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3. Mathings and overs inbipartite graphs

3.1. Mathings, overs, and Gallai's theoremLet G = (V;E) be a graph. A stable set is a subset C of V suh that e 6� C for eahedge e of G. A vertex over is a subset W of V suh that e \W 6= ; for eah edge eof G. It is not diÆult to show that for eah U � V :(1) U is a stable set () V n U is a vertex over.A mathing is a subset M of E suh that e \ e0 = ; for all e; e0 2 M with e 6= e0.A mathing is alled perfet if it overs all verties (that is, has size 12 jV j). An edgeover is a subset F of E suh that for eah vertex v there exists e 2 F satisfyingv 2 e. Note that an edge over an exist only if G has no isolated verties.De�ne:(2) �(G) := maxfjCj j C is a stable setg,�(G) := minfjF j j F is an edge overg,�(G) := minfjW j j W is a vertex overg,�(G) := maxfjM j jM is a mathingg.These numbers are alled the stable set number, the edge over number, the vertexover number, and the mathing number of G, respetively.It is not diÆult to show that:(3) �(G) � �(G) and �(G) � �(G).The triangle K3 shows that strit inequalities are possible. In fat, equality in one ofthe relations (3) implies equality in the other, as Gallai [1958,1959℄ proved:Theorem 3.1 (Gallai's theorem). For any graph G = (V;E) without isolated vertiesone has(4) �(G) + �(G) = jV j = �(G) + �(G):
Proof. The �rst equality follows diretly from (1).To see the seond equality, �rst let M be a mathing of size �(G). For eah of thejV j � 2jM j verties v missed by M , add to M an edge overing v. We obtain an edgeover of size jM j+ (jV j � 2jM j) = jV j � jM j. Hene �(G) � jV j � �(G).
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Seond, let F be an edge over of size �(G). For eah v 2 V delete from F , dF (v)�1edges inident with v. We obtain a mathing of size at least jF j�Pv2V (dF (v)�1) =jF j � (2jF j � jV j) = jV j � jF j. Hene �(G) � jV j � �(G).
This proof also shows that if we have a mathing of maximum ardinality in anygraph G, then we an derive from it a minimum ardinality edge over, and onversely.

Exerises3.1. Let G = (V;E) be a graph without isolated verties. De�ne:
(5) �2(G) := the maximum number of verties suh that no edgeontains more than two of these verties;�2(G) := the minimum number of edges suh that eah vertexis ontained in at least two of these edges;�2(G) := the minimum number of verties suh that eah edgeontains at least two of these verties�2(G) := the maximum number of edges suh that no vertex isontained in more than two of these edges;
possibly taking verties (edges, respetively) more than one.(i) Show that �2(G) � �2(G) and that �2(G) � �2(G).(ii) Show that �2(G) + �2(G) = 2jV j.(iii) Show that �2(G) + �2(G) = 2jV j.

3.2. M-augmenting pathsBasi in mathing theory are M -augmenting paths, whih are de�ned as follows. LetM be a mathing in a graph G = (V;E). A path P = (v0; v1; : : : ; vt) in G is alledM-augmenting if(6) (i) t is odd,(ii) v1v2; v3v4; : : : ; vt�2vt�1 2M ,(iii) v0; vt 62 SM .Note that this implies that v0v1; v2v3; : : : ; vt�1vt do not belong to M .Clearly, if P = (v0; v1; : : : ; vt) is an M -augmenting path, then(7) M 0 :=M4EP
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is a mathing satisfying jM 0j = jM j+ 1.8In fat, it is not diÆult to show that:Theorem 3.2. Let G = (V;E) be a graph and let M be a mathing in G. Theneither M is a mathing of maximum ardinality, or there exists an M-augmentingpath.Proof. IfM is a maximum-ardinality mathing, there annot exist anM -augmentingpath P , sine otherwise M4EP would be a larger mathing.If M 0 is a mathing larger than M , onsider the omponents of the graph G0 :=(V;M [ M 0). As G0 has maximum valeny two, eah omponent of G0 is either apath (possibly of length 0) or a iruit. Sine jM 0j > jM j, at least one of theseomponents should ontain more edges of M 0 than of M . Suh a omponent formsan M -augmenting path.
3.3. K}onig's theoremsA lassial min-max relation due to K}onig [1931℄ (extending a result of Frobenius[1917℄) haraterizes the maximum size of a mathing in a bipartite graph (we followde proof of De Caen [1988℄):Theorem 3.3 (K}onig's mathing theorem). For any bipartite graph G = (V;E) onehas(8) �(G) = �(G).That is, the maximum ardinality of a mathing in a bipartite graph is equal to theminimum ardinality of a vertex over.Proof. By (3) it suÆes to show that �(G) � �(G). We may assume that G has atleast one edge. Then:(9) G has a vertex u overed by eah maximum-size mathing.8EP denotes the set of edges in P . 4 denotes symmetri di�erene.
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To see this, let e = uv be any edge of G, and suppose that there are maximum-sizemathingsM and N missing u and v respetively9. Let P be the omponent ofM[Nontaining u. So P is a path with end vertex u. Sine P is not M -augmenting (as Mhas maximum size), P has even length, and hene does not traverse v (otherwise, Pends at v, ontraditing the bipartiteness ofG). So P[e would form anN -augmentingpath, a ontradition (as N has maximum size). This proves (9).Now (9) implies that for the graph G0 := G � u one has �(G0) = �(G) � 1.Moreover, by indution, G0 has a vertex over C of size �(G0). Then C [ fug is avertex over of G of size �(G0) + 1 = �(G).

