cornell
University in 1957. One of these
[37, pp. 74-76] was by Abraham
Robinson, the logician who later
surpr ised the mathematical estab-
l ishment by applying logical 'non-
s tandard ' model theory to legiti-
mize infinitesimals in the
foundat ions of the integral and dif-
ferential calculus. Other published
accounts of results in the first wave
of such exper iments were [12, 16,
35, 49]. The re had also been, in
1956, a s trange exper iment by [33]
which at tracted a lot of attention at
the time. It has since been cited as a
milestone of the early stages o f arti-
ficial intelligence research. The
authors designed their 'Logic The-
ory Machine' p rogram to prove
sentences of the proposi t ional cal-

4 2 March 1992/Voh35, N o . 3 / C O M M U N I C A T I O N S OF TH e= ACM

culus (not the full predicate calcu-
lus), a very simple system of logic
for which there had long existed
well-known decision procedures.
They nevertheless explicitly re-
jected the idea of using any algo-
rithmic proof procedure, aiming,
instead, at making their program
behave 'heuristically' as it cast about
for a proof. This experiment was
intended to model human
problem-solving behavior, taking
propositional calculus theorem-
proving in particular as the
problem-solving task, rather than
to program the computer to prove
propositional calculus theorems
efficiently.

No sooner were the first compu-
tational proof experiments carried
out than the severe combinatorial
complexity of the full predicate cal-
culus proof procedure come vividly
into view. The procedure is, after
all, essentially no more than a sys-
tematic exhaustive search through
an exponentially expanding space
of possible proofs. The early re-
searchers were brought face-to-face
with the inexorable 'combinatorial
explosion' caused by conducting
the search on nontrivial examples.
These first predicate calculus
proof-seeking programs may have
inspired, and perhaps even de-
served, the disparaging label 'Brit-
ish Museum method' (see [33]),
which was destined to be pinned on
any merely-generate-and-test pro-
cedure which blindly and undis-
criminatingly tries all possible com-
binations in the hope that a winning
one, or even an acceptable one, may
eventually turn up.

The intrinsic exponential com-
plexity of the predicate calculus
proof procedure is to be expected,
because of the nature of the search
space. There is evidently little one
can do to avoid its consequences.
The only reasonable course is to
look for ways to strengthen the
proof procedure as much as possi-
ble, by simplifying the forms of
expressions in the predicate calcu-
lus and by packing more power into
its inference rules. This might at
least make the search process more

efficient, and permit it to find
proofs of more interesting exam-
ples before it runs into the expo-
nential barrier.

Some limited progress has been
made in this direction by reorganiz-
ing the predicate calculus in various
'machine-oriented' versions.

Evolution of Machine-
Oriented Logic
The earliest versions of the predi-
cate calculus proof procedure were
all based on human-oriented reason-
ing pa t te rns- -on types of inference
which reflected formally the kind
of 'small' reasoning steps which
humans find comfortable. A well-
known example of this is the modus
ponens inference-scheme. In using
modus ponens, one infers a conclu-
sion B from two premisses of the
form A and (if A then B). Such
human-oriented inference-schemes
are adapted to the limitations--and
also to the s t rengths- -of the
human information-processing sys-
tem. They therefore tend to involve
simple, local, small and perceptually
immediate features of the state of the
reasoning. In particular, they do
not demand the handling of more
than one such bundle of features at
a t ime-- they are designed for serial
processing on a single processor.
The massive parallelism in human
brain processes is well below the
level of conscious awareness, and it
is of the essence of deductive rea-
soning that the human reasoner be
fully conscious of the 'epistemologi-
cal flow' of the proof and of its step-
wise assembling of his or her assent
and understanding. In logics based
on such fine-grained serial infer-
ence patterns, proofs of interesting
propositions will tend to be large
assemblies of small steps. The
search space for the corresponding
proof procedures will accordingly
tend to be dense and overcrowded
with redundant alternatives at too
low a level of detail.

By about 1960 it had become
clear that it might be necessary to
abandon this natural predilection
for human-oriented inference pat-
terns, and to look for new logics

based on larger-scale, more com-
plex, less local, and perhaps even
highly parallel, machine-oriented
types of reasoning. In contemplat-
ing these possible new logics it was
hoped their proofs would be
shorter and (at the top level) sim-
pler than those in the human-
oriented logics. Of course, in the
interior of any individual inference,
there would presumably be a large
amount of hidden structural detail.
The global search space would be
sparser, since it would need to con-
tain only the top-level structure of
proofs. The proof procedure itself
would not need to be concerned
with the copious details of the con-
ceptual microstructure packaged
within the inference steps.

This was the motivation behind
the introduction, in the early 1960s,
of a new logic, based on two highly
machine-oriented reasoning pat-
terns: unification, and the various
kinds of resolution which incorpo-
rate it.

clausal Logic
The 1960 paper [12] had already
drawn attention to the simplified
clausal predicate calculus in which
every sentence is a clause. (A clause
is a sentence with a very simple
form: it is just a--possibly emp ty - -
disjunction of literals. A literal, in
turn, is just the application of an
unnegated or negated predicate to
a suitable list of terms as argu-
ments). In the same year, Dag
Prawitz [34] had also forcefully
advocated the use of the process
which we now call unification. Along
with Stig Kanger (see [34,
footnote 11], p. 170) he apparently
had independently rediscovered
unification in the late 1950s. He
apparently did not realize that it
had already been introduced by
Herbrand in his thesis of 1930 (al-
beit only in a brief and rather ob-
scure passage). These were major
steps in the right direction. Neither
the Davis-Putnam nor the Prawitz
improved proof procedures, how-
ever, went quite far enough in dis-
carding human-oriented inference
patterns, and their algorithms still

COMMUNI~LTIONS OF THE ACM/March 1992/Vol.35, No.3 4 3

Log ic P r o g r o m m i n g
became bogged down too early in
their searches, to be useful.

This was the situation when I
first became interested in mechani-
cal theorem-proving in late 1960.
From 1961 to 1964 I worked each
summer as a visiting researcher at
the Argonne National Laboratory 's
Appl ied Mathematics Division,
which was then directed by William
F. Miller. It was Bill Miller who in
early 1961 first in t roduced me to
the engineer ing side of predicate
calculus theorem-proving by point-
ing out to me the Davis and Putnam
paper. He invited me to spend the
summer of 1961 at Argonne as a
visiting researcher in his division,
with the suggested assignment of
p rogramming the Davis-Putnam
proof procedure on the IBM 704
and more generally of pursuing
mechanical theorem-proving re-
search.

Reading the Davis-Putnam paper
[12] in early 1961 really changed
my life. Al though Hilary Putnam
had been one of my advisers when I
was working on my doctoral thesis
in philosophy at Princeton (1953-
1956), my research had dealt with
David Hume's theory of causation
and had little or nothing to do with
modern logic, to which I paid scant
attention at that time. I did not find
out about Putnam's interest in the
predicate calculus p roof procedure
until I read this paper , four years
after I had left Princeton. It is a
very impor tant paper . They
showed how, by relatively simple
but ingenious algorithmic reorgani-
zation, the original naive predicate
calculus p roof procedure of
He rb rand could be vastly improved.

In a 1963 paper I wrote about
my 'combinatorial explosion' expe-
rience with p rogramming and run-
ning the Davis-Putnam procedure
in For t ran for the IBM 704 at Ar-
gonne [38, pp. 372-383]. Mean-
while, dur ing my second research
summer there (1962) an Argonne
physicist who was interested in and
very knowledgable about logic, Wil-
liam Davidon, had drawn my atten-
tion to the impor tant 1960 paper by
Dag Prawitz [34], in which I first

encountered the idea of unifica-
tion. After struggling with the woe-
ful combinatorial inefficiency of the
instantiation-based procedure used
by Davis and Putnam (and by
everybody else at that time; it goes
back to Herbrand ' s so-called 'Prop-
erty B Method' developed in [19]). I
was immediately very impressed by
the significance of this idea. It is
essentially the idea under lying
Herbrand ' s 'Proper ty A Method '
developed in the same thesis. Here
again was still another paper show-
ing that even vaster improvements
than those flowing from the Davis
and Putnam paper were possible
over the 'naive' predicate calculus
p roof procedure . Instead of gener-
at ing-and-test ing successive instan-
tiations (substitutions) hoping even-
tually to hit upon the r i g h t ones,
Prawitz was describing a way of di-
rectly computing them. This was a
breakthrough. It offered an elegant
and powerful alternative to the
blind, hopeless, enumerat ive 'Brit-
ish Museum' methodology, and
pointed the way to a new methodol-
ogy featur ing deliberate, goal-
directed constructions.

The entire academic year of
1962-1963 was consumed in trying
to figure out the best way to exploit
this Herbrand-Kanger-Prawi tz pro-
cess effectively, so as to eliminate
the generat ion of irrelevant in-
stances in the p roof search. Finally,
in the early summer of 1963, I
managed to devise a clausal logic
with a single inference scheme,
which was a combination of the
Herbrand-Kanger-Prawi tz process
(for which I proposed the name
unification) with Gentzen's 'cut' rule.
This combination produced a
ra ther inhuman but very effective
new inference pattern, for which I
p roposed the name resolution. Reso-
lution permits the taking of arbi-
trarily large inference steps which
in general require very consider-
able computat ional effort to carry
out (and in some cases even to un-
ders tand and to verify). Most of the
effort is concentrated on the unifi-
cation involved. Preliminary inves-
tigations indicated that resolution-

based theorem-provers would be
significantly bet ter than any which
had been built previously.

I wrote about these ideas at Ar-
gonne at the end of the summer of
1963, and sent the paper to the

Journal of the A.C.M. (JACM). It
then apparent ly remained unread
on some referee 's desk for more
than a year. It required some urg-
ing by the then edi tor of the Jour-
nal, Richard H a mming o f Bell Lab-
oratories, before the referee finally
responded. The outcome was that
the paper , [39], was published only
in January 1965. Meanwhile the
manuscr ipt had been circulating. In
1964 at Argonne , Larry Wos,
George Robinson and Dan Carson
p rog ra mme d a resolution-based
theorem prover for the clausal
predicate calculus, adding to the
basic process search strategies
(called unit preference and set of sup-
port) of their own devising, which
fur ther speeded the resolution
p roof process. Because of the refer-
eeing delay, their paper , reached
pr int before mine [52]) and could
only cite it as 'to be published' .

T h r o u g h o u t the winter of 1963-
64, while waiting for news of the
paper 's acceptance or rejection by
JACM, I concentrated on trying to
push the ideas further , and looked
for ways of ex tending the resolu-
tion principle to accommodate even
larger inference steps than those
sanctioned by the original binary
resolution pattern. One of these
tu rned out to be particularly attrac-
tive. I gave it the name hyper-resolu-
tion, meaning to suggest that it was
an inference principle on a level
above resolution. One hyperresolu-
tion was essentially a new inte-
grated whole, a condensat ion of a
deduction consisting of several reso-
lutions. The paper describing hy-
perresolut ion was published at
about the same time as the main
resolution paper , and was later re-
pr in ted in [40, pp. 416-423].

