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3. Matchings and covers in
bipartite graphs

3.1. Matchings, covers, and Gallai’s theorem

Let G = (V, E) be a graph. A stable set is a subset C' of V such that e  C for each
edge e of G. A wvertex cover is a subset W of V such that e N W # () for each edge e
of G. It is not difficult to show that for each U C V:

(1) U is a stable set <= V' \ U is a vertex cover.

A matching is a subset M of E such that ene’ = 0 for all e,e’ € M with e # €.
A matching is called perfect if it covers all vertices (that is, has size ;|V|). An edge
cover is a subset F' of E such that for each vertex v there exists e € F' satisfying
v € e. Note that an edge cover can exist only if G has no isolated vertices.

Define:

(2) a(G) = max{|C||C is a stable set},
p(G) := min{|F|| F is an edge cover},
7(G) := min{|W|| W is a vertex cover},
v(G) := max{|M|| M is a matching}.

These numbers are called the stable set number, the edge cover number, the vertex
cover number, and the matching number of G, respectively.
It is not difficult to show that:

(3) a(G) < p(G) and v(G) < 7(G).

The triangle K3 shows that strict inequalities are possible. In fact, equality in one of
the relations (3) implies equality in the other, as Gallai [1958,1959] proved:

Theorem 3.1 (Gallai’s theorem). For any graph G = (V, E) without isolated vertices
one has

(4) a(G) +7(G) = [V] = v(G) + p(G).

Proof. The first equality follows directly from (1).

To see the second equality, first let M be a matching of size v(G). For each of the
|V | — 2| M| vertices v missed by M, add to M an edge covering v. We obtain an edge
cover of size |[M|+ (|V| —2|M|) = |V| — |M|. Hence p(G) < |V| —v(G).
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Second, let F' be an edge cover of size p(G). For each v € V delete from F, dp(v)—1
edges incident with v. We obtain a matching of size at least |F|—3" |, (dp(v) —1)
[F| = Q[F| — [V]) = [V| — |F|. Hence v(G) > [V| — p(G).

This proof also shows that if we have a matching of maximum cardinality in any
graph G, then we can derive from it a minimum cardinality edge cover, and conversely.

Exercises

3.1. Let G = (V, E) be a graph without isolated vertices. Define:

(5) a2(G) := the maximum number of vertices such that no edge
contains more than two of these vertices;
p2(G) := the minimum number of edges such that each vertex
is contained in at least two of these edges;
72(G) := the minimum number of vertices such that each edge
contains at least two of these vertices
v2(G) := the maximum number of edges such that no vertex is

contained in more than two of these edges;

possibly taking vertices (edges, respectively) more than once.

(i) Show that as(G) < p2(G) and that vo(G) < 172(G).
(ii) Show that aa(G) + m2(G) = 2|V]|.
(iii) Show that 12(G) + p2(G) = 2|V|.

3.2. M-augmenting paths

Basic in matching theory are M-augmenting paths, which are defined as follows. Let
M be a matching in a graph G = (V, E). A path P = (vg,vq,...,v;) in G is called
M -augmenting if

(6) (i) t is odd,
(i) viva, V34, ..., V21 € M,

(iii) vo, vy € UM.
Note that this implies that vyvy, vovs, ..., v, 1v; do not belong to M.
Clearly, if P = (vg,v1,...,v;) is an M-augmenting path, then

(7) M':= MAEP
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— edgein M e vertex covered by M
—— edgenot in M o vertex not covered by M
Figure 3.1

is a matching satisfying |M’| = |M| + 1.8
In fact, it is not difficult to show that:

Theorem 3.2. Let G = (V,E) be a graph and let M be a matching in G. Then
either M is a matching of mazimum cardinality, or there exists an M -augmenting
path.

Proof. If M is a maximum-cardinality matching, there cannot exist an M-augmenting
path P, since otherwise M AFEP would be a larger matching.

If M’ is a matching larger than M, consider the components of the graph G’ :=
(V,M U M'). As G' has maximum valency two, each component of G’ is either a
path (possibly of length 0) or a circuit. Since |M'| > |M|, at least one of these
components should contain more edges of M’ than of M. Such a component forms
an M-augmenting path. |

3.3. Konig’s theorems

A classical min-max relation due to Kénig [1931] (extending a result of Frobenius
[1917]) characterizes the maximum size of a matching in a bipartite graph (we follow
de proof of De Caen [1988]):

Theorem 3.3 (Kénig’s matching theorem). For any bipartite graph G = (V, E) one
has

That is, the mazximum cardinality of a matching in a bipartite graph is equal to the
minimum cardinality of a vertex cover.

