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3. Mat
hings and 
overs inbipartite graphs

3.1. Mat
hings, 
overs, and Gallai's theoremLet G = (V;E) be a graph. A stable set is a subset C of V su
h that e 6� C for ea
hedge e of G. A vertex 
over is a subset W of V su
h that e \W 6= ; for ea
h edge eof G. It is not diÆ
ult to show that for ea
h U � V :(1) U is a stable set () V n U is a vertex 
over.A mat
hing is a subset M of E su
h that e \ e0 = ; for all e; e0 2 M with e 6= e0.A mat
hing is 
alled perfe
t if it 
overs all verti
es (that is, has size 12 jV j). An edge
over is a subset F of E su
h that for ea
h vertex v there exists e 2 F satisfyingv 2 e. Note that an edge 
over 
an exist only if G has no isolated verti
es.De�ne:(2) �(G) := maxfjCj j C is a stable setg,�(G) := minfjF j j F is an edge 
overg,�(G) := minfjW j j W is a vertex 
overg,�(G) := maxfjM j jM is a mat
hingg.These numbers are 
alled the stable set number, the edge 
over number, the vertex
over number, and the mat
hing number of G, respe
tively.It is not diÆ
ult to show that:(3) �(G) � �(G) and �(G) � �(G).The triangle K3 shows that stri
t inequalities are possible. In fa
t, equality in one ofthe relations (3) implies equality in the other, as Gallai [1958,1959℄ proved:Theorem 3.1 (Gallai's theorem). For any graph G = (V;E) without isolated verti
esone has(4) �(G) + �(G) = jV j = �(G) + �(G):
Proof. The �rst equality follows dire
tly from (1).To see the se
ond equality, �rst let M be a mat
hing of size �(G). For ea
h of thejV j � 2jM j verti
es v missed by M , add to M an edge 
overing v. We obtain an edge
over of size jM j+ (jV j � 2jM j) = jV j � jM j. Hen
e �(G) � jV j � �(G).
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Se
ond, let F be an edge 
over of size �(G). For ea
h v 2 V delete from F , dF (v)�1edges in
ident with v. We obtain a mat
hing of size at least jF j�Pv2V (dF (v)�1) =jF j � (2jF j � jV j) = jV j � jF j. Hen
e �(G) � jV j � �(G).
This proof also shows that if we have a mat
hing of maximum 
ardinality in anygraph G, then we 
an derive from it a minimum 
ardinality edge 
over, and 
onversely.

Exer
ises3.1. Let G = (V;E) be a graph without isolated verti
es. De�ne:
(5) �2(G) := the maximum number of verti
es su
h that no edge
ontains more than two of these verti
es;�2(G) := the minimum number of edges su
h that ea
h vertexis 
ontained in at least two of these edges;�2(G) := the minimum number of verti
es su
h that ea
h edge
ontains at least two of these verti
es�2(G) := the maximum number of edges su
h that no vertex is
ontained in more than two of these edges;
possibly taking verti
es (edges, respe
tively) more than on
e.(i) Show that �2(G) � �2(G) and that �2(G) � �2(G).(ii) Show that �2(G) + �2(G) = 2jV j.(iii) Show that �2(G) + �2(G) = 2jV j.