It had been my guiding idea in
this research that bigger and (com-
putationally) better inference pat-
terns might be obtained by some-
how packaging entire deductions at

4 4 March 1992/Vo1.35, No,3/COMMUNICATIONS OF THE A C M

one level into single inferences at the
next higher level. As I cast about
for such patterns I came across a
quite restricted form of r eso lu t ion- -
I called it 'P l - reso lu t ion ' - -which I
found I could prove was just as
powerful as the original unrestricted
binary resolution. The restriction in
Pl-resolut ion is that one of the two
premises must be an unconditional
clause, that is, a clause in which
there are no negative literals (or
what amounts to the same thing, a
sentence of the form: ' if antecedent
then consequent' whose antecedent
part is empty). From this restric-
tion, it follows that every P l -deduc-
tion (that is, a deduct ion in which
every inference is a Pl-resolut ion)
can always be decomposed into a
combination of what I called 'P2-
deductions' . A P2-deduction is a
P 1-deduction which satisfies the
extra restriction that its conclusion,
and all of its premises except one,
are uncondit ional clauses. Thus, ex-
actly one conditional clause is in-
volved as an 'external ' clause in a
P2-deduction. By ignoring the in-
ternal inferences of a P2-deduction
tree and deeming its conclusion to
have been directly obtained from its
premises, we obtain a single large
i n f e r ence - - a hyper reso lu t ion - -
which is really a multi inference
deduct ion whose interior details are
hidden from view inside a sort of
logical black box.

Computational Logic: The
Resolution Boom
After the publication of the paper
in 1965, there began a sustained
drive to program resolution-based
proof procedures as efficiently as
possible and to see what they could
do. In Edinburgh, Bernard Melt-
zer's Computational Logic group and
Donald Michie's Machine Intelligence
group had by 1967 attracted many
young researchers who have since
become well known and who at that
time worked on various theoretical
and practical resolution issues:
Robert Kowalski, Patrick Hayes, the
late Donald Kuehner , Gordon Plot-
kin, Robert Boyer and J Moore,
David H.D. Warren, Maarten van

Emden, Robert Hill. Bernard Meit-
zer had visited Rice University for
two months in early 1965 in o rde r
to study resolution intensively, and
on his re turn to Edinburgh he set
up one of two seminal research
groups which were to foster the
birth of logic p rogramming (the
other being Alain Colmerauer 's
group in Marseille). Thus began my
long and fruitful association with
Edinburgh. By 1970 the resolution
boom was in full swing. I recall that
in that year Keith Clark and Jack
Minker were among those attend-
ing a N A T O Summer School orga-
nized by Bernard Meltzer and Nic-
olas Findler at Menaggio on Lake
Como. The re we preached the new
'resolution movement ' for two
weeks, and Clark and Minker de-
cided to jo in it, soon becoming two
notable contributors.

Meanwhile, however, in the U.S.,
the reaction was mostly muted, ex-
cept for isolated pockets of enthusi-
asm at Argonne, Stanford, Rice and
a few other places. Bill Miller had
left Argonne to go to Stanford at
the end of 1964, and I accepted his
invitation to spend the summers of
1965 and 1966 as a visiting re-
searcher in his computat ion group
at the Stanford Linear Accelerator
Center. It was at Stanford in the
summer of 1965 that I met John
McCarthy for the first time. I was
astonished to learn that after he
had recently read the resolution
paper he had written and tested a
complete resolution theorem-
proving p rogram in Lisp in a few
hours. I was still p rogramming in
Fortran, and I was used to taking
days and even weeks for such a
task. In 1965, however, one could
use Lisp easily in only a very few
places, and nei ther Rice University
nor Argonne National Laboratory
were then among them.

Ber t ram Raphael, Nils Nilsson,
and Cordell Green, at Stanford
Research Institute, were building
deductive databases for the
'STRIPS' p lanning software for
their robot, and they were adopt ing
resolution for this (see [36]). At
New York University, Martin Davis

and Donald Loveland were devel-
oping Davis's very closely related
unification-based ' l inked conjunct '
method [10, pp. 315-330] in ways
which eventually led Loveland in-
dependent ly to his Model Elimina-
tion system [28], a linear reasoning
method entirely similar to the lin-
ear resolution systems developed by
the Edinburgh group, and by David
Luckham at Stanford [30]. Back at
Argonne, Larry Wos and George
Robinson had formed a very strong
'automated deduct ion ' group. They
broadened the applicability of uni-
fication by augment ing resolution
with fur ther inference rules spe-
cialized for equality reasoning (mod-
ulation, paramodulation) which fur-
ther improved the efficiency of
p roof searches [43]. Today, the
Argonne group is still f lourishing
and remains a major center of ex-
cellence in automated deduction.

In 1969 there began a series of
noisy but interesting (and, it later
turned out, fruitful) academic skir-
mishes between the then somewhat
meagerly funded resolution com-
munity and MIT's Artificial Intelli-
gence Laboratory led by Marvin
Minsky and Seymour Papert. The
MIT AI Laboratory at that time was
(it seemed to us) comfortably, if not
lavishly, suppor ted by the Penta-
gon's Advanced Research Projects
Agency (then ARPA, now DARPA).
The issue was whether it was better
to represent knowledge computa-
tionally, for AI purposes, in a de-
clarative or in a procedural form. I f it
was the former (as had been origi-
nally proposed in 1959 by John
McCarthy) [31] then it would be the
predicate calculus, and efficient
p roof procedures for it, that would
play a central role in AI research. I f
it was the latter (e.g., see [51]), then
a computat ional realization of
knowledge would have to be a sys-
tem of procedures 'heterarchically'
organized so that each could be in-
voked by any of the others, and
indeed by itself. These procedures
would be 'agents ' that would both
cooperate and compete in collec-
tively accomplishing the various
tasks compris ing intelligent behav-

C O M M U N I C A T I O N S O F T H E ACM/March 1992/Vol.35, No.3 45

LOgic P r o g r o m m i n g
ior and thought.

Minsky's book, The Society of the
Mind [32], elegantly summed up
the MIT side of this debate in es-
chewing polemics to outline a
grand unified theory of the struc-
ture and function of the mind in
the tradition of Freud and Piaget.
The logic side of the debate has
been definitively treated in [25],
which eloquently sets forth the role
of logic in the computational orga-
nization of knowledge and banishes
the procedural-declarative dichot-
omy by insight that Horn clauses
(that is, clauses containing at most
one unnegated literal) can be inter-
preted as procedures, and thus can
be activated and executed by a suit-
ably designed processor. It is this
insight that underlies what we now
call logic programming.

The never-to-be-implemented
but influential 'Planner' system by
Carl Hewitt--his first paper on
Planner, in [20]--epitomized the
MIT procedural approach, while
the QA ('Question-Answering') se-
ries of programs by [31] carried out
McCarthy's logical 'Advice Taker'
approach to AI and convinced
many skeptics that it would really
work. The work by [18] should now
be seen and appreciated as the ear-
liest demonstration of a logic pro-
gramming system. That paper illus-
trated how to adapt a
resolution-based proof procedure
to provide an assertion-and-query
facility in all essential respects like
that provided by the later Prolog
systems. Unfortunately, the system
was built on the rapidly ramifying
full resolution scheme, using unre-
stricted (rather than Horn-) clauses,
so that the program suffered from
premature combinatorial explo-
siveness. Nevertheless, it was
largely Green's pioneering work of
[18] that encouraged Kowalski and
the Edinburgh group to fight off
the MIT 'procedural-is-best' attack
by developing the highly efficient
(LUSH, later called SLD), slowly
ramifying linear resolution systems
for the restricted case o f Horn-
clauses [27, pp. 542-577].

The procedural-logical fight was
really ended, in a delightfully unex-
pected way, by Kowalski's inspired
procedural interpretation of the be-
havior of a Horn-clause linear reso-
lution proof finder, [24]. He
pointed out that in view of the be-
havior of Horn clause linear-reso-
lution proof-seeking processes, a
collection of Horn clauses could be
regarded as knowledge organized
both declaratively and procedurally.
It suddenly was hard to see what all
the fuss had been about. Kowalski
was led to this reconciliatory princi-
ple by superb implementation of a
'structure-sharing' resolution theo-
rem prover at Edinburgh [5, pp.
101-116], which suddenly com-
pleted the transformation .of the-
orem-proving from generate-and-test
searching to goal-directed stack-based
computation. When restricted to
Horn clauses, the Boyer-Moore
approach becomes the obvious pre-
cursor of the first implementations
of Prolog. David H.D. Warren's
enormously influential later soft-
ware and hardware refinements
and advances clearly descend di-
rectly from the Boyer-Moore meth-
odology [50].

Only the interaction of the Edin-
burgh group's ideas with the work
of Colmerauer's Montreal [7] and
Marseilles [8] groups was required
to open up logic programming and
launch it on its meteoric career.
The interesting story o f this inter-
action was published by [26]. Logic
programming is today in excellent
health. The logic programming
community has settled down to
enjoy, after two decades of very
rapid growth, a steady mature
round of professional conferences
and workshops, a plentiful flow of
research and expository publication
in books and in its own and other
journals, an exciting marketplace of
new software and hardware enter-
prises, and such majestic long-
range national and international
undertakings as Japan's Fifth Gen-
eration Project and those spon-
sored by the European Commu-
nity.

A Closer Look at Unification
and Resolution
What then, is the resolution-based
clausal predicate calculus, and what
is unification and how does it work?

Clauses
Davis's and Putnam's clauses are
quite expressive, despite their ap-
parently restricted form. This is
reflected in the many different but
equivalent ways in which one can
write them. In dealing with clauses
computationally, however, it is best
to keep them simple and to work
with them abstractly.

A clause can in general be taken
to be a sentence o f the form 'if P
then Q', which we will usually write
as P ~ Q or sometimes the other
way round, as Q ~ P. The anteced-
ent P is a set of conditions and the
consequent Q is a set of conclusions.
These conditions and the conclu-
sions are atomic sentences. The order
in which the atomic sentences per-
force are presented in written ver-
sions of clauses and has no logical
significance. There is usually no
visible indication of the fact that the
antecedent P is a conjunction of its
conditions, while the consequent Q
is a disjunction of its conclusions.
Those two facts are assumed to
hold by convention. In discussing
inferences and manipulations in-
volving clauses, the abstract view of
P and Q as sets is both natural and
convenient.

We can then classify a clause
along three different dimensions,
depending on whether its atomic
sentences contain any variables or
not, whether or not it has any con-
ditions, and whether or not it has
any conclusions. A clause with no
variables is said to be a ground
clause, while if it has one or more
variables, it is called a general clause.
A general clause is understood to
be a universally quantified sentence,
each of its variables being tacitly
universally quantified with the
whole sentence as scope. A clause
with one or more conclusions is said
to be a positive clause; while one
with no conclusions is said to be a

46 March 1992/%1.35, No.3/COMMUNICATIONS O F T H E A C M

negative clause. Finally, a clause with
one o r m o r e condi t ions is said to be
a conditional clause; while one with
no condi t ions is said to be an uncon-
ditional clause. (T h e r e is only one
clause that is both uncondi t iona l and
negat ive: it is known as the empty
clause.)

Various Ways of Reading a Clause
Suppose the variables which occur
in the atomic sentences o f a clause
are V[. . . Vk, and that its condi-
tions are Pl • • - Pm and its conclu-
sions are Ql . . . Qn. T h e var ious
ways to read and write the clause
will then d e p e n d on the values o f k,
m, and n, as follows:

E(x) D(x z) ~ A(F(x z)) and E(u)
D(y u) ---> A(F(u y)) a re no t variants.
T h e y are, however , separated.

In unif icat ion computa t ions and
in the resolut ion in fe rence and
p r o o f const ruct ions based on them,
we rout ine ly replace a clause by a
suitably chosen one o f its v a r i a n t s - -
for example , when we need to en-
sure that all clauses in a set a re sep-
arated. As we shall soon see, how-
ever, the re are ways o f r ep re sen t ing
express ions (as two-dimens ional
s t ructures o f a cer ta in kind) in
which this becomes i r re levant and
unnecessary because variables are
nameless. T h e famil iar one -d imen-
sional notat ion, however , is the

wi thout any significant in ternal
syntax o f the i r own. In this discus-
sion we will write t hem as uppe r -
case identif iers . T h e a r g u m e n t s are
terms. Noncompos i t e te rms are vari-
ables: x, y, z, ul , and so on. In this
discussion we will write variables as
lower-case identif iers , possibly sub-
scripted.

