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Abstract

Several algorithms for approximating terrains and other height fields using polygonal meshes are
described, compared, and optimized. These algorithms take a height field as input, typically a
rectangular grid of elevation data H(x, y), and approximate it with a mesh of triangles, also known
as a triangulated irregular network, or TIN. The algorithms attempt to minimize both the error
and the number of triangles in the approximation. Applications include fast rendering of terrain
data for flight simulation and fitting of surfaces to range data in computer vision. The methods
can also be used to simplify multi-channel height fields such as textured terrains or planar color
images.

The most successful method we examine is the greedy insertion algorithm. It begins with a simple
triangulation of the domain and, on each pass, finds the input point with highest error in the current
approximation and inserts it as a vertex in the triangulation. The mesh is updated either with
Delaunay triangulation or with data-dependent triangulation. Most previously published variants
of this algorithm had expected time cost of O(mn) or O(n logm+m2), where n is the number of
points in the input height field and m is the number of vertices in the triangulation. Our optimized
algorithm is faster, with an expected cost of O((m+n) logm). On current workstations, this allows
one million point terrains to be simplified quite accurately in less than a minute. We are releasing
a C++ implementation of our algorithm.
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1. Introduction

A height field is a set of height samples over a planar domain. Terrain data, a common type of
height field, is used in many applications, including flight simulators, ground vehicle simulators, and
in computer graphics for entertainment. Computer vision uses height fields to represent range data
acquired by stereo and laser range finders. In all of these applications, an efficient data structure
for representing and displaying the height field is desirable.

Our primary motivation is to render height field data rapidly and with high fidelity. Since almost
all graphics hardware uses the polygon as the fundamental building block for object description, it
seems natural to represent the terrain as a mesh of polygonal elements. The raw sample data can
be trivially converted into polygons by placing edges between each pair of neighboring samples.
However, for terrains of any significant size, rendering the full model is prohibitively expensive.
For example, the 2,000,000 triangles in a 1, 000×1, 000 grid take about seven seconds to render on
current graphics workstations, which can display roughly 10,000 triangles in real time (every 30th of
a second). Even as the fastest graphics workstations speed up in coming years, typical workstations
and personal computers will remain far slower. More fundamentally, the detail of the full model is
highly redundant when it is viewed from a distance, and its use in such cases is unnecessary and
wasteful. Many terrains have large, nearly planar regions which are well approximated by large
polygons. Ideally, we would like to render models of arbitrary height fields with just enough detail
for visual accuracy. Additionally, in systems which are highly constrained, we would like to use a
less detailed model in order to conserve memory, disk space, or network bandwidth.

To render a height field quickly, we can use multiresolution modeling, preprocessing it to con-
struct approximations of the surface at various levels of detail [3, 16]. When rendering the height
field, we can choose an approximation with an appropriate level of detail and use it in place of the
original. The various levels of detail can be combined into a hierarchical triangulation [6, 5].

In some applications, such as flight simulators, the speed of simplification is unimportant, be-
cause database preparation is done off-line, once, while rendering of the simplified terrain is done
thousands of times. In more general computer graphics and computer animation applications, the
scene being simplified might be changing many times per second, however, so a slow simplification
method might be useless. Finding a simplification algorithm that is fast is therefore quite important
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to us.

Our focus in this paper will be to generate simplified models of a height field from the original
model. The simplified model should accurately approximate the original model, use as few triangles
as possible, and the process of simplification should be as rapid as possible.

The remainder of this paper contains the following sections: We begin by stating the problem
we are solving. Next we describe several methods for selecting the most important points of a
height field. The core of the paper is the following section on the greedy insertion algorithm, where
we begin with the basic algorithm, and through a progression of simple optimizations, speed it up
dramatically. We explore the use of both Delaunay triangulation and data-dependent triangulation.
The paper concludes with a discussion of empirical results, ideas for future work, and a summary.

1.1. Background

Our companion survey paper [17] contains a thorough review of surface simplification methods. To
summarize, algorithms for polygonal simplification of surfaces can be categorized into six groups:

• uniform grid methods, which use a regular grid of samples in x and y;

• hierarchical subdivision methods, which are based on quadtree, k-d tree, and hierarchical
triangulations;

• one pass feature methods, which select a set of important “feature” points (such as peaks,
pits, ridges, and valleys) in one pass and use them as the vertex set for triangulation;

• multi-pass refinement methods which start with a minimal approximation and use multiple
passes of point selection and retriangulation to build up the final triangulation;

• multi-pass decimation methods, which begin with a triangulation of all of the input points and
iteratively delete vertices from the triangulation, gradually simplifying the approximation;
and

• other methods, including adjustment techniques, optimization-based methods, and optimal
methods.

The latter four simplification methods typically employ general triangulations that are neither
uniform nor hierarchical. Two such general triangulation methods are Delaunay triangulation and
data-dependent triangulation.

Delaunay triangulation is a purely two-dimensional method; it uses only the xy projections of
the input points. It finds a triangulation that maximizes the minimum angle of all triangles, among
all triangulations of a given point set [13, 21]. This helps to minimize the occurrence of very thin
sliver triangles. Data-dependent triangulation, in contrast, uses the heights of points in addition
to their x and y coordinates [8, 31]. It can achieve lower error approximations than Delaunay
triangulation, but it generates more slivers.

2. Statement of Problem and Approach

We assume that a discrete two-dimensional set of samples H of some underlying surface is
provided. This is most naturally represented as a discrete function where H(x, y) = z means
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Figure 1: Uniform grid triangulation
of 65× 65 height field H .

Figure 2: A triangulation T S using
512 vertices that approximates H ; an
example of a triangulated irregular
network.

that the point (x, y, z) lies on the actual surface. We will assume that this discrete sampling is
performed on a rectangular grid at integer coordinates, but the methods we will describe are easily
generalized to scattered data points. Finally, we assume that the surface will be reconstructed from
H by triangulating its points; abstractly, the reconstruction operator T maps a function defined
over a scattered set of points in a continuous domain (a function such as H) to a function defined
at every point in the domain. It accomplishes this by building a triangulation of the sample points
and using this triangulated surface to give values to all points which are not part of the grid. If S
is some subset of input points, then T S is the reconstructed surface, and (T S)(x, y) is the value of
the surface at point (x, y). Such a triangulated approximation is often referred to as a triangulated
irregular network, or TIN. See Figures 1 and 2.

Our goal is to find a subset S of H which, when triangulated, approximates H as accurately as
possible using as few points as possible, and to compute the triangulation as quickly as possible.
This is thus an optimization problem. The number of input points in H is n. The number of points
in the subset S is m, and consequently the number of vertices in the triangulation is also m.

2.1. Approach

The principal class of algorithms that we explore in this paper are refinement methods. We do not
use uniform grids or hierarchical subdivision because they cannot deliver the quality that we require,
and we will not pursue brute force optimization methods because they are too slow. Refinement
methods are multi-pass algorithms that begin with an initial approximation and iteratively add
new points as vertices in the triangulation. The process of refinement continues until some specific
goal is achieved, usually reaching a desired error threshold or exhausting a point budget. In order
to choose which points to add to the approximation, refinement methods rank the available input
points using some importance measure.
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In exploring importance measures, we reject those that make use of implicit knowledge about
the nature of terrains, such as the existence of ridge lines. We would like our algorithms to apply
to general height fields, where assumptions that are valid for terrains might fail. Even if we were
to constrain ourselves to terrains alone, we are not aware of conclusive evidence suggesting that
high fidelity results (as measured by an objective L2 or L∞ metric1) require high level knowledge
of terrains.

3. Importance Measures

Within the basic framework outlined above, the key to good simplification lies in the choice of
a good point importance measure. But what criteria should be used to judge such a measure?
Ultimately, the final judgement must depend upon the quality of the results it produces. With this
in mind, we suggest that a good measure should be simple and fast, it should produce good results
on arbitrary height fields, and it should use only local information. The requirement that a measure
be simple and fast is easy to justify; since we will be simplifying detailed terrains and height fields,
the importance measure will be evaluated many times. Consequently, any cost inherent in the
importance measure will be magnified many times due to its repetition. We also demand that
the measure apply equally well to all height fields whether they are terrains, colored textures,
or other semi-continuous functions. This becomes increasingly important for the simplification of
height fields with color texture or other material properties, which we will discuss later. Measures
which depend on characteristics peculiar to terrains or any other specific kind of height field, are
unacceptable to us. Finally, the importance measure should use only local information. This
requirement is necessary to support some significant optimizations in the algorithm’s running time.

We explored four categories of importance measures: local error, curvature, global error, and
products of selected other measures. We briefly discuss each of these below.

3.1. Local Error Measure

The first measure which we explored is simple vertical error. The importance of a point (x, y) is
measured as the difference between the actual function and the interpolated approximation at that
point (i.e. |H(x, y)− (T S)(x, y)|. This difference is a measure of local error. Intuitively, we would
expect that eliminating such local errors would yield high quality approximations, and it generally
does. This measure also meets the other criteria suggested earlier: it is simple, fast, and uses only
local information.

3.2. Curvature Measure

The piecewise-linear reconstruction effected by T approximates nearly planar functions well, but
does more poorly on curved surfaces. However, in everyday life, peaks, pits, ridges, and valleys,
which have high curvature, are visually significant. These observations suggest that we try curvature
as a measure of importance.

1In this paper, we use the following error metrics: We define the L2 error between two n-vectors u and v as

||u − v||2 =
[∑n

i=1
(ui − vi)2

]1/2
. The L∞ error, also called the maximum error, is ||u − v||∞ = maxni=1 |ui − vi|.