Proof. By (3) it suffices to show that v(G) > 7(G). We may assume that G has at
least one edge. Then:

9) G has a vertex u covered by each maximum-size matching.

8 EP denotes the set of edges in P. A denotes symmetric difference.
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To see this, let e = uv be any edge of G, and suppose that there are maximum-size
matchings M and N missing u and v respectively®. Let P be the component of M UN
containing u. So P is a path with end vertex u. Since P is not M-augmenting (as M
has maximum size), P has even length, and hence does not traverse v (otherwise, P
ends at v, contradicting the bipartiteness of G). So PUe would form an N-augmenting
path, a contradiction (as N has maximum size). This proves (9).

Now (9) implies that for the graph G’ := G — u one has v(G') = v(G) — 1.
Moreover, by induction, G’ has a vertex cover C of size v(G'). Then C' U {u} is a
vertex cover of G of size v(G') + 1 = v(G). |

Combination of Theorems 3.1 and 3.3 yields the following result of Kénig [1932].

Corollary 3.3a (K6nig’s edge cover theorem). For any bipartite graph G = (V, E),
without isolated vertices, one has

(10)  a(@) = p(G).

That is, the maximum cardinality of a stable set in a bipartite graph is equal to the
manimum cardinality of an edge cover.

Proof. Directly from Theorems 3.1 and 3.3, as a(G) = |V| — 7(G) = |V| — v(G)
p(G).

Exercises

3.2. (i) Prove that a k-regular bipartite graph has a perfect matching (if k¥ > 1).
(ii) Derive that a k-regular bipartite graph has k disjoint perfect matchings.
(iii) Give for each £ > 1 an example of a k-regular graph not having a perfect

matching.

3.3. Prove that in a matrix, the maximum number of nonzero entries with no two in the
same line (=row or column), is equal to the minimum number of lines that include
all nonzero entries.

3.4. Let A= (A4y,...,A,) be a family of subsets of some finite set X. A subset Y of X is
called a transversal or a system of distinct representatives (SDR) of A if there exists
a bijection 7 : {1,...,n} — Y such that 7(i) € A; for each i =1,... n.

Decide if the following collections have an SDR:

(i) {3,4,5},{2,5,6},{1,2,5},{1,2,3},{1,3,6},
(i) {1,2,3,4,5,6},{1,3,4},{1,4,7}.{2,3,5,6},{3,4,7},{1,3,4,7},{1,3,7}.

9M misses a vertex u if u ¢ |J M. Here | J M denotes the union of the edges in M; that is, the
set of vertices covered by the edges in M.
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3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

Let A= (Ai,...,A,) be a family of subsets of some finite set X. Prove that A has
an SDR if and only if

(11) J A =1
el
for each subset I of {1,...,n}.
[Hall’s ‘marriage’ theorem (Hall [1935]).]

Let A = (Ai,...,A,) be subsets of the finite set X. A subset Y of X is called a
partial transversal or a partial system of distinct representatives (partial SDR) if it is
a transversal of some subcollection (4;,,...,A4;,) of (A1,...,4,).

Show that the maximum cardinality of a partial SDR of A is equal to the minimum
value of

(12) X\ Z|+ [{i| AinZ # 0},
where Z ranges over all subsets of X.

Let A= (Ai,...,A,) be a family of finite sets and let k be a natural number. Show
that A has k pairwise disjoint SDR’s of A if and only if

(13) | Ai| > k1|

i€l

for each subset I of {1,...,n}.
Let A= (A1,...,A,) be a family of subsets of a finite set X and let k& be a natural
number. Show that X can be partitioned into k£ partial SDR’s if and only if

(14)  k-[il AnY £0} > |V

for each subset Y of X.
(Hint: Replace each A; by k copies of A; and use Exercise 3.6 above.)

Let (Ai,...,A,) and (By,...,B,) be two partitions of the finite set X.

(i) Show that (Ai,...,A,) and (B, ..., By,) have a common SDR if and only if for

each subset I of {1,...,n}, the set |J;c; A; intersects at least |I| sets among
Bi,....B,.
(ii) Suppose that |A;| = --- = |A,| = |B1| = --- = |Bp|. Show that the two

partitions have a common SDR.

