
CoolAid: The Cool Reference Manual�1 IntroductionThis manual describes the programming language Cool: the Classroom Object-Oriented Language. Coolis a small language that can be implemented with reasonable e�ort in a one semester course. Still, Coolretains many of the features of modern programming languages including objects, static typing, andautomatic memory management.Cool programs are sets of classes. A class encapsulates the variables and procedures of a data type.Instances of a class are objects. In Cool, classes and types are identi�ed; i.e., every class de�nes a type.Classes permit programmers to de�ne new types and associated procedures (or methods) speci�c to thosetypes. Inheritance allows new types to extend the behavior of existing types.Cool is an expression language. Most Cool constructs are expressions, and every expression has avalue and a type. Cool is type safe: procedures are guaranteed to be applied to data of the correct type.While static typing imposes a strong discipline on programming in Cool, it guarantees that no runtimetype errors can arise in the execution of Cool programs.This manual is divided into informal and formal components. For a short, informal overview, the �rst12 pages (through Section 9) su�ces. The formal description begins with Section 10.2 Getting StartedThe reader who wants to get a sense for Cool at the outset should begin by reading and running theexample programs in the directory ~cs164/examples. Cool source �les have extension .cl and Coolassembly �les have extension .s. The Cool compiler is ~cs164/bin/coolc. To compile a program:coolc [ -o fileout ] file1.cl file2.cl ... filen.clThe compiler compiles the �les file1.cl through filen.cl as if they were concatenated together.Each �le must de�ne a set of complete classes|class de�nitions may not be split across �les. The -ooption speci�es an optional name to use for the output assembly code. If fileout is not supplied, theoutput assembly is named file1.s.The coolc compiler generates MIPS assembly code. Because not all of the machines the course isusing are MIPS-based, Cool programs are run on a MIPS simulator called spim. To run a cool program,type% spim(spim) load "file.s"(spim) run�Copyright c
1995-1996 by Alex Aiken. All rights reserved.1



To run a di�erent program during the same spim session, it is necessary to reinitialize the state of thesimulator before loading the new assembly �le:(spim) reinitAn alternative|and faster|way to invoke spim is with a �le:spim -file file.sThis form loads the �le, runs the program, and exits spim when the program terminates. Be surethat spim is invoked using the script ~cs164/bin/spim. There is another version of spim installed in/usr/local/bin on some systems, but it will not execute Cool programs. An easy way to be sure ofgetting the correct version is to add ~cs164/bin to your search path (before /usr/local/bin!). Thespim manual is available on the course Web page.The following is a complete transcript of the compilation and execution of ~cs164/examples/list.cl.This program is very silly, but it does serve to illustrate many of the features of Cool.% coolc list.cl% spimSPIM Version 5.4 of Jan. 17, 1994Copyright 1990-1994 by James R. Larus (larus@cs.wisc.edu).All Rights Reserved.See the file README a full copyright notice.Loaded: /home/n/cs164/lib/trap.handler(spim) load "list.s"(spim) runHow many numbers to sort?501234COOL program successfully executed(spim) exit%3 ClassesAll code in Cool is organized into classes. Each class de�nition must be contained in a single source �le,but multiple classes may be de�ned in the same �le. Class de�nitions have the form:class <type> [ inherits <type> ] is<feature_list>end;The notation [ : : :] denotes an optional construct. All class names are globally visible. Class namesbegin with an uppercase letter. Classes may not be rede�ned.2



3.1 FeaturesThe body of a class de�nition consists of a list of feature de�nitions. A feature is either an attribute ora method. An attribute of class A speci�es a variable that is part of the state of objects of class A. Amethod of class A is a procedure that may manipulate the variables and objects of class A.One of the major themes of modern programming languages is information hiding, which is the ideathat certain aspects of a data type's implementation should be abstract and hidden from users of thedata type. Cool supports information hiding through a simple mechanism: all attributes have scope localto the class, and all methods have global scope. Thus, the only way to provide access to object state inCool is through methods.Feature names must begin with a lowercase letter. No method name may be de�ned multiple times ina class, and no attribute name may be de�ned multiple times in a class, but a method and an attributemay have the same name.A fragment from list.cl illustrates simple cases of both attributes and methods:class Cons inherits List isxcar : Int;xcdr : List;isNil() : Bool is false end;init(hd : Int, tl : List) : Cons isbeginxcar <- hd;xcdr <- tl;self;end...end;In this example, the class Cons has two attributes xcar and xcdr and two methods isNil and init.Note that the types of attributes, as well as the types of formal parameters and return types of methods,are explicitly declared by the programmer.Given objects c of class Cons and l of class List, we can set the xcar and xcdr �elds by using themethod init:c.init(1,l)This notation is object-oriented dispatch. There may be many de�nitions of init methods in manydi�erent classes. The dispatch looks up the class of the object c to decide which init method to invoke.Because the class of c is Cons, the init method in the Cons class is invoked. Within the invocation, thevariables xcar and xcdr refer to c's attributes. The special variable self refers to the object on whichthe method was dispatched, which, in the example, is c itself.There is a special form new C that generates a fresh object of class C. An object can be thought of asa record that has a slot for each of the attributes of the class as well as pointers to the methods of theclass. A typical dispatch for the init method is:(new Cons).init(1,new Nil) 3



