MA34B-Estadística - Auxiliar 7 Profesora: Nancy Lacourly

Auxiliares: Jerónimo Escribano - Daniela Beltrán

Problema 1: Test de Hipótesis simple.

En general consideramos 2 hipótesis sobre algún parámetro y queremos saber cual de estas 2 hipótesis explica mejor los datos tomados

$$H_0: \lambda = \lambda_0$$

$$H_1: \lambda = \lambda_1$$

Para ello buscamos la mejor regla de decisión de manera que nos equivoquemos lo menos posible al aceptar o rechazar una de las dos hipótesis. Nos apoyamos en resultados:

Teorema: Si δ^* es una regla de decisión tal que:

se rechaza H_0 cuando $af_0(\underline{x}) < bf_1(\underline{x})$

se acepta H_0 cuando $af_0(\underline{x}) > bf_1(\underline{x})$

entonces $a\alpha(\delta^*) + b\beta(\delta^*) \le a\alpha(\delta) + b\beta(\delta) \quad \forall \delta$ regla de decisión

Donde $f_0(\underline{x})$ y $f_1(\underline{x})$ son las funciones de verosimitud bajo las hipótesis H_0 y H_1 respectivamente.

Recordemos que $\alpha(\delta) = \mathbb{P}(\text{rechazar } H_0|H_0) \text{ y } \beta(\delta) = \mathbb{P}(\text{no rechazar } H_0|H_1) \text{ bajo la regla } \delta. \alpha \text{ y } \beta$ se llaman error tipo 1 y error tipo 2 respectivamente.

Consideremos $X \sim Poiss(\lambda)$ y las hipótesis $H_0: \lambda = \lambda_0 \quad H_1: \lambda = \lambda_1$

tenemos que

$$f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

por lo que si obtenemos una m.a.s.,

$$f_n(\underline{x}|\lambda) = \frac{\lambda^{\sum x_i} e^{-n\lambda}}{\prod\limits_{i=1}^n x_i!}$$

y la razón de verosimilitud queda

$$\Lambda = \frac{f_n(\underline{x}|\lambda_1)}{f_n(\underline{x}|\lambda_0)} = \frac{\lambda_1^{\sum x_i} e^{-n\lambda_1}}{\lambda_0^{\sum x_i} e^{-n\lambda_0}} = \left(\frac{\lambda_1}{\lambda_0}\right)^{\sum x_i} e^{-n(\lambda_1 - \lambda_0)}$$

En consecuencia con el teorema anterior, si rechazamos H_0 cuando $\Lambda > \frac{a}{b}$ y aceptamos H_0 cuando $\Lambda < \frac{a}{b}$ estamos escogiendo la mejor regla, en el sentido que minimizamos el error ponderado $a\alpha(\delta) + b\beta(\delta)$

Como determinamos la región de rechazo a partir de la muestra?

Consideremos a y b tales que a + b = 1. Sigue que

$$\Lambda = \left(\frac{\lambda_1}{\lambda_0}\right)^{\sum x_i} e^{-n(\lambda_1 - \lambda_0)} > \frac{a}{b}$$

y como $ln(\cdot)$ es estrictamente creciente, y suponiendo que $a \neq 0$

$$\Rightarrow \ln(\Lambda) > \ln(\frac{a}{b})$$

$$\Rightarrow \sum x_i \ln(\frac{\lambda_1}{la_0}) > n(\lambda_1 - \lambda_0) + \ln(\frac{a}{b})$$

Donde reconocemos 2 casos:

Si $\lambda_1 > \lambda_0$ entonces rechazamos H_0 si $\frac{\ln(\frac{a}{b}) + n(\lambda_1 - \lambda_0)}{\ln(\frac{\lambda_1}{la_0})} < \sum x_i$

Si
$$\lambda_1 < \lambda_0$$
 entonces rechazamos H_0 si $\frac{\ln(\frac{a}{b}) + n(\lambda_1 - \lambda_0)}{\ln(\frac{\lambda_1}{\ln a})} > \sum x_i$

Notemos en el resultado anterior que el caso particular en que a=b, obtenemos $ln(\frac{a}{b})=0$ y como consecuencia de lo anterior, las regiones de rechazo son del tipo $\sum x_i \geq c$ con c una constante que depende de n, λ_0 , λ_1 , a, b. (En el fondo esto es una consecuencia directa del teorema enunciado al principio y el lema de Neyman-Pearson).