We define the squared error to be the square of the L2 error, and the root mean square or RMS error to be the L2

error divided by
√
n. Optimization with respect to the L2 and L∞ metrics are called least squares and minimax

optimization, and we call such solutions L2–optimal and L∞–optimal, respectively.
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Figure 3: Cross section of a hypothetical terrain that is small-scale rough and large-scale smooth
on the left, but small-scale smooth and large-scale rough on the right. An importance measure
based on local curvature measures would generate a poor approximation like the one shown dashed
(selected features marked with dots).

In one dimension, |H ′′| is a good curvature measure. Since H is a discrete function, we esti-
mate its derivatives numerically using central differences. Note that this measure of importance is
independent of the current approximation; it is essentially a feature method [17]. Hence, it lends
itself to a one pass approach: compute values for |H ′′| at all points and select the m points with
the highest values. However, the method is over-sensitive to high frequency variations. A series
of extreme and rapid fluctuations, such as a saw tooth, which are relatively small in scale, are
not visually significant when viewed at a distance; however, each fluctuation would seem like an
important feature and would therefore be allocated points which might be better used elsewhere
(Figure 3). In order to circumvent this problem, we performed an initial smoothing pass with a
Gaussian filter and computed derivatives on this smoothed function in order to estimate curvature
at various scales (points were still selected from the original unsmoothed version). The filtering
pass removed small fluctuations but left large features intact [24].

This scheme appeared promising in several respects. First, the algorithm was much faster than
iterative refinement techniques because the final approximation can be constructed in a single pass.
Second, by increasing the standard deviation of the Gaussian kernel, the smoothing preprocess
could smooth away progressively larger details. Finally, the measure satisfied the criteria which we
have suggested above. Unfortunately, when tested on curve simplification problems, the resulting
approximations were not of comparable quality to those produced by the local error measure.

Because the curvature measure was inferior in one dimension, we did not test it in two dimen-
sions. We will describe how it could be generalized to two dimensions, however. One might think
that the Laplacian, ∂2H/∂x2 + ∂2H/∂y2, would be a good measure of curvature for functions of
two variables. The Laplacian is a poor measure, however, because it sums the curvatures in the
x and y directions, and these could cancel, as at a saddle. Consider H(x, y)=ax2 − ay2, for any
a, for example. A better measure is the sum of the squares of the principal curvatures [37], which
can be computed as the square of the Frobenius norm of the Hessian matrix (known as the second
fundamental form in differential geometry [36]): (∂2H/∂x2)2 + 2(∂2H/∂x∂y)2 + (∂2H/∂y2)2. Simi-
lar curvature measures have been explored for approximation purposes by others [25, 33, 32]. We
do not expect such measures to yield high quality approximations, however, since the curvature
approach did not work well for curves.

3.3. Global Error Measure

We next tested the global error, or sum of errors over all points, as an importance measure. We
expected that this “more intelligent” error measure would yield higher quality results than the local
error measure, but at a penalty in speed.
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At every point, we compute the global resultant error of a new approximation formed by adding
that point to the current approximation, measured as

∑
x,y |H(x, y)− (T S)(x, y)|. Then we merely

select the point that produces the smallest global error. This approach is similar to one move
look-ahead in game playing algorithms, or hill climbing. Compared to the local error measure,
instead of simply assuming that the addition of points of high local error will in fact decrease the
global error, it chooses the point which actually minimizes the global error. This measure violates
one of our stated criteria; it is not local. However, it seemed that this approach might give better
results than the previous measure.

The algorithm would seem prohibitively expensive, but it is not, at least in one dimension. If
you are willing to sacrifice O(n) space and time to precompute several partial sum arrays, the
global error resulting after the introduction of a point can be computed in constant time.

When tested on curves, the global error measure yielded poor results. This was surprising, since
we had expected it to yield better results than the simpler local error measure. This is simply
an instance of a standard problem with hill climbing optimization methods: they are too short
sighted. It is often necessary to make several “bad” moves in the short term to achieve long term
success. In our case, accurately fitting a particular feature might require the addition of at least
two points. It is quite possible that introducing the first point will introduce significant error which
will be eradicated by introducing the second point. The global error measure is too conservative;
it is too concerned with the immediate consequences of inserting any particular point and not
knowledgeable enough to see possible future benefits from this action. While it might be possible
to fix this behavior using a standard technique such as simulated annealing, this would only further
increase the cost of this already expensive algorithm. It appears unlikely that this high expense
would produce correspondingly better results than those achieved using the simpler local error
measure.

A second problem with the global error measure is that there does not appear to be a general-
ization of the partial sum trick that would permit errors over triangles to be computed in constant
time.

3.4. Product Measures

The last approach to measuring importance which we explored was another attempt to improve
upon the local error measure. One would think that this could be improved upon using a more
informed heuristic function. We tested the performance of a set of related measures formed by
the product of several simpler measures2. The method we used was to combine one or more of
the importance measures given above with some bias measures. Two examples of bias measures
are: absolute height, and the ratio of the number of unselected points in a region to the number
of points remaining to be selected. Using these product measures, we were able to achieve results
which were only slightly poorer than those produced by the local error measure. However, product
measures are more complex, and hence more expensive, than any of the measures discussed so far
with the exception of global error. Thus, the resulting algorithm was significantly slower.

2We use products rather than sums because the units of measure of the constituent terms are generally unrelated.
Thus, simple summation does not yield meaningful information.
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3.5. Decimation Algorithms

We next investigated decimation variants of two of these measures. The curvature measure has
no decimation variant since it is not iterative, and decimation with the local error measure is
essentially the same as Lee’s drop heuristic algorithm [22].

We tested decimation variants of the global error measure and the product measure on curves.
The results were interesting, but ultimately poorer than other methods. We found that the global
error measure produced more accurate approximations when used in a decimation algorithm than
in a refinement algorithm. Proceeding from a detailed approximation to a cruder one ameliorated
the problems of the global error measure; in a decimation algorithm there seems to be less need to
look several moves ahead. Thus, if the algorithm simply removes the point whose absence adds the
smallest error to the approximation, this will lead to a good approximation in most cases. Product
measures incorporating the global error measure also performed better in a decimation algorithm,
but the performance of other product measures was essentially unchanged. However, the results of
these decimation algorithms were still slightly less accurate than those produced by the local error
measure.

3.6. Conclusions from Importance Measure Experiments

Importance measures which make no reference to the approximation (such as most feature methods)
were not very successful in our experiments. A fundamental flaw of most such methods is that
they give no guarantee about the accuracy of their approximations. The cause of this low quality
seems to be the independence and locality of decisions made by most of these algorithms.

A terrain that is rough at a small scale but nearly planar at a large scale (e.g., a city) will
have many high-importance points, while a terrain that is smooth at a small scale and rough at a
large scale (e.g., rolling hills) will have few. If these two terrain types are both present in a single
dataset, too many features will be devoted to regions of the first type and too few to the latter,
leading to poor simplification, as shown in Figure 3. The methods behave poorly in the presence
of noisy height data for similar reasons.

After empirical comparison of results from the above methods, we settled on the local error
measure for iterative refinement. We found that it was the simplest to implement, produced more
accurate results than any of our alternatives, and was faster than all but the curvature measure.
We will demonstrate in the following sections that this algorithm is easily generalized to other
simplification problems, and that it can be fast.

4. Greedy Insertion

We call refinement algorithms that insert the point(s) of highest error on each pass greedy insertion
algorithms, “greedy” because they make irrevocable decisions as they go [4], and “insertion” because
on each pass they insert one or more vertices into the triangulation. Methods that insert a single
point in each pass we call sequential greedy insertion and methods that insert multiple points in
parallel on each pass we call parallel greedy insertion. The words “sequential” and “parallel” here
refer to the selection and re-evaluation process, not to the architecture of the machine. Many
variations on the greedy insertion algorithm have been explored over the years; apparently the
algorithm has been reinvented many times [10, 7, 18, 31, 28, 11, 30].

We now explore four variants of the sequential greedy insertion algorithm. Our first method,
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algorithm I, is a brute force implementation of sequential greedy insertion with Delaunay triangu-
lation. This algorithm is quite slow, so we present two optimizations. Algorithm II exploits the
locality of changes to the triangulation to eliminate redundant recalculation of error, and algo-
rithm III goes further, employing better data structures to speed selection of the point of highest
error. The result is an algorithm that computes high quality approximations very rapidly. Next, we
take this algorithm and replace Delaunay triangulation with data-dependent triangulation, yielding
algorithm IV, which generates slightly higher quality approximations than algorithm III.

4.1. Basic Algorithm

We begin with some basic functions that query the Delaunay mesh3 and perform incremental
Delaunay triangulation. The routine Mesh Insert locates the triangle containing a given point,
splits the triangle into three, and then recursively checks each of the outer edges of these triangles,
flipping them if necessary to maintain a Delaunay triangulation (Figure 4) [13].

Mesh Insert(Point p): Insert p as a vertex in the Delaunay mesh

Mesh Locate(Point p): Find the triangle in the mesh containing point p

Locate and Interpolate(Point p): Locate the triangle containing point p and interpolate there

Insert(Point p ):
mark p as used
Mesh Insert(p)

Error(Point p ):
% Returns the error at a point (our importance measure)
return |H(p)− Locate and Interpolate(p)|

The heart of the algorithm is sequential greedy insertion, much as described in earlier work
[7, 31, 11]. It is simple and unoptimized. We build an initial approximation of two triangles using
the corner points of H . Then we repeatedly scan the unused points to find the one with the largest
error and call Insert to add it to the current approximation. The conditions for termination
are stated abstractly as a function Goal Met; they would typically be based on the number of
points selected, the maximum (L∞) error of the approximation, or the squared (L2) error of the
approximation.