This example creates a new cons cell and initializes the \car" of the cons cell to be 1 and the \cdr" tobe new Nil.1 There is no mechanism in Cool for programmers to deallocate objects. Cool has automaticmemory management; objects that cannot be used by the program are deallocated by a runtime garbagecollector.Attributes are discussed further in Section 5 and methods are discussed further in Section 6.3.2 InheritanceIf a class de�nition has the formclass A inherits B is ... end;then class A inherits the features of B. In this case B is the parent class of A and A is a child class of B.The semantics of A inherits B is that A has all of the features de�ned in B in addition to its ownfeatures. In the case that a parent and child both de�ne the same method name, then the de�nitiongiven in the child class takes precedence. It is illegal to rede�ne attribute names. Furthermore, for typesafety, it is necessary to place some restrictions on how methods may be rede�ned (see Section 6).There is a distinguished class Object. If a class de�nition does not specify a parent class, then theclass inherits from Object by default. A class may inherit only from a single class; this is aptly called\single inheritance."2 The parent-child relation on classes de�nes a graph. This graph may not containcycles. For example, if A inherits from B, then B must not inherit from A. Furthermore, if A inherits fromB, then B must have a class de�nition somewhere in the program. Because Cool has single inheritance, itfollows that if both of these restrictions are satis�ed, then the inheritance graph forms a tree with Objectas the root.In addition to Object, Cool has four other basic classes: Int, String, Bool, and IO. The basic classesare discussed in Section 8.4 TypesIn Cool, every class name is also a type. In addition, there is a type SELF TYPE that can be used inspecial circumstances.A type declaration has the form x:C, where x is a variable and C is a type. Every variable must have atype declaration at the point it is introduced, whether that is in a let, case, or as the formal parameterof a method. The types of all attributes must also be declared.The basic type rule in Cool is that if a method or variable expects a value of type A, then any valueof type B may be used instead, provided that A is an ancestor of B in the class hierarchy. In other words,if B inherits from A, either directly or indirectly, then a B can be used wherever an A would su�ce.When an object of class B may be used in place of an object of class A, we say that B conforms to Aor that B � A. As discussed above, conformance is de�ned in terms of the inheritance graph.De�nition 4.1 (Conformance) Let A; B; and C be types.� A � A for all types A� if A inherits from B, then A � B1In this example, Nil is assumed to be a subtype of List.2Some object-oriented languages allow a class to inherit from multiple classes, which is equally aptly called \multipleinheritance." 4



� if A � B and B � C then A � CBecause Object is the root of the class hierarchy, it follows that A � Object for all types A.4.1 SELF TYPEThe type SELF TYPE is used to refer to the type of the self variable. This is useful in classes that willbe inherited by other classes, because it allows the programmer to avoid specifying a �xed �nal type atthe time the class is written. For example, the programclass Silly iscopy() : SELF_TYPE is self end;end;class Sally inherits Silly is end;class Main isx : Sally <- (new Sally).copy();main() : Sally is x end;end;Because SELF TYPE is used in the de�nition of the copy method, we know that the result of copy is thesame as the type of the self parameter. Thus, it follows that (new Sally).copy() has type Sally,which conforms to the declaration of attribute x.Note that the meaning of SELF TYPE is not �xed, but depends on the class in which it is used. Ingeneral, SELF TYPE may refer to the class C in which it appears, or any class that conforms to C. Whenit is useful to make explicit what SELF TYPE may refer too, we use the name of the class C in whichSELF TYPE appears as an index SELF TYPEC. This subscript notation is not part of Cool syntax|it isused merely to make clear in what class a particular occurrence of SELF TYPE appears.From De�nition 4.1, it follows that SELF TYPEX � SELF TYPEX. There is also a special conformancerule for SELF TYPE: SELF TYPEC � B if C � BFinally, SELF TYPE may be used in the following places: new SELF TYPE, as the return type of amethod, as the declared type of a let variable, or as the declared type of an attribute. No other uses ofSELF TYPE are permitted.4.2 Type CheckingThe Cool type system guarantees at compile time that execution of a program cannot result in runtimetype errors. Using the type declarations for identi�ers supplied by the programmer, the type checkerinfers a type for every expression in the program.It is important to distinguish between the type assigned by the type checker to an expression at compiletime, which we shall call the static type of the expression, and the type(s) to which the expression mayevaluate during execution, which we shall call the dynamic types.The distinction between static and dynamic types is needed because the type checker cannot, atcompile time, have perfect information about what values will be computed at runtime. Thus, in general,5



the static and dynamic types may be di�erent. What we require, however, is that the type checker'sstatic types be sound with respect to the dynamic types.De�nition 4.2 For any expression e, let De be a dynamic type of e and let Se be the static type inferredby the type checker. Then the type checker is sound if for all expressions e it is the case that De � Se.Put another way, we require that the type checker err on the side of overestimating the type of anexpression in those cases where perfect accuracy is not possible. Such a type checker will never accepta program that contains type errors. However, the price paid is that the type checker will reject someprograms that would actually execute without runtime errors.5 AttributesAn attribute de�nition has the form<id> : <type> [ <- <expr> ];The expression is optional initialization that is executed when a new object is created. The static typeof the expression must conform to the declared type of the attribute. If no initialization is supplied, thenthe default initialization is used (see below).When a new object of a class is created, all of the inherited and local attributes must be initialized.Inherited attributes are initialized �rst in inheritance order beginning with the attributes of the greatestancestor class. Within a given class, attributes are initialized in the order they appear in the source text.Attributes are local to the class in which they are de�ned or inherited. Inherited attributes cannotbe rede�ned.5.1 VoidAll variables in Cool are initialized to contain values of the appropriate type. The special value voidis a member of all types and is used as the default initialization for variables where no initialization issupplied by the user.There is a special form isvoid expr that tests whether a value is void (see Section 7.11). In addition,void may be tested for equality. Void may be passed as an argument, assigned to a variable, or otherwiseused in any context where any value is legitimate, except that a dispatch to or case on void generates aruntime error.Variables of the basic classes Int, Bool, and String are initialized specially; see Section 8.6 MethodsA method de�nition has the form<id>(<id> : <type>,...,<id> : <type>): <type> is <expr> end;There may be zero or more formal parameters. The identi�ers used in the formal parameter list mustbe distinct. The type of the method body must conform to the declared return type. When a method isinvoked, the formal parameters are bound to the actual arguments and the expression is evaluated; theresulting value is the meaning of the method invocation. A formal parameter hides any de�nition of anattribute of the same name. 6



To ensure type safety, there are restrictions on the rede�nition of inherited methods. The rule issimple: If a class A inherits a method f from an ancestor class B, then A may override the inheritedde�nition of f provided the number of arguments, the types of the formal parameters, and the returntype are exactly the same in both de�nitions.To see why some restriction is necessary on the rede�nition of inherited methods, consider the followingexample:class A isf(): Int is 1 end;end;class B inherits A isf(): String is "1" end;end;Let a be an object with dynamic type A. Thena.f() + 1is a well-formed expression with value 2. However, we cannot substitute a value of type B for a, as it wouldresult in adding a string to a number. Thus, if methods can be rede�ned arbitrarily, then subclasses maynot simply extend the behavior of their parents, and much of the usefulness of inheritance, as well astype safety, is lost.7 ExpressionsExpressions are the largest syntactic category in Cool.7.1 ConstantsThe simplest expressions are constants. The boolean constants are true and false. Integer constants areunsigned strings of digits such as 0, 123, and 007. String constants are sequences of characters enclosedin double quotes, such as "This is a string." String constants may be at most 1024 characters long.There are other restrictions on strings; see Section 10.The constants belong to the basic classes Bool, Int, and String. The value of a constant is an objectof the appropriate basic class.7.2 Identi�ersThe names of local variables, formal parameters of methods, self, and class attributes are all expressions.The identi�er self may be referenced, but it is an error to assign to self or to bind self in a let, acase, or as a formal parameter. It is also illegal to have attributes named self.Local variables and formal parameters have lexical scope. Attributes are visible throughout a class inwhich they are declared or inherited, although they may be hidden by local declarations within expres-sions. The binding of an identi�er reference is the innermost scope that contains a declaration for thatidenti�er, or to the attribute of the same name if there is no other declaration. The exception to thisrule is the identi�er self, which is implicitly bound in every class.7