Let (A1,...,A,) and (By,..., By) be two partitions of the finite set X. Show that the
minimum cardinality of a subset of X intersecting each set among A4,..., A,, B1,...,
B, is equal to the maximum number of pairwise disjoint setsin A1,..., Ay, B1,..., By.
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3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

Chapter 3. Matchings and covers in bipartite graphs

A matrix is called doubly stochastic if it is nonnegative and each row sum and each
column sum is equal to 1. A matrix is called a permutation matriz if each entry is 0
or 1 and each row and each column contains exactly one 1. Show that each doubly
stochastic matrix is a convex linear combination of permutation matrices.

[Birkhoff-von Neumann theorem (Birkhoff [1946], von Neumann [1953]).]

Let G = (V, E) be a bipartite graph with colour classes U and W. Let b: V — Z;
be so that ) b(v) = > b(v) =: t.

A b-matching is a function ¢ : E — Z so that for each vertex v of G:

(15) > ele) =b(v)

ecE,veEe

Show that there exists a b-matching if and only if

(16) > b(v) >t

veEX

for each vertex cover X.

Let G = (V, E) be a bipartite graph with colour classes U and W. Let b: V — Z,
be so that ) ., b(v) =3, oy b(v) =t.

Show that there exists a subset F' of E so that each vertex v of G is incident with

exactly b(v) of the edges in F if and only if

(17) t+[E(X)| > b(v)

veX

for each subset X of V, where E(X) denotes the set of edges contained in X.

Let G = (V, E) be a bipartite graph and let b: V' — Z,. Show that the maximum
number of edges in a subset F' of F so that each vertex v of G is incident with at
most b(v) of the edges in F, is equal to

(18) min »  b(v) +[E(V\ X)|.
ToveX

Let G be a bipartite graph with colour classes U and W satisfying |U| = |[W| = t.
Prove that G has k disjoint perfect matchings if and only if for all U’ C U and
W' C W there are at least k(|U’'| + |W'| — t) edges connecting U’ and W".

Show that each 2k-regular graph contains a set F' of edges so that each vertex is
incident with exactly two edges in F'.
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3.4. Cardinality bipartite matching algorithm

We now focus on the problem of finding a maximum-sized matching in a bipartite
graph algorithmically.

In any graph, if we have an algorithm finding an M-augmenting path for any
matching M (if it exists), then we can find a maximum cardinality matching: we
iteratively find matchings My, My, ..., with |M;| = i, until we have a matching M;,
such that there does not exist any Mj-augmenting path.

We now describe how to find an M-augmenting path in a bipartite graph.

Matching augmenting algorithm for bipartite graphs

input: a bipartite graph G = (V, E') and a matching M,

output: a matching M’ satisfying |M'| > |M| (if there is one).

description of the algorithm: Let G' have colour classes U and W. Orient each
edge e = {u,w} of G (with u € U,w € W) as follows:

(19) if e € M then orient e from w to u,
if e ¢ M then orient e from u to w.

Let D be the directed graph thus arising. Consider the sets
(20) U :=U\UM and W' =W\ UM.

Now an M-augmenting path (if it exists) can be found by finding a directed path
in D from any vertex in U’ to any vertex in W’. Hence in this way we can find a
matching larger than M. |

This implies:

Theorem 3.4. A maxzimum-size matching in a bipartite graph can be found in time

O(IVIIE]).

Proof. The correctness of the algorithm is immediate. Since a directed path can
be found in time O(|E|), we can find an augmenting path in time O(|E|). Hence a
maximum cardinality matching in a bipartite graph can be found in time O(|V||E|)
(as we do at most |V| iterations). |

Hopcroft and Karp [1973] gave an O(|V'|*/?|E|) algorithm — see Section 4.2,

Application 3.1: Assignment problem. Suppose we have k machines at our disposal:
mi,...,mE. On a certain day we have to carry out n jobs: ji,...,J,. Each machines
is capable of performing some jobs, but can do only one job a day. E.g., we could have
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five machines my,...,m5 and five jobs ji,...,J5 and the capabilities of the machines are
indicated by crosses in the following table:

| [ g1 g2 | g3 | dal s ]

mi || X | X X
mo || X | X | X | X

m3 || X | X

My X

ms X

We want to assign the machines to the jobs in such a way that every machine performs
at most one job and that a largest number of jobs is carried out.