Combination of Theorems 3.1 and 3.3 yields the following result of K}onig [1932℄.Corollary 3.3a (K}onig's edge over theorem). For any bipartite graph G = (V;E),without isolated verties, one has(10) �(G) = �(G).That is, the maximum ardinality of a stable set in a bipartite graph is equal to theminimum ardinality of an edge over.Proof. Diretly from Theorems 3.1 and 3.3, as �(G) = jV j � �(G) = jV j � �(G) =�(G).
Exerises3.2. (i) Prove that a k-regular bipartite graph has a perfet mathing (if k � 1).(ii) Derive that a k-regular bipartite graph has k disjoint perfet mathings.(iii) Give for eah k > 1 an example of a k-regular graph not having a perfetmathing.3.3. Prove that in a matrix, the maximum number of nonzero entries with no two in thesame line (=row or olumn), is equal to the minimum number of lines that inludeall nonzero entries.3.4. Let A = (A1; : : : ; An) be a family of subsets of some �nite set X. A subset Y of X isalled a transversal or a system of distint representatives (SDR) of A if there existsa bijetion � : f1; : : : ; ng ! Y suh that �(i) 2 Ai for eah i = 1; : : : ; n.Deide if the following olletions have an SDR:(i) f3; 4; 5g; f2; 5; 6g; f1; 2; 5g; f1; 2; 3g; f1; 3; 6g,(ii) f1; 2; 3; 4; 5; 6g; f1; 3; 4g; f1; 4; 7g; f2; 3; 5; 6g; f3; 4; 7g; f1; 3; 4; 7g; f1; 3; 7g.9M misses a vertex u if u 62 SM . Here SM denotes the union of the edges in M ; that is, theset of verties overed by the edges in M .



Setion 3.3. K}onig's theorems 43
3.5. Let A = (A1; : : : ; An) be a family of subsets of some �nite set X. Prove that A hasan SDR if and only if(11) ��[i2I Ai�� � jIj

for eah subset I of f1; : : : ; ng.[Hall's `marriage' theorem (Hall [1935℄).℄3.6. Let A = (A1; : : : ; An) be subsets of the �nite set X. A subset Y of X is alled apartial transversal or a partial system of distint representatives (partial SDR) if it isa transversal of some subolletion (Ai1 ; : : : ; Aik) of (A1; : : : ; An).Show that the maximum ardinality of a partial SDR of A is equal to the minimumvalue of(12) jX n Zj+ jfi j Ai \ Z 6= ;gj;where Z ranges over all subsets of X.3.7. Let A = (A1; : : : ; An) be a family of �nite sets and let k be a natural number. Showthat A has k pairwise disjoint SDR's of A if and only if
(13) ��[i2I Ai�� � kjIj
for eah subset I of f1; : : : ; ng.3.8. Let A = (A1; : : : ; An) be a family of subsets of a �nite set X and let k be a naturalnumber. Show that X an be partitioned into k partial SDR's if and only if
(14) k � jfi j Ai \ Y 6= ;gj � jY j
for eah subset Y of X.(Hint: Replae eah Ai by k opies of Ai and use Exerise 3.6 above.)3.9. Let (A1; : : : ; An) and (B1; : : : ; Bn) be two partitions of the �nite set X.(i) Show that (A1; : : : ; An) and (B1; : : : ; Bn) have a ommon SDR if and only if foreah subset I of f1; : : : ; ng, the set Si2I Ai intersets at least jIj sets amongB1; : : : ; Bn.(ii) Suppose that jA1j = � � � = jAnj = jB1j = � � � = jBnj. Show that the twopartitions have a ommon SDR.3.10. Let (A1; : : : ; An) and (B1; : : : ; Bn) be two partitions of the �nite set X. Show that theminimum ardinality of a subset of X interseting eah set among A1; : : : ; An; B1; : : : ;Bn is equal to the maximum number of pairwise disjoint sets in A1; : : : ; An; B1; : : : ; Bn.
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3.11. A matrix is alled doubly stohasti if it is nonnegative and eah row sum and eaholumn sum is equal to 1. A matrix is alled a permutation matrix if eah entry is 0or 1 and eah row and eah olumn ontains exatly one 1. Show that eah doublystohasti matrix is a onvex linear ombination of permutation matries.[Birkho�-von Neumann theorem (Birkho� [1946℄, von Neumann [1953℄).℄3.12. Let G = (V;E) be a bipartite graph with olour lasses U and W . Let b : V ! Z+be so that Pv2U b(v) =Pv2W b(v) =: t.A b-mathing is a funtion  : E ! Z+ so that for eah vertex v of G:(15) Xe2E;v2e (e) = b(v)