7.3 AssignmentAn assignment has the form<id> <- <expr>The static type of the expression must conform to the declared type of the identi�er. The value is thevalue of the expression. The static type of an assignment is the static type of <expr>.7.4 DispatchThere are three forms of dispatch in Cool. The three forms di�er only in how the called method isselected. The most commonly used form of dispatch is<expr>.<id>(<expr>,...,<expr>)Consider the dispatch e0:f(e1; : : : ; en). To evaluate this expression, the arguments are evaluated in left-to-right order, from e1 to en. Next, e0 is evaluated and its class C noted (if e0 is void a runtime error isgenerated). Finally, the method f in class C is invoked, with the value of e0 bound to self in the bodyof f and the actual arguments bound to the formals as usual. The value of the expression is the valuereturned by the method invocation.Type checking a dispatch involves several steps. Assume e0 has static type A. (Recall that this typeis not necessarily the same as the type C above. A is the type inferred by the type checker; C is the classof the object computed at runtime, which is potentially any subclass of A.) Class A must have a methodf, the dispatch and the de�nition of f must have the same number of arguments, and the static type ofthe ith actual parameter must conform to the declared type of the ith formal parameter.If f has return type B and B is a class name, then the static type of the dispatch is B. Otherwise, if fhas return type SELF TYPE, then the static type of the dispatch is A. To see why this is sound, note thatthe self parameter of the method f conforms to type A. Therefore, because f returns SELF TYPE, we caninfer that the result must also conform to A. Inferring accurate static types for dispatch expressions iswhat justi�es including SELF TYPE in the Cool type system.The other forms of dispatch are:<id>(<expr>,...,<expr>)<expr>@<type>.id(<expr>,...,<expr>)The �rst form is shorthand for self.<id>(<expr>,...,<expr>).The second form provides a way of accessing methods of parent classes that have been hidden byrede�nitions in child classes. Instead of using the class of the leftmost expression to determine themethod, the method of the class explicitly speci�ed is used. For example, e@B.f() invokes the methodf in class B on the object that is the value of e. For this form of dispatch, the static type to the left of\@"must conform to the type speci�ed to the right of \@".7.5 ConditionalsA conditional has the formif <expr> then <expr> else <expr> fi 8



The semantics of conditionals is standard. The predicate is evaluated �rst. If the predicate is true,then the then branch is evaluated. If the predicate is false, then the else branch is evaluated. Thevalue of the conditional is the value of the evaluated branch.The predicate must have static type Bool. The branches may have any static types. To specify thestatic type of the conditional, we de�ne an operation t (pronounced \join") on types as follows. LetA,B,D be any types other than SELF TYPE. The least type of a set of types means the least element withrespect to the conformance relation �.A t B = the least type C such that A � C and B � CSELF TYPED t SELF TYPED = SELF TYPEDSELF TYPED t A = D t AA t SELF TYPED = A t DLet T and F be the static types of the branches of the conditional. Then the static type of theconditional is T t F.7.6 LoopsA loop has the formwhile <expr> loop <expr> poolThe predicate is evaluated before each iteration of the loop. If the predicate is false, the loop terminatesand void is returned. If the predicate is true, the body of the loop is evaluated and the process repeats.The predicate must have static type Bool. The body may have any static type. The static type of aloop expression is Object.7.7 BlocksA block has the formbegin <expr>; ... <expr>; endThe expressions are evaluated in left-to-right order. Every block has at least one expression; the valueof a block is the value of the last expression. The expressions of a block may have any static types. Thestatic type of a block is the static type of the last expression.An occasional source of confusion in Cool is the use of semi-colons. Semi-colons are used as terminatorsin lists of expressions (e.g., the block syntax above) and in no other places; see Section 11.7.8 LetA let expression has the formlet <id1> : <type1> [ <- <expr1> ], ..., <idn> : <typen> [ <- <exprn> ] in <expr> endThe optional expressions are initialization; the other expression is the body. A let is evaluated asfollows. First <expr1> is evaluated and the result bound to <id1>. Then <expr2> is evaluated and theresult bound to <id2>, and so on, until all of the variables in the let are initialized. (If the initializationof <idk> is omitted, the default initialization of type <typek> is used.) Next the body of the let isevaluated. The value of the let is the value of the body.9



The let identi�ers <id1>,: : :,<idn> are visible in the body of the let. Furthermore, identi�ers<id1>,: : :,<idk> are visible in the initialization of <idm> for any m > k.If an identi�er is de�ned multiple times in a let, later bindings hide earlier ones. Identi�ers introducedby let also hide any de�nitions for the same names in containing scopes. Every let expression mustintroduce at least one identi�er.The type of an initialization expression must conform to the declared type of the identi�er. The typeof let is the type of the body.7.9 CaseA case expression has the formcase <expr0> of<id1> : <type1> => <expr1>;. . .<idn> : <typen> => <exprn>;esacCase expressions provide runtime type tests on objects. First, expr0 is evaluated and its dynamic typeC noted (if expr0 evaluates to void a run-time error is produced). Next, from among the branches thebranch with the least type <typek> such that C � <typek> is selected. The identi�er <idk> is boundto the value of <expr0> and the expression <exprk> is evaluated. The result of the case is the valueof <exprk>. If no branch can be selected for evaluation, a run-time error is generated. Every caseexpression must have at least one branch.For each branch, let Ti be the static type of <expri>. The static type of a case expression isF1�i�n Ti. The identi�er id introduced by a branch of a case hides any variable or attribute de�nitionfor id visible in the containing scope.The case expression has no special construct for a \default" or \otherwise" branch. The same a�ectis achieved by including a branchx : Object => ...because every type is � to Object.The case expression provides programmers a way to insert explicit runtime type checks in situa-tions where static types inferred by the type checker are too conservative. A typical situation is thata programmer writes an expression e and type checking infers that e has static type A. However, theprogrammer may know that, in fact, the dynamic type of e is always B for some B � A. This informationcan be captured using a case expression:case e of x : B => ...In the branch the variable x is bound to the value of e but has the more speci�c static type B.7.10 NewA new expression has the formnew <type>The value is a fresh object of the appropriate class. If the type is SELF TYPE, then the value is a freshobject of the class of self in the current scope. The static type is <type>.10