3.2. M-augmenting pathsBasi
 in mat
hing theory are M -augmenting paths, whi
h are de�ned as follows. LetM be a mat
hing in a graph G = (V;E). A path P = (v0; v1; : : : ; vt) in G is 
alledM-augmenting if(6) (i) t is odd,(ii) v1v2; v3v4; : : : ; vt�2vt�1 2M ,(iii) v0; vt 62 SM .Note that this implies that v0v1; v2v3; : : : ; vt�1vt do not belong to M .Clearly, if P = (v0; v1; : : : ; vt) is an M -augmenting path, then(7) M 0 :=M4EP
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is a mat
hing satisfying jM 0j = jM j+ 1.8In fa
t, it is not diÆ
ult to show that:Theorem 3.2. Let G = (V;E) be a graph and let M be a mat
hing in G. Theneither M is a mat
hing of maximum 
ardinality, or there exists an M-augmentingpath.Proof. IfM is a maximum-
ardinality mat
hing, there 
annot exist anM -augmentingpath P , sin
e otherwise M4EP would be a larger mat
hing.If M 0 is a mat
hing larger than M , 
onsider the 
omponents of the graph G0 :=(V;M [ M 0). As G0 has maximum valen
y two, ea
h 
omponent of G0 is either apath (possibly of length 0) or a 
ir
uit. Sin
e jM 0j > jM j, at least one of these
omponents should 
ontain more edges of M 0 than of M . Su
h a 
omponent formsan M -augmenting path.
3.3. K}onig's theoremsA 
lassi
al min-max relation due to K}onig [1931℄ (extending a result of Frobenius[1917℄) 
hara
terizes the maximum size of a mat
hing in a bipartite graph (we followde proof of De Caen [1988℄):Theorem 3.3 (K}onig's mat
hing theorem). For any bipartite graph G = (V;E) onehas(8) �(G) = �(G).That is, the maximum 
ardinality of a mat
hing in a bipartite graph is equal to theminimum 
ardinality of a vertex 
over.Proof. By (3) it suÆ
es to show that �(G) � �(G). We may assume that G has atleast one edge. Then:(9) G has a vertex u 
overed by ea
h maximum-size mat
hing.8EP denotes the set of edges in P . 4 denotes symmetri
 di�eren
e.
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To see this, let e = uv be any edge of G, and suppose that there are maximum-sizemat
hingsM and N missing u and v respe
tively9. Let P be the 
omponent ofM[N
ontaining u. So P is a path with end vertex u. Sin
e P is not M -augmenting (as Mhas maximum size), P has even length, and hen
e does not traverse v (otherwise, Pends at v, 
ontradi
ting the bipartiteness ofG). So P[e would form anN -augmentingpath, a 
ontradi
tion (as N has maximum size). This proves (9).Now (9) implies that for the graph G0 := G � u one has �(G0) = �(G) � 1.Moreover, by indu
tion, G0 has a vertex 
over C of size �(G0). Then C [ fug is avertex 
over of G of size �(G0) + 1 = �(G).

Combination of Theorems 3.1 and 3.3 yields the following result of K}onig [1932℄.Corollary 3.3a (K}onig's edge 
over theorem). For any bipartite graph G = (V;E),without isolated verti
es, one has(10) �(G) = �(G).That is, the maximum 
ardinality of a stable set in a bipartite graph is equal to theminimum 
ardinality of an edge 
over.Proof. Dire
tly from Theorems 3.1 and 3.3, as �(G) = jV j � �(G) = jV j � �(G) =�(G).
Exer
ises3.2. (i) Prove that a k-regular bipartite graph has a perfe
t mat
hing (if k � 1).(ii) Derive that a k-regular bipartite graph has k disjoint perfe
t mat
hings.(iii) Give for ea
h k > 1 an example of a k-regular graph not having a perfe
tmat
hing.3.3. Prove that in a matrix, the maximum number of nonzero entries with no two in thesame line (=row or 
olumn), is equal to the minimum number of lines that in
ludeall nonzero entries.3.4. Let A = (A1; : : : ; An) be a family of subsets of some �nite set X. A subset Y of X is
alled a transversal or a system of distin
t representatives (SDR) of A if there existsa bije
tion � : f1; : : : ; ng ! Y su
h that �(i) 2 Ai for ea
h i = 1; : : : ; n.De
ide if the following 
olle
tions have an SDR:(i) f3; 4; 5g; f2; 5; 6g; f1; 2; 5g; f1; 2; 3g; f1; 3; 6g,(ii) f1; 2; 3; 4; 5; 6g; f1; 3; 4g; f1; 4; 7g; f2; 3; 5; 6g; f3; 4; 7g; f1; 3; 4; 7g; f1; 3; 7g.9M misses a vertex u if u 62 SM . Here SM denotes the union of the edges in M ; that is, theset of verti
es 
overed by the edges in M .
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3.5. Let A = (A1; : : : ; An) be a family of subsets of some �nite set X. Prove that A hasan SDR if and only if(11) ��[i2I Ai�� � jIj

