Pauta Control 6, MA1001 Introducción al Cálculo Escuela de Ingeniería, FCFM, U. de Chile Semestre 2007/1 (2 de Junio)

b)
$$\lim \sqrt[n]{n^3 + n^2 + n} = 1$$
 ya que
$$\sqrt[n]{n} \le \sqrt[n]{n^3 + n^2 + n} \le \sqrt[n]{3} \left(\sqrt[n]{n}\right)^3$$

d)
$$\lim \left(1 - \frac{1}{n}\right)^{-n} = \lim \frac{1}{\left(1 - \frac{1}{n}\right)^n} = \frac{1}{e^{-1}} = e.$$
 1 pto.

ii) (2 ptos.) Como
$$f(x) = \ln\left(\frac{1+x^2}{1-x^2}\right)$$
, se tiene que:

$$\lim f(\frac{1}{n}) = \lim \ln \left(\frac{1 + (\frac{1}{n})^2}{1 - (\frac{1}{n})^2} \right) = \ln \left(\frac{1 + 0}{1 - 0} \right) = 0$$

Además

$$\lim n^2 f(\frac{1}{n}) = \lim n^2 \ln \left(\frac{n^2 + 1}{n^2 - 1} \right) = \lim n^2 \ln \left(1 + \frac{2}{n^2 - 1} \right).$$

Para concluir, recordamos que $\lim \frac{\ln(1+s_n)}{s_n} = 1$ cuando $s_n \to 0$. Por lo tanto:

$$\lim n^2 f(\frac{1}{n}) = \lim n^2 \cdot \frac{2}{n^2 - 1} \cdot \frac{\ln\left(1 + \frac{2}{n^2 - 1}\right)}{\frac{2}{n^2 - 1}} = 2 \cdot 1 = 2.$$

P2) Dado el parámetro $a \in [\frac{1}{2}, 1]$, se define la sucesión (s_n) mediante la recurrencia:

$$s_1 = 0, \qquad s_{n+1} = f(s_n)$$

donde la función f está definida por $f(x) = a - \frac{(1-x)^2}{2}$.

a) Si $x \in [0, \sqrt{2a-1}]$ entonces:

$$0 \le 1 - \sqrt{2a - 1} \le 1 - x \le 1$$

$$\Rightarrow (1 - \sqrt{2a - 1})^2 = 2a - 2\sqrt{2a - 1} \le (1 - x)^2 \le 1$$

$$\Rightarrow a - \sqrt{2a - 1} \le \frac{(1 - x)^2}{2} \le \frac{1}{2}$$

$$\Rightarrow a - \frac{1}{2} \le f(x) \le \sqrt{2a - 1}.$$

1 pto.

Supongamos que $s_n \in [0, \sqrt{2a-1}]$ para algún $n \in \mathbb{N}$. Con esto, usando la propiedad ya probada se tiene que

$$s_{n+1} = f(s_n) \in [a - \frac{1}{2}, \sqrt{2a - 1}] \subseteq [0, \sqrt{2a - 1}].$$

b) Usando la sugerencia, estudie el signo de $s_n - s_{n+1} = s_n - f(s_n)$. Se tiene que

$$s_n - s_{n+1} = s_n - a + \frac{(1 - s_n)^2}{2}$$

= $\frac{s_n^2 - (2a - 1)}{2} \le 0$

Sea ℓ el límite de la sucesión. Ya sabemos que $\ell \in [0, \sqrt{2a-1}]$.

Tomando límite en la expresión que obtuvimos para $s_n - s_{n+1}$ se tiene que

$$0 = \frac{\ell^2 - (2a - 1)}{2},$$