7.11 IsvoidThe expressionisvoid exprevaluates to true if expr is void and evaluates to false if expr is not void.7.12 Arithmetic and Comparison OperationsCool has four binary arithmetic operations: +, -, *, /. The syntax isexpr1 <op> expr2To evaluate such an expression �rst expr1 is evaluated and then expr2. The result of the operation isthe result of the expression.The static types of the two sub-expressions must be Int. The static type of the expression is Int.Cool has only integer division.Cool has three comparison operations: <, <=, =. For < and <= the rules are exactly the same asfor the binary arithmetic operations, except that the result is a Bool. The comparison = is a specialcase. If either <expr1> or <expr2> has static type Int, Bool, or String, then the other must have thesame static type. Any other types, including SELF TYPE, may be freely compared. On non-basic objects,equality simply checks for pointer equality (i.e., whether the memory addresses of the objects are thesame). Equality is de�ned for void.In principle, there is nothing wrong with permitting equality tests between, for example, Bool andInt. However, such a test must always be false and almost certainly indicates some sort of programmingerror. The Cool type checking rules catch such errors at compile-time instead of waiting until runtime.Finally, there is one arithmetic and one logical unary operator. The expression ~<expr> is the integercomplement of <expr>. The expression <expr> must have static type Int and the entire expressionhas static type Int. The expression not <expr> is the boolean complement of <expr>. The expression<expr> must have static type Bool and the entire expression has static type Bool.8 Basic Classes8.1 ObjectThe Object class is the root of the inheritance graph. Methods with the following declarations arede�ned:abort() : Objecttype_name() : Stringcopy() : SELF_TYPEThe method abort halts program execution with an error message. The method type name returns astring with the name of the class of the object. The method copy produces a shallow copy of the object.33A shallow copy of a copies a itself, but does not recursively copy objects that a points to.11



8.2 IOThe IO class provides the following methods for performing simple input and output operations:out_string(x : String) : SELF_TYPEout_int(x : Int) : SELF_TYPEin_string() : Stringin_int() : IntThe methods out string and out int print their argument and return their self parameter. Themethod in string reads a string from the standard input, up to but not including a newline character.The method in int reads a single integer, which may be preceded by whitespace. Any characters followingthe integer, up to and including the next newline, are discarded by in int.A class can make use of the methods in the IO class by inheriting from IO. It is an error to rede�nethe IO class.8.3 IntThe Int class provides integers. There are no methods special to Int. The default initialization forvariables of type Int is 0 (not void). It is an error to inherit from or rede�ne Int.8.4 StringThe String class provides strings. The following methods are de�ned:length() : Intconcat(s : String) : Stringsubstr(i : Int, l : Int) : StringThe method length returns the length of the self parameter. The method concat returns the stringformed by concatenating s after self. The method substr returns the substring of its self parameterbeginning at position i with length l; string positions are numbered beginning at 0. A runtime error isgenerated if the speci�ed substring is out of range.The default initialization for variables of type String is "" (not void). It is an error to inherit fromor rede�ne String.8.5 BoolThe Bool class provides true and false. The default initialization for variables of type Bool is false(not void). It is an error to inherit from or rede�ne Bool.9 Main ClassEvery program must have a class Main. Furthermore, the Main class must have a method main that takesno formal parameters. A program is executed by evaluating (new Main).main().The remaining sections of this manual provide a more formal de�nition of Cool. There are four sectionscovering lexical structure (Section 10), grammar (Section 11), type rules (Section 12), and operationalsemantics (Section 13). 12



10 Lexical StructureThe lexical units of Cool are integers, type identi�ers, object identi�ers, special notation, strings, key-words, and white space.10.1 Integers, Identi�ers, and Special NotationIntegers are non-empty strings of digits 0-9. Identi�ers are strings (other than keywords) consisting ofletters, digits, and the underscore character. Type identi�ers begin with a capital letter; object identi�ersbegin with a lower case letter. There are two other identi�ers, self and SELF TYPE that are treatedspecially by Cool but are not treated as keywords. The special syntactic symbols (e.g., parentheses,assignment operator, etc.) are given in Figure 1.10.2 StringsStrings are enclosed in double quotes ": : :". Within a string, a sequence `nc' denotes the character `c',with the exception of the following:nb backspacent tabnn newlinenf formfeedA non-escaped newline character may not appear in a string:"This is notOK"A string may not contain EOF. A string may not contain null (character n0). Any other character maybe included in a string.10.3 CommentsThere are two forms of comments in Cool. Any characters between two dashes \ { {" and the nextnewline (or EOF, if there is no next newline) are treated as comments. Comments may also be writtenby enclosing text in (� : : :�). The latter form of comment may be nested. Comments cannot cross �leboundaries.10.4 KeywordsThe keywords of cool are: begin, class, else, end, false, �, if, in, inherits, is, isvoid, let, loop,pool, then, while, case, esac, new, of, not, true. Except for the constants true and false, keywordsare case insensitive. To conform to the rules for other objects, the �rst letter of true and false must belowercase; the trailing letters may be upper or lower case.10.5 White SpaceWhite space consists of any sequence of the characters: blank, newline, nb; nf; nr; nt; nv.13