Compos i te te rms are like com-
posite a toms in having two parts: an
operator and list o f a r g u m e n t s) In-
deed the c o m m o n conven t ion for
wri t ing a composi te t e r m is similar
to that for wri t ing composi te atoms:
to write the o p e r a t o r immedia te ly
be fo re the list o f a rguments , as for
example :

1 for a l l V 1 . . . V k : i f P ~ a n d . . . a n d P m t h e n Q l o r . . o r Qn (k > O , m ~ l , n > ~)
2 for all Vl . . . Vk: Q1 o r . . . o r Qn ik ~ O, m = O, n > l i
3 i f Pl a n d . . , a n d Pm t h e n Ql o r ~ . . o r Qn (k ~ O, m -> 1, n > 1)

7 i f PI a n d . , . a n d Pm t h e n Qt

10 no t (P~ a n d . . , a n d Pro)
11 n o t true (or: fa l se)

Horn-clauses are cases 5 onward
(where n = 1 or n = 0). T h e clauses
in cases 5 to 8 are positive Horn -
clauses (n = 1); those f rom 9 on-
wards are negative Horn-c lauses
(n = 0). Cases 2, 4, 6, 8 and 11 are
unconditional clauses (m = 0). T h e
o the r cases (m > 1) are conditional
clauses.

Variants. Separation of Clauses
As we shall soon see, the choice o f
variables in a genera l clause is
somewhat arbi t rary, and ne i the r
the essential syntactic s t ruc ture no r
the m e a n i n g o f a clause are af fec ted
if we replace some or all o f its vari-
ables by o the r variables. T h e only
proviso is that the c o r r e s p o n d e n c e
be tween old and new variables must
be one- to-one . Two clauses which
d i f fe r f rom each o the r only in this
way are called variants of each
other . I f two clauses have no vari-
ables in c o m m o n , they are said to be
separated or standardized apart. T h u s
E(x) D(x y) ~ A(F(x y)) and E(u)
D(u y)--> A(F(u y)) are variants;

most conven ien t one for wri t ing
expressions, and it is in this repre -
sentat ion that we have to be careful
to avoid 'name-clashes ' when choos-
ing names for variables.

A t o m s
Call ing a tomic sentences 'a toms'
may r u n some risk o f confus ion
with Lisp's usage o f that word, but
it is well established. T h e r e are two
noncompos i t e a t o m s - - t h e t ru th
values t rue , f a l s e - - b u t in genera l
a toms are composi te expressions,
with two componen t s : a predicate
and a list o f arguments. T h e usual
conven t ion for wri t ing a composi te
a tom is to write its predica te imme-
diately before its a r g u m e n t list, as
for example :

M O T H E R (M A R Y , T H O M A S)
G R E A T E R - T H A N (S U M - O F
(T H R E E , SIX), SEVEN)

T h e predicates are relational con-
stants M O T H E R , G R E A T E R -
T H A N , and so on: jus t identif iers ,

PLUS (T H R E E , SIX)
S U C C E S S O R (S U C C E S S O R
(SUCCESSOR(ZERO))) .

T h e opera to r s are functional con-
stants. PLUS, S U C C E S S O R , and so
on. W h e n the a r g u m e n t list o f a
t e r m is empty , we usually skip ex-
plicitly wri t ing the emp ty list, and
write the t e rm as if it consis ted o f its
constant alone, as MARY,
T H O M A S , instead o f M A R Y () ,
T H O M A S () . Every relat ional and
funct ional constant comes with an
arity, which is a nonnega t ive inte-
ger, and which is cons idered to be
par t o f the constant 's identity. A
constant having arity n is said to be
n-ary. T h u s M A R Y is 0-ary, SUC-
C E S S O R is 1-ary, G R E A T E R -
T H A N is 2-ary, and so on. T h e
basic fo rma t ion rule for composi te
express ions (atoms or terms) is that
an n-ary constant must always be

q n wri t ing a list, we may place a c o m m a af ter
each i t em (other t han the last) to e n h a n c e the
readabili ty. Th is is, however , optional , and is
not pa r t o f the defini t ion o f a list.

C O M M U N I C A T I O N S O F T H E ACM/March I992/Vol.35, No.3 4 7

LOgiC P r o g r a m m i n g
followed immedia te ly by a list o f n
a r gumen t s (except, as no ted above,
when n = 0, when the list can be by
conven t ion omitted). T h e c o m m o n
u n d e r l y i n g semantic idea is that of
an applicative expression which repre-
sents the result o f applying a func-
t ion or relat ion to a suitable tuple of
a rguments .

In the clausal predicate calculus,
clauses are the only k ind of sen-
tence available in which to express
the premises and des i red conclu-
sion of a p roo f problem. This is no t
as l imit ing as it sounds. I t is in fact
possible to t ranslate (automatically)
a p roo f p rob lem from the full
predicate calculus into the clausal
predicate calculus. Detailed discus-
sions of how to do this can be
found , in [12].

Substitution
Making the clausal predicate calcu-
lus more mach ine -o r i en ted calls for
a m u c h closer analysis of the idea of
instantiation. W h e n an expression B
can be ob ta ined f rom ano the r ex-
pression A by subst i tu t ing terms for
some or all o f the variables in A, B
is said to be an instance of A.

For example , F(H(y z) G(H(y z)
A(y)) A(y)) is an instance of F(x G(x
y) y). Inspec t ion conf i rms that F(
H(y z) G(H(y z) A(y)) A(y)) can be
ob ta ined f rom F(x G(x y) y) by si-
multaneously replac ing each occur-
rence of x and y by an occurrence
of H(y z) and an occurrence of A(y)
respectively. It is very in teres t ing
that this basic logical opera t ion of
substitution is essentially a parallel
one.

We can represen t specific substi-
tut ions by sets o f equat ions. For
example , the p reced ing substi tu-
t ion can be represen ted by the set
{x = H(y z), y = A(y) }. Unspecif ied
subst i tut ions are usually deno ted by
lower-case Greek letters: 0, A, g, ~,
and the result of apply ing a substi-
tu t ion to an expression E is indi-
cated by wri t ing E0, EA. There fo re ,
if E is F(x G)(x y) y) and 0 is {x =
H(y z), y = A(y)}, E0 is F(H(y z) G(
H(y z) A(y)) A(y)).

Unification
Let S be a set o f expressions. W h e n
a subst i tu t ion 0 t ransforms every
expression in S into the same ex-
pression, 0 is said to unify S (or to be
a unifier of S) and the set S is said to
be unifiable.

For example , let 0 be {x -- H(P
Q), y = D, u = P, v = Q, z = G(H(P
Q),D)}. W h e n we apply 0 to the two
expressions F(x G(x y)) and F(H(u
v) z) both of them become the same
expression, namely F(H(P Q)
G(H(P Q) D)). T h u s 0 unifies the set
{F(x G(x y)), F(H(u v) z)}.

This set, however, is also un i f ied
by the subst i tu t ion tr = {x = H(u v),
z = G(H(u v) y)}, which t rans forms
both its mem ber s into the same
expression: F(H(u v) G(H(u v) y)).
This express ion is no t only a more
genera l c o m m o n instance of F(x
G(x y)) a n d F(H(u v) z), bu t is actu-
ally a most genera l c o m m o n in-
stance, a n d so cr represents the most
genera l way in which the set {F(x
G(x y)), F(H(u v) z)} can be unif ied.
We therefore say it is a most general
unifier ('mgu') o f {F(x G(x y)), F(H(u
v) z)}. All o ther c o m m o n instances
of F(x G(x y)) and F(H(u v) z) are
instances of the above most genera l
one. In this par t icular case we have:
F(H(u v) z)0 = F(x G(x y))0 = F(H(P
Q) G(H(P Q) D)) = (F(x G(x y))cr)g
= F(H(u v) G(H(u v) y)/x where /x =
{u = P, v = Q, y = D}. This suggests
that 0 is some kind of ' p roduc t ' o f
the m g u ~ and the subst i tu t ion g.
We can write 0 explicitly as 0 = cr./~
an d we f ind that, indeed , this no-
t ion of the p roduc t o f two substi tu-
tions can be na tura l ly de f ined and
is ext remely useful.

T h e product a'/3 of two substi tu-
tions a and /3 is the overall substi tu-
t ion which results f rom first per-
fo rming a and then pe r fo rming /3 .
T h u s we have E(a'/3) = (Ea)/3 for all
expressions E. This p roduc t opera-
t ion is associative, and has an iden-
tity, namely the ' empty ' subst i tu t ion
E which leaves every variable un-
changed. However, it is no t in gen-
eral commutat ive .

It is no accident that in ou r ex-
ample we can express the un i f ie r 0
as the p roduc t o f the m g u ~r and the

'specialization' subst i tut ion g =
{ u = P , v = Q y = D } . T h i s i s a d e -
f in ing characteristic o f mgus.

In fact, to say that ~r is an m gu of
a set S is to make the following two
statements: (1) that ~ unif ies S and
(2) that any un i f i e r A of S whatso-
ever satisfies the condi t ion: A =
~'/~, for some /~.

A unif iable set always has an
mgu. Moreover , there are simple
a lgor i thms (unification algori thms;
abou t which we shall say more later)
which compute an m gu for any finite
uni f iable set, and detect the non -
unifiabil i ty of a set which is not uni -
fiable. These a lgor i thms are best
stated for the more genera l case in
which we seek a subst i tu t ion that
unif ies several disjoint finite sets o f
expressions s imul taneous ly (or, as
we shall say, which unif ies a partition
of a set o f expressions). It is the uni -
fication of part i t ions that we shall
be conce rned with in the r e m a i n d e r
of the discussion. T h e idea is virtu-
ally the same as that o f un i fy ing a
single set: a subst i tu t ion 0 unif ies a
par t i t ion T = {Sl Sk} of a set S
of expressions if each of the sets
$10 Sk0 is a singleton. A sub-
st i tution ~r most general ly unif ies T
if (1) cr unif ies T and (2) for every
un i f ie r A of T we have A = cr-g for
some g.

We need to be able to compu te a
most genera l un i f i e r efficiently, for
any par t i t ion as input . T h e r e is now
a ra ther large specialized l i terature
on this topic, bu t for ou r p resen t
purposes we need not be conce rned
with m a n y of the details.

unification AlgOrithms
T h e compu ta t i on o f a most genera l
unif ier , when expressed in its most
s imple and na tu ra l form, is a highly
parallel one. It was no t at first seen
to be so. T h e na tura l , i n h e r e n t par-
allelism is most clearly seen if we
th ink of expressions as be ing really
directed labelled graphs, as follows:

• a variable is a g raph with only one
node, its root, which is unla-
belled.

• a cons tan t K is a g raph with only
one node, its root, which is la-

48 March 1992/%1.35, N o . 3 / C O M M U N I C A T I O N S OF T H E A C M

belled by the symbol K.
• an applicative expression K(EI,

. . . . E,) is a graph whose root is
unlabelled and has n + 1 out-arcs
which are labelled respectively by
the integers 0 to n. The out-arc
labelled by 0 points to the node
which is the constant K. For i = 1,
. . . . n, the out-arc labelled i
points to (the root of the graph
which is) the term El.