Ahora supongamos que toleramos un error máximo tipo 1 α_0 fijo. O sea, que $\alpha(\delta) \leq \alpha_0$, ie,

$$\mathbb{P}(\text{ rechazar } H_0|H_0\text{es cierto}) = \mathbb{P}(\sum x_i > c|\lambda = \lambda_0) \leq \alpha_0 \text{ si } \lambda_1 > \lambda_0$$

$$\mathbb{P}(\text{ rechazar } H_0|H_0\text{es cierto}) = \mathbb{P}(\sum x_i < c'|\lambda = \lambda_0) \leq \alpha_0 \text{ si } \lambda_1 < \lambda_0$$

Para algun c o c' (dependiendo del caso). Cual es ese c?

Notemos que la suma de n de v.a. Poisson de parámetro λ independientes es una Poisson de parámetro $n\lambda$. Con esto la condición anterior queda escrita como

$$\mathbb{P}(Poiss(n\lambda_0) > c) = \alpha_0$$

Para poder calcular c supongamos que tenemos una muestra de tamaño $n=50, \lambda_0=3, \lambda_1=5$ y $\alpha_0=0.05$ Con esto, tenemos que

$$\alpha_0 = 0.05 = \mathbb{P}(\sum x_i > c|H_0) = 1 - \mathbb{P}(\sum x_i > c|H_0)$$

De donde se conluye (por tablas estadísticas) que c = 170.

Ahora si suponemos que $\lambda_1 < \lambda_0$, por ejemplo, $n=50, \, \lambda_1=3, \, \lambda_0=5$ y $\alpha_0=0.05$ obtenemos que $\alpha_0=0.05=\mathbb{P}(\sum x_i < c|H_0)$ y consecuentemente que c=224

Por lo tanto, con los datos anteriores, si $\lambda_1=5$ y $\lambda_0=3$, rechazamos con un nivel de significación de un $5\,\%$ si $\sum x_i>170$ y en el segundo caso si $\sum x_i<224$

Supongamos ahora que sabemos que $\sum x_i = 180$, $\lambda_1 = 5$, $\lambda_0 = 3$ (estamos en el caso $(\lambda_1 > \lambda_0)$ y tomemos $c = \sum x_i = 180$.

Calculamos el p-valor = $\mathbb{P}(Poiss(n\lambda) > c|H_0) = \mathbb{P}(Poiss(n\lambda_0) > c) = 1 - \mathbb{P}(Poiss(n\lambda_0) < c)$, que por tablas estadísticas resulta ser p - valor = 0,0076 < 0,05. Por lo tanto, si tenemos un nivel de significación del 5 % debemos rechazar la hipótesis nula, puesto que la probabilidad de equivocarse si rechazamos H_0 es pequeña. Ojo que si rechazamos H_0 no necesariamente debemos aceptar H_1 . En caso que el p-valor sea mayor que nuestro nivel de significación debemos aceptar la hipótesis nula.

Problema 2 (Ejemplo)

Sea $X \sim Gamma(r, \lambda).X$ tiene función distribución $f(x) = \frac{x^{r-1} e^{-\frac{x}{\lambda}}}{\lambda^r \Gamma(r)}$. Sea $\{x_i\}$ una m.a.s. de tamaño n. Sean las hipótesis

$$H_0: \lambda = \lambda_0$$

$$H_1: \lambda = \lambda_1$$

Tenemos que

$$f_n(\underline{x}) = \frac{(\prod x_i)^{r-1} e^{-\frac{\sum x_i}{\lambda}}}{(\lambda^r \Gamma(r))^n}$$

y luego

$$\Lambda = \frac{(\prod x_i)^{r-1} e^{-\frac{\sum x_i}{\lambda_1}}}{(\prod x_i)^{r-1} e^{-\frac{\sum x_i}{\lambda_0}}} = exp\left(-\sum x_i \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_0}\right)\right)$$

Supongamos que $\lambda_1 < \lambda_0.$ (Queda propuesto el análisis si $\lambda_1 > \lambda_0$)

$$\Lambda > k \implies \sum x_i > \ln(k) \frac{\lambda_0 \lambda_1}{\lambda_0 - \lambda_1}$$

Sabemos que si $Z \sim Gamma(s, \lambda)$ y $Y \sim Gamma(t, \lambda)$ entonces $Z + Y \sim Gamma(s + t, \lambda)$ Por lo tanto, $\sum (x_i) \sim Gamma(nr, \lambda)$.

Supongamos que $\alpha_0=0{,}10$, n=60 , $\lambda_1=0{,}9,$ $\lambda_0=1$ r=3 y calculemos la región de rechazo:

$$0.10 = 1 - \mathbb{P}(\sum x_i < c) \Rightarrow c = 197.37$$

Por lo tanto, la hipótesis nula se rechaza si $\sum x_i > 197{,}37$