In order to solve this problem we represent the machines and jobs by vertices mq, ..., mg
and ji,..., jn of a bipartite graph G = (V, E), and we make an edge from m; to j; if job j
can be performed by machine i. Thus the example gives Figure 3.2. Then a maximum-size
matching in G corresponds to a maximum assignment of jobs.

Figure 3.2

Exercises

3.17. Find a maximum-size matching and a minimum vertex cover in the bipartite graph
in Figure 3.3.

3.18. Solve the assignment problem given in Application 3.1.

3.19. Derive Kénig’s matching theorem from the cardinality matching algorithm for bipar-
tite graphs.

3.20. Show that a minimum-size vertex cover in a bipartite graph can be found in polyno-
mial time.

3.21. Show that, given a family of sets, a system of distinct representatives can be found
in polynomial time (if it exists).
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Figure 3.3

3.5. Weighted bipartite matching

We now consider the problem of finding a matching of maximum weight for which
we describe the so-called Hungarian method developed by Kuhn [1955], using work of
Egervéry [1931] (see Corollary 3.7b below).

Let G = (V,E) be a graph and let w : E — R be a ‘weight’ function. For any
subset M of F define the weight w(M) of M by

(21) w(M) ==Y w(e).

eeM

The maximum-weight matching problem consists of finding a matching of maximum
weight.

Again, augmenting paths are of help at this problem. Call a matching M extreme
if it has maximum weight among all matchings of cardinality |M].

Let M be an extreme matching. Define a ‘length’ function [ : E — R as follows:

w(e) ifee M,

(22) e) = {—w(e) ifedg M.

Then the following holds:

Proposition 1. Let P be an M-augmenting path of minimum length. If M 1is
extreme, then M' := MAEP is extreme again.

Proof. Let N be any extreme matching of size |M|+ 1. As |[N| > |[M|, M U N has
a component ) that is an M-augmenting path. As P is a shortest M-augmenting
path, we know [(Q) > I(P). Moreover, as NAEQ is a matching of size |M|, and as
M is extreme, we know w(NAEQ) < w(M). Hence

(23)  w(N) = w(NAEQ) — Q) < w(M) — I(P) = w(M).

Hence M’ is extreme. |
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This implies that if we are able to find a minimum-length M-augmenting path in
polynomial time, we can find a maximum-weight matching in polynomial time: find
iteratively extreme matchings My, My, ... such that | M| = k for each k. Then the
matching among My, My, ... of maximum weight is a maximum-weight matching.

If G is bipartite, we can find a minimum-length M-augmenting path as follows. Let
G have colour classes U and W. Orient the edges of G as in (19), making the directed
graph D, and let U’ and W' as in (20). Then a minimum-length M-augmenting path
can be found by finding a minimum-length path in D from any vertex in U’ to any
vertex in W’. This can be done in polynomial time, since:

Theorem 3.5. Let M be an extreme matching. Then D has no directed circuit of
negative length.

Proof. Suppose C is a directed circuit in D with length I(C) < 0. We may assume
C = (ug,wy,uq,...,ws,u) with ug = w, and uq,...,u; € U and wy,...,w; € W.
Then the edges wquy,...,w;u; belong to M and the edges uqwy, uqws, ..., u;_qw; do
not belong to M. Then M" := MAEC is a matching of cardinality & of weight
w(M") =w(M) —1(C) > w(M), contradicting the fact that M is extreme. |

This gives a polynomial-time algorithm to find a maximum-weight matching in a
bipartite graph. The description above yields:

Theorem 3.6. A mazimum-weight matching in a bipartite graph G = (V, E) can be
found in O(|V|?|E|) time.

Proof. We do O(|V]) iterations, each consisting of finding a shortest path (in a graph
without negative-length directed circuits), which can be done in O(|V||E|) time (with
the Bellman-Ford algorithm — see Corollary 1.10a). |

In fact, a sharpening of this method (by transmitting a ‘potential’ p : V. — Q
throughout the matching augmenting iterations, making the length function /[ non-
negative, so that Dijkstra’s method can be used) gives an O(|V|(|E| + |V|log|V]))
algorithm.

Application 3.2: Optimal assignment. Suppose that we have n jobs and m machines
and that each job can be done on each machine. Moreover, let a cost function (or cost
matrix) k; ; be given, specifying the cost of performing job j by machine i. We want to
perform the jobs with a minimum of total costs.