I f an out-arc goes from N to M and
is labelled by j , we say that M is aj th
immediate successor of N. The arity of
a node is the largest integer which
labels any of its out-arcs. So, for
example, the expressions R(P G(x
y) x y) and R(y z H(u K) u) are the
two roots (nodes 1 and 2) of the
graph in Figure 1, node 12 is a 2d
immediate successor of node 10,
and the arity of node 5 is 2. In all
there are 13 expressions in the
graph, one for each node. The
graph itself can be thought of as
represent ing the set of these expres-
sions.
Note that in the graphical form of
expressions we need no names for
variables. Distinct variables are sim-
ply distinct unlabelled leaves (here,
they are nodes 6, 7, 9 and 13, whose
names in the linearly written ex-
pressions are respectively z, x, y and
u). The use of the graphical form of
expressions thus avoids the well-
known complication of needing to
rename variables in o rde r to pre-
vent unwanted identifications of
two distinct variables which happen
to have been given the same name.

Once we are given a set S of
atoms and terms as a graph, we can
represent a partition P of S by insert-
ing one or more links (undirected
arcs) between roots of distinct ex-
pressions which are in the same
part of P. For example, by inserting
a link between nodes 1 and 2 of the
graph in Figure 1 we represent the
12-part part i t ion

P = {{R(P G(x y) x y), R(y z H(u K)
u)}, {O(x, y)}, {H(u, K)}, {R},
{P}, {O}, {H}, {K}, {x}, {y}, {z},
{u}}

by the graph in Figure 2.

t

C

; \ / /

?xh/ /e
i ¢ ¢ /) @ @ ¢ ® © ®

G H K

FIGURE 1.

i

C

' i ' \ \ R / / I"

G H K

FIGURE 2.

A B C D

E F G

H J K L M

X Y Z
FIGURE 3.

COMMUNICATIONS OF THE ACM/March 1992/Vo1.35, No.3 49

LOgiC P r o g r a m m i n g
I f a part o f a partition has more
than two members, we do not need
to put links between every two nodes
in it. A part is represented by a clus-
ter of nodes - -a maximal set of
nodes any two of which are con-
nected by a path of such links.

For example, the six-part parti-
tion {{A, B, C, D}, {E, F, G}, {H, J, K,
L, M}, {X}, {Y}, {Z}} of the set {A, B,
C, D, E, F, G, H,J , K, L, M, X, Y, Z}
is represented by the graph in Fig-
ure 3.

Given a partition in the form of a
graph, the problem to find an mgu
of the partition (or to detect its
nonunifiability) is solved by the fol-
lowing unification algorithm:

while there are clusters in the
graph but no clashes

do shrink the graph.

Shrinking a graph requires two
steps:

Step 1. Each cluster C in the
graph is "collapsed" into
a single new node, which
inherits all of the in-arcs,
out-arcs, and labels of
every node in C.

Step 2. New links are inserted
between nodes which are
equated by step 1.

Two nodes are equated if they are
both j th successors, for some j, of
the same node. A clash is a cluster in
which there are nonvariable nodes
which either (1) are labelled by dis-
tinct constants, or (2) are unla-
belled, but have different arities.

Each iteration of the loop trans-
forms a graph into another graph,
which also in general contains links.
For example, the first iteration
transforms the graph in Figure 2
into the graph in Figure 4. The
second iteration then trans-
forms this into the graph in Figure
5 which is terminal, since there are
now no links.

The process in general continues
until an iteration either creates no
new links, or else creates a clash;
whereupon it terminates. This must
eventually happen, since each itera-
tion produces a new graph with

F I G U R E 4.

G H K

F I G U R E S.

fewer nodes than the previous
graph. If, after termination, the
graph contains no clashes and is
acyclic, the original partition is uni-
fiable. Otherwise, not.

On termination, an mgu for a
unifiable partition can be found by
comparing the terminal graph with
the initial graph. For each node
representing a variable in the origi-
nal graph, we find the node in the
terminal graph which contains it.
The mgu is represented by equat-

ing each such variable with the ex-
pression represented by the corre-
sponding node in the terminal
graph.

Note that the nonterminal
graphs generated during the pro-
cess do not represent sets of expres-
sions, since some of their nodes
have more than one j th successor,
for one or more j.

The graph-shrinking parallel
unification algorithm is presented
here in essentially the version that

S O March 1992/Voh35, No.3/COMMUNICATIONS OF THE ACM

hi ̧ !!

was recently developed, analyzed
and efficiently implemented in [2].
The elegant data-paral lel SIMD
implementat ion for the Connection
Machine exoloits all the inherent
parallelism in the process very ef-
fectively.

The sequential version of this
"fast unification" algori thm was hit
upon independent ly by [4, 22, 42],
improving an earl ier formulat ion
by [3]. As far as I know, the first
version of a unification algori thm
to be explicitly stated and accompa-
nied by correctness and termina-
tion proofs was in [39].

Later, in [41], I formulated a
more efficient version of the algo-
ri thm, using a tabular representa-
tion of the graph-representa t ion to
gain some of the same computa-
tional advantages which were bril-
liantly orchestrated on a much
larger scale by [5] in their impor-
tant structure-sharing resolution the-
orem-prover . This tabular repre-
sentation [41] is also the point of
depar tu re for [2].

Herbrand ' s original (1930) ver-
sion of the unification process is
stated briefly, informally, and with-
out p roof (see [19]).

In 1984 [13] pointed out that in
certain cases there is no oppor tu-
nity for the parallel graph-shrink-
ing algori thm to achieve any signifi-
cant speed-up. Thus, for example,
in f inding the mgu {x = A} of the
set

{F(F(F(F(F(F(F(F(x)))))))),
F(F(F(F(F(F(F(F(A))))))))}

we can merge only one pair of
nodes, and generate only one new
link, at each iteration o f the loop.
These successive minimal modifica-
tions of the graph therefore com-
prise essentially a sequential pro-
cess. However, such 'worst cases'
are more pathological than typical,
and experience suggests that they
are rarely met in real applications.

Resolution
Once we can compute an mgu for
any unifiable part i t ion of a set of
expressions (or show the part i t ion
not to be unifiable, if that is the

case), we are ready to make infer-
ences by resolution.

The fundamenta l resolution in-
ference pat tern is closely related to
what logicians call the 'cut' infer-
ence. (In Prolog p rogramming par-
lance, unfortunately, the word 'cut'
has come to have another , quite dif-
ferent, meaning). Cut inferences
have the form:

from A ~ (B + { L }) a n d
({L} + C) ~ D

infer (A U C)--~ (B tO D).

We can make a cut inference from
two clauses if any only if there is
some atom L which is in the ante-
cedent of one clause and the conse-
quent of the other. To form the
conclusion of the inference, we first
'cut' out L from both places, and
then merge the two antecedents
into one and two consequents into
one. The 'disjoint union' notation
X + Y denotes the union X U Y ,
but also carries the fur ther infor-
mation that X n Y = O.

Example 1. From the clauses A
B ~ C D and D E ~ F G we can
infer the clause A B E ~ C F G by a
cut, el iminating the atom D.

The resolution inference pat tern
generalizes the cut inference pat-
tern by br inging in unification. The
resolution inference pat tern has the
form:

from A ~ (B + M) and
(N + C) ~ D

infer (A U C)¢r---> (B U D)cr
where ~r is an mgu of the one-

par t part i t ion {M U N}.

In making a resolution inference,
we must first use unification to de-
duce a pair of instances of the two
premises suitable for a cut to be
applied. In the special case that
M = N = {L}, the mgu of the parti-
tion {M U N} is the identity substi-
tution. So in this case, a resolution is
the same as a cut.

Example 2. From -->P(G(r s) r s)
and P(x y u)P(y z v)P(x v w) --> P(u z
w) we infer P(r z r)--> P(s z s) by a
resolution in which M = {P(G(r s) r

s)} and N = {P(x y u),P(x v w)}, since
{M tO N} is unifiable with mgu {x =
G (r s) , y = v = r , u = w = s } .

Example 3. From P(x y u)P(y z
v)P(x v w) ~ P(u z w) and P(a b
c)P(b d e)P(c d f) ~ P (a e f) we
infer P(x y a)P(y b v)P(x v c)P(b d
e)P(c d f) ~ P(a e f) by a resolution
in which M = {P(u z w)} and N =
{P(a b c)}, since {M U N} is unifiable
with m g u { u = a , z = b , w = c } .

From two given clauses, only a fi-
nite number of clauses can be in-
fer red by re so lu t ion - -one for each
choice of the 'cut' sets M and N for
which the part i t ion {M U N} is uni-
fiable. I f there are no such choices
of M and N, then nothing can be
inferred from the two clauses by
resolution.

ReSolution Deductions and Proofs
A resolution deduction is a finite tree
whose nodes are labeled by clauses,
each nonleaf node being labeled by
a clause which is inferred by a reso-
lution inference from the clauses
labeling its immediate successors.
The conclusion of the deduct ion is
the clause labeling its root, and the
premises of the deduct ion are the
clauses labeling its leaves. A resolu-
tion proof is a resolution deduct ion
whose conclusion is false (= the
empty clause). Such a p roof estab-
lishes that the premises are contra-
dictory (unsatisfiable). I f S is any
unsatisfiable set of clauses there is
always a resolution p roof whose
premises are all in S. This fact is the
completeness of resolution (see
[39].

A resolution p roof with n + 1
premises can be taken in n + 1 dif-
ferent ways as a p roo f of the nega-
tion of one of its premises from the
other n premises. For example, a
resolution p roof with premises A,
B, C can be taken as (1) a p roof of
not-A from the premises B and C,
(2) a p roof of not-B from the prem-
ises A and C, and (3) a p roof of
not-C from the premises A and B.

P1-ReSOlution
A resolution one of whose two premises

C O M M U N I C A T I O N S O F T H E ACM/March 1992/Vol.35, No.3 Sl

LOgiC P r o g r a m m i n g

is unconditional is called a Pl-resolu-
tion. Example 2 is a P l - r e soh t ion ,
but Example 3 is not. It turns out
that whenever a set of clauses is
unsatisfiable, then there is a PI-
resolution p roo f from those prem-
ises (see [40]). In other words, P1-
resolution is also complete: despite
its restricted form, P l - r e s o h t i o n is
jus t as s trong as resolution, but its
proof-space is sparser than that of
unrestr icted resolution.

Hyper-Resolution
We get an even sparser proof-space
when we take as the only inference
rule, instead of the two-premise P1-
resolution, the (p + 1)-premise
hyper-resolution rule in which exactly
one of the premises is a conditional
clause and all of the other p prem-
ises, together with the conclusion, are
uncondit ional clauses. The hyper-
resolution rule is:

Hvperresolution Deductions
A hyperresolut ion deduction is a fi-
nite tree each of whose nodes has a
label and each of whose nonleaf
nodes also has a justification. The
labels are unconditional clauses, and
the justifications are conditional
clauses. The clause labeling a non-
leaf node N is inferred by a hyper-
resolution whose uncondit ional
premises are the clauses labeling
the immediate successors of N, and
whose conditional premise is the
justification of N. The conclusion of
the deduct ion is the clause labeling
its root. The premises of the deduc-
tion are the labels o f its leaf nodes
and the justifications of its nonleaf
nodes.

H y p e r r e s o h t i o n deductions can
yield only uncondit ional clauses.
Moreover, they can yield only posi-
tive uncondit ional clauses, unless the
justification of the root node is a nega-

from --~(Cx + M1)
(Cp + Mp), and Nl + "'" + Np--~ D

infer "-*(C1 U'" U Cp LI D)o,
where o, is an mgu o f the p-par t

part i t ion {Mt U N1 Mp U Np}.

The unifiable p-par t part i t ion that
is the essential ingredient of a hy-
pe r r e soh t i on is called its kernel.
The p + 1 premises and the kernel
together uniquely de termine the
conclusion.

