

Profesor : Fernando Lema Auxiliares : Constanza Paredes Eduardo Zamora

Tarea 2

(entrega: Lunes 12 de Mayo de 2008, al comienzo del control)

Problema 1

Sean X, Y v.a.'s discretas independientes.

- a) Si $X \to \text{Geom}(p)$ e $Y \to \text{Geom}(p)$, calcule $IP(X = m \mid X + Y = n)$. *Indicación*: Calcule IP(X + Y = j) para un j genérico.
- b) Si X \rightarrow Bin(n,p) e Y \rightarrow Bin(m,p), calcule $IP(X = j \mid X + Y = k)$. Indicación: $\binom{n+m}{k} = \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i}$.

Problema 2

Las primeras 5 repeticiones de un experimento cuestan 10 [um] c/u. Las siguientes cuestan 5 [um] c/u. El experimento debe repetirse hasta que se obtenga el primer éxito. Si la probabilidad de éxito es 0.9 y si las repeticiones son independientes, determine el costo promedio total de la operación.

Problema 3

Se dice que una v.a. X tiene distribución de Pareto de parámetros X_0 , α (ambos mayores que cero) si su función densidad es:

$$f_X(x) = \begin{cases} \frac{\alpha X_0^{\alpha}}{x^{\alpha+1}} & x \ge X_0 \\ 0 & x < X_0 \end{cases}$$

- a) Calcule IE(X) y Var(X).
- b) Si Y = $ln(X/X_0)$, determine la densidad de Y.
- c) Considere que X representa el ingreso mensual (en miles de \$) de un grupo de individuos, con X_0 =200 y α =2. Suponga que de un gran número de individuos se escogen 5 al azar en forma independiente. Calcule la probabilidad que al menos 4 de ellos tengan ingresos superiores a \$300.000.
- d) Si a todas las personas que ganan menos de \$400.000 se les da un reajuste del 10% mientras que a aquellos que ganan más de \$400.000 se les da \$40.000 de reajuste, determine la distribución de probabilidad de la v.a. "monto de reajuste".

Problema 4

Un vehículo se ubica sobre una pista circular de radio R, y la distancia D que puede recorrer antes de detenerse es una v.a. tal que D \to Exp(λ).

- a) Calcule la densidad de la v.a. $\theta \in [0, \infty)$ [rad] que denota la posición angular en que queda el vehículo una vez que se detiene.
- b) Calcule la probabilidad que el vehículo quede a una distancia angular inferior a α [rad] del punto de partida ($\alpha \in [0, \pi]$).
- c) Calcule e interprete el resultado de la parte b) cuando $\lambda R \rightarrow 0$ y cuando $\lambda R \rightarrow \infty$.

Problema 5

a) Sea X v.a. discreta de recorrido $R \subseteq \{0,1,2...\}$. Pruebe que:

$$IE(X) = \sum_{k=0}^{\infty} IP(X > k)$$

b) Sea X v.a. continua con densidad $f_x(x) = 0$ si x < 0. Pruebe que:

$$IE(X) = \int_{0}^{\infty} (1 - F_X(x)) dx$$

c) Sean X, Y v.a.'s absolutamente continuas e independientes. Pruebe que:

$$IP(X < Y) = \int_{-\infty}^{\infty} F_X(y) f_Y(y) dy$$

Problema 6

Suponga que la duración X de un equipo en horas es una v.a. Exp(λ), es decir:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Para efectuar el control de calidad se cuenta con un operario cuya misión es medir la duración de los equipos. Los equipos se ponen a funcionar en t=0, pero el operario (por flojera) solo se pone a inspeccionar en $t=t_1$, de tal forma que a todo fallado anteriormente se le asigna t_1 horas. También por flojera, el operario se va temprano (antes que termine el proceso) y a todo equipo que en t_2 (hora en que se va) esté bueno, se le asigna t_2 horas.

- a) Determine la distribución de la v.a. Y "duración definida por el operario". Calcule IE(Y).
- b) Considere ahora que el operario se pone honesto y decide eliminar de su proceso a todo equipo que no haya sido inspeccionado realmente. Determine la distribución de la v.a. Z "nueva duración definida por el operario".
- c) (Las v.a.'s Y, Z ahora son distintas de las anteriores, X es la misma). Si Y \rightarrow Exp(α) independiente de X, calcule $IP(Y \ge kX) \forall k \in IN$.
- d) Determine la densidad de Z = X + Y.

