Guía Control 2: Matemáticas Aplicadas

Profesor: Orlando Hofer Auxiliar: Emilio Vilches

20 de Mayo de 2008

P1. Evaluar aplicando el teorema de Green la integral de linea:

$$\int_{\Gamma} \frac{xdx + ydy}{x^2 + y^2}$$

Si Γ es el arco de parábola $y=x^2-1, -1 \le x \le 2$, seguido del segmento que une los puntos (2,3) y (-1,0).

Indicación: Considere la región interior a Γ y exterior a un pequeño circulo de radio ρ centrado en el origen.

P2. Probar que

$$\oint_{\Gamma} \frac{xdy - ydx}{x^2 + y^2} = 2\pi$$

sobre cualquier curva Γ simple, seccionalmente regular de Jordan que contiene al origen.

P3. Sean $f: S \subset \mathbb{R}^2 \to \mathbb{R}$, $g: S \subset \mathbb{R}^2 \to \mathbb{R}$ dos campos escalares de clase \mathcal{C}^1 sobre el conjunto abierto y conexo S. Probar que

$$\oint_{\Gamma} f \nabla g \cdot d\vec{r} = -\oint_{\Gamma} g \nabla f \cdot d\vec{r}$$

para toda curva Γ de Jordan seccionalmente regular contenida en S.

P4. Sean f y g campos escalares de clase C^2 sobre un conjunto abierto $A \subset \mathbb{R}^2$. Sea R una región contenida en A cuya frontera Γ es una curva de Jordan, simple y seccionalmente regular. Probar las siguientes identidades

a)
$$\oint_{\Gamma} \frac{\partial g}{\partial n} ds = \iint_{R} \nabla^{2} g dx dy$$

b)
$$\oint_{\Gamma} f \frac{\partial g}{\partial n} ds = \iint_{R} \left(f \nabla^{2} g + \nabla f \cdot \nabla g \right) dx dy$$

$$\oint_{\Gamma} f \frac{\partial g}{\partial n} ds - g \frac{\partial f}{\partial n} ds = \iint_{R} (f \nabla^{2} g - g \nabla^{2} f) dx dy$$

d) Suponga ahora que f y g son armónicas sobre R, es decir $\nabla^2 g = \nabla^2 f = 0$ sobre R, Probarque

$$\oint_{\Gamma} f \frac{\partial g}{\partial n} ds = \oint_{\Gamma} g \frac{\partial f}{\partial n} ds$$

P5. Sea Σ la superficie definida por $z = x\phi(\frac{y}{x})$, donde ϕ es una función derivable. Probar que todos los planos tangentes a la superficie Σ pasan por el origen de los ejes de coordenadas. **Indicación:** Encontrar una parametrización de Σ . Calcular el plano tangente a partir de la normal.

Therefore 2. Calculate of plane transferre a partin de la norma.

P6. Hallar el ángulo que forman las curvas $x=x_0$ e $y=y_0$ sobre la superficie Σ representada por z=axy, donde $a\in\mathbb{R}$.

P7. Probar que los planos tangentes a la superficie de ecuación $xyz = a^3$ forman con los planos de coordenadas un tetraedro de volumen constante.

1

- **P8.** Considere el campo vectorial $\vec{f} : \mathbb{R}^3 \to \mathbb{R}^3$ definido por f(x,y,z) = (-y,x,0. Probar que en cada punto P(x,y,z) distinto del origen de coordenadas, el vector f(P) se encuentra en el plano tangente a la esfera con centro en el origen que pasa por P. Dé otro ejemplo de otro campo vectorial $\vec{g} : \mathbb{R}^3 \to \mathbb{R}^3$ con la misma propiedad.
- **P9.** Sea Σ la superficie simple y regular descrita por la ecuación vectorial $\vec{r} = g(r,0) = (x,y,z) = (r\cos\theta, r\sin\theta, 0)$ donde 0 < r < 1 y $0 < \theta < 2\pi$. Se pide
 - a) Trazar y describir la superficie.
 - b) Hallar la ecuación del plano tangente a la superficie Σ en el punto (x_0, y_0, z_0) .
 - c) Hallar el elemento de área de Σ .
- **P10.** La curva Γ representada por las ecuaciones paramétricas $x=t, \ y=t^2, \ z=2t^3, \ \forall t\in\mathbb{R}^3$, tiene un punto en común con la superficie Σ definida por la ecuación $z=x^2+3y^2-2xy$. Encontrar el ángulo entre la curva Γ y la normal a la superficie Σ en este punto.
- **P11.** Sea Σ la superficie regular descrita por las ecuaciones paramétricas

$$x = u + \cos(v)$$
$$y = u - \sin(v)$$
$$z = \lambda u$$

- a) Hallar el ángulo en Σ comprendido entre las curvas u=1 y $v=\frac{\pi}{2}$.
- b) Hallar la ecuación del plano tangente a Σ en el punto de intersección de las curvas u=1 y $v=\frac{\pi}{2}$.
- **P12.** Calcular la masa total de una superficie en forma de cilindro circular recto de radio R y altura H (sin tapas). Si la densidad de masa δ en cada punto de él es numéricamente igual a la distancia del punto a la base del cilindro.
- **P13.** Hallar el área del manto del cilindro definido por la ecuación $x^2 + y^2 rx = 0$ que queda acotado por la esfera $x^2 + y^2 + z^2 = r^2$.
- **P14.** Calcular $\int_{\Sigma} xyd\Sigma$, donde Σ es la superficie del tetraedro con lados z=0, y=0, x+z=1 y x=y.
- P15. Hallar el flujo del campo vectorial

$$f \colon (x,y,z) \in \mathbb{R}^3 \to f(x,y,z) = x\hat{i} + y\hat{j} - z\hat{k} \in \mathbb{R}^3$$

a través de la parte del plano de ecuación x+2y+z=8 que está en el primer octante.

P16. Hallar el flujo del campo vectorial $f: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$f(x, y, z) = (y^2, 0, z)$$

a través de la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 | z = x^2 + y^2, z \in [0, 2] \}$. Considere la normal exterior.

P17. Demostrar que si \vec{f} es un campo constante, el flujo a través de la esfera de radio R centrado en el origen es nulo.

2