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ity coincides with that of F, it is continuous from the right.” Finally, we define

oo b
EY= f h(x) dF(x) = lim f h(x) dF(x), (3.1.2)
& a;:: a

provided the limit (which may be + or —o=) exists regardless of the way
a——and b — o=,

If dF/dx exists and is equal to f(x), F(x;4,) — F(x;) = f(x¥)(x;+, — x;) for
some xX¥ € [X;4,, Xx;] by the mean value theorem. Therefore

EHX) = f " e b, (3.1.3)

On the other hand, suppose X = ¢; with probability p;, i=1,2,. . . , K.
Take a < ¢, and ¢g < b; then, for sufficiently large #, each interval contains at
most one of the ¢;’s. Then, of the 7 terms in the summand of (3.1.1), only K
terms containing ¢,’s are nonzero. Therefore

fb h(x) dF(x) = § h(c)p;. (3.1.4)

3.2 Various Modes of Convergence

In this section, we shall define four modes of convergence for a sequence of
random variables and shall state relationships among them in the form of
several theorems.

DerFINITION 3.2.1 (convergence in probability). A sequence of random vari-
ables {X, )} is said to converge to a random variable X in probability if
lim,_.. P(|X,— X]> €)= 0 forany € > 0. We write .X,, —> X or plim X, = X.

DEeriniTION 3.2.2  (convergence in mean square). A sequence {X,}is said to
converge to X in mean square if lim,_... E(X,, — X)? = 0. We write X,, —> X.

DEeFINITION 3.2.3 (convergence in distribution). 4 sequence {X,,} is said to
converge to X in distribution if the distribution function F, of X, converges to
the distribution function F of X at every continuity point of F. We write
X, LS X, and we call F the limit distribution of (X,}. If (X, }and (Y, } have the
same limit distribution, we write X, = Y,.

The reason for adding the phrase “‘at every continuity point of 7 can be
understood by considering the following example: Consider the sequence
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F,(-) such that

F(x) =0, x<a—~:-1~ G.2.1)

n( 1) 1
iz | Xl ) a——=x=a+-—
2 n

=1, cx+l<x.
n

Then lim F, is not continuous from the left at & and therefore is not a
distribution function. However, we would like to say that the random variable
with the distribution (3.2.1) converges in distribution to a degenerate random
variable which takes the value «¢ with probability one. The phrase “at every
continuity point of ¥’ enables us to do so.

DEeFINITION 3.2.4 (almost sure convergence). A sequence {X,} is said to
converge to X almost surely® if

P{wili_r_n X, (w)=X(w)} = 1.

We write X, =5 X.

The next four theorems establish the logical relationships among the four
modes of convergence, depicted in Figure 3.2.°

THEOREM 3.2.1 (Chebyshev). EX2—0= X, > 0.
Proof. We have

Ex:= f x2 dF,(x) = €? f dr,(x), (3.2.2)
—o s
a.s.
M — P —d

Figure 3.2 Logical relationships among four modes of convergence
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where S = {x]x? = €?}. But we have

f dF,(x) = f h dF,(x) + f : dF (x) (3.2.3)
s — €

=F(—e+ 1~ Ee)]

=PX,<—¢€e)+PX,=¢€)

= P[X2> €?).
Therefore, from (3.2.2) and (3.2.3), we obtain

2
P[X2> €] = % (3.2.4)
€

The theorem immediately follows from (3.2.4).

The inequality (3.2.4) is called Chebyshev’s inequality. By slightly modify-
ing the proof, we can establish the following generalized form of Chebyshev’s
inequality:

Eg(X
Plg(x,) > ) = 28], 6.25)

where g( - ) is any nonnegative continuous function.

Note that the statement X, MNx=x n 2 X, where X may be either a con-
stant or a random variable, follows from Theorem 3.2.1 if we regard X, — X as
the X,, of the theorem.

We shall state the next two theorems without proof. The proof of Theorem
3.2.2 can be found in Mann and Wald (1943) or Rao (1973, p. 122). The proof
of Theorem 3.2.3 is left as an exercise.