3The terms “mesh” and “triangulation” are used synonymously henceforth.
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Algorithm I:

Greedy Insert():
initialize mesh to two triangles with the height field grid corners as vertices
while not Goal Met() do

best ← nil
maxerr ← 0
forall input points p do

err ←Error(p)
if err > maxerr then

maxerr ← err
best ← p

Insert(best)

4.1.1. Cost Analysis of Algorithm I

Let us consider the time complexity of this algorithm. For the purposes of analysis, we will assume
that our input grid has a total of n points and that m points will be selected for the approximation.
For now, suppose that L is the time to locate one point in the Delaunay mesh and I is the time to
insert a vertex in the mesh. Let i be the pass number.

Within each pass, we classify costs into three categories:

selection to pick the best point,

insertion to insert a vertex into the mesh, and

recalculation to recalculate errors at grid points.

To find the best point, we scan through O(n) points4 performing comparisons. We perform a single
mesh insertion which has cost I . Finally, for every unused point, of which there are O(n−i)=O(n),
we must also perform a recalculation. Recalculation involves a mesh location query to find that
point’s containing triangle and an interpolation to find the value of the approximation at that point.
The cost for each location is L and the cost for each interpolation is O(1). The cost for location
might increase with successive passes, since the number of vertices in the mesh at the beginning of
pass i is i+4. So the cost of recalculation on each pass is O(nL).

Worst Case Cost. The cost of location, L, and the cost of insertion, I , are mesh-dependent. A
planar triangulation with v vertices total, vb of them on the boundary, will have 3v−vb−3 edges and
2v−vb−2 triangles [21]. Typically, vb=O(

√
v), in which case the number of edges is approximately

3v and the number of triangles is about 2v, but in any case, the number of edges and the number
of triangles are each O(v).

For point location, we can use the simple “walking method” due to Guibas-Stolfi, Green-Sibson,
and Lawson [13, p. 121], [12], [21]. This algorithm starts on an edge of the mesh, and walks
through the mesh toward the target point until it arrives at the target. If it were to start in a very
unlucky spot, on a mesh with i + 4 vertices, it might have to walk across almost all O(i) edges.
Mesh insertion involves locating the containing triangle of a point, inserting a new vertex there,
and potentially flipping some edges. At worst, the location will require O(i) time, and O(i) edges

4It would require too much space to represent the set of input points explicitly. Therefore we assume that it is
represented as a Boolean array recording whether a particular entry has been used or not. Thus, the entire array H
must be scanned in order to find the unused points.
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will need to be flipped. So mesh location and insertion can require time linear in the number of
points in the mesh, and L=I=O(i).

Thus, in the worst case, the costs per pass for algorithm I are: O(n) for selection, O(i) for
insertion, and O(in) for recalculation. The asymptotically dominant term is recalculation, so the
total worst case cost is

∑m
i=1 O(in) = O(m2n).

Expected Case Cost. Fortunately, the worst case behavior is very unlikely. In practice, it is the
expected cost behavior which we observe. So the expected cost is a much more important measure
of the practical speed of the algorithm.

The expected cost for random access location queries in a Delaunay mesh with v vertices for
typical point distributions is only L=O(

√
v) [13, 14]. However, if successive location queries are

close together, then the location procedure can start its search at the triangle returned by the
previous call so that very few steps will be needed to find the next target point. In this situation,
the expected cost of location is L=O(1) [13].

In the algorithm above, point location queries almost always occur near one another. All but a
few of them are made in the process of scanning the unused points. Since this scanning proceeds
across each row in order, successively scanned points are almost always nearby and are usually direct
neighbors. Of course, it is possible to construct meshes in which both insertion and location will
have linear cost. We cannot guarantee that this will never happen, but the conditions under which
this behavior might arise are very uncommon. In the course of our experiments, this degeneracy
has never yet occurred in practice. So the expected cost of location during recalculation is L=O(1).

Insertion involves a location query that usually does not exhibit as much spatial coherence as
location queries due to recalculation, so its expected cost in this context is L=O(

√
i). The other

costs of insertion are due to edge flips. On average, the number of edge flips is constant, and each
takes constant time, with Delaunay triangulation, so the expected cost for insertions is I=O(

√
i).

Assuming L=O(1) and I=O(
√
i) in the expected case, the costs per pass for algorithm I are:

O(n) for selection, O(
√
i) for insertion, and O(n) for recalculation. The asymptotically dominant

terms are selection and recalculation, so the total expected case cost is
∑m
i=1 O(n) = O(mn).

4.2. Faster Recalculation

The algorithm above yields high quality results. However, even our expected time complexity esti-
mate of O(mn) is expensive, and the worst case complexity of O(m2n) is exorbitant. Fortunately,
we can improve upon our original naive algorithm considerably by exploiting the locality of the
changes to the approximation during incremental Delaunay triangulation.

4.2.1. Delaunay Triangulation

The incremental Delaunay triangulation algorithm is illustrated in Figure 4, and works as follows
[13, 21]: To insert a vertex A, locate its containing triangle, or, if it lies on an edge, delete that
edge and find its containing quadrilateral. Add “spoke” edges from A to the vertices of this
containing polygon. All perimeter edges of the containing polygon are suspect and their validity
must be checked. An edge is valid iff it passes the circle test: if A lies outside the circumcircle of
the triangle that is on the opposite side of the edge from A. All invalid edges must be swapped
with the other diagonal of the quadrilateral containing them, at which point the containing polygon
acquires two new suspect edges. The process continues until no suspect edges remain. The resulting
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triangulation is Delaunay.

4.2.2. Exploiting Locality of Changes

After insertion, the point inserted will have edges emanating from it to the corners of a surrounding
polygon [13]. This polygon defines the area in which the triangulation has been altered, and hence,
it defines the area in which the approximation has changed (see Figure 4c). We call this polygon the
update region. Such coherence permits our first significant optimization: we will cache the values of
Error and recompute them only within the update region. We define an array Cache containing
error values indexed by the set of input points. We must make only three small modifications to
our earlier algorithm: alter Greedy Insert to initialize Cache, change Insert to update values
in Cache that have changed due to insertion, and make the main loop of Greedy Insert look
up values in Cache rather than calling Error directly. We can visit all grid points in the update
region by scan converting the triangles surrounding the inserted point. Or, even simpler, we can
overestimate the update region by computing the bounding box of these triangles. The modified
portions of the algorithm now look like:

Algorithm II:

Insert(Point p ):
mark p as used
Mesh Insert(p)
forall points q inside the triangles incident on p do

Cache[q] ←Error(q)

Greedy Insert():
initialize mesh to two triangles with the height field grid corners as vertices
forall input points p do

Cache[p] ←Error(p)
while not Goal Met() do

best ← nil
maxerr ← 0
forall input points p do

err ←Cache[p]
if err > maxerr then

maxerr ← err
best ← p

Insert(best)

4.2.3. Cost Analysis of Algorithm II

As with the original algorithm, the three categories of expense remain: selection, insertion, and
recalculation (the latter involving both location and interpolation). The costs for selection and
insertion are unchanged, but we now perform far fewer recalculations in most cases. Let A be the
area of the update region on pass i. We are still doing a location query for each recalculated point,
so the cost per pass for recalculation is O(AL) for location and O(A) for interpolation.

Worst Case Cost. In the worst case, the area to be updated shrinks by only a constant amount
on each pass, so A=O(n− i). While this is only true of pathological cases, it is still a possibility.
In this case, the cost for recalculation is the same as in the original algorithm, and this remains
the dominant cost, so the worst case complexity for algorithm II is unchanged at O(m2n).
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Figure 4: Delaunay triangulation: a) Point A is about to be inserted. Spoke edges from A to the
containing polygon ZBD are added. b) The quadrilateral around suspect edge BD is checked using
the circle test. The circumcircle of BCD contains A, so edge BD is invalid. c) After swapping edge
BD for AC, edges BC and CD become suspect. The polygon ZBCD is the only area of the mesh
that has changed.

Expected Case Cost. For most surfaces, the update region has expected area A=O(n/i), since
n points divided among approximately 2i triangles gives an average area of O(n/i). As discussed
in the analysis of the original algorithm, the expected costs per pass for location and insertion
are L=O(1) and I =O(

√
i), respectively. The costs per pass for algorithm II are thus: O(n) for

selection, O(
√
i) for insertion, and O(n/i) for recalculation. The asymptotically dominant term is

now selection, recalculation having become less expensive, so the total expected case cost is also
unchanged:

∑m
i=1O(in) = O(mn).

If we consider only the asymptotic time complexities, this new algorithm appears no faster
than the original naive version, but that is not true in practice. Firstly, the worst case behavior for
algorithm II is even more unlikely than it was for algorithm I. Secondly, asymptotic complexities can
hide significant constants. In the expected case, the constant factors have decreased significantly.
In particular, in algorithm I both recalculation and selection had an expected per-pass cost of
O(n). In algorithm II, only selection has an expected cost of O(n) per pass; the expected cost for
recalculation per pass has dropped to O(n/i). The constant cost factor for recalculation is much
higher than that for selection, so recalculation is the dominant cost of algorithm II in practice.
Since recalculation has a total expected cost5 of only

∑m
i=1O(n/i) = O(n logm), our new algorithm

should be much faster than the original. This conclusion is supported by empirical timing data
presented later.

4.3. Faster Selection

This leads us to the next avenue of optimization. The asymptotic expected cost of our algorithm
is being held up by the cost of scanning the entire input grid to select the best point. This could
be done more quickly with a heap [4] or other fast priority queue. We define the candidate point
of a triangle to be the grid point within the triangle that has the highest error in the current
approximation. Each triangle can have zero or one candidate point. Most triangles have one
candidate, but if the maximum error inside the triangle is negligible, or there are no input points
inside the triangle, then the triangle has none. Candidates are maintained in a heap keyed on their
errors. During each pass, we simply extract the best candidate from the top of the heap.