for ea
h subset I of f1; : : : ; ng.[Hall's `marriage' theorem (Hall [1935℄).℄3.6. Let A = (A1; : : : ; An) be subsets of the �nite set X. A subset Y of X is 
alled apartial transversal or a partial system of distin
t representatives (partial SDR) if it isa transversal of some sub
olle
tion (Ai1 ; : : : ; Aik) of (A1; : : : ; An).Show that the maximum 
ardinality of a partial SDR of A is equal to the minimumvalue of(12) jX n Zj+ jfi j Ai \ Z 6= ;gj;where Z ranges over all subsets of X.3.7. Let A = (A1; : : : ; An) be a family of �nite sets and let k be a natural number. Showthat A has k pairwise disjoint SDR's of A if and only if
(13) ��[i2I Ai�� � kjIj
for ea
h subset I of f1; : : : ; ng.3.8. Let A = (A1; : : : ; An) be a family of subsets of a �nite set X and let k be a naturalnumber. Show that X 
an be partitioned into k partial SDR's if and only if
(14) k � jfi j Ai \ Y 6= ;gj � jY j
for ea
h subset Y of X.(Hint: Repla
e ea
h Ai by k 
opies of Ai and use Exer
ise 3.6 above.)3.9. Let (A1; : : : ; An) and (B1; : : : ; Bn) be two partitions of the �nite set X.(i) Show that (A1; : : : ; An) and (B1; : : : ; Bn) have a 
ommon SDR if and only if forea
h subset I of f1; : : : ; ng, the set Si2I Ai interse
ts at least jIj sets amongB1; : : : ; Bn.(ii) Suppose that jA1j = � � � = jAnj = jB1j = � � � = jBnj. Show that the twopartitions have a 
ommon SDR.3.10. Let (A1; : : : ; An) and (B1; : : : ; Bn) be two partitions of the �nite set X. Show that theminimum 
ardinality of a subset of X interse
ting ea
h set among A1; : : : ; An; B1; : : : ;Bn is equal to the maximum number of pairwise disjoint sets in A1; : : : ; An; B1; : : : ; Bn.
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3.11. A matrix is 
alled doubly sto
hasti
 if it is nonnegative and ea
h row sum and ea
h
olumn sum is equal to 1. A matrix is 
alled a permutation matrix if ea
h entry is 0or 1 and ea
h row and ea
h 
olumn 
ontains exa
tly one 1. Show that ea
h doublysto
hasti
 matrix is a 
onvex linear 
ombination of permutation matri
es.[Birkho�-von Neumann theorem (Birkho� [1946℄, von Neumann [1953℄).℄3.12. Let G = (V;E) be a bipartite graph with 
olour 
lasses U and W . Let b : V ! Z+be so that Pv2U b(v) =Pv2W b(v) =: t.A b-mat
hing is a fun
tion 
 : E ! Z+ so that for ea
h vertex v of G:(15) Xe2E;v2e 
(e) = b(v)

Show that there exists a b-mat
hing if and only if(16) Xv2X b(v) � t
for ea
h vertex 
over X.3.13. Let G = (V;E) be a bipartite graph with 
olour 
lasses U and W . Let b : V ! Z+be so that Pv2U b(v) =Pv2W b(v) = t.Show that there exists a subset F of E so that ea
h vertex v of G is in
ident withexa
tly b(v) of the edges in F if and only if(17) t+ jE(X)j �Xv2X b(v)for ea
h subset X of V , where E(X) denotes the set of edges 
ontained in X.3.14. Let G = (V;E) be a bipartite graph and let b : V ! Z+ . Show that the maximumnumber of edges in a subset F of E so that ea
h vertex v of G is in
ident with atmost b(v) of the edges in F , is equal to(18) minX�V Xv2X b(v) + jE(V nX)j:

3.15. Let G be a bipartite graph with 
olour 
lasses U and W satisfying jU j = jW j = t.Prove that G has k disjoint perfe
t mat
hings if and only if for all U 0 � U andW 0 �W there are at least k(jU 0j+ jW 0j � t) edges 
onne
ting U 0 and W 0.3.16. Show that ea
h 2k-regular graph 
ontains a set F of edges so that ea
h vertex isin
ident with exa
tly two edges in F .
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3.4. Cardinality bipartite mat
hing algorithmWe now fo
us on the problem of �nding a maximum-sized mat
hing in a bipartitegraph algorithmi
ally.In any graph, if we have an algorithm �nding an M -augmenting path for anymat
hing M (if it exists), then we 
an �nd a maximum 
ardinality mat
hing: weiteratively �nd mat
hings M0;M1; : : :, with jMij = i, until we have a mat
hing Mksu
h that there does not exist any Mk-augmenting path.We now des
ribe how to �nd an M -augmenting path in a bipartite graph.Mat
hing augmenting algorithm for bipartite graphsinput: a bipartite graph G = (V;E) and a mat
hing M ,output: a mat
hing M 0 satisfying jM 0j > jM j (if there is one).des
ription of the algorithm: Let G have 
olour 
lasses U and W . Orient ea
hedge e = fu;wg of G (with u 2 U;w 2 W ) as follows:(19) if e 2M then orient e from w to u,if e 62M then orient e from u to w.Let D be the dire
ted graph thus arising. Consider the sets(20) U 0 := U nSM and W 0 := W nSM .Now an M -augmenting path (if it exists) 
an be found by �nding a dire
ted pathin D from any vertex in U 0 to any vertex in W 0. Hen
e in this way we 
an �nd amat
hing larger than M .