11 Cool SyntaxFigure 1 provides a speci�cation of Cool syntax. The speci�cation is not context-free; for convenience,we also use some regular expression notation. Speci�cally, A� means zero or more A's in succession; A+means one or more A's. The special notation A;� means zero or more A's terminated by semicolons. Thespecial notation A;� means zero or more A's separated by commas. Separators di�er from terminators inthat the terminator always appears at the end of the list; a separator is never included at the end of a list.In Cool, semicolons are always terminators and commas are always separators. Items in square brackets[: : :] are optional. Curly braces are not part of Cool; they are used in the grammar as a meta-symbol toshow association of grammar operations.11.1 PrecedenceThe precedence of in�x binary and pre�x unary operations, from highest to lowest, is given by thefollowing table:.@~isvoid* /+ -<= < =not<-All binary operations are left-associative, with the exception of assignment, which is right-associative,and the three comparison operations, which do not associate.12 Type RulesThis section formally de�nes the type rules of Cool. The type rules de�ne the type of every Cool expressionin a given context. The context is the type environment, which describes the type of every unboundidenti�er appearing in an expression. The type environment is described in Section 12.1. Section 12.2gives the type rules.12.1 Type EnvironmentsTo a �rst approximation, type checking in Cool can be thought of as a bottom-up algorithm: the type ofan expression e is computed from the (previously computed) types of e's subexpressions. For example,an integer 1 has type Int; there are no subexpressions in this case. As another example, if en has typeX, then the expression begin e1; : : : ; en end has type X.A complication arises in the case of an expression v, where v is an object identi�er. It is not possibleto say what the type of v is in a strictly bottom-up algorithm; we need to know the type declared for vin the larger expression. Such a declaration must exist for every object identi�er in valid Cool programs.To capture information about the types of identi�ers, we use a type environment. The environmentconsists of three parts: a method environment M , an object environment O, and the name of the14



program ::= class;+class ::= class TYPE [inherits TYPE] is feature;� endfeature ::= ID(formal;� ) : TYPE is expr endj ID : TYPE [ <- expr ]formal ::= ID : TYPEexpr ::= ID <- exprj expr[@TYPE]:ID(expr;� )j ID(expr;� )j if expr then expr else expr �j while expr loop expr poolj begin expr;+ endj let fID : TYPE [ <- expr ]; g+ in expr endj case expr of fID : TYPE => expr; g+esacj new TYPEj isvoid exprj expr + exprj expr � exprj expr � exprj expr = exprj ~exprj expr < exprj expr <= exprj expr = exprj not exprj (expr)j IDj integerj stringj truej falseFigure 1: Cool syntax.15



current class in which the expression appears. The method environment and object environment areboth functions (also called mappings). The object environment is a function of the formO(v) = Twhich assigns the type T to object identi�er v. The method environment is more complex; it is a functionof the form M(C; f) = (T1; : : : ; Tn�1; Tn)where C is a class name (a type), f is a method name, and t1; : : : ; tn are types. The tuple of types isthe signature of the method. The interpretation of signatures is that in class C the method f has formalparameters of types (t1; : : : ; tn�1)|in that order|and a return type tn.Two mappings are required instead of one because object names and method names do not clash|i.e.,there may be a method and an object identi�er of the same name.The third component of the type environment is the name of the current class, which is needed fortype rules involving SELF TYPE.Every expression e is type checked in a type environment; the subexpressions of e may be typechecked in the same environment or, if e introduces a new object identi�er, in a modi�ed environment.For example, consider the expressionlet c : Int <- 33 in...endThe let expression introduces a new variable c with type Int. Let O be the object component of thetype environment for the let. Then the body of the let is type checked in the object type environmentO[Int=c]where the notation O[T=c] is de�ned as follows:O[T=c](c) = TO[T=c](d) = O(d) if d 6= c12.2 Type Checking RulesThe general form a type checking rule is: ...O;M;C ` e : TThe rule should be read: In the type environment for objects O, methods M , and containing class C, theexpression e has type T . The dots above the horizontal bar stand for other statements about the typesof sub-expressions of e. These other statements are hypotheses of the rule; if the hypotheses are satis�ed,then the statement below the bar is true.The rule for object identi�ers is simply that if the environment assigns an identi�er Id type T , thenId has type T . O(Id) = TO;M;C ` Id : T [Var]16



The rule for assignment to a variable is more complex:O(Id) = TO;M;C ` e1 : T 0T 0 � TO;M;C ` Id e1 : T 0 [ASSIGN]Note that this type rule|as well as others|use the conformance relation � (see Section 3.2). The rulesays that the assigned expression e1 must have a type T 0 that conforms to the type T of the identi�er Idin the type environment. The type of the whole expression is T 0.The type rules for constants are all easy:O;M;C ` true : Bool [True]O;M;C ` false : Bool [False]i is an integer constantO;M;C ` i : Int [Int]s is a string constantO;M;C ` s : String [String]There are two cases for new, one for new SELF TYPE and one for any other form:T 0 = ( SELF TYPEC if T = SELF TYPET otherwiseO;M;C ` new T : T 0 [New]Dispatch expressions are the most complex to type check.O;M;C ` e0 : T0O;M;C ` e1 : T1...O;M;C ` en : TnT 00 = ( C if T0 = SELF TYPECT0 otherwiseM(T 00; f) = (T 01; : : : ; T 0n; T 0n+1)Ti � T 0i 1 � i � nTn+1 = ( T0 if T 0n+1 = SELF TYPET 0n+1 otherwiseO;M;C ` e0:f(e1; : : : ; en) : Tn+1 [Dispatch]17



O;M;C ` e0 : T0O;M;C ` e1 : T1...O;M;C ` en : TnT0 � TM(T; f) = (T 01; : : : ; T 0n; T 0n+1)Ti � T 0i 1 � i � nTn+1 = ( T0 if T 0n+1 = SELF TYPET 0n+1 otherwiseO;M;C ` e0@T:f(e1; : : : ; en) : Tn+1 [StaticDispatch]To type check a dispatch, each of the subexpressions must �rst be type checked. The type T0 of e0determines the which declaration of the method f is used. The argument types of the dispatch mustconform to the declared argument types. Note that the type of the result of the dispatch is either thedeclared return type or T0 in the case that the declared return type is SELF TYPE. The only di�erence intype checking a static dispatch is that the class T of the method f is given in the dispatch, and the typeT0 must conform to T .The type checking rules for if and begin-end expressions are straightforward. See Section 7.5 for thede�nition of the t operation. O;M;C ` e1 : BoolO;M;C ` e2 : T2O;M;C ` e3 : T3O;M;C ` if e1 then e2 else e3 � : T2 t T3 [If]O;M;C ` e1 : T1O;M;C ` e2 : T2...O;M;C ` en : TnO;M;C ` begin e1; e2; : : :en; end : Tn [Sequence]The let rule has some interesting aspects.T 00 = ( SELF TYPEC if T0 = SELF TYPET0 otherwiseO;M;C ` e1 : T1T1 � T 00O[T 00=x];M;C ` e2 : T2O;M;C ` let x : T0  e1 in e2 end : T2 [Let-Init]First, the initialization e1 is type checked in an environment without a de�nition for x. Thus, the variablex cannot be used in e1 unless it already has a de�nition in an outer scope. Second, the body e2 is typechecked in the environment O extended with the typing x : T 00. Third, note that the type of x may beSELF TYPE. 18