This can be solved with the maximum-weight bipartite matching algorithm. To this
end, we make a complete bipartite graph G with colour classes of cardinality m and n. Let
K be the maximum of k; ; over all 4, j. Define the weight of the edge connecting machine ¢
and job j to be equal to K — k; ;. Then a maximum-weight matching in G corresponds to
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an optimum assignment of machines to jobs.

So the algorithm for solving the assignment problem counters the remarks made by
Thorndike [1950] in an Address delivered on September 9, 1949 at a meeting of the American
Psychological Association at Denver, Colorado:

There are, as has been indicated, a finite number of permutations in the assign-
ment of men to jobs. When the classification problem as formulated above was
presented to a mathematician, he pointed to this fact and said that from the
point of view of the mathematician there was no problem. Since the number of
permutations was finite, one had only to try them all and choose the best. He
dismissed the problem at that point. This is rather cold comfort to the psy-
chologist, however, when one considers that only ten men and ten jobs mean
over three and a half million permutations. Trying out all the permutations
may be a mathematical solution to the problem, it is not a practical solution.

Application 3.3: Transporting earth. Monge [1784] was one of the first to consider
the assignment problem, in the role of the problem of transporting earth from one area to
another, which he considered as the discontinuous, combinatorial problem of transporting
molecules:

Lorsqu’on doit transporter des terres d’un lieu dans un autre, on a coutime de
donner le nom de Déblai au volume des terres que I'on doit transporter, & le
nom de Remblai & ’espace qu’elles doivent occuper apres le transport.

Le prix du transport d’une molécule étant, toutes choses d’ailleurs égales, pro-
portionnel & son poids & a ’espace qu’on lui fait parcourir, & par conséquent le
prix du transport total devant étre proportionnel a la somme des produits des
molécules multipliées chacune par ’espace parcouru, il s’ensuit que le déblai &
le remblai étant donné de figure & de position, il n’est pas indifférent que telle
molécule du déblai soit transportée dans tel ou tel autre endroit du remblai,
mais qu’il y a une certaine distribution a faire des molécules du premier dans
le second, dapres laquelle la somme de ces produits sera la moindre possible, &
le prix du transport total sera minimum.'°

Monge describes an interesting geometric method to solve the assignment problem in this
case: let [ be a line touching the two areas from one side; then transport the earth molecule

10When one must transport earth from one place to another, one usually gives the name of Déblai
to the volume of earth that one must transport, & the name of Remblai to the space that they
should occupy after the transport.

The price of the transport of one molecule being, if all the rest is equal, proportional to its weight
& to the distance that one makes it covering, & hence the price of the total transport having to be
proportional to the sum of the products of the molecules each multiplied by the distance covered,
it follows that, the déblai & the remblai being given by figure and position, it makes difference if a
certain molecule of the déblai is transported to one or to another place of the remblai, but that there
is a certain distribution to make of the molcules from the first to the second, after which the sum of
these products will be as little as possible, & the price of the total transport will be a minimum.
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touched in one area to the position touched in the other area. Then repeat, until all
molecules are transported.

Exercises

3.22. Five mechanics, stationed in the cities A, B, C, D, E, have to perform jobs in the cities
F,G,H,I,J. The jobs must be assigned in such a way to the mechanics that everyone
gets one job and that the total distance traveled by them is as small as possible. The
distances are given in the tables below. Solve these assignment problems with the
weighted matching algorithm.

F G H 1 J
Al 6 17 10 1 3
Q) B| 9 23 21 4 5
c| 2 8 5 0 1
D|19 31 19 20 9
E |21 25 22 3 9
F G H 1 J
A1l 5 21 7 18
B|17 4 20 9 25
(i)
c|l 4 1 3 2 4
D| 6 2 19 3 9
E|19 7 23 18 26

3.23. Derive from the weighted matching algorithm for bipartite graphs an algorithm for
finding a minimum-weight perfect matching in a bipartite graph G = (V, E). (A
matching M is perfectif (JM =V.)

3.24. Let Aj,..., A, be subsets of the finite set X and let w : X — R, be a ‘weight’
function. Derive from the weighted matching algorithm a polynomial-time algorithm
to find a minimum-weight SDR.

3.6. The matching polytope

The weighted matching problem is related to the ‘matching polytope’. Let G = (V, E)
be a graph. For each matching M let the incidence vector Y™ : E — R of M be
defined by:

(24) (e):=1ifee M,

WM
YM(e):=0ifedg M,