After selection, a second expensive activity in algorithm II is recalculation. Even though it

5Recall that
∑m

i=1
1/i = O(logm) and

∑m

i=1
log i = O(m logm).

12



doesn’t dominate the expected case complexity analysis, recalculation is very expensive in practical
terms. So far, the Error function used for recalculation has done a point location to find the
enclosing triangle and an interpolation within the triangle. In our implementations of algorithms
I and II, interpolation is done by computing the plane defined by the three corners of the triangle
and evaluating this plane equation at the specified point. All this is done each time a point’s error
is recalculated. Recalculation can be sped up in two ways. First, we can eliminate point location
altogether, by recording with each candidate a pointer to its containing triangle. Second, we can
speed up interpolation by a constant factor by precomputing plane equations and caching them
with the triangle. As we scan convert a triangle, we track the best candidate seen so far.

4.3.1. Data Structures

Since the data structures are becoming more complex, we will describe them more precisely. Algo-
rithm III, to be presented shortly, has the following primary data structures: planes, height fields,
triangulations, and heaps. The plane data structure is little more than three coefficients a, b, and
c for a plane equation H=ax+ by + c.

The height field consists of a rectangular array of points, each of which contains a height value
H(x, y), and a bit to record if the input point has been used by the triangulation.

For the triangulation, we use a slight modification to Guibas and Stolfi’s quad-edge data struc-
ture [13], consisting of 2-D points, directed edges, and triangles in an interconnected graph. Each
edge points to neighboring edges and to a neighboring triangle. Triangles contain a pointer to one
of their edges, information about their candidate (its position candpos and a pointer into the heap
heapptr) and the error over the triangle err. The pointer into the heap allows candidates to be
updated quickly and also allows fast retrieval of the candidate’s error.

The heap is a binary tree of records, each consisting of the candidate’s error and a pointer to
the triangle to which the candidate belongs. The latter information allows point location to be
done in constant time after the candidate of highest error is extracted from the heap.

Note that depending on the details of the point inclusion test used or the scan conversion
algorithm, points on an edge might be considered to be “inside” both of the adjacent triangles,
in which case neighboring triangles might have identical candidates (see Figure 11). To avoid
multiple visits to edge points, one could use rational arithmetic during scan conversion. A careful
scan converter can also insure that vertices of the triangles are never visited. This can remove
the need for the Boolean array of “used bits”, provided that they are not needed for any other
purposes. In our experience, this is a minor detail; the algorithm will work whether edge points
are multiply counted or not.

4.4. Optimized Delaunay Greedy Insertion

With selection speeded by a heap, location eliminated, and faster interpolation, our optimized
algorithm is now:
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Algorithm III: Delaunay Greedy Insertion:

HeapNode Heap Change(HeapNode h, float key, Triangle T ):
% Set the key for heap node h to key, set its triangle pointer to T , and adjust heap.
% Return (possibly new) heap node.
if h 6= nil then

if key > 0 then
Heap Update(h, key)% update existing heap node

else
Heap Delete(h) % delete obsolete heap node
return nil

else
if key > 0 then

return Heap Insert(key, T)% insert new heap node
return h

Scan Triangle(Triangle T ):
plane ←Find Triangle Plane(T)
best ← nil
maxerr ← 0
forall points p inside triangle T do

err ←|H(p)− Interpolate To Plane(p, plane)|
if err > maxerr then

maxerr ← err
best ← p

T.heapptr ←Heap Change(T.heapptr, maxerr, T)
T.candpos ← best

Mesh Insert(Point p, Triangle T): Insert a new vertex in triangle T , and update the Delaunay mesh

Insert(Point p, Triangle T ):
mark p as used
Mesh Insert(p, T) % incremental Delaunay triangulation
forall triangles U adjacent to p do

Scan Triangle(U)

Greedy Insert():
initialize mesh to two triangles with the height field grid corners as vertices
forall initial triangles T do

Scan Triangle(T)
while not Goal Met() do

T ←Heap Delete Max()
Insert(T.candpos, T)

4.4.1. Cost Analysis of Algorithm III

Asymptotically, the most significant speedup relative to algorithm II is faster selection. In practice,
optimization of interpolation is probably equally important.

In the new algorithm, time for selection is spent in three places: heap insertion, heap extraction,
and heap updates. Clearly, the growth of the heap per pass is bounded by a constant, the net
growth in the number of triangles, which is 2. However, the heap does not always grow this fast.
In particular, as triangles become so small or so well fit to the height field as to have no candidate
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Algorithm Selection Insertion Recalculation
I O(n) O(i) O(in)
II O(n) O(i) O(in)

III or IV O(log i) O(i) O(n)

Table 1: Worst case cost per pass, for pass i

points, they will be removed from the heap. The heap grows initially at 2 items per pass, and
as refinement proceeds, the growth slows and eventually the heap will begin to shrink. Typically,
the approximations that we wish to produce are much smaller than the original height fields.
Consequently, the algorithm will rarely realize any significant benefit from shrinking heap sizes.
We will simply assume that the size of the heap is O(i), and thus, that individual heap operations
require O(log i) time in an amortized sense.

The number of changes made to the heap per pass is 3 plus the number of edge flips performed
during mesh insertion. We assume that this is a small constant number. This is both reason-
able and empirically confirmed on our sample data; in practice, the number of calls over time to
Heap Change per pass is roughly 3–5. Given this assumption, the total heap cost, and hence
selection cost, is O(log i) per pass.

The other two tasks, insertion and recalculation, are also cheaper now, since neither performs
locations. The cost of recalculation has dropped from O(AL) to O(A).

Worst Case Time Cost. In the worst case, the insertion time is I=O(i) and the update area
is A=O(n), so the costs per pass for algorithm III are: O(log i) for selection, O(i) for insertion,
and O(n) for recalculation. The asymptotically dominant term is recalculation, as before, but it is
much smaller now; the total worst case cost is only

∑m
i=1 O(n) = O(mn).

Expected Case Time Cost. In the expected case, the cost of insertion is I = O(1) and the
size of the update region is A = O(n/i). Insertion has become very cheap because it no longer
does a location query, and in the expected case we perform only a constant number of edge flips.
The costs per pass for algorithm III are thus: O(log i) for selection, O(1) for insertion, and O(n/i)
for recalculation. The selection cost grows as the passes progress, while the recalculation cost
shrinks. These two are the dominant terms. The total expected case cost for algorithm III is
thus:

∑m
i=1 O(log i+ n/i) = O((m+n) logm), which is much lower than that for the preceding two

algorithms.

Memory Cost. Algorithm III uses memory for three main purposes: the height field, the mesh,
and the heap. The height field uses space proportional to the number of grid points n, and the mesh
and heap use space proportional to the number of vertices in the mesh, m. Asymptotically, the
memory cost is thus O(m+n). See section 5.2 for a detailed analysis of our current implementation.

Cost Summary. The complexity figures for the three algorithms presented are summarized in
Tables 1, 2, and 3. Tables 1 and 2 detail the worst and expected costs per pass, respectively.
Table 3 provides a summary of the total worst case and expected time complexity for each of the
algorithms.
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Algorithm Selection Insertion Recalculation

I O(n) O(
√
i) O(n)

II O(n) O(
√
i) O(n/i)

III or IV O(log i) O(1) O(n/i)

Table 2: Expected case cost per pass, for pass i

Algorithm Worst Case Expected
I O(m2n) O(mn)
II O(m2n) O(mn)

III or IV O(mn) O((m+ n) logm)

Table 3: Time complexity summary

4.5. Data-Dependent Triangulation

The previous algorithms employ Delaunay triangulation, which uses only two-dimensional (xy)
information, and strives to create well-shaped triangles in 2-D. Delaunay triangulation ignores the
heights of vertices and makes no use of the height field being approximated. More accurate approx-
imation is possible using data-dependent triangulation, where the topology of the triangulation is
chosen based on the three-dimensional fit of the approximating surface to the input points.

Data-dependent variants of the greedy insertion algorithms described can be created by replacing
Delaunay triangulation with data-dependent triangulation, as discussed by Rippa and Hamann-
Chen [31, 15]. The vertex to insert in the triangulation on each pass is chosen as before, but the
triangulation is done differently.

The incremental Delaunay triangulation algorithm of section 4.2.1 tested suspect edges using a
purely two-dimensional geometric test involving circumcircles. A generalization of this approach,
Lawson’s local optimization procedure [21], uses other tests. For data-dependent triangulation,
instead of checking the validity of an edge with the circle test, the rule we adopt is that an edge is
swapped if the change decreases the error of the approximation. We defer the definition of “error”
until later. When used with the circle test, the local optimization procedure finds a global optimum,
the Delaunay triangulation, but when used with more general tests, it is only guaranteed to find a
local optimum.

Figure 5 illustrates the data-dependent triangulation algorithm. Figure 5a: suppose that point
A has the highest error of all candidates. It will be the next vertex inserted in the triangulation.
Figure 5b: spokes are added connecting it to the containing polygon (a triangle, if A falls inside
a triangle; a quadrilateral, if A falls on an edge). Each edge of the containing polygon is suspect,
and must be tested. In some cases, the quadrilateral containing the edge will be concave, and can
only be triangulated one way, but in most cases, the quadrilateral will be convex, and the other
diagonal must be tested to see if it yields lower error.

The most straightforward way to test validity of an edge BD would be the following recursive
procedure: Test both ways of triangulating the quadrilateral ABCD containing the edge. If edge BD
yields lower global error (Figure 5c), then no new suspect edges are added, and we stop recursing.