T 00 = ( SELF TYPEC if T0 = SELF TYPET0 otherwiseO[T 00=x];M;C ` e1 : T1O;M;C ` let x : T0 in e1 end : T1 [Let-No-Init]The rule for let with no initialization simply omits the conformance requirement. We give type rulesonly for a let with a single variable. Typing a multiple letlet x1 : T1 [ e1]; x2 : T2 [ e2]; : : : ; xn : Tn [ en] in e endis de�ned to be the same as typinglet x1 : T1 [ e1] in (let x2 : T2 [ e2]; : : : ; xn : Tn [ en] in e end) endO;M;C ` e0 : T0O[T1=x1];M;C ` e1 : T 01...O[Tn=xn];M;C ` en : T 0nO;M;C ` case e0 of x1 : T1 ) e1; : : :xn : Tn ) en; esac : F1�i�n T 0i [Case]Each branch of a case is type checked in an environment where variable xi has type Ti. The type ofthe entire case is the join of the types of its branches. The variables declared on each branch of a casemust all have distinct types. O;M;C ` e1 : BoolO;M;C ` e2 : T2O;M;C ` while e1 loop e2 pool : Object [Loop]The predicate of a loop must have type Bool; the type of the entire loop is always Object. An isvoidtest has type Bool: O;M;C ` e1 : T1O;M;C ` isvoid e1 : Bool [Isvoid]With the exception of the rule for equality, the type checking rules for the primitive logical, compar-ison, and arithmetic operations are easy. O;M;C ` e1 : BoolO;M;C ` :e1 : Bool [Not]O;M;C ` e1 : IntO;M;C ` e2 : Intop 2 f<;�gO;M;C ` e1 op e2 : Bool [Compare]O;M;C ` e1 : IntO;M;C ` ~e1 : Int [Neg]19



O;M;C ` e1 : IntO;M;C ` e2 : Intop 2 f�;+;�; =gO;M;C ` e1 op e2 : Int [Arith]The wrinkle in the rule for equality is that any types may be freely compared except Int, Stringand Bool, which may only be compared with objects of the same type.O;M;C ` e1 : T1O;M;C ` e2 : T2T1 2 fInt; String; Boolg _ T2 2 fInt; String; Boolg) T1 = T2O;M;C ` e1 = e2 : Bool [Equal]The �nal cases are type checking rules for attributes and methods. For a class C, let the objectenvironment OC give the types of all attributes of C (including any inherited attributes). More formally,if x is an attribute (inherited or not) of C, and the declaration of x is x : T , thenOC(x) = ( SELF TYPEC if T = SELF TYPET otherwiseThe method environmentM is global to the entire program and de�nes for every class C the signaturesof all of the methods of C (including any inherited methods).The two rules for type checking attribute de�ninitions are similar the rules for let. The essentialdi�erence is that attributes are visible within their initialization expressions. Note that self is bound inthe initialization. OC(x) = T0OC [SELF TYPEC=self];M;C ` e1 : T1T1 � T0OC ;M;C ` x : T0  e1; [Attr-Init]OC(x) = TOC ;M;C ` x : T ; [Attr-No-Init]The rule for typing methods checks the body of the method in an environment where OC is extendedwith bindings for the formal parameters and self. The type of the method body must conform to thedeclared return type. M(C; f) = (T1; : : : ; Tn; T0)OC [SELF TYPEC=self][T1=x1] : : : [Tn=xn];M;C ` e : T 00T 00 � ( SELF TYPEC if T0 = SELF TYPET0 otherwiseOC ;M;C ` f(x1 : T1; : : : ; xn : Tn) : T0 is e end; [Method]13 Operational SemanticsThis section contains a mostly formal presentation of the operational semantics for the Cool language. Theoperational semantics de�ne for every Cool expression what value it should produce in a given context.The context has three components: an environment, a store, and a self object. These components are20



described in the next section. Section 13.2 de�nes the syntax used to refer to Cool objects, and Section13.3 de�nes the syntax used to refer to class de�nitions.Keep in mind that a formal semantics is a speci�cation only|it does not describe an implementation.The purpose of presenting the formal semantics is to make clear all the details of the behavior of Coolexpressions. How this behavior is implemented is another matter.13.1 Environment and the StoreBefore we can present a semantics for Cool we need a number of concepts and a considerable amount ofnotation. An environment is a mapping of variable identi�ers to locations. Intuitively, an environmenttells us for a given identi�er the address of the memory location where that identi�er's value is stored.For a given expression, the environment must assign a location to all identi�ers to which the expressionmay refer. For the expression, e.g., a + b, we need an environment that maps a to some location and bto some location. We'll use the following syntax to describe environments, which is very similar to thesyntax of type assumptions used in Section 12.E = [a : l1; b : l2]This environment maps a to location l1, and b to location l2.The second component of the context for the evaluation of an expression is the store. The store mapslocations to values, where values in Cool are just objects. Intuitively, a store tells us what value is storedin a given memory location. For the moment, assume all values are integers. A store is similar to anenvironment: S = [l1 ! 55; l2! 77]This store maps location l1 to value 55 and location l2 to value 77.Given an environment and a store, the value of an identi�er can be found by �rst looking up thelocation that the identi�er maps to in the environment and then looking up the location in the store.E(a) = l1S(l1) = 55Together, the environment and the store de�ne the execution state at a particular step of the evaluationof a Cool expression. The double indirection from identi�ers to locations to values allows us to modelvariables. Consider what happens if the value 99 is assigned variable a in the environment and storede�ned above. Assigning to a variable means changing the value to which it refers but not its location.To perform the assignment, we look up the location for a in the environment E and then change themapping for the obtained location to the new value, giving a new store S0.E(a) = l1S 0 = S[99=l1]The syntax S[v=l] denotes a new store that is identical to the store S, except that S 0 maps location l tovalue v. For all locations l0 where l0 6= l, we still have S0(l0) = S(l0).The store models the contents of memory of the computer during program execution. Assigning to avariable modi�es the store.There are also situations in which the environment is modi�ed. Consider the following Cool fragment:21