Show that there exists a b-mathing if and only if(16) Xv2X b(v) � t
for eah vertex over X.3.13. Let G = (V;E) be a bipartite graph with olour lasses U and W . Let b : V ! Z+be so that Pv2U b(v) =Pv2W b(v) = t.Show that there exists a subset F of E so that eah vertex v of G is inident withexatly b(v) of the edges in F if and only if(17) t+ jE(X)j �Xv2X b(v)for eah subset X of V , where E(X) denotes the set of edges ontained in X.3.14. Let G = (V;E) be a bipartite graph and let b : V ! Z+ . Show that the maximumnumber of edges in a subset F of E so that eah vertex v of G is inident with atmost b(v) of the edges in F , is equal to(18) minX�V Xv2X b(v) + jE(V nX)j:

3.15. Let G be a bipartite graph with olour lasses U and W satisfying jU j = jW j = t.Prove that G has k disjoint perfet mathings if and only if for all U 0 � U andW 0 �W there are at least k(jU 0j+ jW 0j � t) edges onneting U 0 and W 0.3.16. Show that eah 2k-regular graph ontains a set F of edges so that eah vertex isinident with exatly two edges in F .
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3.4. Cardinality bipartite mathing algorithmWe now fous on the problem of �nding a maximum-sized mathing in a bipartitegraph algorithmially.In any graph, if we have an algorithm �nding an M -augmenting path for anymathing M (if it exists), then we an �nd a maximum ardinality mathing: weiteratively �nd mathings M0;M1; : : :, with jMij = i, until we have a mathing Mksuh that there does not exist any Mk-augmenting path.We now desribe how to �nd an M -augmenting path in a bipartite graph.Mathing augmenting algorithm for bipartite graphsinput: a bipartite graph G = (V;E) and a mathing M ,output: a mathing M 0 satisfying jM 0j > jM j (if there is one).desription of the algorithm: Let G have olour lasses U and W . Orient eahedge e = fu;wg of G (with u 2 U;w 2 W ) as follows:(19) if e 2M then orient e from w to u,if e 62M then orient e from u to w.Let D be the direted graph thus arising. Consider the sets(20) U 0 := U nSM and W 0 := W nSM .Now an M -augmenting path (if it exists) an be found by �nding a direted pathin D from any vertex in U 0 to any vertex in W 0. Hene in this way we an �nd amathing larger than M .