THEOREM 3.2.2. X, Lx=X,5X
THEOREM 3.2.3. X, > X=X, X.

The converse of Theorem 3.2.2 is not generally true, but it holds in the
special case where X is equal to a constant . We shall state it as a theorem, the
proof of which is simple and left as an exercise.

THEOREM 3.2.4. X, LHa= X, >

The converse of Theorem 3.2.3 does not hold either, as we shall show by a
well-known example. Define a probability space (£2, A, P) as follows: Q =
[0, 1], A = Lebesgue-measurable setsin [0, 1], and P = Lebesgue measure as
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in Example 3.1.2. Define a sequence of random variables X, (w) as
X(w)=1 for0=w=1

1
X(w)=1 for0=sw ==

8]

=0 elsewhere

IIA
IIA

| =

+

W —

w

1
X(w)=1 fori

=0 elsewhere

1 11
= = —_ = =
Xi(w)=1 forO_w_—lzand2+34a)_l

=0 elsewhere

1
= —=
Xi(w)=1 for o= (]

lIA

1
—+
12

| —

=0 elsewhere

In other words, the subset of Q over which X, assumes unity has the total
length 1/n and keeps moving to the right until it reaches the right end point of
[0, 1], at which pointit moves back to O and startsagain. Forany | > € > 0, we
clearly have

1
P(X,|> &)=~

and therefore X, L5 0. However, because £, i~! = o, there is no element in
Q for which lim,,_... X,,(®) = 0. Therefore P{w|lim,,_... X, (@) =0} =0, im-
plying that X, does not converge to 0 almost surely.

The next three convergence theorems are extremely useful in obtaining the
asymptotic properties of estimators.

THEOREM 3.2.5 (Mann and Wald). Let X, and X be K-vectors of random
variables and let g(-) be a function from R¥ to R such that the set £ of
discontinuity points of g( ) is closed and P(X € E)=0. If X, <45 X, then
2(X,) > g(X).

A slightly more general theorem, in which a continuous function is replaced
by a Borel measurable function, was proved by Mann and Wald (1943). The
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convergence in distribution of the individual elements of the vector X,, to the
corresponding elements of the vector X is not sufficient for obtaining the
above results. However, if the elements of X, are independent for every n, the
separate convergence is sufficient.

TaeorEM 3.2.6. Let X, be a vector of random variables with a fixed finite
number of elements. Let g be a real-valued function continuous at a constant
vector point a. Then X, Sa= g2(X,) L g(a).

Proof. Continuity at & means that for any € > 0 we can find J such that
1X, — all < J implies |g(X,,) — g(a)| < €. Therefore

P[IX, — all < 8] = P[g(X,) — gla)| < €]. (3.2.6)

The theorem follows because the left-hand side of (3.2.6) converges to 1 by the
assumption of the theorem.

THEOREM 3.2.7 (Slutsky). If X, < X and i > a, then
i) X, +Y,SX+a
(i) X,Y, S aX,
(i) (X,/Y,) > X/a, provided a # 0.

The proofhas been given by Rao (1973, p. 122). By repeated applications of
Theorem 3.2.7, we can prove the more general theorem that if g is a rational

function and plim Y, =, i=1,2,. . . ,J,and X, .- X;jointly in all i =
[,2,. .. ,K, then the limit distribution of g(X,,, X5, . - . , Xgns Yins Yo,
. . ., Yy) s the same as the distribution of g(X,, X5, . . . , Xk, o, ay,

., ). By using Theorem 3.2.2, this result can also be obtained from
Theorem 3.2.5.
The following definition concerning the stochastic order relationship is
useful (see Mann and Wald, 1943, for more details).

DerFiNiTION 3.2.5. Let {X,) be a sequence of random variables and let
{a,} be a sequence of positive constants. Then we can write X, = o(a,) if
plim,_.. a;'X, = 0and X, = O(a,) if for any € > 0 there exists an M, such
that ’

Pla;'| X, =M.]z=1—¢
for all values of n.

Sometimes these order relationships are denoted 0, and O, respectively to
distinguish them from the cases where {X,,} are nonstochastic. However, we