This implies:Theorem 3.4. A maximum-size mat
hing in a bipartite graph 
an be found in timeO(jV jjEj).Proof. The 
orre
tness of the algorithm is immediate. Sin
e a dire
ted path 
anbe found in time O(jEj), we 
an �nd an augmenting path in time O(jEj). Hen
e amaximum 
ardinality mat
hing in a bipartite graph 
an be found in time O(jV jjEj)(as we do at most jV j iterations).
Hop
roft and Karp [1973℄ gave an O(jV j1=2jEj) algorithm | see Se
tion 4.2.Appli
ation 3.1: Assignment problem. Suppose we have k ma
hines at our disposal:m1; : : : ;mk. On a 
ertain day we have to 
arry out n jobs: j1; : : : ; jn. Ea
h ma
hinesis 
apable of performing some jobs, but 
an do only one job a day. E.g., we 
ould have
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�ve ma
hines m1; : : : ;m5 and �ve jobs j1; : : : ; j5 and the 
apabilities of the ma
hines areindi
ated by 
rosses in the following table:j1 j2 j3 j4 j5m1 X X Xm2 X X X Xm3 X Xm4 Xm5 XWe want to assign the ma
hines to the jobs in su
h a way that every ma
hine performsat most one job and that a largest number of jobs is 
arried out.In order to solve this problem we represent the ma
hines and jobs by verti
esm1; : : : ;mkand j1; : : : ; jn of a bipartite graph G = (V;E), and we make an edge from mi to jj if job j
an be performed by ma
hine i. Thus the example gives Figure 3.2. Then a maximum-sizemat
hing in G 
orresponds to a maximum assignment of jobs.
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Exer
ises3.17. Find a maximum-size mat
hing and a minimum vertex 
over in the bipartite graphin Figure 3.3.3.18. Solve the assignment problem given in Appli
ation 3.1.3.19. Derive K}onig's mat
hing theorem from the 
ardinality mat
hing algorithm for bipar-tite graphs.3.20. Show that a minimum-size vertex 
over in a bipartite graph 
an be found in polyno-mial time.3.21. Show that, given a family of sets, a system of distin
t representatives 
an be foundin polynomial time (if it exists).
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3.5. Weighted bipartite mat
hingWe now 
onsider the problem of �nding a mat
hing of maximum weight for whi
hwe des
ribe the so-
alled Hungarian method developed by Kuhn [1955℄, using work ofEgerv�ary [1931℄ (see Corollary 3.7b below).Let G = (V;E) be a graph and let w : E ! R be a `weight' fun
tion. For anysubset M of E de�ne the weight w(M) of M by
(21) w(M) :=Xe2M w(e):
The maximum-weight mat
hing problem 
onsists of �nding a mat
hing of maximumweight.Again, augmenting paths are of help at this problem. Call a mat
hing M extremeif it has maximum weight among all mat
hings of 
ardinality jM j.Let M be an extreme mat
hing. De�ne a `length' fun
tion l : E ! R as follows:
(22) l(e) := (w(e) if e 2M ,�w(e) if e 62M .Then the following holds:Proposition 1. Let P be an M-augmenting path of minimum length. If M isextreme, then M 0 :=M4EP is extreme again.Proof. Let N be any extreme mat
hing of size jM j + 1. As jN j > jM j, M [N hasa 
omponent Q that is an M -augmenting path. As P is a shortest M -augmentingpath, we know l(Q) � l(P ). Moreover, as N4EQ is a mat
hing of size jM j, and asM is extreme, we know w(N4EQ) � w(M). Hen
e(23) w(N) = w(N4EQ)� l(Q) � w(M)� l(P ) = w(M 0):Hen
e M 0 is extreme.
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This implies that if we are able to �nd a minimum-length M -augmenting path inpolynomial time, we 
an �nd a maximum-weight mat
hing in polynomial time: �nditeratively extreme mat
hings M0;M1; : : : su
h that jMkj = k for ea
h k. Then themat
hing among M0;M1; : : : of maximum weight is a maximum-weight mat
hing.IfG is bipartite, we 
an �nd a minimum-lengthM -augmenting path as follows. LetG have 
olour 
lasses U andW . Orient the edges of G as in (19), making the dire
tedgraph D, and let U 0 and W 0 as in (20). Then a minimum-lengthM -augmenting path
an be found by �nding a minimum-length path in D from any vertex in U 0 to anyvertex in W 0. This 
an be done in polynomial time, sin
e:Theorem 3.5. Let M be an extreme mat
hing. Then D has no dire
ted 
ir
uit ofnegative length.Proof. Suppose C is a dire
ted 
ir
uit in D with length l(C) < 0. We may assumeC = (u0; w1; u1; : : : ; wt; ut) with u0 = ut and u1; : : : ; ut 2 U and w1; : : : ; wt 2 W .Then the edges w1u1; : : : ; wtut belong to M and the edges u0w1; u1w2; : : : ; ut�1wt donot belong to M . Then M 00 := M4EC is a mat
hing of 
ardinality k of weightw(M 00) = w(M)� l(C) > w(M), 
ontradi
ting the fa
t that M is extreme.
This gives a polynomial-time algorithm to �nd a maximum-weight mat
hing in abipartite graph. The des
ription above yields:Theorem 3.6. A maximum-weight mat
hing in a bipartite graph G = (V;E) 
an befound in O(jV j2jEj) time.Proof.We do O(jV j) iterations, ea
h 
onsisting of �nding a shortest path (in a graphwithout negative-length dire
ted 
ir
uits), whi
h 
an be done in O(jV jjEj) time (withthe Bellman-Ford algorithm | see Corollary 1.10a).
In fa
t, a sharpening of this method (by transmitting a `potential' p : V ! Qthroughout the mat
hing augmenting iterations, making the length fun
tion l non-negative, so that Dijkstra's method 
an be used) gives an O(jV j(jEj + jV j log jV j))algorithm.Appli
ation 3.2: Optimal assignment. Suppose that we have n jobs and m ma
hinesand that ea
h job 
an be done on ea
h ma
hine. Moreover, let a 
ost fun
tion (or 
ostmatrix) ki;j be given, spe
ifying the 
ost of performing job j by ma
hine i. We want toperform the jobs with a minimum of total 
osts.This 
an be solved with the maximum-weight bipartite mat
hing algorithm. To thisend, we make a 
omplete bipartite graph G with 
olour 
lasses of 
ardinality m and n. LetK be the maximum of ki;j over all i; j. De�ne the weight of the edge 
onne
ting ma
hine iand job j to be equal to K � ki;j . Then a maximum-weight mat
hing in G 
orresponds to
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an optimum assignment of ma
hines to jobs.So the algorithm for solving the assignment problem 
ounters the remarks made byThorndike [1950℄ in an Address delivered on September 9, 1949 at a meeting of the Ameri
anPsy
hologi
al Asso
iation at Denver, Colorado:There are, as has been indi
ated, a �nite number of permutations in the assign-ment of men to jobs. When the 
lassi�
ation problem as formulated above waspresented to a mathemati
ian, he pointed to this fa
t and said that from thepoint of view of the mathemati
ian there was no problem. Sin
e the number ofpermutations was �nite, one had only to try them all and 
hoose the best. Hedismissed the problem at that point. This is rather 
old 
omfort to the psy-
hologist, however, when one 
onsiders that only ten men and ten jobs meanover three and a half million permutations. Trying out all the permutationsmay be a mathemati
al solution to the problem, it is not a pra
ti
al solution.
Appli
ation 3.3: Transporting earth. Monge [1784℄ was one of the �rst to 
onsiderthe assignment problem, in the role of the problem of transporting earth from one area toanother, whi
h he 
onsidered as the dis
ontinuous, 
ombinatorial problem of transportingmole
ules:Lorsqu'on doit transporter des terres d'un lieu dans un autre, on a 
outime dedonner le nom de D�eblai au volume des terres que l'on doit transporter, & lenom de Remblai �a l'espa
e qu'elles doivent o