16



★
A

Z

D

A
P

B

C

D

B

C

D

A

B

C

D

A

B

C

★

★

★

★

Z

a dcb

★

Z

Figure 5: Data-dependent triangulation. a) Point A, the candidate of triangle ZBD, is about to be
inserted. Stars denote candidate points. Spoke edges from A to the containing polygon ZBD are
added. b) The quadrilateral ABCD around suspect edge BD is checked. ABCD can be triangulated
in two ways, using diagonals BD or AC, which intersect at point P. c) If BD yields the lowest error,
then we have the new triangle ABD and the old triangle CDB. d) If AC has lowest error, then we
have the new triangles DAC and BCA, the containing polygon expands to ZBCD, and edges BC
and CD become suspect.

If swapping edge BD for edge AC would reduce the global error of the approximation (Figure 5d),
then swap the edge to AC, and recurse on the two new suspect edges, BC and CD. When all suspect
edges have been tested, it is then necessary to update the candidates for all the triangles in the
containing polygon. This straightforward approach requires scan converting most of the triangles
in the local neighborhood twice: once to test for swapping and once to find candidates.

A faster alternative is to scan convert once, computing both the global error and the candidate
in one pass. This is about twice as fast. To do this, we split the quadrilateral ABCD with its two
diagonals into four subtriangles: PDA, PAB, PBC, and PCD, where P is the intersection point of
the two diagonals (Figure 5b). This splitting is conceptual; it is not a change to the data structures.
As each of the four subtriangles is scan converted, two piecewise-planar approximations are tested.
For subtriangle ABP, for example, the planes defined by ABD and BCA are both considered. The
other subtriangles have different plane pairs. During scan conversion of each subtriangle, for each
of its two planes, the contribution to the triangulation’s total error is calculated, and the best
candidate point and its error is calculated. After scan conversion, the subtriangles’ errors and
candidates are combined pairwise to determine the error and candidates for each of the two pairs
of triangles: ABD and CDB, versus BCA and DAC. Note that triangle CDB is an old triangle in
all cases except the first, mesh initialization, call so its error and candidate have previously been
computed, and need not be recomputed.

The algorithm uses all of the previous data structures plus a new one, the FitPlane. A FitPlane
is a temporary data structure that stores an approximation plane and other information. During
scan conversion of the four subtriangles, it accumulates information about the error and candidate
for a triangle approximated by a plane. Specifically, it contains the coefficients for the planar
approximation function plane, the candidate’s position candpos and error canderr, the error over
the triangle err, and a done bit recording whether the triangle was previously scanned.

The Triangle and Heap data structures cache information about candidates and errors that is
re-used during data-dependent insertion. A FitPlane can be initialized from this information with
the subroutine FitPlane Extract(Triangle T), which also marks the FitPlane as done. When
a new triangle is being tested, the call FitPlane Init(a, b, c) will initialize a FitPlane to a plane
through the three points a, b, and c, with errors set to 0, and done = nil. One or more subsequent
calls to Scan Triangle Datadep are made to accumulate error and candidate information in
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the FitPlane. If this approximation plane turns out to be the best one, the heap is updated and
the error and candidate information is saved for later use with a call to Set Candidate (listed
below).

Other routines used below are Left Triangle and Right Triangle, which return the tri-
angles to the left and the right of a directed edge, respectively. The keyword var marks call-by-
reference parameters.

Algorithm IV: Data-Dependent Greedy Insertion:

Set Candidate(var Triangle T, FitPlane fit ):
T.heapptr ←Heap Change(T.heapptr, fit.canderr, T)
T.candpos ← fit.candpos
T.err ← fit.err

Scan Point(Point x, var FitPlane fit ):
err ←|H(x)− Interpolate To Plane(x, fit.plane)|
fit.err ←Error Accum(fit.err, err)
if err > fit.err then

fit.canderr ← err
fit.candpos ← x

Scan Triangle Datadep(Point p, Point q, Point r, var FitPlane u, var FitPlane v ):
% Scan convert triangle pqr, updating error and candidate for planes u and v.
% Plane u might be nonexistent or already done.
forall points x inside triangle pqr do

if u 6= nil and not u.done then
Scan Point(x, u)

Scan Point(x, v)

First Better( float q1, float q2, float e1, float e2 ):
% Return true iff edge 1 yields better triangulation of a quadrilateral than edge 2,
% according to shape and fit.
% q1 and q2 are “shape quality”, and e1 and e2 are fit error of the corresponding triangulations.
qratio ←Min(q1, q2) / Max(q1, q2)
% Use shape if shape of one triangulation is much better than other, otherwise use fit.
if qratio ≤ qthresh then

return (q1 ≥ q2) % shape criterion
else

return (e1 ≤ e2) % fit error criterion
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Check Swap(DirectedEdge e, FitPlane abd ):
% Checks edge e, swapping it if that reduces error, updating triangulation and heap.
% Error and candidate for the triangle to the left of e is passed in in abd, if available.
% Points a, b, c, d, and p are as shown in figure 5b, and e is edge from b to d.
if abd = nil then

FitPlane abd ←FitPlane Init(a, b, d)
if edge e is on perimeter of input grid or quadrilateral abcd is concave then

% Edge bd is good and edge ac is bad.
if not abd.done then

Scan Triangle Datadep(a, b, d, nil, abd)
Set Candidate(Left Triangle(e), abd)

else
% Check whether diagonal bd or ac has lower error.
FitPlane cdb ←FitPlane Extract(Right Triangle(e))
FitPlane dac ←FitPlane Init(d, a, c)
FitPlane bca ←FitPlane Init(b, c, a)
Scan Triangle Datadep(p, d, a, abd, dac)% scan convert the four subtriangles
Scan Triangle Datadep(p, a, b, abd, bca)
Scan Triangle Datadep(p, b, c, cdb, bca)
Scan Triangle Datadep(p, c, d, cdb, dac)
ebd ←Error Combine(abd.err, cdb.err)
eac ←Error Combine(dac.err, bca.err)
if First Better(Shape Quality(a, b, c, d), Shape Quality(b, c, d, a), ebd, eac) then

% keep edge bd
Set Candidate(Left Triangle(e), abd)
if not cdb.done then

Set Candidate(Right Triangle(e), cdb)
else

swap edge e from bd to ac
dac.done ← bca.done ← true
Check Swap(DirectedEdge cd, dac)% recurse
Check Swap(DirectedEdge bc, bca)

Insert Datadep(Point a, Triangle T ):
mark input point at a as used
in triangulation, add spoke edges connecting a to vertices of its containing polygon

(T and possibly a neighbor of T )
forall counterclockwise perimeter edges e of containing polygon do

Check Swap(e, nil)

Greedy Insert Datadep():
initialize mesh to two triangles with the height field corners as vertices
e := (either directed edge along diagonal of initial triangulation)
Check Swap(e, nil)
while not Goal Met() do

T ←Heap Delete Max()
Insert Datadep(T.candpos, T)

The routines Error Accum and Error Combine are used to accumulate the error over a
subtriangle, and to total the error of a pair of triangles, respectively. These can be defined in
various ways. For an L2 error measure, they should be defined:
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float Error Accum(float accum, float x ):
return accum+x ∗x

float Error Combine(float err1, float err2 ):
return err1+err2

and for an L∞ error measure, they should be defined:

float Error Accum(float accum, float x ):
return Max(accum, x)

float Error Combine(float err1, float err2 ):
return Max(err1, err2)

4.5.1. Combating Slivers

Pure data-dependent triangulation, which makes swapping decisions based exclusively on fit error,
will sometimes generate very thin sliver triangles. If the triangles fit the data well, and the surface
is being displayed in shaded (not vector) form, then slivers by themselves are not a problem. But
sometimes these slivers do not fit the data well, and lead to globally inaccurate approximations.
One approach which has been used to combat slivers is a hybrid of data-dependent and Delaunay
triangulation [31]. We wished to find a more elegant solution, however.

Our first hypothesis about the cause of the slivers was that narrow quadrilaterals containing few
or no input points were never having their diagonals swapped because of the boundary conditions
of the inequalities in our code (the case e1 = e2 = 0). With either the L2 or L∞ error norm
described above, triangles containing no input points will have zero error. To address this situation,
one can change the error formula to integrate the squared error between the piecewise planar
approximation and a bilinear interpolation of the height field grid, instead of simply summing on
the grid. This integrated error norm will yield nearly identical results for fat triangles, but it can be
quite different for slivers. For a sliver triangle containing no input points, integration will penalize
those that deviate from the heights of the input points surrounding the middle of the triangle,
while summation will not.

To our surprise, empirical tests disproved this hypothesis, however. When run on both synthetic
and real DEM data, pure data-dependent triangulation using an integration error norm yielded no
significant improvement over the same algorithm with a summation error norm; it was sometimes
a bit better, and sometimes a bit worse. We therefore abandoned the idea of integration in the
error norm, and reluctantly adopted a hybrid algorithm.

The pseudocode above implements this hybrid. The procedure Shape Quality(a, b, c, d)
returns a numerical rating of the shape of the triangles when quadrilateral abcd is split by edge bd.
The parameter qthresh is a quality threshold. When set to 0, pure data-dependent triangulation
results, when set to 1, pure shape-dependent triangulation results, and when set in between, a
hybrid results. If Shape Quality returns the minimum angle of the triangles abd and cdb, then
this shape-dependent triangulation will in fact be Delaunay triangulation. The hybrid method
tended to yield the lowest error approximations overall.

4.5.2. Cost Analysis of Algorithm IV

In a greedy insertion algorithm, the data-dependent triangulation method described above is slower
than Delaunay triangulation because it requires about twice as many error recalculations during
scan conversion. The asymptotic complexities are identical to algorithm III. Thus, algorithm IV’s
worst case cost is O(mn) and its expected cost is O((m+n) logm).

