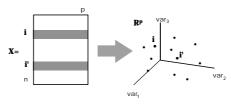
Análisis de Componentes Principales

• Nube de puntos

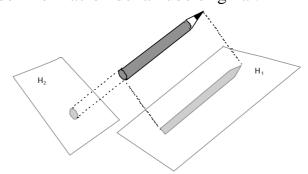


• Información de la nube de puntos: *La inercia*

1

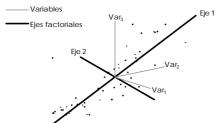
• Objetivo:

 Proyectar la nube de puntos sobre un subespacio (un plano) que conserve el máximo de información de la nube original.



Análisis de Componentes Principales

- Criterio matemático
 - Encontrar el subespacio que maximice la inercia proyectada.



• Descomposición de la inercia en direcciones ortogonales

$$I_{total} = I_1 + I_2 + \dots + I_p$$

$$I_1 > I_2 > \cdots > I_p$$

3

Ajuste en R^p

Matriz de Datos X: **centrados** o **estandarizados**

Búsqueda de la dirección $u\hat{I}R^p$ maximizando la inercia: y = Xu

$$\max_{u} \sum_{i=1}^{n} p_{\mathbf{y}_{i}^{2}} = \mathbf{y}' N \mathbf{y} = u' X' N X u$$

$$u' u = 1$$

$$X' N X u = \mathbf{1} u$$

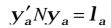
Diagonalización de la matriz de correlaciones (o covariancias)

$$diag(X /NX) = \begin{cases} Cov(X) & \rightarrow \mathbf{I}_1, \dots, \mathbf{I}_r \quad r = rang(X) \\ Cor(X) & u_1, \dots, u_r \end{cases}$$

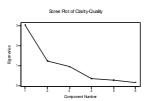
$$Maxu_1'X'NX u_1 = \mathbf{I}_1$$

La dirección que maximiza la inercia proyectada es u_1 . La dirección que maximiza la inercia proyectada ortogonal a u_1 es u_2 , ...

 $y_a = Xu_a$ (componentes principales)



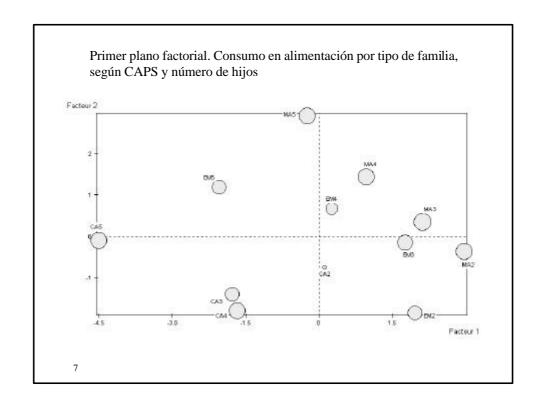
Scree plot of eigenvalues:

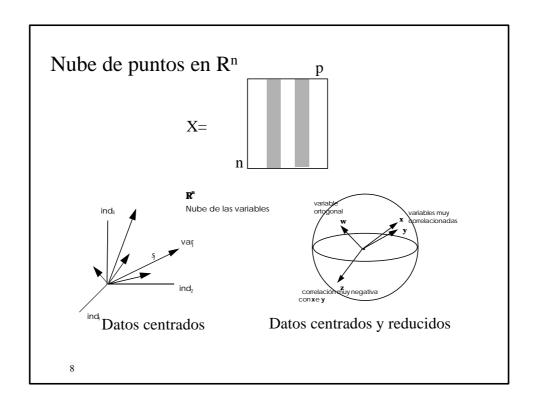


5

Datos: Consumo en alimentación por tipo de familia, según CAPS y número de hijos

lden	Pan	Verdura	Fruta	Carne	Arroz	Leche	Vino	CAPS	N hijos
MA2	332	428	354	1437	526	247	427	1	1
EM2	293	559	388	1527	567	239	258	2	1
CA2	372	767	562	1948	927	235	433	3	1
MA3	406	563	341	1507	544	324	407	1	2
ЕМ3	386	608	396	1501	558	319	363	2	2
CA3	438	843	689	2345	1148	243	341	3	2
MA4	534	660	367	1620	638	414	407	1	3
EM4	460	699	484	1856	762	400	416	2	3
CA4	385	789	621	2366	1149	304	282	3	3
MA5	655	776	423	1848	759	495	486	1	4
EM5	584	995	548	2056	893	518	319	2	4
CA5	515	1097	887	2630	1167	561	284	3	4

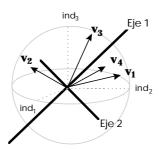




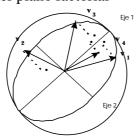
Análisis en Rⁿ

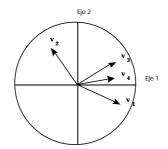
datos centrados y reducidos

Nube original



Primer plano factorial





Visualización óptima de las correlaciones entre variables

.