A hyperresolut ion inference is
really a compacted reorganizat ion
of a P l - r e s o h t i o n deduction whose
conclusion is unconditional. After
the reorganizat ion the deduct ion
has had all of its interior nodes sup-
pressed and has become a single
integrated transaction instead of a
l inked system of many transactions.
By reorganizing the reasoning as a
single inference, we are simply re-
gard ing its conclusion as having
been obtained directly (or, to use a
tradit ional logic expression, immedi-
a te ly-wi thout any 'mediation')
f rom its premises in one step,
ra ther than 'mediately ' as the even-
tual outcome of several l inked P1-
resolution steps.

tive conditional clause and in that
case, but only in that case, the con-
clusion is a negative uncondit ional
clause; indeed, it is the empty
clause. Thus a hype r r e soh t ion
deduct ion of the empty clause (a
hype r r e soh t ion proof) always has
exactly one negative conditional clause
among its justifications. As we shall
see, it is this feature which adum-
brates logic programming.

Completeness and Local
Finiteness of the Resolution
Clausal Predicate Calculi
The resolution and h y p e r r e s o h -
tion versions o f the clausal predi-
cate calculus are all complete. Also,
both systems are locally finite. This
means that, in each system, there
are only finitely many deductions
of a given size (number o f nodes)
having a given set of premises (and
this number is much smaller for
hyperresolut ion than for resolu-
tion). By contrast, t radit ional predi-
cate calculi are not even locally fi-

nite. This is one reason it is so
difficult to make an efficient p roof
p rocedure for tradit ional predicate
calculi. For example, most tradi-
tional predicate calculi contain the
rule of specialization:

from VA infer V(A0),
where 0 is any substitution.

(The sentence VS is the universal
closure of the sentence S: the result
of pref ixing a universal quantif ier
to S for every free variable in S).
With this inference available, there
are infinitely many deductions of
size 2 which have the same premise
V A - - o n e for each dif ferent substi-
tution 0.

Hyperres01ution and
Horn Clause Logic
The advantages of h y p e r r e s o h t i o n
are quite striking in the Horn
clause predicate calculus. In this
subsystem of the clausal predicate
calculus every clause is a Horn
clause, namely, a clause having at
most one conclusion. H y p e r r e s o h t i o n
then becomes much simpler. Recall
the general definit ion of hyper-
resolution:

where ~ is a n mgfi 6 f t h e p ;par t
pa~i t i~n

When all clauses are restricted to
having at most one conclusion, the
'cut' sets Mi can only be singletons
(say, {Ai}), and the ' remainder ' sets
Ci must be empty. Consequently,
the definit ion o f hype r re soh t ions
for Horn clauses can be restated, in
the following much simpler form:

from ; : :
i i

i n f e r ~ D ~ :
where is

In this restatement o f the rule, D
and the A's and B's are all atomic
sentences. When we combine hy-
pe r r e soh t i on inferences into mul-
t i inference deductions, we are in
effect t reat ing each part icular ap-
plication o f this inference pat tern

S6 March 1992/%I.35, N o . 3 / C O M M U N I f A T I O N S O F T H E A @ M

as though it were a special infer-
ence rule, 'the {Bl Bp} ~ D
inference rule', stated as:

This is, however, just a pragmatic
device to sharpen our understand-
ing of the very special role that con-
ditional Horn clauses play in logic
programming.

Ultraresolutions: Horn Clause
Hyperresolution Deductions as
Single Inferences
We again apply the idea of making
a single inference out of an entire
deduction. In the case of hyper-
resolution, instead of thinking of
the conclusion of an entire deduc-
tion (namely a deduction built from
Pl-resolution steps and having an
unconditional conclusion) as being
arrived at stepwise by the perfor-
mance of each of its inferences sep-
arately, we think of the whole con-
struction as one inference step
involving a higher and larger-scale
inference pattern. We will now treat
Horn clause hyperresolution de-
ductions in a similar way, and
thereby arrive at a higher- and
larger-scale inference pattern
which we call ultraresolution.

There is really no need, prag-
matically, to know the conclusion of
every individual inference in a hy-
perresolution deduction, if all that
we are after is the eventual conclu-
sion of the whole deduction. We
can instead characterize that even-
tual conclusion more directly, by a
relationship based only on the
structure of the premises of the
deduction. By omitting in this way
all of the interior stepwise conclu-
sions we turn the entire hyper-
resolution deduction into a single in-
ference, which immediately yields its
conclusion from the premises in
one integrated step.

Ultraresolution
To every hyperresolution deduc-
tion D there corresponds an
ultraresolution inference U which

has the same premise and the same
conclusion as D, and conversely. We
define ultraresolution inferences

directly, however, without refer-
ence to their corresponding hyper-
resolution deductions.

The ultraresolution rule is
(where A ~ B is a Horn-clause and
C is a set of Horn-clauses):

is a cover of A(x0) B(x0) ~ C(x0) by
C, in view of the assignments given
by the table:

atom assigned to node

A(x0) 2
B(x0) 3
H(G(x2)) 4
D(xl yl) 5
E(xl) 6

and has the following partition as
its kernel:

!~!~!~iiii!~i!i~i~!i~!~iii~!!ii!i~!!i!i!!!!ii~!!!i~i!i~i~i~!i!~i~!~!~iii!!iii~!!iiii~!~ii!!!ii~!i~ii~!!~iii~!!!iii~iiiii~!iii~!!iiii~iii!!!i~i~!ii~iiiii!~!~!!i~iii!~i!!~iiiii

!i~ii~i!!i!iii~iiiii~!iiiiiii!iii~!i ¸ii!!Ji~!iiii!ii!!!ci!JJii~iii!!~i!!~il ¸i~i~ili!i~iiiii~ui!i!~!i!i
The clause A --~ B is the main prem-
/se and the clauses in C are the cov-
ering premises.

Covers and Their Kernels
A cover of a clause A ~ B by a set C
of clauses is a certain kind of finite
tree with nodes labeled by clauses.
The root of the tree is labeled by
A ~ B, while the other nodes are
labeled by variants of clauses in C.
The extra condition that makes the
tree a cover is that for each node N
in the tree, every atom in the ante-
cedent of the clause labeling N is
assigned to a distinct immediate
successor of N. The kernel of the
cover is the partition:
{{X, Y}IY is the conclusion of the
clause labelling the node to which X
is assigned}.

Example 4. To illustrate the no-
tions of a cover and its kernel, con-
sider the clause:

A(x0) B(x0) ~ C(x0)

and the set C of clauses

{E(xl) D(Xl y l) ~ A(F(xl y])),
H(G(x2)) ----) B(x2),
~H(G(x3)), ~ D(M N), ~ E(M)}.

The labeled tree given by the table:

{{A(x0), A(F(xl yl))}, {B(x0, B(x2)},
{E(x0, E(M)}, {D(xl yl), D(M N)},
{H(G(x2)), H(G(x3))}.

Since this kernel is unifiable, with
mgu

cr = {x0 = x2 = x3 = F(M N)),
Xl = M, yl = N},

we can infer the clause

---~C(x0)~r = --*C(F(M N))

by an ultraresolution which has
A(x0) B(x0)---~C(x0) as its main
premise and C as its set of covering
premises.

The intuition behind the notion
of a cover of a clause A ~ B is that
it depicts exactly the pattern of orga-
nization of the given clauses. If the
kernel of the cover is unifiable with
mgu ~r, it guarantees that we can
easily relabel the tree so it turns into
a hyperresolution deduction, from
these clauses as premises, of the
same unconditional clause ---~B~
that the ultraresolution inference
obtains directly from them in one
step. In this relabeling, the new
label on each leaf node of the tree is
the same as the old label. The old

i~iii ~!iii~!i3i!!!!~!~!~i~!~i~!ii!~!!~i~!~!~!~i~i!~!i~!!~!~!!~ill!!~!~!i~i~i~i~ii~ii~i~i~iii!~!!i~i~i~ii~ii!~i~ii~i!i~i!~i~i!!~i~i!!~i~i~ii~i!!i~!ii~!!!!!~i!~
~ i~ i~ ~ill ̧ ii~ !i! ill iii i~iiiii!ill ~i~iiiiiiiiiiiiiiiiii!i~!!ili~H~i~i~i~i ' ii ̧ i~ ii ii ii~i! !i! ill! iii !!: !!i !! iill !i!~iii!i~i ! i~ iiiii~i!~
~!ii!~ii~iiii~!!iii~!i~iii~iii~ii~i~i!i!iii!!i~i~iii!i~i~iiii~iiii~!~i!i!!~i!~iMi~ii~ ii~ ~i~ ii~ i~ ̧~i~i!~i!i~!!,i! ~iii~ iii~ii~iii!ili! ii i!i ~ii iii ii! ii~ !i i!i~i
ii ii !i i, ii !iii ! !ii ii i!i ¸ ii!i ii! !!iii ii! ¸ ¸ !i ii! iil !ii!!! !ii! i!ii!ii!! ¸ ii! iii!!i! ii i !!!iii !!!!ii i ii!!i ,ii i!!! !iii

C O M M U N I C A T I O N S OF T H E ACM/March 1992/Vo1.35, No.3 S7

LOgiC P r o g r a m m i n g
label on each nonleaf node of the
cover, however, is removed (it now
becomes the justification of the hy-
perresolution inference at that
same node), and the node's new
label is the unconditional clause
which is inferred by a hyperresolu-
tion from this justification clause
together with the new labels on the
immediate successors of the node.
The following example illustrates
the relationship between a hyper-
resolution deduction and the corre-
sponding ultraresolution inference.

Example 5. Figure 6 is a hyper-
resolution deduction of the uncon-
ditional clause UNCLE(TED
ANN)*- from a subset of the fol-
lowing set of Horn clauses, which
comprises a small 'family relation-
ship' knowledge base. This knowl-
edge base contains (as its 'defini-
tions') the following conditional
Horn clauses:

41 (2)

37

40

31

F I G U R E 6.

1 UNCLE(u x)
2 UNCLE(u x)
3 PARENT(x,y)
4 BROTHER(b x)
5 SISTER(s x)
6 SIBLING(x y)
7 HUSBAND(h w)
8 WIFE(w h)
9 FATHER(f x)

10 MOTHER(m x)

and (as its 'facts') the following un-

*--BROTHER(u y) PARENT(y x)
*--HUSBAND(u s) SISTER(s p) PARENT(p x)
~--CHILD(y,x)
*--SIBLING(b x) MALE(b)
~--SIBLING(s x) FEMALE(s)
~---DIFFERENT(x y) FATHER(f x) FATHER(f y) MOTHER(m x) MOTHER(m y)
*--MARRIED(h w) MALE(h)
~---MARRIED(h w) FEMALE (w)
~---PARENT(f x) MALE(f)
~---PARENT(m x) FEMALE(m)

conditional Horn-clauses:

11 CHILD(JIM JOE)*- 15
12 CHILD(JOE MEG)~--- 16
13 CHILD(JIM SUE)*- 17
14 CHILD(ANN JOE)~--- 18

23 MALE(JIM)~--- 29
24 MALE(JOE)~--- 30
25 MALE(TOM)*-- 31
26 MALE(TED)~--- 32
27 MALE(TOD)~--- 33

40 DIFFERENT(a b)*-- a # b

CHILD(JOE TOM)<-- 19 CHILD(TOD PAT)<--
CHILD(ANN SUE)<--- 20 CHILD(RON PAT)<--
CHILD(PAT MEG)<-- 21 CHILD(TOD TED)<--
CHILD(PAT TOM)<-- 22 CHILD(RON TED)<---

FEMALE(ANN)<-- 35 MARRIED(TOM MEG)<---
FEMALE(SUE)<-- 36 MARRIED(JOE SUE)<--
FEMALE(MEG)<-- 37 MARRIED(TED PAT)<--
FEMALE(PAT)<--- 38 MARRIED(RON SAL)<---
FEMALE(SAL)<-- 39 MARRIED(JIM JAN)<--

& a, b, E {JIM, JOE, TOM, TED, TOD, RON, ANN, SUE, MEG, PAT, SAL, JAN}

Premise 40 is a 'virtual' definition: it
is simply a shorthand way of sup-
plying 132 facts (such as DIF-
FERENT(JOE ANN)*--) whose
predicate is DIFFERENT and
whose two arguments are distinct
constants in the displayed set.