let c : Int <- 33 incendWhen evaluating this expression, we must introduce the new identi�er c into the environment beforeevaluating the body of the let. If the current environment and state are E and S, then we create a newenvironment E0 and a new store S0 de�ned by:lc = newloc(S)E 0 = E[lc=c]S0 = S[33=lc]The �rst step is to allocate a location for the variable c. The location should be fresh, meaning that thecurrent store does not have a mapping for it. The function newloc() applied to a store gives us an unusedlocation in that store. We then create a new environment E 0, which maps c to lc but also contains allof the mappings of E for identi�ers other than c. Note that if c already has a mapping in E, the newenvironment E0 hides this old mapping. We must also update the store to map the new location to avalue. In this case lc maps to the value 33, which is the initial value for c as de�ned by the let-expression.The example in this subsection oversimpli�es Cool environments and stores a bit, because simpleintegers are not Cool values. Even integers are full-
edged objects in Cool.13.2 Syntax for Cool ObjectsEvery Cool value is an object. Objects contain a list of named attributes, a bit like records in C. Inaddition, each object belongs to a class. We use the following syntax for values in Cool:v = X(a1 = l1; a2 = l2; : : : ; an = ln)Read the syntax as follows: The value v is a member of class X containing the attributes a1; : : : ; an whoselocations are l1; : : : ; ln. Note that the attributes have an associated location. Intuitively this means thatthere is some space in memory reserved for each attribute.For base objects of Cool (i.e., Ints, Strings, and Bools) we use a special case of the above syntax.Base objects have a class name, but their attributes are not like attributes of normal classes, becausethey cannot be modi�ed. Therefore, we describe base objects using the following syntax:Int(5)Bool(true)String(4; "Cool")For Ints and Bools, the meaning is obvious. Strings contain two parts, the length and the actualsequence of ASCII characters.13.3 Class de�nitionsIn the rules presented in the next section, we need a way to refer to the de�nitions of attributes andmethods for classes. Suppose we have the following Cool class de�nition:class B iss : String <- "Hello"; 22



g (y:String) : Int isy.concat(s)end;f (x:Int) : Int isx+1end;end;class A inherits B isa : Int;b : B <- new B;f(x:Int) : Int isx+aend;end;Two mappings, called class and implementation, are associated with class de�nitions. The classmapping is used to get the attributes, as well as their types and initializations, of a particular class:class(A) = (s : String  "Hello"; a : Int 0; b : B  new B)Note that the information for class A contains everything that it inherited from class B, as well as its ownde�nitions. If B had inherited other attributes, those attributes would also appear in the information forA. The attributes are listed in the order they are inherited and then in source order: all the attributesfrom the greatest ancestor are listed �rst in the order in which they textually appear, then the attributesof the next greatest ancestor, and so on, on down to the attributes de�ned in the particular class. Werely on this order in describing how new objects are initialized.The general form of a class mapping is:class(X) = (a1 : T1  e1; : : : ; an : Tn  en)Note that every attribute has an initializing expression, even if the Cool program does not specify one foreach attribute. The default initialization for a variable or attribute is the default of its type. The defaultof Int is 0, the default of String is "", the default of Bool is false, and the default of any other typeis void.4 The default of type T is written DT .The implementation mapping gives information about the methods of a class. For the above example,implementation of A is de�ned as follows:implementation(A; f) = (x; x+ a)implementation(A; g) = (y; y:concat(s))In general, for a class X and a method m,implementation(X;m) = (x1; x2; : : : ; xn; ebody)speci�es that method m when invoked from class X , has formal parameters x1; : : : ; xn, and the body ofthe method is expression ebody .4A tiny point: We are allowing void to be used as an expression here. There is no expression for void available to Coolprogrammers. 23



13.4 Operational RulesEquipped with environments, stores, objects, and class de�nitions, we can now attack the operationalsemantics for Cool. The operational semantics is described by rules similar to the rules used in typechecking. The general form of the rules is: ...so; S; E ` e1 : v; S0The rule should be read as: In the context where self is the object so, the store is S, and the environmentis E, the expression e1 evaluates to object v and the new store is S0. The dots above the horizontal barstand for other statements about the evaluation of sub-expressions of e1.Besides an environment and a store, the evaluation context contains a self object so. The self objectis just the object to which the identi�er self refers if self appears in the expression. We do not placeself in the environment and store because self is not a variable|it cannot be assigned to. Note thatthe rules specify a new store after the evaluation of an expression. The new store contains all changes tomemory resulting as side e�ects of evaluating expression e1.The rest of this section presents and brie
y discusses each of the operational rules. A few cases arenot covered; these are discussed at the end of the section.so; S1; E ` e1 : v1; S2E(Id) = l1S3 = S2[v1=l1]so; S1; E ` Id e1 : v1; S3 [Assign]An assignment �rst evaluates the expression on the right-hand side, yielding a value v1. This value isstored in memory at the address for the identi�er.The rules for identi�er references, self, and constants are straightforward:E(Id) = lS(l) = vso; S; E ` Id : v; S [Var]so; S; E ` self : so; S [Self]so; S; E ` true : Bool(true); S [True]so; S; E ` false : Bool(false); S [False]i is an integer constantso; S; E ` i : Int(i); S [Int]s is a string constantl = length(s)so; S; E ` s : String(l; s); S [String]24