This implies:Theorem 3.4. A maximum-size mathing in a bipartite graph an be found in timeO(jV jjEj).Proof. The orretness of the algorithm is immediate. Sine a direted path anbe found in time O(jEj), we an �nd an augmenting path in time O(jEj). Hene amaximum ardinality mathing in a bipartite graph an be found in time O(jV jjEj)(as we do at most jV j iterations).
Hoproft and Karp [1973℄ gave an O(jV j1=2jEj) algorithm | see Setion 4.2.Appliation 3.1: Assignment problem. Suppose we have k mahines at our disposal:m1; : : : ;mk. On a ertain day we have to arry out n jobs: j1; : : : ; jn. Eah mahinesis apable of performing some jobs, but an do only one job a day. E.g., we ould have
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�ve mahines m1; : : : ;m5 and �ve jobs j1; : : : ; j5 and the apabilities of the mahines areindiated by rosses in the following table:j1 j2 j3 j4 j5m1 X X Xm2 X X X Xm3 X Xm4 Xm5 XWe want to assign the mahines to the jobs in suh a way that every mahine performsat most one job and that a largest number of jobs is arried out.In order to solve this problem we represent the mahines and jobs by vertiesm1; : : : ;mkand j1; : : : ; jn of a bipartite graph G = (V;E), and we make an edge from mi to jj if job jan be performed by mahine i. Thus the example gives Figure 3.2. Then a maximum-sizemathing in G orresponds to a maximum assignment of jobs.
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Exerises3.17. Find a maximum-size mathing and a minimum vertex over in the bipartite graphin Figure 3.3.3.18. Solve the assignment problem given in Appliation 3.1.3.19. Derive K}onig's mathing theorem from the ardinality mathing algorithm for bipar-tite graphs.3.20. Show that a minimum-size vertex over in a bipartite graph an be found in polyno-mial time.3.21. Show that, given a family of sets, a system of distint representatives an be foundin polynomial time (if it exists).
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3.5. Weighted bipartite mathingWe now onsider the problem of �nding a mathing of maximum weight for whihwe desribe the so-alled Hungarian method developed by Kuhn [1955℄, using work ofEgerv�ary [1931℄ (see Corollary 3.7b below).Let G = (V;E) be a graph and let w : E ! R be a `weight' funtion. For anysubset M of E de�ne the weight w(M) of M by
(21) w(M) :=Xe2M w(e):
The maximum-weight mathing problem onsists of �nding a mathing of maximumweight.Again, augmenting paths are of help at this problem. Call a mathing M extremeif it has maximum weight among all mathings of ardinality jM j.Let M be an extreme mathing. De�ne a `length' funtion l : E ! R as follows:
(22) l(e) := (w(e) if e 2M ,�w(e) if e 62M .Then the following holds:Proposition 1. Let P be an M-augmenting path of minimum length. If M isextreme, then M 0 :=M4EP is extreme again.Proof. Let N be any extreme mathing of size jM j + 1. As jN j > jM j, M [N hasa omponent Q that is an M -augmenting path. As P is a shortest M -augmentingpath, we know l(Q) � l(P ). Moreover, as N4EQ is a mathing of size jM j, and asM is extreme, we know w(N4EQ) � w(M). Hene(23) w(N) = w(N4EQ)� l(Q) � w(M)� l(P ) = w(M 0):Hene M 0 is extreme.
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This implies that if we are able to �nd a minimum-length M -augmenting path inpolynomial time, we an �nd a maximum-weight mathing in polynomial time: �nditeratively extreme mathings M0;M1; : : : suh that jMkj = k for eah k. Then themathing among M0;M1; : : : of maximum weight is a maximum-weight mathing.IfG is bipartite, we an �nd a minimum-lengthM -augmenting path as follows. LetG have olour lasses U andW . Orient the edges of G as in (19), making the diretedgraph D, and let U 0 and W 0 as in (20). Then a minimum-lengthM -augmenting pathan be found by �nding a minimum-length path in D from any vertex in U 0 to anyvertex in W 0. This an be done in polynomial time, sine:Theorem 3.5. Let M be an extreme mathing. Then D has no direted iruit ofnegative length.Proof. Suppose C is a direted iruit in D with length l(C) < 0. We may assumeC = (u0; w1; u1; : : : ; wt; ut) with u0 = ut and u1; : : : ; ut 2 U and w1; : : : ; wt 2 W .Then the edges w1u1; : : : ; wtut belong to M and the edges u0w1; u1w2; : : : ; ut�1wt donot belong to M . Then M 00 := M4EC is a mathing of ardinality k of weightw(M 00) = w(M)� l(C) > w(M), ontraditing the fat that M is extreme.
This gives a polynomial-time algorithm to �nd a maximum-weight mathing in abipartite graph. The desription above yields:Theorem 3.6. A maximum-weight mathing in a bipartite graph G = (V;E) an befound in O(jV j2jEj) time.Proof.We do O(jV j) iterations, eah onsisting of �nding a shortest path (in a graphwithout negative-length direted iruits), whih an be done in O(jV jjEj) time (withthe Bellman-Ford algorithm | see Corollary 1.10a).