S 8 March 1992/%1.35, No.3/COMMUNICATiON6 OF THE ACM

From this knowledge base there
are, for example, hyperresolut ion
deductions of each of the following
uncondit ional clauses:

41 UNCLE(TED ANN)*-
42 UNCLE(TED J IM)* -
43 UNCLE(JOE TOD)*-
44 UNCLE(JOE RON)*-

45 PARENT(TOM PAT)*-- 49 FATHER(TOM PAT)*--- 53 HUSBAND(TED PAT)
46 PARENT(TOM JOE)*- 50 FATHER(TOM JOE)*- 54 SISTER(PAT JOE)*-
47 PARENT(MET PAT)*- 51 MOTHER(MEG PAT)*- 55 SIBLING(PAT JOE)*-
48 PARENT(MEG JOE)~--- 52 MOTHER(MEG JOE)*- 56 PARENT(JOE ANN)*-

For example, clause 41, UNCLE
(TED ANN)*- , is the conclusion of
the hyperresolut ion deduct ion
shown in Figure 6. The label on
each node is given in the d iagram
by its number next to the node, and
at each nonleaf node is followed by
the number , in parentheses, of the
clause which is the justification of
the node.

The cover of the ultraresolution
inference corresponding to this
hyperresolut ion deduct ion is shown
in Figure 7.

Figure 9 displays the cover of this
ultraresolution inference in more
detail, and shows more clearly that
its status as an inference is concep-
tually independen t of the corre-
sponding hyperresolut ion deduc-
tion. In Figure 9, each labeled node
of the cover is represented by a box FIGURE 7.
of one of the three types shown in
Figure 8. These represent a node
labeled respectively by a positive
conditional clause Q * - P1 • . • Pn, Q .

by a negative conditional clause Pa * * * Pn
• - P] • - • Pn, and by a positive un-
conditional clause Q*-. conditional

positive clause

The thick lines in Figure 9 show the
pairs of the unifiable kernel of the FIGURE 8.
cover.

Tha t this kerne l / s unifiable is veri-
fied by an easy computat ion. Its
mgu ~ is:

P1 • • • Pn

t Q
condi t ional uncondi t iona l

nega t ive clause pos i t ive clause

and applying cr to the conclusion of
the root clause yields UNCLE(TED
ANN)*- .

31

{ a 0 = u l = h 2 = T E D ,
b 0 = x l = y 8 = A N N ,
sl = w 2 = s 3 = x 4 = x 5
= y 7 = x 9 = y l l = P A T ,

p l = x 3 = y 4 = x 6 = x 8
= x l 0 = y12 = y13 = JOE,

f 4 = f 5 = f 6 = x 7 = x l 3 = T O M ,
m4 -- m9 = m l 0
= x l l = x12 = MEG}.

Queries and Their Answers
Logic Programming
We can consider any collection K of
positive Horn clauses as a knowl-
edge base. A set of positive Horn
clauses is necessarily consistent: one
cannot deduce false from it by hy-
perresolut ion (or what is the same,
one cannot infer false from it by an
ultraresolution) if it contains no

negative conditional clause. By tak-
ing a negative clause not-Q as the
premise together with a collection
of variants of clauses from K, we
may be able to infer false by an
ultraresolution. Tha t is, the set
{notQ} U K may well be inconsist-
ent and its inconsistency demon-
strated by our inference. We then
can turn this inconsistency to our
advantage, by regard ing not-Q as
the negation of a query Q that we
want answered, and digging out the
answer from the details of the

COMMUNICATIONS OF THE ACM/March 1992/Vol.35, No.3 S 9

L o g i c P r o g r a m m i n g

t HUSBANDIu'I Sl) ~I~EL~ is~lp~i PARENT'(pl xl)

; i i

~ DIFFERENT (x4 y4~ FATHER (f4 x4} FAT "HE'R i;]';4;" MOTHER (rn4 x4) MOTHER (m4 y 4)

/ I I I

I " 1 I " 1 ! " 1 I
.... I . i I , . , l I , . , I I , .

~ DIFFERENT (PAT JOE)]

FIGURE 9.

ul t raresolut ion.
Suppose that no t -Q is the nega-

tive clause *--{Gl Gn}. Recall
that we can read ~--{G1 Gn} as:

not 3 x l . . . 3Xm GI a n d . . , and Gn

where xl • • • Xm are all o f the vari-
ables occu r r ing in the a toms G1,
. . . . Gn. T h e n Q is

3x l . . . :lXm Gl and . . . a n d Gn

and so an in fe rence o f fa lse f r o m
{not-Q} u K is an in fe rence o f Q
f r o m K. T h e usefulness o f this fact
for logic p r o g r a m m i n g is that the
m g u cr o f the kerne l o f the infer-
ence can be used to supply direct ly
the 'answer ' (x 1 . . . Xm)= (X 1 . . .
Xm)Cr tO the ' query ' 3Xl . . . 3Xm GI
and . . . a n d Gn.

T h e r e may be many d i f f e ren t
u l t ra reso lu t ion in fe rences o f fa lse
which have the same negat ive
clause as the main p remise and
whose cover ing premises are taken
f r o m the same knowledge base K. I t
is even possible that the cover ing
premises also are the same, with
only the unde r ly ing cover and ker-
nel be ing d i f ferent . In any case,
these d i f f e r en t in fe rences will, in

genera l , have d i f f e r en t covers and
kernels , and will t h e r e f o r e p rov ide
d i f f e r en t answers f r o m K to the same
query Q.

To f ind all these answers, what is
n e e d e d is a suitable way o f f ind ing
all the d i f f e r en t u l t ra reso lu t ion in-
fe rences o f false whose main p r em-
ise is the negat ive clause no t -Q and
whose cover ing premises are vari-
ants o f clauses in K.

LUSH, AliaS SLD, ReSOlution
T h e or iginal E d i n b u r g h solut ion to
this tricky computa t iona l p rob l em
was s imple and beaut i ful , and it led
direct ly to Prolog. Af t e r m u c h ex-
plorat ion, [27] devised a ' l inear '
b inary reso lu t ion in fe rence pa t t e rn
which they called SL-resolut ion (for
Selective L inear resolut ion). W h e n
res t r ic ted to H o r n clauses, SL reso-
lu t ion b e c o m e s - - a s [1] n a m e d i t - -
SLD-reso lu t ion (for Selective Lin-
ear resolut ion for Def ini te clauses).
A def in i te clause is (simply ano the r
n a m e for) a posit ive H o r n clause.
However , [21] had already, in 1974,
co ined a m o r e whimsical n a m e for
it: L U S H resolut ion, for L inea r res-
o lut ion with Unres t r ic ted Select ion

funct ion, for H o r n clauses. I t is no t
clear to me why [1] felt this n a m e
was unsui table. W h a t e v e r we call it,
this h ighly special ized and nar rowly
res t r ic ted reso lu t ion in fe rence has
the form2:

from A ~ B a n d G ~ H
infer (A U ~G)cr--~ Ho,
i f cr is a most gene ra l un i f i e r

o f the 1-part par t i t ion
{{B, I'G}}.

T h e clause G ~ H is the main prem-
ise o f the in fe rence , and the clause
A ~ B is the side premise.

T h e novel f ea tu re o f this infer-
ence ru le is its use o f the two func-
tions, selection (1') and remainder ($),
both o f which ope ra t e on the set G
o f condi t ions o f the main premise .
T h e func t ion 1' yields the condition
which is selected, while the func t ion

2Actually, in the original version and the ver-
sion contained in the logic programming liter-
ature, the conclusion H of the main premiss is
omitted, and thus the main premiss is always a
negative Horn-clause. Here, for various rea-
sons, one of which will shortly become evi-
dent, we permit the main premiss to have a
conclusion. In addition to its role as the 'an-
swer template' in logic programming compu-
tations, the conclusion can be put to other
good uses.

0 March 1992/Vol.35, No.3/COMMUNICATIONS OF THE ACM

yields the set of conditions which are not
selected. Thus at most one LUSH/SLD
inference is possible from a given
main premise and side premise,
and its conclusion/s unique to those
two premises. Hence a LUSH/SLD
deduction will necessarily have a
linear structure, in which each suc-
cessive LUSH/SLD resolution will
have for its main premise the con-
clusion of the previous one.

The really interesting and useful,
and at first acquaintance amazing
property of LUSH/SLD resolution
is that the choice of the selection and
remainder functions is completely unre-
stricted (whence the 'U' in the name
'LUSH' - -more ' s the pity that the
name 'SLD' lacks any acronymic
reference to this feature). Thus, in
particular, the selection and re-
mainder functions can be chosen so
as to make the sets of conditions in
the successive main premises be-
have like a stack, provided we take
seriously the order in which the
conditions are written, and always
form the conclusion by adjoining
the new conditions, if any, on the
left of the remainder, in their written
order. The selection then yields the
leftmost condition (the one at the
'top' of the 'stack'). A LUSH/SLD
deduction then does indeed look
very much like the trace of a stack-
oriented 'computation'.

To compute all the answers to a
given query 3xl . . . 3Xm (GI a n d

• . . a n d Gn), we initialize the state
of the computation to the 'state'

Q0

setting it up to be the clause s

Q0 =
ANSWER(xl . . . Xm)*-Gl • • • Gn

whose antecedent consists of the
initial set of 'goals' and whose con-
clusion is a special 'system' atom
ANSWER(x] . . . Xm) acting as the
formal 'answer template'. We then
begin a series of computation steps,
each of which is a single LUSH/SLD
resolution inference. In general the
(t + 1)st step transforms the t th

3The idea of using a formal answer template
in this way was originated by Cordell Green in
the QA systems described earlier in this essay.

state Qt by using it as the main
premise, and a variant of one of the
clauses from the knowledge base
(or 'program') as the side premise,
to make a LUSH/SLD inference
whose conclusion is the (t + 1) st
state Qt+ 1. A state is terminal if it is
an uncondit ional clause.

Thus each complete computation
is a LUSH/SLD resolution proof

of an unconditional clause:
ANSWER(tl . . . tm)<---, thereby
providing the computation with the
answer (tl . . . tm) as its output. The
different possible computations are
related as the branches of a t r ee - -
the LUSH/SLD computation tree--
since after any step there is in gen-
eral more than one choice of positive
clause to take as the side premise for the
next step. Each nonterminal state of
the computation will in general,
therefore, have more than one suc-
cessor state. It is the complete tree of
all possible computations for the
given query which is the total 'inter-
nal' response of the logic program-
ming engine to that query; but its
'external ' response is simply (some
representation of) the set of all an-
swers to the query.

Example 5 (continued)• The family
knowledge base of Example 5 con-
tains enough information to pro-
vide four different answers (a b) to
the query 3abUNCLE(a, b),
namely: (TED ANN), (TED JIM),
(JOE TOD), (JOE RON). This cor-

responds to the fact that the four
uncondit ional clauses UN-
CLE(TED ANN)*--, UNCLE(TED
JIM)*-, UNCLE(JOE TOD)*- and
UNCLE(JOE RON)*-- can all be
deduced by hyperresolution, or,
equivalently, inferred directly by an
ultraresolution, from the knowl-
edge base.