20



x e1

e2e3

e4

e5

e6

Figure 6: When doing point location on point x in the triangulation above, using Guibas and
Stolfi’s walking method, if we start at edge e1, the algorithm loops forever with the sequence of
edges shown. Randomization fixes the problem.

4.5.3. A Problem with Location

In the process of testing this algorithm, we discovered that on some of our data-dependent tri-
angulations, Guibas and Stolfi’s walking method for point location [13, p. 121], [12], [21] would
occasionally loop forever. This was not an implementation error, but a fundamental bug in that
algorithm for certain triangulations (see Figure 6). We have never seen this problem arise in al-
gorithms I-III, so we conjecture that it only occurs for non-Delaunay triangulations. Guibas and
Stolfi recommended this method for point location in the context of Delaunay triangulation, so
perhaps they had never tested it on more general triangulations.

Of course, there are algorithms for point location among m triangles that operate in O(logm)
time [29] that we could use instead, but since the walking method requires only a few lines of code
and no preprocessing or extra memory, and it has expected cost of O(1) with the query patterns
typical of our algorithms, there is little practical reason to abandon it.

If our conjecture is right, then Guibas and Stolfi’s walking method will work fine in algorithms
I-III, and since algorithm IV never does point location, this looping bug described will never be
exercised there. Nevertheless, for testing purposes it is helpful to have a point location routine that
works on general triangulations, so we have modified Guibas and Stolfi’s algorithm. We pick the
edge to step across at random whenever an arbitrary choice must be made. With this algorithm,
the worst case cost of location on a general mesh is an unpleasant O(∞), as with the unmodified
location algorithm, but now this worst case has infinitesimal probability. Its expected cost is still
O(
√
i) for random access patterns and O(1) for highly coherent query patterns.

4.6. Extending the Algorithm

So far, we have developed algorithms for simplifying basic height fields, and we have described
techniques for making them faster without sacrificing quality. An additional strength of the greedy
insertion approach is its flexibility.

First, consider the case in which our data specifies more than just height. For instance, the grid
might contain measurements for some material property of the surface such as color, expressed as
an RGB triple. Our algorithm can be easily adapted to support such extended height fields. In
the simple case we have considered up to now, H(x, y)=z meant that (x, y, z) was a point on the
surface. An extended height field produces a tuple of values rather than a simple height; if color
were being measured, we might get H(x, y)=(z, r, g, b). We can think of this as sampling a set of
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distinct surfaces, one in xyz-space, one in xyr-space, and so on. We see here another reason to reject
triangulation schemes that attempt to fit specific surface characteristics; we now have 4 distinct
surfaces which need have no features in common. Given data for a generic set of surfaces, we can
apply the importance measure to each surface separately and then compute some kind of average
of these values. But when we know the precise interpretation of the data (i.e. the values represent
height and color), we can construct a more informed measure. Our old measure was simply |∆z|;
the most obvious extension to deal with color is |∆z|+M

3 (|∆r|+|∆g|+|∆b|). Here, M is the z-range
of H ; the M

3 term scales the total color difference to fit the range of the total height difference
(here we assume that color values are between 0 and 1). In order to achieve greater flexibility, we
can also add a color emphasis parameter, w, controlling the relative importance of height difference
and color difference. The final error formula would be: (1− w)|∆z|+ wM

3 (|∆r|+ |∆g|+ |∆b|).
To implement these changes, we simply added fields to the height field to record r, g, and

b, modified the FitPlane to retain planar approximations to these three additional surfaces, and
changed the error procedure to use the extended formula above.

These extensions allow our algorithm to be used to simplify terrains with color texture or
planar color images [35]. The output of such a simplification is a triangulated surface with linear
interpolation of color across each triangle. Such models are ideally suited for hardware-assisted
Gouraud shading [9] on most graphics workstations, and are a possible substitute for texture
mapping when that is not supported by hardware.

5. Results

We have implemented all four algorithms above. Our combined implementation of algorithms III
and IV consists of about 5,200 lines of C++. The incremental Delaunay triangulation module is
adapted from Lischinski’s code [23].

Figures 7–10 are a demonstration of algorithm III on a digital elevation model (DEM) for the
western half of Crater Lake. Figure 7 shows the full DEM dataset (a rectangular grid with each
quadrilateral split into two triangles). Our first approximation, shown in Figure 8, uses 0.5% of
the points in the original DEM. As you can see, it has defined the major features of the terrain,
but is lacking fine details. Next, Figure 9 shows an approximation using 1% of the total points.
This approximation contains significantly more detail than the first one. However, it is still clearly
different from the original. Finally, Figure 10 is an approximation using 5% of the original points.
This model contains most of the features of the original. Obviously, if the viewpoint were moved
progressively further from the terrains, the simpler approximations would become steadily harder
to differentiate from the original. Thus, we can see that with only a fraction of the original data
points, we can build high fidelity approximations. In a multiresolution database, we would produce
a series of approximations, for use at varying distances.

Color Figures 23–25 illustrate the application of height field simplification methods to the ap-
proximation of planar color images by Gouraud shaded triangles. Figure 24 shows approximation
by uniform subsampling as in the “nth-point algorithm”, and Figure 25 shows approximation by
data-dependent greedy insertion (algorithm IV), both using the same number of vertices. In both
cases, the best results (shown) were achieved by low pass filtering the input before approximating.
Clearly, greedy insertion yields a much better approximation.
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Figure 7: Original DEM data for West
end of Crater Lake (154,224 vertices).
Note the island in the lake.

Figure 8: Approximation using 0.5%
of the input points, generated by al-
gorithm III (771 vertices).

5.1. Speed of the Algorithms

We have tested the performance of the four incarnations of the simplification algorithm on an SGI
Indigo2 with a 150 MHz MIPS R4400 processor and 64 megabytes of main memory. For our tests
we have used several digital elevation models (DEMs). They are summarized in Table 4.

Figure 13 shows the running time of algorithm III on the various DEM datasets as a function of
points selected in the approximation. In all cases, it was able to select 50,000 points in under one
minute. In this and each of the following graphs, n is fixed (although it varies between datasets
of different sizes) and the horizontal axis is m. All of the data points in Figure 13 are fit by the

Name Dimensions Comments
Ashby 346× 452 Ashby Gap, Virginia
Crater 336× 459 West half of Crater Lake, Oregon
NTC 1, 024× 1, 024 Desert around Mt. Tiefort, California
Ozark 369× 462 Ozark, Missouri

West US 1, 024× 1, 024 Section of Idaho/Wyoming border

Table 4: DEM datasets used for testing the simplification algorithms.
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Figure 9: Approximation using 1% of
the input points, generated by algo-
rithm III (1,542 vertices).

Figure 10: Approximation using 5%
of the input points, generated by al-
gorithm III (7,711 vertices).

function

time(m, n) = .000001303n logm−.0000259m logm+.00000326 n+.000845m−0.178 logm+.1 sec.

with a maximum error of 1.7 seconds, supporting our O((m+n) logm) expected cost formula.

Figure 14 compares the running times6 of algorithms I–III on a 65× 65 synthetic terrain. As
you can see, the improvement due to our optimizations is dramatic. The running time of algorithm
III is dwarfed by the running time of the other two algorithms. This figure also provides another
significant point of comparison. In the time it takes algorithm III to select 50,000 points from a
1, 024×1, 024 terrain (46 seconds), algorithm I can only manage to select a few hundred points
from a 65× 65 terrain. These speedups were achieved without sacrificing quality; since algorithms
II and III are merely optimizations of algorithm I with no significant change in the points selected
or the approximation generated7.

To provide some insight into the component costs of simplification, we have collected some
further performance data in Figures 15 and 16. Figure 15 shows the total number of point inter-
polations performed as points are selected. Figure 16 outlines the total number of swap operations

6Timing curves in Figure 14 use relatively unoptimized inner loops. Other timing tests in this paper use inner
loops that are over four times faster.

7In the case of ties between candidates of equal importance, implementation details might cause a difference in
selection order.
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Figure 11: Delaunay mesh for Crater Lake,
generated by algorithm III (555 vertices).
Candidates are shown with dots. It is inter-
esting to note that most candidates fall near
edges.

Figure 12: Data-dependent mesh for Crater
Lake, generated by algorithm IV (555 ver-
tices).

performed in the heap. These graphs confirm two facts that we intuitively expected. First, the
cost of recalculation is very significant in early passes, but it quickly becomes much smaller. In
addition, the total cost due to managing the heap grows fairly steadily through time. From our
earlier analysis, we concluded that the cost per pass should be O(log i). However, from looking
at this graph, it would seem that the total number of swaps in the heap is growing by a constant
number at each pass. Indeed, for most of the shown curves, we can fit very good approximating
lines. However, such linear approximations would quickly fail if the fraction of points selected (the
ratio m/n) were larger. Heap growth continues until the algorithm begins to run out of unselected
input points, at which point the heap shrinks and heap movement decreases as well.

5.2. Memory Use

We now detail the memory requirements of our current implementation. Memory is divided between
the height field, the mesh, and the heap. For every point in the height field, we store one 2-byte
integer for the z value, and a 1-byte Boolean determining whether this point has been used. Thus,
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Figure 13: Running time of algorithm III on
several DEM datasets.

Figure 14: Running time of algorithms I, II,
and III on a 65× 65 synthetic fractal terrain.

these arrays consume 3n bytes. In the mesh, 16 bytes are used to store each vertex’s position, 68
bytes are used per edge, and 24 bytes per triangle, so assuming that the number of edges is about
3m and the number of triangles is about 2m, the memory required for a mesh with m vertices is
268m bytes. The heap uses 12 bytes per node, and the number of heap nodes is no more than the
number of triangles, so heap memory requirements are about 24m bytes.