Ajuste en R^n

Matriz de Datos *X*: **centrados** o **estandarizados**

Búsqueda de la dirección $v\hat{I} R^p$ maximizando la inercia $j = X'N^{1/2} v$

$$\begin{aligned}
& \underset{v}{\text{Max}} \sum_{j=1}^{p} \mathbf{j}_{j}^{2} = \mathbf{j}' \mathbf{j} = v' N^{\frac{1}{2}} X X' N^{\frac{1}{2}} v \\
& v' v = 1
\end{aligned}$$

Relaciones de transición entre ambos ajustes:

$$\mathbf{j}_{a} = X' N^{1/2} v_{a}
\mathbf{j}'_{a} \mathbf{j}_{a} = \mathbf{l}_{a}$$

$$u_{a} = \mathbf{I}^{-\frac{1}{2}} X' \mathcal{N}^{\frac{1}{2}} v_{a}$$
$$v_{a} = \mathbf{I}^{-\frac{1}{2}} N^{\frac{1}{2}} X u_{a}$$

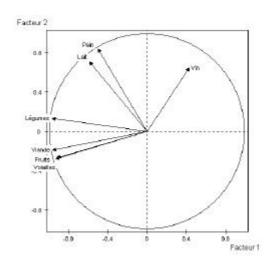
Fórmulas indirectas

Relación entre proyecciones

$$\mathbf{j}_{a} = \mathbf{I}^{1/2} u_{a}$$
$$\mathbf{y}_{a} = \mathbf{I}^{1/2} N^{-1/2} v_{a}$$

$$\mathbf{j}_{a} = \mathbf{l}^{-\frac{1}{2}} X' N \mathbf{y}_{a} = \begin{cases} cor(x_{j}, \mathbf{y}_{a}) \\ s_{j} cor(x_{j}, \mathbf{y}_{a}) \end{cases}$$

Primer plano factorial: Consumos en alimentación por tipo de familia



11

Representaciones simúltaneas en ACP: el biplot

Descomposición en valores singulares en ACP

$$eig(X NX) \equiv N^{\frac{1}{2}} X = V \Lambda^{\frac{1}{2}} U'$$

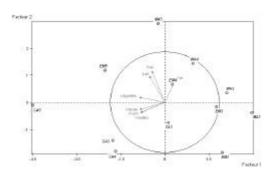
Biplot en R^p

$$X = N^{-\frac{1}{2}}V\Lambda^{\frac{1}{2}}U' = \Psi U'$$

Biplot en Rⁿ

$$X = N^{-\frac{1}{2}}V\Phi' = \Psi_s\Phi'$$

 Ψ_s CP estandarizados



El ACP como modelo

• El ACP es una técnica para ayudar a extraer los factores no observables, subyacentes en las variables observables.

Mundo de las ideas, conceptos, ...

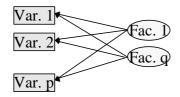
Mundo real

Variables observadas

ACP:
$$\Psi_a = u_{1a}\mathbf{x}_1 + u_{2a}\mathbf{x}_2 + \cdots + u_{pa}\mathbf{x}_p$$

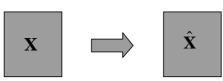
13

ACP como modelo



$$\hat{\mathbf{X}}_{\scriptscriptstyle(n,p)} = \Psi_{\scriptscriptstyle(n,q)} \mathbf{U}_{\scriptscriptstyle(q,p)}$$

Modelo: $\mathbf{x}_{j} = u_{jl}\Psi_{1} + u_{j2}\Psi_{2} + \cdots + u_{jq}\Psi_{q} + \mathbf{e}_{j}$



Reconstitución óptima: $\left| \mathbf{X} - \hat{\mathbf{X}} \right|^2 = \sum_{a=q+1}^r \mathbf{I}_a$