What is so beautiful about this
Edinburgh scheme is that it turns
out that the branches of the LUSH/
SLD computation tree correspond,
one-to-one, to all the different
ultraresolution inferences whose
main premise is the initial state of
the computation. The entire tree of
LUSH/SLD computations is thus a
complete survey of all possible
ultraresolution inferences from that
premise and the given knowledge
base.

This correspondence now makes
it obvious why the selection/remain-
der functions are unrestricted•
Once we see clearly that each
LUSH/SLD proof is simply a node-
by-node 'top down' or 'backward-
chaining' construction of the cover
of an ultraresolution inference,
starting with the antecedent of its
main premise, we can interpret
each LUSH/SLD step as a further
small increment in that construc-
tion. Since the node chosen by the
LUSH/SLD selection function as
the site of the next increment of
constuction is obviously arbitrary,

ANSWER (t)
.

P (K (t) t K (t))

P(uzw)
.

P(xyu) P(yzv) P(xvw)

1 i I

F I G U R E 10.

C O M M U N I C A T I O N S O F T H E A C M / M a r c h 1 9 9 2 / V o 1 . 3 5 , N o , 3 61

L o g i c P r o g r a m m i n g
there is no restriction on what that
selection function is taken to be.

Serial vs. Parallel Computation in
Logic Programming
The branches of the LUSH/SLD
computation tree in the first logic
programming (Prolog) systems
were generated serially, in a depth-
first, backtracking search. This
tree-search method is subject to
embarrassing 'depth-first ' infinite
runaways when nonterminat ing
branches are present in the tree,
but it is otherwise a simple, natural
and effective way to search the
complete LUSH/SLD computation
tree and thus find the set of all an-
swers to a query. The answers will
be generated one at a time, as each
terminal state is encountered. If a
query has infinitely many answers
(and the search tree therefore has
infinitely many branches), then the
set of all answers will simply (and
correctly, in a reasonable sense) be
generated as a nonterminat ing se-
quence.

It is surely clear, however, that
the branches of the LUSH/SLD
computation tree need not be con-
structed one at a time in this depth-
first back-tracking manner . One
can instead grow the tree breadth-
first, with no back-tracking, by
computing successive sets of states,
starting with the singleton set {Q0},
and continuing, in general, by com-
put ing the (t + 1) st set as the set of
all the immediate successors of all
the states in the t th set. The differ-
ent completed computations, to-
gether with their associated an-
swers, will be harvested, at each
level, as their corresponding termi-
nal states turn up in these state sets.
There is, of course, no logical sig-
nificance to the order in which these
answers are generated: the answers
logically form a set, not a sequence.

It is easy to find examples of que-
ries which have infinitely many an-
swers. For example, if the knowl-
edge base is the set of clauses:

{NUMBER(0),.--, NUMBER(S(x))
~---NUMBER(x)}

then the query ::Ix NUMBER(x) has

the set of answers:

{ x = 0 , x = s (0) , x = s (s (0)) }.

Each answer comes from an ultra-
resolution inference whose main
premise is:

ANSWER(x)~-NUMBER(x).

All these answers are given by cov-
ers which exhibit the same general
pattern. The LUSH/SLD computa-
tion tree is an infinite binary tree
which has only two states at each
nonzero depth t. One of these two
states is the clause

ANSWER(S(S(. . . 0.. .)))~---

with t occurrences of 's', and pro-
duces the answer

x = s (s (. . . 0 . . .)) ;

the other is the clause

ANSWER(S(S(. . . S (x) . . .)))
~--NUMBER(x)

with t + 1 occurrences of 's', which
has two successors, and so on.

General Oueries and Answers
Queries can contain universally
quantified variables, and so can
their answers. Consider, for exam-
ple, the knowledge base:

P(u z w)~---P(x y u)P(y z v)P(x v w)
P(x v w)*--P(x y u)P(y z v)P(u z w)
P(G(a b) a b)*--
P(a H(a b) b*--.

and the query: 3 t Vk P(k t k). The
negation of the query is: Vt 3k not
P(k t k), so (as explained, for exam-
ple, in [12]) in order to have a
clause we must eliminate the exis-
tential quantifier. This is done by
introducing a 'Skolem term' K(t) in
place of the existential variable.
The negated query then is: Vt not
P(K(t) t K(t)), or in other words the
negative clause: ~---P(K(t) t K(t)).
Thus the initial state for the LUSH/
SLD computation is the clause:
ANSWER(t)~--P(K(t) t K(t)).

An intuitive way to unders tand
the clauses of this knowledge base is
to interpret their variables as rang-
ing over the elements of some set
which is closed under a binary com-
position opera t ion . , and to inter-

pret atoms P(a b c) as saying that
a.b = c. The first two clauses then
together assert that • is associative.
The third says that the equation
x.a = b always has the solution x =
G(a b), while the fourth says that
the equation a.x = b always has the
solution x = H(a b). The query is
then seen to be asking whether
there is a t such that for all k, k-t =
k, that is, whether there is a right iden-
tity element.

The kernel of the cover shown in
Figure 10 is unifiable and has the
mgu

c r = { t = z = H (y y) , x =
G (y K (H (y y))) , a = b = r = v = y ,
s = u = w = K (H (y y)) }

and so the inference yields the un-
conditional clause ANSWER(H(y
y))*-- containing the universally
quantified variable 'y'. In effect, the
response to the query are there right
identity elements? is the general prop-
osition: yes--for all y, H(y y) is a right
identity element.

Parallelism in Ultraresolution
Inferences
The potential parallelism in the
breadth-first growth of the LUSH/
SLD tree is the kind which has
come to be known as or-parallelism.
Since each state may have several
immediate-successor states it corre-
sponds to the fact that there may be
alternative possible choices of a
positive clause as side premise for
that state as main premise. As we
have seen, the classical LUSH/SLD
search (in its breadth-first version)
is a clever way to compute all possi-
ble ultraresolution inferences
which have a given conditional
clause Q as main premise, with cov-
ering premises taken from a given
fixed knowledge base P. So the or-
parallel version of the LUSH/SLD
process is a way of exploiting at
least some of the potential parallel-
ism of the uhraresolution inference
scheme.

The challenge to the software
and hardware designers of future
logic programming systems, how-
ever, comes from the clear percep-

62 March 1992/Vol.35, No.3/COMMUNICATION$ OF THE ACM

tion that there is more potential
parallelism 'waiting there' than just
the or-parallelism. The computa-
tion of the set of all ultraresolutions
with main premise Q and covering
premises in P is abstractly just a
matter of generating all covers of Q
and then checking the kernel of
each to see if it is unifiable. This,
however, is precluded by a 'combi-
natorial explosion' problem. There
are simply too many covers. Even in
the small family knowledge base we
considered earlier, there are (as we
noted) only four ultraresolutions
with the main premise

ANSWER(a b)*--UNCLE(a b)

and covering premises in the
knowledge base. This means that
there are only four covers of its an-
tecedent whose kernels are unifiable.
There are, however, several billion
covers of this antecedent whose
kernels are not unifiable. Despite
the large size of the space to be
searched in this simple example, a
breadth-first (quasi-or-parallel)
LUSH/SLD computation generates
a tree of about 140 states, level by
level down to a depth of about 25,
in order to produce all four an-
swers and to show that there are no
more. The power of the LUSH/
SLD search method rests in the fact
that entire subtrees of these 'fail-
ures' are constantly being elimi-
nated from the search. Its incremen-
tal unification process in effect
detects a source of nonunifiability
as soon as it appears and therefore
never permits a partially grown
cover containing that 'lethal gene' to
'breed' any progeny at all. Thus the
LUSH/SLD pruning of the tree is as
drastic as it can be. Delaying any of
this failure detection 'until later'
will only allow these sources of fail-
ure to propagate multiplicatively,
so that the future computational
cost (whether in the extent of time
consumed or in the number of par-
allel resources needed) of detecting
all of them will grow at the same
rate. Postponing all of the unifica-
tion analysis until the generation of
the set of all covers is completed

simply lets this effect maximize it-
self.

Here, however, it is clear that we
have arrived at a point where
merely logical considerations must
yield the center stage to highly
technical questions of algorithm
design, complexity analysis, and
parallel computation, the discus-
sion of which is outside the scope of
this article.

Glimpses Beyond
In this article I have discussed only
the historical and conceptual back-
ground of the logical origins of
logic programming. I have concen-
trated on the resolution theorem-
proving ideas which have been my
main interest from 1960 until the
present. In describing its develop-
ment to the present, I have briefly
sketched the overall framework
within which today's specialists are
seeking to exploit as much as possi-
ble of the potential parallelism
which is clearly present in the fun-
damental processes. The rest of
that story is now better left for oth-
ers, more qualified, to tell.

Acknowledgments
I am grateful to Jacques Cohen,
Jack Minker and Jonas Barklund
for their excellent suggestions after
reading an earlier version of this
article. I have tried to follow all of
them. []

References
1. Apt, K.R. and van Emeden, M.H.

Contributions to the Theory of Logic
Programming. J. Assoc. Comput. Mach.
29 (1982), 841-862.

9. Barklund, J. Parallel unification.
Ph.D. thesis, Computing Science
Department, Uppsala University,
1990.

3. Baxter, L.D. An efficient unifica-
tion algorithm. Tech. Rep. CS-73-
23, Department of Computer Sci-
ence, University of Waterloo, 1973.

4. Baxter, L.D. The complexity of uni-
fication. Ph.D. thesis, University of
Waterloo, 1976.

5. Boyer, R.S. and Moore, J.S. The
Sharing of Structure in Theorem
Proving Programs. Mach. lntell. 7
(1972), 101-116.

6. Church, A. A note on the

entscheidungsproblem. J. Symbolic Logic
1 (1936) 40-41. (Reprinted in [11]).

7. Colmerauer, A. Les Systemes-Q ou
un formalisme pour analyser et syn-
thesizer des phrases sur ordinateur.
Rep. 43, Department of Computer
Science, University of Montreal,
1970.

8. Colmerauer, A., Kanoui, H.,
Pasero, R. and Roussel, P. Un sys-
teme de communication homme-
machine en Frangais. Tech. Rep.,
Groupe d'Intelligence Artificielle,
Universite d'Aix Marseille II,
Luminy, France, 1973.

9. Davidon, W. Personal communica-
tion, 1962.

10. Davis, M. Eliminating the irrelevant
from mechanical proofs. In Proceed-
ings, Symposia of Applied Mathematics
15, American Mathematical Society,
1963, pp. 15-30. (Reprinted in
[44], vol. 1, 315-330).

11. Davis, M., Ed. The Undecidable: Basic
Papers on Undecidable Propositions,
Unsolvable Problems, and Computable
Functions. Raven Press, 1965.

12. Davis, M. and Putnam, H. A com-
puting procedure for quantification
theory. J. Assoc. Comput. Mach. 7
(1960), 201-216. (Reprinted in
[44], vol. 1, 125-139).

13. Dwork, C, Kanellakis, P., and
Mitchell, J.C. On the sequential na-
ture of unification.J. Logic Program.
1, (1984), 35-50.

14. Frege, G. Begriffsschrifft, a Formula
Language, Modelled Upon that of
Arithmetic, for Pure Thought. English
translation in [48], 1-82.

15. Gentzen, G. The Collected Papers of
Gerhard Gentzen. M.E. Szabo Ed.,
North-Holland, 1969.

16. Gilmore, P.C. A Proof Method for
Quantification Theory: its Justifica-
tion and Realization. IBM J. Res.
Dev. 4 (1960), 28-35. (Reprinted in
[44], volume 1, 151-158).