Total memory requirements of the data structures in our implementation are thus 3n + 292m
bytes. Thus, for example, we estimate that selecting m= 10, 000 (about 1% of total) points from
an n=1, 0242 DEM would require about 6 megabytes of memory.

Our current implementation stores floating point numbers using double precision (8 bytes), and
uses the quad-edge data structure to store the mesh, which is less compact than some triangulation
data structures, so the program’s memory requirements could probably be cut in half if necessary.

5.3. Quality of the Approximations

We believe that the greedy insertion algorithm yields good results on most reasonably smooth
height fields. This can be verified both visually and with objective error metrics. Figures 17 and
18 show the RMS and maximum error, respectively, as an approximation for the Crater Lake DEM
is built one point at a time. These figures also show the error behavior for some variant insertion
policies, but we will ignore these for the moment. While we only show the error curves for a single
terrain, we have tested the error behavior on several terrains, and the curves all share the same
basic characteristics.

At a coarse level, the RMS error decreases quite rapidly initially and then slowly approaches 0.
In the limit as m→∞, the error of the L2-optimal triangulation converges as m−1 [26], but this
empirical data is better fit by the function m−.7. In the early phases of the algorithm, the error
fluctuates rather chaotically, but it settles into a more stable decline. The non-monotonic shape
of this curve suggests why simple hill-climbing algorithms, like the global error measure discussed
earlier, might easily fail: if they are unwilling to make a move that temporarily worsens the total
error, then they may be incapable of finding the global optimum.
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Figure 15: Interpolation cost in algorithm III
on several DEM datasets.

Figure 16: Number of swaps in the heap as
points are selected from the DEM datasets
with algorithm III.

For the same dataset, Figure 18 records how the maximum difference between the approximation
and the Crater Lake DEM progresses over time; in other words, this is the importance of the
point that was selected on each pass. Notice that it is much more chaotic than the total RMS
error. Initially, large spikes in the maximum difference correspond to large decreases in RMS
error. However, in later passes, significant spikes in the maximum error correspond to only minor
alterations in RMS error. In general, we find the RMS error to be a better measure of approximation
quality than maximum error, since it is less sensitive to outliers and gives steadier numbers with
all algorithms observed.

The hybrid of data-dependent triangulation with shape-dependent triangulation yielded the
lowest error overall. For our Shape Quality measure, we employed a simple formula which is the
product of the areas of the two triangles divided by the product of their approximate diameters.
While this does not yield Delaunay triangulation when qthresh = 1, we believe the difference is
negligible. A shape quality threshold of qthresh = .5 gave the best results in most cases. Empirical
tests showed that the lowest error approximations resulted when Error Accum used the Max

function while Error Combine used addition – thus, a combination of L∞ and L2 measures.

Delaunay greedy insertion (algorithm III) is compared to data-dependent greedy insertion (algo-
rithm IV) in Figures 19 and 20. The first shows that, for a given number of points, data-dependent
triangulation finds a slightly more accurate approximation than Delaunay triangulation. The ra-
tio of data-dependent RMS error to Delaunay RMS error is about .88 for this height field. The
second figure shows the time/quality tradeoff very clearly. With either algorithm, as the number
of points selected increases, the error decreases while the time cost increases. To achieve a given
error threshold, data-dependent greedy insertion takes about 3–4 times as long as Delaunay greedy
insertion, but it generates a smaller mesh, which will display faster.

Data-dependent triangulation does dramatically better than Delaunay triangulation on certain
surfaces [8]. The optimal case for data-dependent triangulation is a ruled surface with zero curva-
ture in one direction and nonzero curvature in another. Examples are cylinders, cones, and height
fields of the form H(x, y)=f(x)+ay. On such a surface, if a Delaunay-triangulated approximation
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Figure 17: RMS error of approximation as
vertices are added to the mesh, for Crater
Lake DEM, showing error curves for sequen-
tial insertion, fractional threshold parallel in-
sertion with two different fractions α, and
constant threshold parallel insertion with two
different thresholds ε.

Figure 18: Maximum error of approximation
as vertices are added to the mesh, for Crater
Lake DEM.

uses m roughly uniformly distributed vertices, then data-dependent triangulation could achieve the
same error with about 2

√
m points using sliver triangles that span the rectangular domain.

From our empirical tests, it seems that the surfaces for which data-dependent triangulation
excels are statistically uncommon among natural terrains. We conjecture that data-dependent
triangulation does not yield significantly higher quality approximations than Delaunay triangulation
for natural terrains, in general.

5.4. Sequential versus Parallel Greedy Insertion

In previous work, Puppo et al. tested both sequential and parallel greedy insertion and showed
statistics that suggest that the latter is better, saying: “. . .we show the results obtained by the
sequential and the parallel algorithm . . .Because of the more even refinement of the TIN, which is
due to the introduction of many points before the Delaunay optimization, our [parallel] approach
needs considerably fewer points to achieve the same level of precision” [30, p. 123].

We tested this claim by comparing our sequential greedy insertion algorithm against two variants
of parallel insertion. Both variants select and insert all candidate points p such that Error(p)≥ε,
where ε is a threshold value. Our implementation of algorithm III contains a data structure holding
the candidate for each triangle, so it was easily modified to select and insert more than one candidate
per pass.

The first insertion variant, which we call fractional threshold parallel insertion, selects all can-
didate points such that Error(p)≥ αemax, where emax is the maximum error of all candidates.
This is an obvious generalization of sequential insertion, which selects a single point such that
Error(p)=emax. Fractional thresholding with α=1 is almost identical to sequential insertion; it
differs only in that it may select multiple points with the same error value (this is closely related
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Figure 19: RMS error of approximation as
vertices are added to the mesh, for Crater
Lake DEM, comparing Delaunay triangula-
tion to data-dependent triangulation.

Figure 20: Time versus error plot for De-
launay and data-dependent triangulation on
Crater Lake DEM. Data-dependent triangu-
lation is slower, but higher quality. Data
points are marked with m, the number of ver-
tices selected.

to the approach of Polis et al. [28]). If α=0, fractional thresholding becomes highly aggressive and
selects every triangle candidate. Looking at the error graphs in Figures 17 and 18, we can see that
as α increases towards 1, the approximations become more accurate and converge to sequential
insertion.

The second insertion variant is the rule used by the latter passes of Fowler-Little and by Puppo
et al. [10, 30]. We call it constant threshold parallel insertion. In this case, ε is the constant error
threshold provided by the user. Thus, on each pass we select and insert all candidate points that
do not meet the error tolerance.

Our tests showed constant threshold parallel insertion to be poorer than sequential insertion.
The error curves for the constant threshold method in Figures 17 and 18 show it performing much
worse than sequential insertion or fractional thresholding. Comparing the meshes in Figures 11 and
21, we can see that the latter is obviously inferior. When an insertion causes a small triangle to be
created, it leads to a local change in the density of candidates. With the sequential method, smaller
triangles are statistically less likely to have their candidates selected, because they will typically
have smaller errors. In the parallel method, if the small triangles’ candidate is over threshold, it
will be selected, and a snowballing effect can occur, causing excessive subdivision in that area.
Even on a simple surface like a paraboloid, which is optimally approximated by a uniform grid,
the sequential method is better. On all tests we have run, sequential greedy insertion yields better
approximations than parallel greedy insertion.

De Floriani seems to have reached a similar conclusion. While comparing her sequential insertion
algorithm to a form of constant thresholding in which the selected points are not limited to one
per triangle, she said: “parallel application of such an algorithm by a contemporaneous insertion of
all points which have an associated search error greater than the tolerance and belong to the same
search region, could lead to the insertion of points which are not meaningful for an improvement
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Figure 21: Mesh for Crater Lake using con-
stant threshold parallel insertion, using a
variant of algorithm III (555 vertices). Can-
didates are shown with dots. Note the exces-
sive subdivision near the center and the poor
definition of the island.

Figure 22: Bad mesh caused by a cliff. Top
view of mesh generated by sequential greedy
insertion (algorithm III) for a terrain with
constant height 0 on the left half of the grid
and constant height 1 on the right half. From
a 100× 100 grid, 99 vertices were selected to
achieve zero error; 8 vertices suffice.

in the accuracy of the model” [7, p. 342].

6. Ideas for Future Research

Our experimentation has suggested several avenues for further research.

Using Extra Grid Information. The sequential greedy insertion algorithms we have described
could easily be generalized to accommodate and exploit additional information about the height
field being approximated. For instance, a particular application might wish to guarantee that
certain features of a terrain are preserved. It is trivial to preinsert critical points into the ap-
proximation mesh. If this is not sufficient, the triangulator can be replaced with a constrained
Delaunay triangulator [2], thus allowing arbitrary edges to be preinserted and left untouched by
later phases of the simplification process. Ridge lines, valley lines, roads, load module boundaries,
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and range data discontinuities [1] are examples of such features. In addition to specifying critical
features which will be maintained in the approximation, the user can also be given discretionary
control over point selection. The system could be trivially extended to support selective fidelity
[28], allowing an importance weight to be assigned to each vertex. Importance values computed at
a vertex would be scaled by the specified weight. Weight might also be represented as a function of
some sort; for instance, weight might be a function of height or slope. This extension would allow
the user to emphasize or de-emphasize certain areas of the height field, and thus gain more direct
control over the final approximation.

Speeding Early Passes. Early passes of our algorithms are slow because they entail scan con-
version and recomputation of error for large areas of the height field. This cost can be eliminated
if the vertex set is seeded in a hybrid feature/refinement approach, or if exhaustive scan conversion
is avoided. The challenge is to speed the algorithm without sacrificing approximation quality. One
approach is to choose initial points using variable-window feature selection [18]. Another is to
initialize a candidate point to the triangle’s centroid, then use a few iterations of hill climbing to
move it to the point of locally maximum error [10]. A third approach is to scan convert with sub-
sampling, only examining every kth point in x and y. The relative quality of the approximations
resulting from these optimizations is not known.