Problema 7

En un banco se ha determinado que los clientes piden préstamos por una cantidad aleatoria X de [um] con una distribución:

$$IP(X=k) = \left(\frac{1}{2}\right)^k \qquad k=1,2,3...$$

Por otro lado, se ha realizado un estudio que indica que una persona pagará una proporción Y de lo que solicitó (X = k), con densidad:

$$f_{y}(y) = (k+1)y^{k}$$
 $0 < y < 1$

Un cliente es clasificado como seguro si paga más de 4/5 de lo solicitado.

- a) Calcule la probabilidad que un cliente que pidió k [um] sea seguro.
- b) Si un cliente es seguro, calcule la probabilidad que haya pedido 2 [um].

Problema 8

Un plano está dividido en rectas paralelas separadas una distancia L_1 una de otra. Se dispone de una aguja (barra) de largo L_2 que es lanzada al azar sobre el plano. Calcule la probabilidad que la aguja corte alguna de las rectas. Evalúe en $L_1 = 2L_2$, $L_1 = L_2$ y $L_1 = L_2/2$. ¿Qué ocurre si $L_2 >> L_1$ ($L_2 \to \infty$)? ¿Calza su cálculo con la lógica?

Indicación: debe notar que los casos $L_1 < L_2$ y $L_1 > L_2$ son distintos, fijándose bien en qué dominio están definidas las variables que use para resolver el problema.

Problema 9

De un mazo de naipes se sacan 2 cartas sin reposición, definiendo el vector (X , Y) como X : n° de monos obtenidos, Y : n° de ases obtenidos.

- a) Determine la distribución de probabilidades de (X, Y).
- b) Determine las distribuciones marginales de X e Y. Calcule *IE*(X) y *IE*(Y).
- c) Determine la distribución condicional de X dado Y = y, y la distribución condicional de Y dado X = x.
- d) Determine la distribución de probabilidades de $M_1 = max (X, Y) y de M_2 = min (X, Y)$.

Problema 10

Una fuente luminosa de intensidad I produce una luminosidad $L=I/R^2$ en un punto ubicado a distancia R. Suponga que I y R son v.a.'s independientes con $I \rightarrow U(1, 2)$ y $R \rightarrow Exp(1)$.

- a) Calcule IP(L > 1 | I > 1.5).
- b) Usando T.C.V. determine la densidad de L.
- c) Calcule la iluminación promedio de los puntos ubicados a 2 unidades de distancia.

Problema 11

La fuerza magnética H en un punto P ubicado a X unidades de distancia de un cable con corriente I queda dada por:

$$H = \frac{2I}{X}$$

- a) Si $X \rightarrow U(2, 4)$ e $I \rightarrow U(10, 20)$, determine la densidad de H suponiendo que X e I son independientes.
- b) Calcule IP(H > 10 | X < 3).
- c) Calcule $IE(H \mid X = 3)$ y $IE(H \mid X < 3)$.

Problema 12

Sean X e Y v.a.'s independientes con densidades:

$$f_X(x) = \begin{cases} \frac{1}{\pi\sqrt{1-x^2}} & |x| \le 1\\ 0 & |x| > 1 \end{cases}$$

$$f_Y(y) = \begin{cases} ye^{-y^2/2} & y \ge 0 \\ 0 & y < 0 \end{cases}$$

- a) Calcule IE(X), IE(Y), Var(X), Var(Y).
- b) Encuentre la densidad de Z = XY.

Problema 13

La duración de una máquina es una v.a. $T \rightarrow Exp(\alpha)$ en horas. La máquina tiene costos de funcionamiento C_1 [um] por hora y produce, mientras funciona, una ingreso de C_2 [um] por hora. Para operar, la máquina requiere un especialista que cobra C_3 [um] por hora y exige ser contratado por un n° prefijado de horas H. El pago del especialista es independiente de si la máquina está funcionando o no.

- a) Sea U la v.a. que denota la utilidad obtenida por el uso de la máquina. Plantee U en función de los datos entregados.
- b) Determine H de forma de maximizar la utilidad esperada.
- c) Suponga $\alpha = 0.01$, $C_1 = 6$, $C_2 = 20$, $C_3 = 4$ y H = 60 (no es el de la parte b)). Determine la distribución de probabilidades de la v.a. U.