A new expression is more complicated than one might expect:T0 = ( X if T = SELF TYPE and v1 = X(: : :)T otherwiseclass(T0) = (a1 : T1 e1; : : : ; an : Tn  en)li = newloc(S1); for i = 1 : : :nv1 = T0(a1 = l1; : : : ; an = ln)S2 = S1[DT1=l1; : : : ; DTn=ln]v1; S2; [a1 : l1; : : : ; an : ln] ` begin a1  e1; : : : ; an  en; end : v2; S3so; S1; E ` new T : v1; S3 [New]The tricky thing in a new expression is to initialize the attributes in the right order. Note also that,during initialization, attributes are bound to the default of the appropriate class.so; S1; E ` e1 : v1; S2so; S2; E ` e2 : v2; S3...so; Sn; E ` en : vn; Sn+1so; Sn+1; E ` e0 : v0; Sn+2v0 = X(a1 = la1 ; : : : ; am = lam)implementation(X; f) = (x1; : : : ; xn; en+1)lxi = newloc(Sn+2); for i = 1 : : :nSn+3 = Sn+2[v1=lx1; : : : ; vn=lxn]v0; Sn+3; [a1 : la1; : : : ; am : lam ; x1 : lx1 ; : : : ; xn : lxn] ` en+1 : vn+1; Sn+4so; S1; E ` e0:f(e1; : : : ; en) : vn+1; Sn+4 [Dispatch]so; S1; E ` e1 : v1; S2so; S2; E ` e2 : v2; S3...so; Sn; E ` en : vn; Sn+1so; Sn+1; E ` e0 : v0; Sn+2v0 = X(a1 = la1 ; : : : ; am = lam)implementation(T; f) = (x1; : : : ; xn; en+1)lxi = newloc(Sn+2); for i = 1 : : :nSn+3 = Sn+2[v1=lx1; : : : ; vn=lxn]v0; Sn+3; [a1 : la1 ; : : : ; am : lam ; x1 : lx1 ; : : : ; xn : lxn] ` en+1 : vn+1; Sn+4so; S1; E ` e0@T:f(e1; : : : ; en) : vn+1; Sn+4 [StaticDispatch]The two dispatch rules do what one would expect. The arguments are evaluated and saved. Next, theexpression on the left-hand side of the \." is evaluated. In a normal dispatch, the class of this expressionis used to determine the method to invoke; otherwise the class is speci�ed in the dispatch itself.so; S1; E ` e1 : Bool(true); S2so; S2; E ` e2 : v2; S3so; S1; E ` if e1 then e2 else e3 � : v2; S3 [If-True]25



so; S1; E ` e1 : Bool(false); S2so; S2; E ` e3 : v3; S3so; S1; E ` if e1 then e2 else e3 � : v3; S3 [If-False]There are no surprises in the if-then-else rules. Note that value of the predicate is a Bool object, not aboolean. so; S1; E ` e1 : v1; S2so; S2; E ` e2 : v2; S3...so; Sn; E ` en : vn; Sn+1so; S1; E ` begin e1; e2; : : : ; en; end : vn; Sn+1 [Sequence]Blocks are evaluated from the �rst expression to the last expression, in order. The result is the result ofthe last expression. so; S1; E ` e1 : v1; S2l1 = newloc(S2)S3 = S2[v1=l1]E 0 = E[l1=Id]so; S3; E 0 ` e2 : v2; S4so; S1; E ` let Id : T1 e1 in e2 end : v2; S4 [Let]A let evaluates any initialization code, assigns the result to the variable at a fresh location, and evaluatesthe body of the let. (If there is no initialization, the variable is initialized to the default value of T1.)We give the operational semantics only for the case of let with a single variable. The semantics of amultiple let let x1 : T1  e1; x2 : T2  e2; : : : ; xn : Tn  en in e endis de�ned to be the same aslet x1 : T1  e1 in (let x2 : T2  e2; : : : ; xn : Tn  en in e end) endso; S1; E ` e0 : v0; S2v0 = X(: : :)Ti = closest ancestor of X in fT1; : : : ; Tngl0 = newloc(S2)S3 = S2[v0=l0]E 0 = E[l0=Idi]so; S3; E 0 ` ei : v1; S4so; S1; E ` case e0 of Id1 : T1 ) e1; : : : ; Idn : Tn ) en; esac : v1; S4 [Case]Note that the case rule requires that the class hierarchy be available in some form at runtime, so thatthe correct branch of the case can be selected. This rule is otherwise straightforward.so; S1; E ` e1 : Bool(true); S2so; S2; E ` e2 : v2; S3so; S3; E ` while e1 loop e2 pool : v3; S4so; S1; E ` while e1 loop e2 pool : void; S4 [Loop-True]26



so; S1; E ` e1 : Bool(false); S2so; S1; E ` while e1 loop e2 pool : void; S2 [Loop-False]There are two rules for while: one for the case where the predicate is true and one for the case where thepredicate is false. Both cases are straightforward. The two rules for isvoid are also straightforward:so; S1; E ` e1 : void; S2so; S1; E ` isvoid e1 : Bool(true); S2 [IsVoid-True]so; S1; E ` e1 : X(: : :); S2so; S1; E ` isvoid e1 : Bool(false); S2 [IsVoid-False]The remainder of the rules are for the primitive arithmetic, logical, and comparison operations exceptequality. These are all easy rules. so; S1; E ` e1 : Bool(b); S2v1 = Bool(:b)so; S1; E ` not e1 : v1; S2 [Not]so; S1; E ` e1 : Int(i1); S2so; S2; E ` e2 : Int(i2); S3op 2 f�; <gv3 = ( Bool(true); if i1 op i2Bool(false); otherwiseso; S1; E ` e1 op e2 : v1; S3 [Comp]so; S1; E ` e1 : Int(i1); S2v1 = Int(�i1)so; S1; E ` ~e1 : v1; S2 [Neg]so; S1; E ` e1 : Int(i1); S2so; S2; E ` e2 : Int(i2); S3op 2 f�;+;�; =gv3 = Int(i1 op i2)so; S1; E ` e1 op e2 : v1; S3 [Arith]Cool Ints are 32-bit two's complement signed integers; the arithmetic operations are de�ned accordingly.The notation and rules given above are not powerful enough to describe how objects are tested forequality, or how runtime exceptions are handled. For these cases we resort to an English description.Two objects are compared for equality by �rst comparing their pointers (addresses). If they are thesame, the objects are equal. The value void is not equal to any object except itself. If the two objectsare of type String, Bool, or Int, their respective contents are compared.In addition, the operational rules do not specify what happens in the event of a runtime error.Execution aborts when a runtime error occurs. The following list speci�es all possible runtime errors.1. A dispatch (static or dynamic) on void.2. A case on void. 27



3. Execution of a case statement without a matching branch.4. Division by zero.5. Substring out of range.6. Heap over
ow.Finally, the rules given above do not explain the execution behaviour for dispatches to primitivemethods de�ned in the Object, IO, or String classes. Descriptions of these primitive methods are givenin Sections 8.3-8.5.14 AcknowledgementsCool is based on Sather164, which is itself based on the language Sather. Portions of this documentwere cribbed from the Sather164 manual; in turn, portions of the Sather164 manual are based on Satherdocumentation written by Stephen M. Omohundro.A number people have contributed to the design and implementation of Cool, including ManuelF�ahndrich, David Gay, Douglas Hauge, Megan Jacoby, Tendo Kayiira, Carleton Miyamoto, and MichaelStoddart.
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