17. GOdel, K. The Completeness of the Axi-
oms of the Functional Calculus of Logic,
1930. English translation, with com-
mentary, in [48], 582-291.

18. Green, C.C. The application of the-
orem-proving to problem solving.
In Proceedings of the first International
Joint Conference on Artificial Intelli-
gence (Washington, D.C., 1969), pp.
219-240.

19. Herbrand, J. Investigations in Proof
Theory (1930). English translation of
main parts, with commentary, in
[48], 525-581, and of entire thesis
in Jacques Herbrand: Logical Writings

COMMUNICATIONS OF THE ACM/March 1992/Vo1.35, No.3 63

L o g i c P r o g r a m m i n g

(edited by Warren Goldfarb), Har-
vard, 1971, 44-202.

20. Hewitt, C. PLANNER: A language
for proving theorems in robots. In Pro-
ceedings of the first International Joint
Conference on Artificial Intelligence,
(Wash., D.C., 1969), pp. 295-301.

21. Hill, R. LUSH Resolution and its
Completeness. DCL Mem. 78, De-
partment of Artificial Intelligence,
University of Edinburgh, 1974.

22. Huet, G. Resolution des equations dans
langages d'order 1, 2 oJ. These
d'Etat, Universite Paris VII, 1976.

23. Kneale, W.C. and Kneale, M. The
Development of Logic. Oxford, 1962.

24. Kowalski, R.A. Predicate Calculus
as a Programming Language. In
Proceedings of Sixth IFIP Congress,
North Holland, 1974, pp. 569-574.

25. Kowalski, R.A. Logic for Problem
Solving. North-Holland, 1979.

26. Kowalski, R.A. The early years of
logic programming. Commun. ACM
31 (1988), 38-43.

27. Kowalski, R.A. and Kuehner, D.
Linear Resolution with Selection Func-
tion. Artificial Intelligence 2 (1971),
227-260. (Reprinted in [44], vol-
ume 1, 542-577).

28. Loveland, D.W. Mechanical theo-
rem proving by model elimination.
J. ACM 15 (1968), 236-251. (Re-
printed in [44], volume 2, 117-
134).

29, L6wenheim, L. On Possibilities in the
Calculus of Relatives, 1915. English
translation in [48], 228-251.

30. Luckham, D. Refinement Theorems in
Resolution Theory. Lecture Notes in
Mathematics 125, Springer, 1970,
163-190.

31. McCarthy, J. Programs with Com-
mon Sense. In Proceedings of a Sym-
posium on the Mechanization of
Thought. H.M. Stationery Office,
London, 1959. (Reprinted in Se-
mantic Information Processing MIT
Press, 1968).

32. Minsky, M. The Society of Mind.
Simon and Schuster, 1985.

33. Newell, A., Shaw, J.C. and Simon,
H.A. Empirical explorations with
the logic theory machine: A case
study in heuristics. In Proceedings of
the Western Joint Computer Conference
(1957), pp. 218-239. (Reprinted in
[44], volume 1, 49-73).

34. Prawitz, D. An Improved Proof Proce-
dure. Theori_a 26 (1960) 102-139.
(Reprinted in [44], volume 1, 159-
199, with a preface by the author).

35. Prawitz, D., Prawitz, H. and

Voghera, N. A mechanical proof
procedure and its realization in an
electronic computer.JACM 7 (1960)
102-128. (Reprinted in [44], vol-
ume 1, 200-228).

36. Raphael, B. Programming a robot.
In Proceedings of Fourth IFIP Con-
gress, North Holland, 1968, 135-
139.

37. Robinson, A. Proving a theorem (as
Done by Man, Logician, or Ma-
chine). Summaries of talks pre-
sented at the Summer Institute for
Symbolic Logic. Communications
Research Division, Institute for
Defense Analysis, Princeton, 1957.
(Reprinted in [44], volume 1, 74-
76).

38. Robinson, J.A. Theorem proving
on the computer. J. Asso. Comput.
Mach. 10 (1963) 163-174. (Re-
printed in]44], volume 1, 372-
383).

39. Robinson, J.A. A machine-oriented
logic based on the resolution princi-
ple. JACM 12 (1965), 23-41. (Re-
printed in [44], volume 1, 397-
415).

40. Robinson, J.A. Automatic Deduc-
tion with Hyper-resolution. Int. J.
Comput. Math. 1 (1965), 227-234.
(Reprinted in [44], volume 1 ,416-
423).

41. Robinson, J.A. Computational
logic: the unification computation.
Machine Intell. 6 (1970), 63-72.

42. Robinson, J.A. Fast Unification.
Tagung fiber Automatisches Be-
weisen, Mathematisches For-
schungsinstitut Oberwolfach, 1976.

43. Robinson, G.A. and Wos, L.T.
Paramodulation and theorem prov-
ing in first-order theories with
equality. Machine lntell. 4 (1969),
103-133.

44. Siekmann, J.H. and Wrightson, G.
Eds. Automation of Reasoning. Classi-
cal Papers on Computational Logic
(1957-1966). Two volumes,
Springer, 1983.

45. Skolem, T. Logico-combinatorial In-
vestigations in the Satisfiability or
Provability of Mathematical Proposi-
tions (1920). English translation,
with commentary, in [48], 252-263.

46. Tarski, A. Logic, Semantics,
Metamathematics: Papers from 1923 to
1938, translated by J.H. Woodger,
Oxford, 1956.

47. Turing, A.M. On computable num-
bers, with an application to the
entscheidungsproblem. In Proceed-
ings of the London Mathematical Soci-
ety, 1937. (Reprinted in l l 1]).

48. van Heijenoort, J. Ed. From Frege to
Godel; A Source Book in Mathematical
Logic, 1879-1931. Harvard Univer-
sity Press, 1967.

49. Wang, H. Towards mechanical
mathematics. IBM J. Res. Dev. 4
(1960), 2-22. (Reprinted in [44],
volume 1, 244-264).

50. Warren, D.H.D. Implementing
PROLOG--compiling predicate
logic programs (Res. Rep. 39 and
40), and Logic programming and
compiler writing (Res. Rep. 44).
Department of Artificial Intelli-
gence, University of Edinburgh,
1977.

51. Winograd, T. Understanding Natural
Language. Academic Press, 1973.

52. Wos, L.T., Carson, D. and Robin-
son, G.A. The unit preference strat-
egy in theorem proving. AF1PS
Conference Proceedings 26, Spartan
Books, Wash. D.C., 1964, pp. 615-
621. (Reprinted in [44], vol. 1 ,387-
393).

53. Wos, L.T., Carson, D. and Robin-
son, G.A. Efficiency and complete-
ness of the set of support strategy in
theorem proving. J. Assoc. Comput.
Mach. 12, 1965, pp. 536-541, (Re-
printed in [44], volume 1, 484-
489).

CR Categories and Subject Descrip-
tors: D. 1.6 [Programming Techniques]:
Logic Programming; D.3.2 [Program-
ming Languages]: Language Classifica-
tions--PROLOG; F.2.2 [Analysis of
Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Prob-
lems--complexity of proof procedures, pat-
tern matching; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical
Logic--computational logic, logic program-
ming, mechanical theorem proving, proof
theory; 1.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving--
answer~reason extraction, deduction, logic
programming, metatheory, resolution; 1.2.4
[Artificial Intelligence]: Knowledge
Representation Formalisms and
Methods--predicate logic

Additional Key Words and Phrases:
Unification

Further Reading
Several excellent a n d recent fur-

ther sources are: J.W. Lloyd's
Foundations of Logic Programming
(second, ex t ended edit ion,
Spr inger -Ver lag 1987) and Logic,

64 March 1992/Vo1.35, No.3/COMMUNICATIONS OF THE ACM

Programming and Prolog by Ulf Nils-
son and Jan Maluszynski (Wiley,
1990) provide r igorous but reada-
ble accounts not only of much of
the material covered in the present
article but also of many noteworthy
later developments. Among these
are:

• the addit ion of imperative con-
trol features such as the cut;

• the elegant negation as failure
technique by which all modern
Prolog systems permit negative
conditions in both positive and
negative conditional clauses;

• the inclusion of arithmetical, list-
processing, metalinguistic and other
appl ied predicates and operators
among the atoms and terms;

• alternative logic p rogramming
paradigms, such as concurrent
logic programming, constraint logic
programming, and higher-order logic
programming.

For the reader who wishes to
learn more about applications and
methodology of logic programming,
about Prolog, and about exploit ing
the potential parallelism in logic, I
also recommend the following re-
cent books:

• The Art of Prolog by L. Sterling
and E. Shapiro (MIT Press,
1986);

• Prolog Programming for Artificial
Intelligence by I. Bratko (second
edition, Addison-Wesley, 1990);

• The Craft of Prolog by R. O'Keefe
(MIT Press, 1990).

• Essentials of Logic Programming by
C.J. Hogger (Oxford: Clarendon
Press, 1990),

• Parallelism in Logic: its potential for
performance and program develop-
ment by Franz Kurfess (Braun-
schweig, Vieweg, 1991).

• Parallel Logic Programming by
Evan Tick (MIT Press, 1991).

About the Author:
J.A. ROBINSON teaches philosophy
and computer science at the University
of Syracuse, where he is now University
Professor. His research interests include
computational logic and automated
deduction. He is currently working on a
massively parallel logical computation

system combining the lambda calculus
(for functional programming) with the
predicate calculus (for logic program-
ming) at the University of Tokyo, where
he is on a year's leave. Author's Present
Address: Office of the University Pro-
fessor, Syracuse University, Syracuse,
NY 13244-2010
Permission to copy without fee all or part of
this material is granted provided that the

copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/92/0300-040 $1.50

ALS Prolog realizes
Logic Programming.

Logic Programming provides one of the most advanced and refined
approaches ~ f o r solving complex programming problems.
After all, L ~ 7 / logic itselfhas been under development by the
human race ~ - . J ~ for well over 2,000 years. Prolog is the
most successful ~ , ._~/ realization of the Logic Programming
approach, providing/""--~ a very high conceptual approach to
problem analysis and implementation, coupled with extremely
general and fast pattern-matching.//~-~ And ALS Prolog is by
far the most powerful collection o f \ ~ f ~ \ Prolog compilers
available. Whether your task is ~ / ~ advanced exploratory
research, or the development of ~ complex production systems,
the ALS Prolog compiler is the ~ I tool of choice.
Develop with one ALS Prolog compiler, and you re devel-
oping with them all. ALS is committed to a uniform implementation

all platforms, yet you get access to all ~ the facilities of on
each platform, including each native win- ~ . ~ / dowing system.
You can couple your Prolog programs to C ~ programs via a
very broad C interface ~ which allows Prolog to manipulate
C data, and allows C to \ ~ / ~ c a l l into Prolog. Stream-based
IPC communication, l o c a l k ~ / / a n d remote, is available. We sup-
port 386/486 machines under SCO Unix and DOS (virtual memory),
soon with Windows 3.0, as well as the Apple ~ Macintosh, Sun
SPARC and 680x0, DEC v a x (VMS) and ~ 7 ~ ~
all Motorola 88000-based machines, and
planning to add even more platforms in the
future. ~ ~ j ~ Z ~ ~] ~ [
Call or write today. If you're
learning Prolog, ask about our
student versions l l APPLIED LOGIC SYSTEMS, INC.
for the PC and ~ P.O. BOX 90, UNIVERSITY STATION
Macintosh. 1 1 SYRACUSE, NY, 13210 USA

1 PHONE: 315-471-3900 FAX:315-471-2606

Circle #79 on Reader Service Card

COMMUNICATIONS OF THE ACM/March 1992/Vol.35, No.3 6 S