uper apr�es le transport.Le prix du transport d'une mol�e
ule �etant, toutes 
hoses d'ailleurs �egales, pro-portionnel �a son poids & �a l'espa
e qu'on lui fait par
ourir, & par 
ons�equent leprix du transport total devant être proportionnel �a la somme des produits desmol�e
ules multipli�ees 
ha
une par l'espa
e par
ouru, il s'ensuit que le d�eblai &le remblai �etant donn�e de �gure & de position, il n'est pas indi��erent que tellemol�e
ule du d�eblai soit transport�ee dans tel ou tel autre endroit du remblai,mais qu'il y a une 
ertaine distribution �a faire des mol�e
ules du premier dansle se
ond, dapr�es laquelle la somme de 
es produits sera la moindre possible, &le prix du transport total sera minimum.10Monge des
ribes an interesting geometri
 method to solve the assignment problem in this
ase: let l be a line tou
hing the two areas from one side; then transport the earth mole
ule10When one must transport earth from one pla
e to another, one usually gives the name of D�eblaito the volume of earth that one must transport, & the name of Remblai to the spa
e that theyshould o

upy after the transport.The pri
e of the transport of one mole
ule being, if all the rest is equal, proportional to its weight& to the distan
e that one makes it 
overing, & hen
e the pri
e of the total transport having to beproportional to the sum of the produ
ts of the mole
ules ea
h multiplied by the distan
e 
overed,it follows that, the d�eblai & the remblai being given by �gure and position, it makes di�eren
e if a
ertain mole
ule of the d�eblai is transported to one or to another pla
e of the remblai, but that thereis a 
ertain distribution to make of the mol
ules from the �rst to the se
ond, after whi
h the sum ofthese produ
ts will be as little as possible, & the pri
e of the total transport will be a minimum.
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tou
hed in one area to the position tou
hed in the other area. Then repeat, until allmole
ules are transported.
Exer
ises3.22. Five me
hani
s, stationed in the 
ities A;B;C;D;E, have to perform jobs in the 
itiesF;G;H; I; J . The jobs must be assigned in su
h a way to the me
hani
s that everyonegets one job and that the total distan
e traveled by them is as small as possible. Thedistan
es are given in the tables below. Solve these assignment problems with theweighted mat
hing algorithm.

(i)
F G H I JA 6 17 10 1 3B 9 23 21 4 5C 2 8 5 0 1D 19 31 19 20 9E 21 25 22 3 9

(ii)
F G H I JA 11 5 21 7 18B 17 4 20 9 25C 4 1 3 2 4D 6 2 19 3 9E 19 7 23 18 26

3.23. Derive from the weighted mat
hing algorithm for bipartite graphs an algorithm for�nding a minimum-weight perfe
t mat
hing in a bipartite graph G = (V;E). (Amat
hing M is perfe
t if SM = V .)3.24. Let A1; : : : ; An be subsets of the �nite set X and let w : X ! R+ be a `weight'fun
tion. Derive from the weighted mat
hing algorithm a polynomial-time algorithmto �nd a minimum-weight SDR.
3.6. The mat
hing polytopeThe weighted mat
hing problem is related to the `mat
hing polytope'. Let G = (V;E)be a graph. For ea
h mat
hing M let the in
iden
e ve
tor �M : E ! R of M bede�ned by:(24) �M (e) := 1 if e 2M ,�M (e) := 0 if e 62M ,