Combating Slivers. Pure data-dependent triangulation generates too many slivers. It would
be nice to find a more elegant solution to the sliver problem to replace the hybrid algorithm. Our
current hypothesis to explain the failure of the integration error norm is that although integration
was yielding a better error measure, the resulting improvements were being swamped by the short-
sightedness of the greedy insertion algorithm. Sometimes more than one edge swap is required to
correct a sliver problem, but our data-dependent greedy insertion algorithm never looks more than
one move ahead, so it often gets stuck in local minima.

The Cliff Problem. The sequential greedy insertion algorithm does not do well when the height
field contains a step discontinuity or “cliff”. With the greedy insertion algorithm, a linear cliff of
length k between two planar surfaces can use up about k vertices, as shown in Figure 22, when, in
fact, 4 would suffice. Cliffs similar to this arise when computer vision range data is approximated
with this algorithm (this can be seen in the pictures of Schmitt and Chen [34]). This problem is
definitely caused by the short-sightedness of greedy insertion. One, somewhat ad hoc, solution is
to find all cliffs and constrain the triangulation to follow them [1].

Dealing With Noise and High Frequencies. The greedy insertion algorithms we have de-
scribed will work on noisy or high frequency data, but they will not do a very good job. There are
two causes of this problem. One is the simple-minded selection technique, which picks the point
of highest error. Such an approach is very vulnerable to outliers. Finding a better strategy for
point selection in the presence of noise appears quite difficult. A second cause is that triangles are
not chosen to be the best fit to their enclosed data, but are constrained to interpolate their three
vertices. Least squares fitting would solve this latter problem.

A Hybrid Refinement/Decimation Approach. A technique that might permit better ap-
proximations of cliffs and better selection in the presence of noise is to alternate refinement and
decimation passes, inserting several vertices with the greedy insertion approach, and then deleting
a few vertices that appear the least important, using Lee’s drop heuristic approach [22]. Pavlidis
employed a similar split-and-merge method for curves [27, p. 181], while Schmitt and Chen used
a related method for surfaces [34]. This approach would eliminate the unnecessary vertices from
Figure 22, for example. Although such a hybrid of refinement and decimation ideas resembles the
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algorithm of Hoppe et al. [19], it should be quite a bit faster since we already know how to do many
of the steps quickly.

If the least squares approach is taken further, allowing the vertex positions to drift in x and
y, as well as z, this would provide an additional mechanism by which the algorithm could correct
sub-optimal selections caused by noise or high frequency detail in the height field.

Generalization to Other Geometries. The algorithms presented here could easily be gener-
alized from height field grids to scattered data approximation. That is, the xy projection of the
input points need not form a rectangular grid, but could be any finite point set. This change would
require each triangle to store a set of points [6, 18, 11]. During re-triangulation, these sets would
be merged and split. Instead of scan converting a triangle, one would visit all the points in that
triangle’s point set.

Generalization of these techniques from piecewise-planar approximations of functions of two
variables to curved surface approximations and higher dimensional spaces [15] is fairly straightfor-
ward.

Multiresolution Modeling. Further work is needed to build on the algorithms described here
to create multiresolution databases for fast terrain rendering. Such a system would need to support
division of a huge terrain into blocks, precomputation of multiple levels of detail, adaptive selection
of level of detail during display, and blending between levels of detail. Much of this work has
already been done by others [28, 20].

Applications in Computer Vision. Finally, these algorithms can be used for the simplification
of range data in computer vision. The output data of many stereo and laser range scanners is in
the form of a height field or z-buffer in a perspective space, so it can be fed into the algorithms
described here with little or no modification. When the triangles output by the algorithms are
perspective-transformed to world space, their planarity is preserved, so the approximation in that
space is also valid.

Some range scanners acquire data in a cylindrical format, outputting radius as a function of
azimuth and height: r(θ, z). The algorithms here could be modified to generate triangulated
approximation to these surfaces, but since the transform between cylindrical space and world space
is not a perspective one, nonlinear interpolation would be needed for best results.

As a binary variant of the selective fidelity concept, range data points that are known to be
inaccurate can be flagged before being fed into the simplification algorithm, and these points
can easily be ignored during vertex selection and error calculation. Our present implementation
supports this option. Further work is needed to test the present algorithm’s sensitivity to noise
and cliffs, and to determine if modification is necessary to deal with these two issues.

7. Summary

In this work we have implemented, optimized, and analyzed the greedy insertion algorithm.

The greedy insertion algorithm is a fast, flexible method that produces high quality approxima-
tions. It takes a height field as input and produces a triangulated mesh approximating that height
field as output. The algorithm starts with a minimal approximation consisting of two triangles and
repeatedly inserts as a vertex in the triangulation the input point with the greatest approximation
error. The process is terminated either when a given number of vertices is reached, or when the
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error drops below a given error tolerance.

Beginning with a very simple implementation of the greedy insertion algorithm, we optimized
it in two ways. First, we exploited the locality of mesh changes, and only recalculated the errors
at input points for which the approximation changed, and second, we used a heap to permit the
point of highest error to be found more quickly. When approximating an n point grid using an m
vertex triangulated mesh, these optimizations sped up the algorithm from an expected time cost of
O(mn) to O((m+n) logm). This speedup is significant in practice as well as theory. For example,
we can approximate a 1024×1024 grid to high quality using 1% of its points in about 21 seconds on
a 150 MHz processor. The memory requirements of the algorithm are O(m+ n). We were able to
achieve high speeds and simplify large grids with standard workstations; we did not employ more
expensive computers.

We explored several variants of the greedy insertion algorithm in search of the best method for
selecting important vertices. The four importance measures examined were: local error, curvature,
global error, and products of these. We also tested refinement algorithms, which successively build
up a triangulation, against decimation algorithms, which successively simplify it. Our empirical
comparisons on curves showed that a multi-pass refinement algorithm utilizing the local error
measure, namely, the sequential greedy insertion method, produced the highest quality results.

Delaunay and data-dependent triangulation methods were compared. The latter is capable of
higher quality approximations because it chooses the triangulation based on quality of data fit, not
on the shape of a triangle’s xy projection.

Data-dependent triangulation can be relatively fast. Had we used the straightforward algorithm,
data-dependent triangulation would have been many times slower than Delaunay triangulation,
since it would scan convert about twice as many input points, doing more work at each point, and
it would visit each of these points twice, once for swap testing and once for candidate selection.
We described a new, faster data-dependent triangulation algorithm that merges swap testing and
candidate selection into one pass, saving a factor of two in cost.

With our implementation, we found that data-dependent triangulation takes about 3–4 times as
long as Delaunay triangulation, and yields slightly higher quality on typical terrains. In applications
where simplification speed is critical, Delaunay triangulation would be preferred, but if the quality of
the approximation is primary, and the height field will be rendered many times after simplification,
then the simplification cost is less important, and the data-dependent method is recommended.

We were surprised that data-dependent triangulation did not work better on terrain, since it
approximates certain surfaces, such as ruled surfaces, much better than Delaunay triangulation.
Perhaps this says something about the isotropy of curvature in natural terrains. Further work is
needed to investigate this.

The greedy insertion algorithm is quite flexible. It makes no assumptions that limit its usage to
terrains; it is applicable to any height field. In addition, it is easily generalized to extended height
fields with material properties such as color. Indeed it can be trivially generalized to arbitrary
discrete functions defined over a rectangular domain; examples include the approximation of color
raster images by a set of Gouraud shaded polygons, and approximating computer vision range data
with triangulated surfaces.

Compared to previous work, our Delaunay greedy insertion algorithm yields nearly identical ap-
proximations to those of De Floriani et al., Rippa, and Franklin [7, 31, 11], but from the information
available, it appears that our algorithm is the fastest both in theory and in practice.

Part of Heller’s adaptive triangular mesh filtering technique is a greedy insertion algorithm
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employing heaps and local recalculation. That portion of his algorithm appears nearly identical to
ours in quality and asymptotic complexity [18, p. 168]. Because the initial pass of his algorithm
uses feature selection, we suspect, however, that his could be faster but that our method will
produce somewhat higher quality approximations.

We have tested our sequential greedy insertion algorithm against the parallel greedy insertion
algorithms of Fowler-Little and Puppo et al. [10, 30], and found that sequential greedy insertion
yields superior approximations in all cases tested. It appears that the sequential method uses
vertices more carefully and leads to less unnecessary subdivision in the mesh.

While the greedy insertion algorithm discussed here is quite fast, and for most terrains it gen-
erates high quality approximations, it is far from perfect. It does poorly in the vicinity of cliffs
and in the presence of high noise levels or high frequencies, generating approximations that are far
from optimal in those cases. Several ideas for improving the algorithm have been proposed here.

Further empirical and theoretical comparisons between methods will be needed to reach a deeper
understanding of the surface simplification problem.

Portable C++ code for our Delaunay and data-dependent greedy insertion algorithms (algo-
rithms III and IV) is available by World Wide Web from http://www.cs.cmu.edu/˜garland/scape
or by anonymous FTP from ftp.cs.cmu.edu in /afs/cs/user/garland/public/scape.
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Figure 23: Mandrill original, a 200×200 raster
image.

Figure 24: Mandrill approximated with
Gouraud shaded triangles created by subsam-
pling on a uniform 20×20 grid (400 vertices).

Figure 25: Mandrill approximated with
Gouraud shaded triangles created by data-
dependent greedy insertion (400 vertices).

Figure 26: Mesh for the image to the left.
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