Profesor: Rafael Correa Auxiliares: Omar Larré, Tomas Spencer 30 de junio de 2008

Control 2 - Cálculo Diferencial y de Variaciones

Problema 1 (25%)

Sea $\theta:[0,+\infty)\longrightarrow\mathbb{R}$ continua tal que $\int_0^{+\infty}|\theta(t)|dt<+\infty$. Considere la ecuación diferencial lineal:

$$f'' + (1 + \theta(t))f = 0$$
 (ED)

Sea f una solución de (ED) (f definida en todo el intervalo $[0, +\infty)$). Se define:

$$g(t) = f(t) + \int_0^{+\infty} \theta(s)f(s)\sin(t-s)ds, \quad \forall t \in [0, +\infty)$$

i) Verificar que la funcion g, resuelve la siguiente ecuación diferencial:

$$h''(t) + h(t) = 0, \quad \forall t \in [0, +\infty)$$

ii) Mostrar que existe $A \in \mathbb{R}$ tal que:

$$|f(t)| \le A + \int_0^t |\theta(s)||f(s)|ds, \quad \forall t \ge 0$$

iii) Verifique que toda solución de (ED) esta acotada sobre $[0, +\infty)$.

Indicación: Podria convenir definir la función auxiliar:

$$F(t) = \left(A + \int_0^t |\theta(s)||f(s)|ds\right) \exp\left(-\int_0^t |\theta(s)|ds\right), \quad \forall t \ge 0$$

Problema 2 (25 %)

Sea $A: \mathbb{R} \to M_2(\mathbb{C})$ (matrices de 2×2 con cuerpo en \mathbb{C}) continua 2π -periodica. Considere la ecuacion diferencial lineal integral homogenea:

$$x' = A(t)x \quad (EDL)$$

Sea $x_1, x_2 : \mathbb{R} \to \mathbb{C}^2$, 2 soluciones linealmente independientes de (EDL), y $M : \mathbb{R} \to M_2(\mathbb{C})$ la matriz fundamental asociada (i.e. los 2 vectores columnas de M son $x_1(t), x_2(t)$).

- i) Verifique que $y_1(t) = x_1(t+2\pi)$ y $y_2(t) = x_2(t+2\pi)$. Tambien son soluciones de (EDL).
- ii) Pruebe que existe $P \in M_2(\mathbb{C})$ invertible tal que:

$$M(t+2\pi) = M(t)P, \ \forall t \in \mathbb{R}$$

iii) Deduzca que existe $B \in M_2(\mathbb{C})$ tal que:

$$P: t \longrightarrow P(t) = M(t)e^{tB}$$

es 2π -periodica.

Indicación: Recuerde que toda matriz en $M_2(\mathbb{C})$ invertible se puede escribir como e^C , para alguna matriz C apropiada.

Problema 3 (50 %)

a) Dado un intervalo $I \subseteq \mathbb{R}$, un espacio de Banach E y una aplicación $A: I \to \mathcal{L}(E, E)$ continua, recordemos que en el espacio de Banach $\mathcal{L}(E, E)$ la solución maximal $U: I \to \mathcal{L}(E, E)$ de la ecuación

$$U'(t) = A(t) \circ U(t)$$

$$U(t_0) = id_E$$

la denotamos $R(t,t_0)$, y la llamamos resolvente de la ecuación

$$\varphi'(t) = A(t)\varphi(t) \tag{1}$$

 $\operatorname{con}\,\varphi:I\to E.$

Supongamos aquí que $I = \mathbb{R}$, E de dimensión finita y que A tiene periodo T. Se puede demostrar que existe $P : \mathbb{R}^2 \to \mathcal{L}(E, E)$ y $B \in \mathcal{L}(E, E)$, tal que $\forall t_0, t \in \mathbb{R}$, $P(t, t_0)$ es invertible con periodo T en la primera variable (es decir $P(t + T, t_0) = P(t, t_0)$), y tal que el resolvente se puede escribir

$$R(t, t_0) = P(t, t_0)e^{(t-t_0)B}$$

(No lo demuestre).

- i. (1 pto.) Muestre que (1) tiene una solución T-periódica no trivial si y sólo si 1 es un valor propio de e^{TB} .
- ii. (2 ptos.) Dada la aplicación $b: \mathbb{R} \to E$ continua T-periódica, considere para $x_0 \in E$ la ecuación

$$\varphi'(t) = A(t)\varphi(t) + b(t) \tag{2}$$

$$\varphi(t_0) = x_0 \tag{3}$$

Demuestre que toda solución maximal de (2)-(3) está definida en \mathbb{R} , y que si la única solución T-periódica de (1) es la función nula, entonces $\exists ! \ x_0 \in E$ tal que el problema (2)-(3) tiene una solución T-periódica.

b) (3 ptos.) Sea $f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ una de clase \mathcal{C}^1 , T-periódica en la primera variable. Consideremos la ecuación

$$x'(t) = f(t, x(t), 0)$$
 (ec₀)

y sea $p:\mathbb{R}\longrightarrow\mathbb{R}^n$ una solución T-periódica de esta ecuación, que verifica que la única solución de

$$\begin{cases} y'(t) &= D_2 f(t, p(t), 0) y(t) \\ y(T) &= y(0) \end{cases}$$

es la función nula.

Demuestre que existen $\varepsilon>0$ y $\delta>0$ tales que para $\|\lambda\|<\delta$ existe una solución T-periódica de

$$x'(t) = f(t, x(t), \lambda)$$
 (ec_{λ})

 $p_{\lambda}: \mathbb{R} \to \mathbb{R}^n$ que satisface $||p_{\lambda} - p||_{\infty} \leq \varepsilon$.

Indicación: Considere el espacio E_1 = funciones T-periódicas en $\mathcal{C}^1(\mathbb{R}, \mathbb{R}^n)$ con la norma $||x|| = ||x||_{\infty} + ||x'||_{\infty}$; $E_2 = \mathbb{R}^m$; F = funciones T-periódicas en $\mathcal{C}(\mathbb{R}, \mathbb{R}^n)$; y

$$\psi: E_1 \times E_2 \to F$$

definido por $\psi(x,\lambda) = f(\cdot,x(\cdot),\lambda) - x'(\cdot)$.

Mostrar que el problema se reduce a poder aplicar el teorema de la función implícita a la ecuación

$$\psi(x,\lambda) = 0$$

y poder despejar x en función de λ en una vecindad de (p,0). Demuestre entonces que ψ verifica las hipótesis para aplicar el teorema.

El cálculo formal de $D_1\psi(x,\lambda)$ y $D_2\psi(x,\lambda)$ es simple, pero hay que mostrar que las expresiones obtenidas son los respectivos diferenciales parciales de ψ . Luego hay que justificar que estos diferenciales parciales son continuos como función de $E_1 \times E_2$ en $\mathcal{L}(E_1,F)$ y $\mathcal{L}(E_2,F)$ respectivamente. Para probar que $D_1\psi(x,\lambda)$ es isomorfismo conviene usar la parte (a) del problema.