GUIA #3 DE EJERCICIOS DE PROBABILIDAD

MA-34A Prof. R. Gouet, 19/03/08

- 1. Suponga que dispone de m cajas numeradas del 1 al m, donde debe distribuir n bolitas. Calcule el número de maneras en que puede distribuir las bolitas si:
 - (i) Cada caja tiene capacidad máxima de 2 bolitas y no puede quedar ninguna vacía. Suponga en este caso que $m \le n \le 2m$. (sol: $\frac{m!}{(n-m)!(2m-n)!}$)
 - (ii) Sólo las cajas 1 y m tienen capacidad máxima de 2 bolitas, suponiendo que $n \geq 4$ y que $n+m \geq 7$. (sol: $\sum_{i=0}^2 \sum_{j=0}^2 \frac{(m+n-i-j-3)!}{(m-3)!(n-i-j)!}$)
- 2. Se escoge al azar un equipo de basketball de 5 jugadores, de un conjunto de 20 postulantes, de tal manera que todos los subconjuntos de tamaño 5 tengan igual probabilidad. Proponga el espacio muestral y la medida de probabilidad adecuados a la descripción del experimento y calcule la probabilidad de que
 - (i) Los 5 más altos sean seleccionados. (sol:1/15504)
 - (ii) El más alto sea seleccionado. (sol: 3876/15504 = 1/4)
 - (iii) Ni el más alto ni el más bajo sean seleccionados. (sol: 8568/15504 = 21/38 = .55263...)
- 3. Considere la elección al azar de una permutación de los números $1, 2, \ldots, n$. Sea Ω el espacio equiprobable de dichas permutaciones y $A_i \subseteq \Omega$ el suceso "el número i está en el lugar i+1 de la permutación" para $i=1,\ldots,n-1$ y A_n el suceso "el número n está en el lugar 1 de la permutación".
 - (i) Calcule $P(A_i)$ y $P(A_i \cap A_j)$, $i \neq j$; i, j = 1, ..., n. (sol: $P(A_i) = \frac{(n-1)!}{n!} = 1/n$, $P(A_i \cap A_j) = \frac{(n-2)!}{n!} = 1/n(n-1)$)
 - (ii) Calcule $P(A_i \cup A_j)$, donde $1 \le i, j \le n$ e $i \ne j$. (sol: $\frac{2n-3}{n(n-1)}$)
- 4. Una urna contiene 5 bolas blancas, 4 bolas rojas y 3 bolas azules. Se extraen sucesivamente y al azar tres bolas sin reposición.
 - (i) Calcule la probabilidad de obtener al menos dos bolas de colores distintos. (sol: $\frac{41}{44}$)
 - (ii) Calcule la probabilidad de obtener exactamente dos colores distintos.(sol: $\frac{29}{44}$)
- 5. En una asamblea de n estudiantes de MA34A se discute sobre 3 métodos alternativos de escoger un comité de $k \leq n$ estudiantes con un presidente. Un estudiante propone seleccionar el comité de k personas y dentro de él seleccionar al presidente. Otro sugiere seleccionar un grupo de k-1 personas y escoger el presidente entre los restantes. Finalmente otro estudiante sugiere seleccionar primero al presidente de

entre todos los estudiantes y luego de los restantes escoger los k-1 miembros. Calcule en cada caso el número de comités distintos que se pueden formar y compare. (sol: $\binom{n}{k}k$, $\binom{n}{k-1}(n-k+1)$, $n\binom{n-1}{k-1}$) Vale la pena discutir sobre cual método utilizar?

- 6. Sean A_1, A_2, \ldots, A_n sucesos relativos a un espacio muestral Ω , dotado de una probabilidad P tal que $P(A_i) = 1$ para $i = 1, \ldots, n$. Demuestre por inducción que $P(\bigcap_{i=1}^n A_i) = 1, \forall n \in \mathbb{N}$.
- 7. Un comité 12 personas debe seleccionarse de un grupo de 10 hombres y 10 mujeres. De cuántas maneras puede hacerse esta selección si:
 - (i) No hay restricciones.
 - (ii) Debe haber 6 hombres y 6 mujeres.
 - (iii) Debe haber un número par de mujeres.
 - (iv) Debe haber más mujeres que hombres.
 - (v) Debe haber a lo menos 8 hombres.
- 8. De cuántas maneras un jugador puede extraer 5 cartas de un mazo de 52 y obtener
 - (i) 5 cartas de la misma pinta.
 - (ii) 4 ases.
 - (iii) 4 del mismo valor.
 - (iv) 3 ases y dos reyes.
 - (v) Full (3 de un tipo y un par).
 - (vi) 3 de un tipo.
 - (vii) Dos pares.
- 9. Un estudiante debe escoger 7 de 10 preguntas en un examen. De cuántas formas puede hacerlo si
 - (i) No hay restricciones.
 - (ii) Debe responder a las 2 primeras.
 - (iii) Debe responder al menos 3 de las primeras 5 preguntas.
- 10. De cuántas maneras es posible distribuir 12 libros diferentes (distinguibles) entre 4 niños de manera que:
 - (i) Cada niño tenga exactamente 3 libros.
 - (ii) Los 2 niños mayores tengan 4 libros cada uno y los menores, 2 libros cada uno.