In fat, a sharpening of this method (by transmitting a `potential' p : V ! Qthroughout the mathing augmenting iterations, making the length funtion l non-negative, so that Dijkstra's method an be used) gives an O(jV j(jEj + jV j log jV j))algorithm.Appliation 3.2: Optimal assignment. Suppose that we have n jobs and m mahinesand that eah job an be done on eah mahine. Moreover, let a ost funtion (or ostmatrix) ki;j be given, speifying the ost of performing job j by mahine i. We want toperform the jobs with a minimum of total osts.This an be solved with the maximum-weight bipartite mathing algorithm. To thisend, we make a omplete bipartite graph G with olour lasses of ardinality m and n. LetK be the maximum of ki;j over all i; j. De�ne the weight of the edge onneting mahine iand job j to be equal to K � ki;j . Then a maximum-weight mathing in G orresponds to
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an optimum assignment of mahines to jobs.So the algorithm for solving the assignment problem ounters the remarks made byThorndike [1950℄ in an Address delivered on September 9, 1949 at a meeting of the AmerianPsyhologial Assoiation at Denver, Colorado:There are, as has been indiated, a �nite number of permutations in the assign-ment of men to jobs. When the lassi�ation problem as formulated above waspresented to a mathematiian, he pointed to this fat and said that from thepoint of view of the mathematiian there was no problem. Sine the number ofpermutations was �nite, one had only to try them all and hoose the best. Hedismissed the problem at that point. This is rather old omfort to the psy-hologist, however, when one onsiders that only ten men and ten jobs meanover three and a half million permutations. Trying out all the permutationsmay be a mathematial solution to the problem, it is not a pratial solution.
Appliation 3.3: Transporting earth. Monge [1784℄ was one of the �rst to onsiderthe assignment problem, in the role of the problem of transporting earth from one area toanother, whih he onsidered as the disontinuous, ombinatorial problem of transportingmoleules:Lorsqu'on doit transporter des terres d'un lieu dans un autre, on a outime dedonner le nom de D�eblai au volume des terres que l'on doit transporter, & lenom de Remblai �a l'espae qu'elles doivent ouper apr�es le transport.Le prix du transport d'une mol�eule �etant, toutes hoses d'ailleurs �egales, pro-portionnel �a son poids & �a l'espae qu'on lui fait parourir, & par ons�equent leprix du transport total devant être proportionnel �a la somme des produits desmol�eules multipli�ees haune par l'espae parouru, il s'ensuit que le d�eblai &le remblai �etant donn�e de �gure & de position, il n'est pas indi��erent que tellemol�eule du d�eblai soit transport�ee dans tel ou tel autre endroit du remblai,mais qu'il y a une ertaine distribution �a faire des mol�eules du premier dansle seond, dapr�es laquelle la somme de es produits sera la moindre possible, &le prix du transport total sera minimum.10Monge desribes an interesting geometri method to solve the assignment problem in thisase: let l be a line touhing the two areas from one side; then transport the earth moleule10When one must transport earth from one plae to another, one usually gives the name of D�eblaito the volume of earth that one must transport, & the name of Remblai to the spae that theyshould oupy after the transport.The prie of the transport of one moleule being, if all the rest is equal, proportional to its weight& to the distane that one makes it overing, & hene the prie of the total transport having to beproportional to the sum of the produts of the moleules eah multiplied by the distane overed,it follows that, the d�eblai & the remblai being given by �gure and position, it makes di�erene if aertain moleule of the d�eblai is transported to one or to another plae of the remblai, but that thereis a ertain distribution to make of the molules from the �rst to the seond, after whih the sum ofthese produts will be as little as possible, & the prie of the total transport will be a minimum.
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touhed in one area to the position touhed in the other area. Then repeat, until allmoleules are transported.
Exerises3.22. Five mehanis, stationed in the ities A;B;C;D;E, have to perform jobs in the itiesF;G;H; I; J . The jobs must be assigned in suh a way to the mehanis that everyonegets one job and that the total distane traveled by them is as small as possible. Thedistanes are given in the tables below. Solve these assignment problems with theweighted mathing algorithm.

(i)
F G H I JA 6 17 10 1 3B 9 23 21 4 5C 2 8 5 0 1D 19 31 19 20 9E 21 25 22 3 9

(ii)
F G H I JA 11 5 21 7 18B 17 4 20 9 25C 4 1 3 2 4D 6 2 19 3 9E 19 7 23 18 26

3.23. Derive from the weighted mathing algorithm for bipartite graphs an algorithm for�nding a minimum-weight perfet mathing in a bipartite graph G = (V;E). (Amathing M is perfet if SM = V .)3.24. Let A1; : : : ; An be subsets of the �nite set X and let w : X ! R+ be a `weight'funtion. Derive from the weighted mathing algorithm a polynomial-time algorithmto �nd a minimum-weight SDR.
3.6. The mathing polytopeThe weighted mathing problem is related to the `mathing polytope'. Let G = (V;E)be a graph. For eah mathing M let the inidene vetor �M : E ! R of M bede�ned by:(24) �M (e) := 1 if e 2M ,�M (e) := 0 if e 62M ,


